This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/temperature.cpp

1613 lines
47 KiB
C++
Raw Normal View History

/*
temperature.c - temperature control
Part of Marlin
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
2011-12-22 12:38:50 +01:00
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
#include "watchdog.h"
2015-02-24 23:03:08 -08:00
#include "language.h"
#include "Sd2PinMap.h"
2015-02-26 00:33:30 -08:00
//===========================================================================
//================================== macros =================================
//===========================================================================
#ifdef K1 // Defined in Configuration.h in the PID settings
#define K2 (1.0-K1)
2015-02-26 00:33:30 -08:00
#endif
2015-03-25 12:08:23 +01:00
#if defined(PIDTEMPBED) || defined(PIDTEMP)
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
2015-03-27 16:11:28 -07:00
int target_temperature[4] = { 0 };
int target_temperature_bed = 0;
2015-03-27 16:11:28 -07:00
int current_temperature_raw[4] = { 0 };
float current_temperature[4] = { 0.0 };
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
#ifdef PIDTEMPBED
float bedKp=DEFAULT_bedKp;
float bedKi=(DEFAULT_bedKi*PID_dT);
float bedKd=(DEFAULT_bedKd/PID_dT);
#endif //PIDTEMPBED
#ifdef FAN_SOFT_PWM
unsigned char fanSpeedSoftPwm;
#endif
unsigned char soft_pwm_bed;
#ifdef BABYSTEPPING
volatile int babystepsTodo[3] = { 0 };
#endif
#ifdef FILAMENT_SENSOR
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif
#define HAS_HEATER_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0)
#define HAS_BED_THERMAL_PROTECTION (defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0 && TEMP_SENSOR_BED != 0)
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
static bool thermal_runaway = false;
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if HAS_HEATER_THERMAL_PROTECTION
static int thermal_runaway_state_machine[4]; // = {0,0,0,0};
static unsigned long thermal_runaway_timer[4]; // = {0,0,0,0};
#endif
#if HAS_BED_THERMAL_PROTECTION
static int thermal_runaway_bed_state_machine;
static unsigned long thermal_runaway_bed_timer;
#endif
#endif
//===========================================================================
//=============================private variables============================
//===========================================================================
static volatile bool temp_meas_ready = false;
#ifdef PIDTEMP
//static cannot be external:
static float temp_iState[EXTRUDERS] = { 0 };
static float temp_dState[EXTRUDERS] = { 0 };
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
//int output;
static float pid_error[EXTRUDERS];
static float temp_iState_min[EXTRUDERS];
static float temp_iState_max[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
#ifdef PIDTEMPBED
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
//int output;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
2012-09-17 19:18:09 -05:00
#else //PIDTEMPBED
static unsigned long previous_millis_bed_heater;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS];
#ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan;
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN
static unsigned long extruder_autofan_last_check;
#endif
#ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
#endif // PID_ADD_EXTRUSION_RATE
#else //PID_PARAMS_PER_EXTRUDER
float Kp = DEFAULT_Kp;
float Ki = DEFAULT_Ki * PID_dT;
float Kd = DEFAULT_Kd / PID_dT;
#ifdef PID_ADD_EXTRUSION_RATE
float Kc = DEFAULT_Kc;
#endif // PID_ADD_EXTRUSION_RATE
#endif // PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup
2015-01-23 23:13:06 +01:00
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
static int minttemp[EXTRUDERS] = { 0 };
2015-01-23 23:13:06 +01:00
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
#else
2015-01-23 23:13:06 +01:00
static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
#endif
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
static void updateTemperaturesFromRawValues();
#ifdef WATCH_TEMP_PERIOD
int watch_start_temp[EXTRUDERS] = { 0 };
unsigned long watchmillis[EXTRUDERS] = { 0 };
#endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
#ifdef FILAMENT_SENSOR
static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
#endif
#ifdef HEATER_0_USES_MAX6675
static int read_max6675();
#endif
//===========================================================================
//============================= functions ============================
//===========================================================================
void PID_autotune(float temp, int extruder, int ncycles)
{
float input = 0.0;
int cycles = 0;
bool heating = true;
unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
long t_high = 0, t_low = 0;
2012-09-17 14:17:24 -05:00
long bias, d;
float Ku, Tu;
float Kp, Ki, Kd;
float max = 0, min = 10000;
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN
unsigned long extruder_autofan_last_check = temp_millis;
#endif
if (extruder >= EXTRUDERS
#if !HAS_TEMP_BED
|| extruder < 0
#endif
) {
2015-02-24 23:03:08 -08:00
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
2012-09-17 14:17:24 -05:00
}
2015-02-24 23:03:08 -08:00
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_heater(); // switch off all heaters.
if (extruder < 0)
soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
else
soft_pwm[extruder] = bias = d = PID_MAX / 2;
// PID Tuning loop
for(;;) {
unsigned long ms = millis();
2015-03-26 16:22:21 -07:00
if (temp_meas_ready) { // temp sample ready
updateTemperaturesFromRawValues();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max = max(max, input);
min = min(min, input);
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN
if (ms > extruder_autofan_last_check + 2500) {
checkExtruderAutoFans();
extruder_autofan_last_check = ms;
}
#endif
if (heating == true && input > temp) {
if (ms - t2 > 5000) {
heating = false;
if (extruder < 0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
t1 = ms;
t_high = t1 - t2;
max = temp;
}
}
if (heating == false && input < temp) {
if (ms - t1 > 5000) {
heating = true;
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20, max_pow - 20);
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
2015-03-06 00:25:44 +01:00
SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
if (cycles > 2) {
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
Tu = ((float)(t_low + t_high) / 1000.0);
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
Kp = 0.6 * Ku;
Ki = 2 * Kp / Tu;
Kd = Kp * Tu / 8;
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
/*
2012-03-11 22:18:25 +01:00
Kp = 0.33*Ku;
Ki = Kp/Tu;
Kd = Kp*Tu/3;
2014-04-25 16:05:05 +08:00
SERIAL_PROTOCOLLNPGM(" Some overshoot ");
2012-03-11 22:18:25 +01:00
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
Kp = 0.2*Ku;
Ki = 2*Kp/Tu;
Kd = Kp*Tu/3;
2014-04-25 16:05:05 +08:00
SERIAL_PROTOCOLLNPGM(" No overshoot ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
*/
}
}
if (extruder < 0)
soft_pwm_bed = (bias + d) >> 1;
else
soft_pwm[extruder] = (bias + d) >> 1;
cycles++;
min = temp;
}
}
}
if (input > temp + 20) {
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return;
}
// Every 2 seconds...
2015-02-26 00:33:30 -08:00
if (ms > temp_millis + 2000) {
int p;
if (extruder < 0) {
p = soft_pwm_bed;
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLPGM(MSG_OK_B);
}
else {
p = soft_pwm[extruder];
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLPGM(MSG_OK_T);
}
SERIAL_PROTOCOL(input);
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLPGM(MSG_AT);
SERIAL_PROTOCOLLN(p);
temp_millis = ms;
} // every 2 seconds
// Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
return;
}
if (cycles > ncycles) {
2015-02-24 23:03:08 -08:00
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
return;
}
lcd_update();
}
}
void updatePID() {
#ifdef PIDTEMP
for (int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
}
#endif
#ifdef PIDTEMPBED
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
#endif
}
int getHeaterPower(int heater) {
return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
}
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN
void setExtruderAutoFanState(int pin, bool state)
{
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
// this idiom allows both digital and PWM fan outputs (see M42 handling).
pinMode(pin, OUTPUT);
digitalWrite(pin, newFanSpeed);
analogWrite(pin, newFanSpeed);
}
void checkExtruderAutoFans()
{
uint8_t fanState = 0;
// which fan pins need to be turned on?
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_0
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
2015-02-26 01:14:59 -08:00
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else
fanState |= 2;
}
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_2
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else
fanState |= 4;
}
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_3
2015-01-23 23:13:06 +01:00
if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
fanState |= 4;
else
fanState |= 8;
}
#endif
// update extruder auto fan states
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_1
2015-02-20 00:08:59 -08:00
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_2
2015-02-20 00:08:59 -08:00
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
2015-01-23 23:13:06 +01:00
#endif
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN_3
2015-02-20 00:08:59 -08:00
if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
2015-01-23 23:13:06 +01:00
setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
#endif
}
#endif // any extruder auto fan pins set
//
// Temperature Error Handlers
//
inline void _temp_error(int e, const char *msg1, const char *msg2) {
if (!IsStopped()) {
SERIAL_ERROR_START;
if (e >= 0) SERIAL_ERRORLN((int)e);
serialprintPGM(msg1);
MYSERIAL.write('\n');
#ifdef ULTRA_LCD
lcd_setalertstatuspgm(msg2);
#endif
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
void max_temp_error(uint8_t e) {
disable_heater();
2015-03-15 21:35:33 +01:00
_temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
}
void min_temp_error(uint8_t e) {
disable_heater();
2015-03-15 21:35:33 +01:00
_temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
}
void bed_max_temp_error(void) {
#if HAS_HEATER_BED
WRITE_HEATER_BED(0);
#endif
2015-03-15 21:35:33 +01:00
_temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
}
float get_pid_output(int e) {
float pid_output;
#ifdef PIDTEMP
#ifndef PID_OPENLOOP
pid_error[e] = target_temperature[e] - current_temperature[e];
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX;
pid_reset[e] = true;
}
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
pid_output = 0;
pid_reset[e] = true;
}
else {
if (pid_reset[e]) {
temp_iState[e] = 0.0;
pid_reset[e] = false;
}
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
temp_iState[e] += pid_error[e];
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = PID_MAX;
}
else if (pid_output < 0) {
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = 0;
}
}
temp_dState[e] = current_temperature[e];
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_PID_DEBUG);
SERIAL_ECHO(e);
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
SERIAL_ECHO(current_temperature[e]);
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
SERIAL_ECHO(pid_output);
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
SERIAL_ECHOLN(dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
#endif
return pid_output;
}
#ifdef PIDTEMPBED
float get_pid_output_bed() {
float pid_output;
#ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - current_temperature_bed;
pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = bedKi * temp_iState_bed;
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
temp_dState_bed = current_temperature_bed;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0;
}
#else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif // PID_OPENLOOP
#ifdef PID_BED_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_BED_DEBUG ");
SERIAL_ECHO(": Input ");
SERIAL_ECHO(current_temperature_bed);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(pTerm_bed);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(iTerm_bed);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHOLN(dTerm_bed);
#endif //PID_BED_DEBUG
return pid_output;
}
#endif
void manage_heater() {
if (!temp_meas_ready) return;
updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675
float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675
#if defined(WATCH_TEMP_PERIOD) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
unsigned long ms = millis();
#endif
// Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) {
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
#endif
float pid_output = get_pid_output(e);
// Check if temperature is within the correct range
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
#ifdef WATCH_TEMP_PERIOD
if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
setTargetHotend(0, e);
2015-02-24 23:03:08 -08:00
LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
SERIAL_ECHO_START;
2015-02-24 23:03:08 -08:00
SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
}
else {
watchmillis[e] = 0;
}
}
#endif //WATCH_TEMP_PERIOD
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater();
_temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
}
#endif //TEMP_SENSOR_1_AS_REDUNDANT
} // Extruders Loop
2012-08-11 09:17:47 +03:00
2015-02-26 01:14:59 -08:00
#if HAS_AUTO_FAN
if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
checkExtruderAutoFans();
extruder_autofan_last_check = ms;
}
#endif
#ifndef PIDTEMPBED
if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
previous_millis_bed_heater = ms;
#endif //PIDTEMPBED
#if TEMP_SENSOR_BED != 0
#if HAS_BED_THERMAL_PROTECTION
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
#endif
#ifdef PIDTEMPBED
2015-03-13 20:19:51 -07:00
float pid_output = get_pid_output_bed();
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
2015-02-26 00:33:30 -08:00
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
2011-11-20 13:14:58 +01:00
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
soft_pwm_bed = MAX_BED_POWER >> 1;
2011-11-20 13:14:58 +01:00
}
else {
soft_pwm_bed = 0;
WRITE_HEATER_BED(LOW);
}
#endif
#endif //TEMP_SENSOR_BED != 0
// Control the extruder rate based on the width sensor
#ifdef FILAMENT_SENSOR
if (filament_sensor) {
meas_shift_index = delay_index1 - meas_delay_cm;
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
2015-02-26 00:33:30 -08:00
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
2015-02-26 00:33:30 -08:00
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
if (vm < 0.01) vm = 0.01;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
}
#endif //FILAMENT_SENSOR
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
2015-02-26 00:33:30 -08:00
if (e > EXTRUDERS)
#else
2015-02-26 00:33:30 -08:00
if (e >= EXTRUDERS)
#endif
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
2015-02-24 23:03:08 -08:00
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill();
2014-05-15 22:09:50 +02:00
return 0.0;
}
#ifdef HEATER_0_USES_MAX6675
if (e == 0)
{
return 0.25 * raw;
}
#endif
if(heater_ttbl_map[e] != NULL)
{
float celsius = 0;
uint8_t i;
short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
for (i=1; i<heater_ttbllen_map[e]; i++)
{
if (PGM_RD_W((*tt)[i][0]) > raw)
{
celsius = PGM_RD_W((*tt)[i-1][1]) +
(raw - PGM_RD_W((*tt)[i-1][0])) *
(float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
(float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
return celsius;
}
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
}
// Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement.
static float analog2tempBed(int raw) {
#ifdef BED_USES_THERMISTOR
float celsius = 0;
byte i;
for (i=1; i<BEDTEMPTABLE_LEN; i++)
{
if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
{
celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
(raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
(float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
(float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
break;
}
}
// Overflow: Set to last value in the table
if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
return celsius;
#elif defined BED_USES_AD595
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
#else
return 0;
#endif
}
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
2015-02-26 00:33:30 -08:00
static void updateTemperaturesFromRawValues() {
#ifdef HEATER_0_USES_MAX6675
current_temperature_raw[0] = read_max6675();
#endif
for(uint8_t e = 0; e < EXTRUDERS; e++) {
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#endif
#if HAS_FILAMENT_SENSOR
filament_width_meas = analog2widthFil();
#endif
//Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
CRITICAL_SECTION_START;
temp_meas_ready = false;
CRITICAL_SECTION_END;
}
#ifdef FILAMENT_SENSOR
// Convert raw Filament Width to millimeters
float analog2widthFil() {
return current_raw_filwidth / 16383.0 * 5.0;
//return current_raw_filwidth;
}
// Convert raw Filament Width to a ratio
int widthFil_to_size_ratio() {
float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
return filament_width_nominal / temp * 100;
}
#endif
void tp_init()
{
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=BIT(JTD);
MCUCR=BIT(JTD);
#endif
// Finish init of mult extruder arrays
for (int e = 0; e < EXTRUDERS; e++) {
// populate with the first value
maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP
temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
#endif //PIDTEMP
#ifdef PIDTEMPBED
temp_iState_min_bed = 0.0;
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
#endif //PIDTEMPBED
}
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_0
SET_OUTPUT(HEATER_0_PIN);
2015-01-23 23:13:06 +01:00
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_1
SET_OUTPUT(HEATER_1_PIN);
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_2
SET_OUTPUT(HEATER_2_PIN);
2015-01-23 23:13:06 +01:00
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_3
2015-01-23 23:13:06 +01:00
SET_OUTPUT(HEATER_3_PIN);
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
SET_OUTPUT(HEATER_BED_PIN);
#endif
2015-02-26 01:14:59 -08:00
#if HAS_FAN
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
#endif
#endif
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
2015-03-03 00:48:20 -08:00
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
OUT_WRITE(MISO_PIN, HIGH);
#else
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH);
#endif
2015-03-03 00:48:20 -08:00
OUT_WRITE(MAX6675_SS,HIGH);
#endif //HEATER_0_USES_MAX6675
#ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
#else
#define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
#endif
// Set analog inputs
ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
2011-11-20 13:14:58 +01:00
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
#if HAS_TEMP_0
ANALOG_SELECT(TEMP_0_PIN);
2011-11-20 13:14:58 +01:00
#endif
#if HAS_TEMP_1
ANALOG_SELECT(TEMP_1_PIN);
2011-11-20 13:14:58 +01:00
#endif
#if HAS_TEMP_2
ANALOG_SELECT(TEMP_2_PIN);
2015-01-23 23:13:06 +01:00
#endif
#if HAS_TEMP_3
ANALOG_SELECT(TEMP_3_PIN);
2011-11-20 13:14:58 +01:00
#endif
#if HAS_TEMP_BED
ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if HAS_FILAMENT_SENSOR
ANALOG_SELECT(FILWIDTH_PIN);
#endif
// Use timer0 for temperature measurement
// Interleave temperature interrupt with millies interrupt
OCR0B = 128;
TIMSK0 |= BIT(OCIE0B);
// Wait for temperature measurement to settle
delay(250);
#define TEMP_MIN_ROUTINE(NR) \
minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
minttemp_raw[NR] += OVERSAMPLENR; \
else \
minttemp_raw[NR] -= OVERSAMPLENR; \
}
#define TEMP_MAX_ROUTINE(NR) \
maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
maxttemp_raw[NR] -= OVERSAMPLENR; \
else \
maxttemp_raw[NR] += OVERSAMPLENR; \
}
2015-01-23 23:13:06 +01:00
#ifdef HEATER_0_MINTEMP
TEMP_MIN_ROUTINE(0);
#endif
#ifdef HEATER_0_MAXTEMP
TEMP_MAX_ROUTINE(0);
#endif
#if EXTRUDERS > 1
#ifdef HEATER_1_MINTEMP
TEMP_MIN_ROUTINE(1);
#endif
#ifdef HEATER_1_MAXTEMP
TEMP_MAX_ROUTINE(1);
#endif
#if EXTRUDERS > 2
#ifdef HEATER_2_MINTEMP
TEMP_MIN_ROUTINE(2);
#endif
#ifdef HEATER_2_MAXTEMP
TEMP_MAX_ROUTINE(2);
#endif
#if EXTRUDERS > 3
#ifdef HEATER_3_MINTEMP
TEMP_MIN_ROUTINE(3);
#endif
#ifdef HEATER_3_MAXTEMP
TEMP_MAX_ROUTINE(3);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
#ifdef BED_MINTEMP
/* No bed MINTEMP error implemented?!? */ /*
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
*/
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
}
void setWatch() {
#ifdef WATCH_TEMP_PERIOD
unsigned long ms = millis();
for (int e = 0; e < EXTRUDERS; e++) {
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
watch_start_temp[e] = degHotend(e);
watchmillis[e] = ms;
}
}
#endif
}
#if HAS_HEATER_THERMAL_PROTECTION || HAS_BED_THERMAL_PROTECTION
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
{
/*
SERIAL_ECHO_START;
SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
SERIAL_ECHO(heater_id);
SERIAL_ECHO(" ; State:");
SERIAL_ECHO(*state);
SERIAL_ECHO(" ; Timer:");
SERIAL_ECHO(*timer);
SERIAL_ECHO(" ; Temperature:");
SERIAL_ECHO(temperature);
SERIAL_ECHO(" ; Target Temp:");
SERIAL_ECHO(target_temperature);
SERIAL_ECHOLN("");
*/
if ((target_temperature == 0) || thermal_runaway)
{
*state = 0;
*timer = 0;
return;
}
switch (*state)
{
case 0: // "Heater Inactive" state
if (target_temperature > 0) *state = 1;
break;
case 1: // "First Heating" state
if (temperature >= target_temperature) *state = 2;
break;
case 2: // "Temperature Stable" state
{
unsigned long ms = millis();
if (temperature >= (target_temperature - hysteresis_degc))
{
*timer = ms;
}
else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
{
SERIAL_ERROR_START;
2015-02-24 23:03:08 -08:00
SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
SERIAL_ERRORLN((int)heater_id);
2015-02-24 23:03:08 -08:00
LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
thermal_runaway = true;
while(1)
{
disable_heater();
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
2015-01-23 23:13:06 +01:00
disable_e3();
manage_heater();
lcd_update();
}
}
} break;
}
}
#endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
void disable_heater() {
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
setTargetBed(0);
2015-03-23 15:18:22 -07:00
#define DISABLE_HEATER(NR) { \
target_temperature[NR] = 0; \
soft_pwm[NR] = 0; \
WRITE_HEATER_ ## NR (LOW); \
}
#if HAS_TEMP_0
target_temperature[0] = 0;
soft_pwm[0] = 0;
2015-03-23 15:18:22 -07:00
WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
#endif
#if EXTRUDERS > 1 && HAS_TEMP_1
2015-03-23 15:18:22 -07:00
DISABLE_HEATER(1);
2015-01-23 23:13:06 +01:00
#endif
#if EXTRUDERS > 2 && HAS_TEMP_2
2015-03-23 15:18:22 -07:00
DISABLE_HEATER(2);
#endif
#if EXTRUDERS > 3 && HAS_TEMP_3
2015-03-23 15:18:22 -07:00
DISABLE_HEATER(3);
#endif
2015-01-23 23:13:06 +01:00
#if HAS_TEMP_BED
target_temperature_bed = 0;
soft_pwm_bed = 0;
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
WRITE_HEATER_BED(LOW);
#endif
#endif
}
#ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250u
unsigned long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000;
static int read_max6675() {
unsigned long ms = millis();
if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = ms;
max6675_temp = 0;
#ifdef PRR
PRR &= ~BIT(PRSPI);
#elif defined(PRR0)
PRR0 &= ~BIT(PRSPI);
#endif
SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// read MSB
SPDR = 0;
for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & BIT(SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4) {
// thermocouple open
max6675_temp = 4000;
}
else {
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif //HEATER_0_USES_MAX6675
2015-02-26 00:33:30 -08:00
/**
* Stages in the ISR loop
*/
enum TempState {
PrepareTemp_0,
MeasureTemp_0,
PrepareTemp_BED,
MeasureTemp_BED,
PrepareTemp_1,
MeasureTemp_1,
PrepareTemp_2,
MeasureTemp_2,
PrepareTemp_3,
MeasureTemp_3,
Prepare_FILWIDTH,
Measure_FILWIDTH,
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
2015-03-26 16:22:21 -07:00
static unsigned long raw_temp_value[4] = { 0 };
2015-03-25 21:37:15 +01:00
static unsigned long raw_temp_bed_value = 0;
2015-03-25 21:37:15 +01:00
static void set_current_temp_raw() {
2015-03-26 16:22:21 -07:00
#if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = raw_temp_value[0];
#endif
2015-03-26 16:22:21 -07:00
#if HAS_TEMP_1
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
2015-03-27 16:37:22 -07:00
redundant_temperature_raw = raw_temp_value[1];
#else
current_temperature_raw[1] = raw_temp_value[1];
2015-03-26 16:22:21 -07:00
#endif
#if HAS_TEMP_2
current_temperature_raw[2] = raw_temp_value[2];
2015-03-26 16:22:21 -07:00
#if HAS_TEMP_3
current_temperature_raw[3] = raw_temp_value[3];
#endif
#endif
#endif
current_temperature_bed_raw = raw_temp_bed_value;
2015-03-26 16:22:21 -07:00
temp_meas_ready = true;
}
//
// Timer 0 is shared with millies
//
ISR(TIMER0_COMPB_vect) {
//these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0;
static TempState temp_state = StartupDelay;
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
2015-01-23 23:13:06 +01:00
// Static members for each heater
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
#define ISR_STATICS(n) \
static unsigned char soft_pwm_ ## n; \
static unsigned char state_heater_ ## n = 0; \
static unsigned char state_timer_heater_ ## n = 0
#else
#define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
#endif
2015-01-23 23:13:06 +01:00
// Statics per heater
ISR_STATICS(0);
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
ISR_STATICS(1);
#if EXTRUDERS > 2
ISR_STATICS(2);
#if EXTRUDERS > 3
ISR_STATICS(3);
#endif
#endif
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
ISR_STATICS(BED);
#endif
2015-01-23 23:13:06 +01:00
#if HAS_FILAMENT_SENSOR
static unsigned long raw_filwidth_value = 0;
#endif
#ifndef SLOW_PWM_HEATERS
/**
* standard PWM modulation
*/
if (pwm_count == 0) {
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
WRITE_HEATER_0(1);
}
else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
#if EXTRUDERS > 3
soft_pwm_3 = soft_pwm[3];
WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
#endif
#endif
#endif
2015-01-23 23:13:06 +01:00
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
soft_pwm_BED = soft_pwm_bed;
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
2015-02-26 01:14:59 -08:00
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
#endif
2015-01-23 23:13:06 +01:00
}
if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
#if EXTRUDERS > 1
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
#if EXTRUDERS > 2
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
#if EXTRUDERS > 3
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
#endif
#endif
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
#endif
#ifdef FAN_SOFT_PWM
2015-02-26 01:14:59 -08:00
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif
pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else // SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
2015-01-23 23:13:06 +01:00
// Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
#define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ## NR = src; \
if (soft_pwm_ ## NR > 0) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 1; \
WRITE_HEATER_ ## NR(1); \
} \
} \
else { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR(0); \
} \
2015-01-23 23:13:06 +01:00
}
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
#define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ## NR < slow_pwm_count) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR (0); \
} \
}
2015-01-23 23:13:06 +01:00
if (slow_pwm_count == 0) {
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
#endif
} // slow_pwm_count == 0
PWM_OFF_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
PWM_OFF_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
PWM_OFF_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
PWM_OFF_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
PWM_OFF_ROUTINE(BED); // BED
#endif
#ifdef FAN_SOFT_PWM
if (pwm_count == 0) {
soft_pwm_fan = fanSpeedSoftPwm / 2;
2015-02-26 01:14:59 -08:00
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
}
2015-02-26 01:14:59 -08:00
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM
pwm_count += BIT(SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// EXTRUDER 0
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if EXTRUDERS > 1 // EXTRUDER 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if EXTRUDERS > 2 // EXTRUDER 2
if (state_timer_heater_2 > 0) state_timer_heater_2--;
#if EXTRUDERS > 3 // EXTRUDER 3
if (state_timer_heater_3 > 0) state_timer_heater_3--;
#endif
#endif
#endif
2015-02-26 00:33:30 -08:00
#if HAS_HEATER_BED
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} // (pwm_count % 64) == 0
#endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
#ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
2015-02-24 05:38:10 -08:00
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
switch(temp_state) {
case PrepareTemp_0:
#if HAS_TEMP_0
2015-02-24 05:38:10 -08:00
START_ADC(TEMP_0_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_0;
break;
case MeasureTemp_0:
#if HAS_TEMP_0
raw_temp_value[0] += ADC;
#endif
temp_state = PrepareTemp_BED;
break;
case PrepareTemp_BED:
#if HAS_TEMP_BED
2015-02-24 05:38:10 -08:00
START_ADC(TEMP_BED_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_BED;
break;
case MeasureTemp_BED:
#if HAS_TEMP_BED
raw_temp_bed_value += ADC;
#endif
temp_state = PrepareTemp_1;
break;
case PrepareTemp_1:
#if HAS_TEMP_1
2015-02-24 05:38:10 -08:00
START_ADC(TEMP_1_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_1;
break;
case MeasureTemp_1:
#if HAS_TEMP_1
raw_temp_value[1] += ADC;
#endif
temp_state = PrepareTemp_2;
break;
case PrepareTemp_2:
#if HAS_TEMP_2
2015-02-24 05:38:10 -08:00
START_ADC(TEMP_2_PIN);
#endif
lcd_buttons_update();
temp_state = MeasureTemp_2;
break;
case MeasureTemp_2:
#if HAS_TEMP_2
raw_temp_value[2] += ADC;
#endif
temp_state = PrepareTemp_3;
break;
case PrepareTemp_3:
#if HAS_TEMP_3
2015-02-24 05:38:10 -08:00
START_ADC(TEMP_3_PIN);
2015-01-23 23:13:06 +01:00
#endif
lcd_buttons_update();
temp_state = MeasureTemp_3;
2015-01-23 23:13:06 +01:00
break;
case MeasureTemp_3:
#if HAS_TEMP_3
raw_temp_value[3] += ADC;
2015-01-23 23:13:06 +01:00
#endif
temp_state = Prepare_FILWIDTH;
2015-01-23 23:13:06 +01:00
break;
case Prepare_FILWIDTH:
#if HAS_FILAMENT_SENSOR
2015-02-24 05:38:10 -08:00
START_ADC(FILWIDTH_PIN);
#endif
lcd_buttons_update();
temp_state = Measure_FILWIDTH;
break;
case Measure_FILWIDTH:
#if HAS_FILAMENT_SENSOR
// raw_filwidth_value += ADC; //remove to use an IIR filter approach
if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
}
#endif
temp_state = PrepareTemp_0;
temp_count++;
2014-01-06 11:20:03 +01:00
break;
case StartupDelay:
temp_state = PrepareTemp_0;
break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
} // switch(temp_state)
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
2015-03-26 16:22:21 -07:00
// Update the raw values if they've been read. Else we could be updating them during reading.
if (!temp_meas_ready) set_current_temp_raw();
// Filament Sensor - can be read any time since IIR filtering is used
#if HAS_FILAMENT_SENSOR
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
temp_count = 0;
2015-03-26 16:22:21 -07:00
for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
raw_temp_bed_value = 0;
#ifndef HEATER_0_USES_MAX6675
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
#define GE0 <=
#else
#define GE0 >=
#endif
2015-04-01 13:40:05 +02:00
if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
#endif
#if HAS_TEMP_1
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
#define GE1 <=
#else
#define GE1 >=
#endif
2015-04-01 13:40:05 +02:00
if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
#endif // TEMP_SENSOR_1
#if HAS_TEMP_2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
#define GE2 <=
#else
#define GE2 >=
#endif
2015-04-01 13:40:05 +02:00
if (current_temperature_raw[2] GE2 (maxttemp_raw[2]) max_temp_error(2);
if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
#endif // TEMP_SENSOR_2
#if HAS_TEMP_3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
#define GE3 <=
#else
#define GE3 >=
#endif
2015-04-01 13:40:05 +02:00
if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
#endif // TEMP_SENSOR_3
2015-01-23 23:13:06 +01:00
#if HAS_TEMP_BED
#if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
#define GEBED <=
#else
#define GEBED >=
#endif
if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
target_temperature_bed = 0;
bed_max_temp_error();
}
#endif
} // temp_count >= OVERSAMPLENR
2015-01-23 23:13:06 +01:00
#ifdef BABYSTEPPING
for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if (curTodo > 0) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
}
else if(curTodo < 0) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
}
}
#endif //BABYSTEPPING
}
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i) { return i * PID_dT; }
float unscalePID_i(float i) { return i / PID_dT; }
float scalePID_d(float d) { return d / PID_dT; }
float unscalePID_d(float d) { return d * PID_dT; }
#endif //PIDTEMP