This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/module/temperature.h

589 lines
16 KiB
C
Raw Normal View History

/**
2016-03-24 19:01:20 +01:00
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
2016-04-29 03:18:13 +02:00
* temperature.h - temperature controller
*/
#ifndef TEMPERATURE_H
#define TEMPERATURE_H
2017-09-06 13:28:32 +02:00
#include "thermistor/thermistors.h"
2016-04-29 03:18:13 +02:00
2017-09-06 13:28:32 +02:00
#if ENABLED(BABYSTEPPING)
extern bool axis_known_position[XYZ];
#endif
#if ENABLED(PID_EXTRUSION_SCALING)
#include "stepper.h"
#endif
2016-04-29 03:18:13 +02:00
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
/**
* States for ADC reading in the ISR
*/
enum ADCSensorState {
#if HAS_TEMP_0
PrepareTemp_0,
MeasureTemp_0,
#endif
#if HAS_TEMP_1
PrepareTemp_1,
MeasureTemp_1,
#endif
#if HAS_TEMP_2
PrepareTemp_2,
MeasureTemp_2,
#endif
#if HAS_TEMP_3
PrepareTemp_3,
MeasureTemp_3,
#endif
#if HAS_TEMP_4
PrepareTemp_4,
MeasureTemp_4,
#endif
#if HAS_TEMP_BED
PrepareTemp_BED,
MeasureTemp_BED,
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
Prepare_FILWIDTH,
Measure_FILWIDTH,
#endif
2017-06-10 07:12:18 +02:00
#if ENABLED(ADC_KEYPAD)
Prepare_ADC_KEY,
Measure_ADC_KEY,
#endif
SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
// Minimum number of Temperature::ISR loops between sensor readings.
// Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
// get all oversampled sensor readings
#define MIN_ADC_ISR_LOOPS 10
#define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
#if !HAS_HEATER_BED
constexpr int16_t target_temperature_bed = 0;
#endif
2016-04-29 03:18:13 +02:00
class Temperature {
2016-04-29 03:18:13 +02:00
public:
2016-07-06 17:50:41 +02:00
static float current_temperature[HOTENDS],
current_temperature_bed;
static int16_t current_temperature_raw[HOTENDS],
target_temperature[HOTENDS],
current_temperature_bed_raw;
#if HAS_HEATER_BED
static int16_t target_temperature_bed;
#endif
static volatile bool in_temp_isr;
2017-04-20 21:04:26 +02:00
static uint8_t soft_pwm_amount[HOTENDS],
soft_pwm_amount_bed;
2016-04-29 03:18:13 +02:00
#if ENABLED(FAN_SOFT_PWM)
2017-04-20 21:04:26 +02:00
static uint8_t soft_pwm_amount_fan[FAN_COUNT],
soft_pwm_count_fan[FAN_COUNT];
#endif
2016-04-29 03:18:13 +02:00
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
#define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
#endif
2016-04-29 03:18:13 +02:00
#if ENABLED(PIDTEMP)
2015-04-04 01:38:05 +02:00
2016-07-12 07:08:14 +02:00
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
2016-05-27 02:43:20 +02:00
static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
#if ENABLED(PID_EXTRUSION_SCALING)
2016-05-27 02:43:20 +02:00
static float Kc[HOTENDS];
2016-04-29 03:18:13 +02:00
#endif
2016-07-12 07:08:14 +02:00
#define PID_PARAM(param, h) Temperature::param[h]
2016-04-29 03:18:13 +02:00
#else
2016-04-29 03:18:13 +02:00
static float Kp, Ki, Kd;
#if ENABLED(PID_EXTRUSION_SCALING)
2016-04-29 03:18:13 +02:00
static float Kc;
#endif
2016-07-12 07:08:14 +02:00
#define PID_PARAM(param, h) Temperature::param
2016-05-27 02:43:20 +02:00
#endif // PID_PARAMS_PER_HOTEND
2016-04-29 03:18:13 +02:00
// Apply the scale factors to the PID values
#define scalePID_i(i) ( (i) * PID_dT )
#define unscalePID_i(i) ( (i) / PID_dT )
#define scalePID_d(d) ( (d) / PID_dT )
#define unscalePID_d(d) ( (d) * PID_dT )
2016-04-29 03:18:13 +02:00
#endif
2016-04-29 03:18:13 +02:00
#if ENABLED(PIDTEMPBED)
2016-05-26 20:58:38 +02:00
static float bedKp, bedKi, bedKd;
2016-04-29 03:18:13 +02:00
#endif
2016-04-29 03:18:13 +02:00
#if ENABLED(BABYSTEPPING)
2016-05-26 20:58:38 +02:00
static volatile int babystepsTodo[3];
2016-04-29 03:18:13 +02:00
#endif
#if WATCH_HOTENDS
2017-05-21 11:48:53 +02:00
static uint16_t watch_target_temp[HOTENDS];
2016-05-27 02:43:20 +02:00
static millis_t watch_heater_next_ms[HOTENDS];
2016-04-29 03:18:13 +02:00
#endif
#if WATCH_THE_BED
2017-05-21 11:48:53 +02:00
static uint16_t watch_target_bed_temp;
2016-05-26 20:58:38 +02:00
static millis_t watch_bed_next_ms;
2016-04-29 03:18:13 +02:00
#endif
#if ENABLED(PREVENT_COLD_EXTRUSION)
2016-07-06 17:28:09 +02:00
static bool allow_cold_extrude;
2017-06-11 01:29:17 +02:00
static int16_t extrude_min_temp;
static bool tooColdToExtrude(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
2016-07-06 17:28:09 +02:00
return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
}
2016-04-29 03:18:13 +02:00
#else
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
2016-04-29 03:18:13 +02:00
#endif
private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
2017-05-21 11:48:53 +02:00
static uint16_t redundant_temperature_raw;
2016-05-26 20:58:38 +02:00
static float redundant_temperature;
2016-04-29 03:18:13 +02:00
#endif
2016-05-26 20:58:38 +02:00
static volatile bool temp_meas_ready;
2016-04-29 03:18:13 +02:00
#if ENABLED(PIDTEMP)
2016-07-06 17:50:41 +02:00
static float temp_iState[HOTENDS],
temp_dState[HOTENDS],
pTerm[HOTENDS],
iTerm[HOTENDS],
dTerm[HOTENDS];
2016-04-29 03:18:13 +02:00
#if ENABLED(PID_EXTRUSION_SCALING)
2016-05-27 02:43:20 +02:00
static float cTerm[HOTENDS];
static long last_e_position;
2016-05-26 20:58:38 +02:00
static long lpq[LPQ_MAX_LEN];
static int lpq_ptr;
2016-04-29 03:18:13 +02:00
#endif
static float pid_error[HOTENDS];
static bool pid_reset[HOTENDS];
2016-04-29 03:18:13 +02:00
#endif
#if ENABLED(PIDTEMPBED)
2016-07-06 17:50:41 +02:00
static float temp_iState_bed,
temp_dState_bed,
pTerm_bed,
iTerm_bed,
dTerm_bed,
pid_error_bed;
2016-04-29 03:18:13 +02:00
#else
2016-05-26 20:58:38 +02:00
static millis_t next_bed_check_ms;
2016-04-29 03:18:13 +02:00
#endif
static uint16_t raw_temp_value[MAX_EXTRUDERS],
raw_temp_bed_value;
2016-04-29 03:18:13 +02:00
// Init min and max temp with extreme values to prevent false errors during startup
static int16_t minttemp_raw[HOTENDS],
maxttemp_raw[HOTENDS],
minttemp[HOTENDS],
maxttemp[HOTENDS];
2016-04-29 03:18:13 +02:00
2016-07-09 04:28:37 +02:00
#ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
static uint8_t consecutive_low_temperature_error[HOTENDS];
2016-07-09 04:28:37 +02:00
#endif
#ifdef MILLISECONDS_PREHEAT_TIME
static millis_t preheat_end_time[HOTENDS];
2016-07-09 04:28:37 +02:00
#endif
2016-04-29 03:18:13 +02:00
#ifdef BED_MINTEMP
static int16_t bed_minttemp_raw;
2016-04-29 03:18:13 +02:00
#endif
#ifdef BED_MAXTEMP
static int16_t bed_maxttemp_raw;
2016-04-29 03:18:13 +02:00
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static int8_t meas_shift_index; // Index of a delayed sample in buffer
2016-04-29 03:18:13 +02:00
#endif
#if HAS_AUTO_FAN
2016-05-26 20:58:38 +02:00
static millis_t next_auto_fan_check_ms;
2016-04-29 03:18:13 +02:00
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
2016-04-29 03:18:13 +02:00
#endif
#if ENABLED(PROBING_HEATERS_OFF)
static bool paused;
#endif
#if HEATER_IDLE_HANDLER
static millis_t heater_idle_timeout_ms[HOTENDS];
static bool heater_idle_timeout_exceeded[HOTENDS];
#if HAS_TEMP_BED
static millis_t bed_idle_timeout_ms;
static bool bed_idle_timeout_exceeded;
#endif
#endif
2016-04-29 03:18:13 +02:00
public:
2017-06-10 07:12:18 +02:00
#if ENABLED(ADC_KEYPAD)
static uint32_t current_ADCKey_raw;
static uint8_t ADCKey_count;
#endif
2016-04-29 03:18:13 +02:00
/**
* Instance Methods
*/
Temperature();
void init();
2016-05-26 20:58:38 +02:00
/**
* Static (class) methods
*/
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
2016-04-29 03:18:13 +02:00
/**
* Called from the Temperature ISR
*/
2016-05-26 20:58:38 +02:00
static void isr();
2016-04-29 03:18:13 +02:00
/**
* Call periodically to manage heaters
*/
static void manage_heater() _O2; // Added _O2 to work around a compiler error
2016-04-29 03:18:13 +02:00
2016-07-09 04:28:37 +02:00
/**
* Preheating hotends
*/
#ifdef MILLISECONDS_PREHEAT_TIME
2016-07-12 07:08:47 +02:00
static bool is_preheating(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
}
static void start_preheat_time(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
}
static void reset_preheat_time(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
preheat_end_time[HOTEND_INDEX] = 0;
2016-07-09 04:28:37 +02:00
}
#else
#define is_preheating(n) (false)
#endif
2016-04-29 03:18:13 +02:00
#if ENABLED(FILAMENT_WIDTH_SENSOR)
2016-05-26 20:58:38 +02:00
static float analog2widthFil(); // Convert raw Filament Width to millimeters
static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
2016-04-29 03:18:13 +02:00
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
static float degHotend(uint8_t e) {
2016-05-27 02:43:20 +02:00
#if HOTENDS == 1
2016-07-10 06:11:17 +02:00
UNUSED(e);
2016-05-27 02:43:20 +02:00
#endif
2016-07-10 06:11:17 +02:00
return current_temperature[HOTEND_INDEX];
2016-05-27 02:43:20 +02:00
}
static float degBed() { return current_temperature_bed; }
2016-04-29 03:18:13 +02:00
#if ENABLED(SHOW_TEMP_ADC_VALUES)
static int16_t rawHotendTemp(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return current_temperature_raw[HOTEND_INDEX];
}
static int16_t rawBedTemp() { return current_temperature_bed_raw; }
2016-04-29 03:18:13 +02:00
#endif
static int16_t degTargetHotend(uint8_t e) {
2016-05-27 02:43:20 +02:00
#if HOTENDS == 1
2016-07-10 06:11:17 +02:00
UNUSED(e);
2016-05-27 02:43:20 +02:00
#endif
2016-07-10 06:11:17 +02:00
return target_temperature[HOTEND_INDEX];
2016-05-27 02:43:20 +02:00
}
static int16_t degTargetBed() { return target_temperature_bed; }
2016-04-29 03:18:13 +02:00
#if WATCH_HOTENDS
2016-07-10 06:11:17 +02:00
static void start_watching_heater(uint8_t e = 0);
2016-04-29 03:18:13 +02:00
#endif
#if WATCH_THE_BED
2016-05-26 20:58:38 +02:00
static void start_watching_bed();
2016-04-29 03:18:13 +02:00
#endif
static void setTargetHotend(const int16_t celsius, uint8_t e) {
2016-05-27 02:43:20 +02:00
#if HOTENDS == 1
2016-07-10 06:11:17 +02:00
UNUSED(e);
2016-05-27 02:43:20 +02:00
#endif
2016-07-09 04:28:37 +02:00
#ifdef MILLISECONDS_PREHEAT_TIME
if (celsius == 0)
reset_preheat_time(HOTEND_INDEX);
else if (target_temperature[HOTEND_INDEX] == 0)
start_preheat_time(HOTEND_INDEX);
2016-07-09 04:28:37 +02:00
#endif
2016-07-10 06:11:17 +02:00
target_temperature[HOTEND_INDEX] = celsius;
#if WATCH_HOTENDS
2016-07-10 06:11:17 +02:00
start_watching_heater(HOTEND_INDEX);
2016-04-29 03:18:13 +02:00
#endif
}
static void setTargetBed(const int16_t celsius) {
#if HAS_HEATER_BED
target_temperature_bed =
#ifdef BED_MAXTEMP
min(celsius, BED_MAXTEMP)
#else
celsius
#endif
;
#if WATCH_THE_BED
start_watching_bed();
#endif
2016-04-29 03:18:13 +02:00
#endif
}
2016-04-29 03:18:13 +02:00
2016-07-10 06:11:17 +02:00
static bool isHeatingHotend(uint8_t e) {
2016-05-27 02:43:20 +02:00
#if HOTENDS == 1
2016-07-10 06:11:17 +02:00
UNUSED(e);
2016-05-27 02:43:20 +02:00
#endif
2016-07-10 06:11:17 +02:00
return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
2016-05-27 02:43:20 +02:00
}
static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
2016-04-29 03:18:13 +02:00
2016-07-10 06:11:17 +02:00
static bool isCoolingHotend(uint8_t e) {
2016-05-27 02:43:20 +02:00
#if HOTENDS == 1
2016-07-10 06:11:17 +02:00
UNUSED(e);
2016-05-27 02:43:20 +02:00
#endif
2016-07-10 06:11:17 +02:00
return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
2016-05-27 02:43:20 +02:00
}
static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
2016-04-29 03:18:13 +02:00
/**
* The software PWM power for a heater
*/
2016-05-26 20:58:38 +02:00
static int getHeaterPower(int heater);
2016-04-29 03:18:13 +02:00
/**
* Switch off all heaters, set all target temperatures to 0
*/
2016-05-26 20:58:38 +02:00
static void disable_all_heaters();
2016-04-29 03:18:13 +02:00
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
2017-11-03 09:24:19 +01:00
static void PID_autotune(const float temp, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
2016-04-29 03:18:13 +02:00
#endif
/**
* Update the temp manager when PID values change
*/
2016-05-26 20:58:38 +02:00
static void updatePID();
2016-04-29 03:18:13 +02:00
#if ENABLED(BABYSTEPPING)
static void babystep_axis(const AxisEnum axis, const int16_t distance) {
if (axis_known_position[axis]) {
#if IS_CORE
#if ENABLED(BABYSTEP_XY)
switch (axis) {
case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
babystepsTodo[CORE_AXIS_1] += distance * 2;
babystepsTodo[CORE_AXIS_2] += distance * 2;
break;
case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
break;
case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
babystepsTodo[NORMAL_AXIS] += distance;
break;
}
#elif CORE_IS_XZ || CORE_IS_YZ
// Only Z stepping needs to be handled here
babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
#else
babystepsTodo[Z_AXIS] += distance;
#endif
#else
babystepsTodo[axis] += distance;
#endif
}
}
#endif // BABYSTEPPING
#if ENABLED(PROBING_HEATERS_OFF)
2017-05-08 21:09:37 +02:00
static void pause(const bool p);
static bool is_paused() { return paused; }
#endif
#if HEATER_IDLE_HANDLER
static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
#if HOTENDS == 1
UNUSED(e);
#endif
heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
}
static void reset_heater_idle_timer(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
heater_idle_timeout_ms[HOTEND_INDEX] = 0;
heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
#if WATCH_HOTENDS
start_watching_heater(HOTEND_INDEX);
#endif
}
static bool is_heater_idle(uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return heater_idle_timeout_exceeded[HOTEND_INDEX];
}
#if HAS_TEMP_BED
static void start_bed_idle_timer(millis_t timeout_ms) {
bed_idle_timeout_ms = millis() + timeout_ms;
bed_idle_timeout_exceeded = false;
}
static void reset_bed_idle_timer() {
bed_idle_timeout_ms = 0;
bed_idle_timeout_exceeded = false;
#if WATCH_THE_BED
start_watching_bed();
#endif
}
static bool is_bed_idle() {
return bed_idle_timeout_exceeded;
}
#endif
#endif
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
static void print_heaterstates();
#if ENABLED(AUTO_REPORT_TEMPERATURES)
static uint8_t auto_report_temp_interval;
static millis_t next_temp_report_ms;
static void auto_report_temperatures(void);
FORCE_INLINE void set_auto_report_interval(uint8_t v) {
NOMORE(v, 60);
auto_report_temp_interval = v;
next_temp_report_ms = millis() + 1000UL * v;
}
#endif
#endif
2016-04-29 03:18:13 +02:00
private:
2017-09-06 13:28:32 +02:00
#if ENABLED(FAST_PWM_FAN)
static void setPwmFrequency(const uint8_t pin, int val);
#endif
2016-05-26 20:58:38 +02:00
static void set_current_temp_raw();
2016-04-29 03:18:13 +02:00
2016-05-26 20:58:38 +02:00
static void updateTemperaturesFromRawValues();
2016-04-29 03:18:13 +02:00
#if ENABLED(HEATER_0_USES_MAX6675)
2016-05-26 20:58:38 +02:00
static int read_max6675();
2016-04-29 03:18:13 +02:00
#endif
2016-05-26 20:58:38 +02:00
static void checkExtruderAutoFans();
2016-04-29 03:18:13 +02:00
2017-06-15 22:14:08 +02:00
static float get_pid_output(const int8_t e);
2016-04-29 03:18:13 +02:00
#if ENABLED(PIDTEMPBED)
2016-05-26 20:58:38 +02:00
static float get_pid_output_bed();
2016-04-29 03:18:13 +02:00
#endif
2017-06-15 22:14:08 +02:00
static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
static void min_temp_error(const int8_t e);
static void max_temp_error(const int8_t e);
2016-04-29 03:18:13 +02:00
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
2016-04-29 03:18:13 +02:00
2016-05-26 20:58:38 +02:00
static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
2016-04-29 03:18:13 +02:00
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
2016-05-27 02:43:20 +02:00
static TRState thermal_runaway_state_machine[HOTENDS];
static millis_t thermal_runaway_timer[HOTENDS];
2016-04-29 03:18:13 +02:00
#endif
#if HAS_THERMALLY_PROTECTED_BED
2016-05-26 20:58:38 +02:00
static TRState thermal_runaway_bed_state_machine;
static millis_t thermal_runaway_bed_timer;
2016-04-29 03:18:13 +02:00
#endif
#endif // THERMAL_PROTECTION
};
extern Temperature thermalManager;
#endif // TEMPERATURE_H