This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/HAL/HAL_ESP32/i2s.cpp

323 lines
9.5 KiB
C++
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2019-02-12 22:06:53 +01:00
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef ARDUINO_ARCH_ESP32
#include <Arduino.h> // replace that with the proper imports
#include "i2s.h"
#include "../../core/macros.h"
#include "driver/periph_ctrl.h"
#include "rom/lldesc.h"
#include "soc/i2s_struct.h"
#include "freertos/queue.h"
#include "../../module/stepper.h"
#define DMA_BUF_COUNT 8 // number of DMA buffers to store data
#define DMA_BUF_LEN 4092 // maximum size in bytes
#define I2S_SAMPLE_SIZE 4 // 4 bytes, 32 bits per sample
#define DMA_SAMPLE_COUNT DMA_BUF_LEN / I2S_SAMPLE_SIZE // number of samples per buffer
typedef enum {
I2S_NUM_0 = 0x0, /*!< I2S 0*/
I2S_NUM_1 = 0x1, /*!< I2S 1*/
I2S_NUM_MAX,
} i2s_port_t;
typedef struct {
uint32_t **buffers;
uint32_t *current;
uint32_t rw_pos;
lldesc_t **desc;
xQueueHandle queue;
} i2s_dma_t;
static portMUX_TYPE i2s_spinlock[I2S_NUM_MAX] = {portMUX_INITIALIZER_UNLOCKED, portMUX_INITIALIZER_UNLOCKED};
static i2s_dev_t* I2S[I2S_NUM_MAX] = {&I2S0, &I2S1};
static i2s_dma_t dma;
// output value
uint32_t i2s_port_data;
#define I2S_ENTER_CRITICAL() portENTER_CRITICAL(&i2s_spinlock[i2s_num])
#define I2S_EXIT_CRITICAL() portEXIT_CRITICAL(&i2s_spinlock[i2s_num])
static inline void gpio_matrix_out_check(uint32_t gpio, uint32_t signal_idx, bool out_inv, bool oen_inv) {
//if pin = -1, do not need to configure
if (gpio != -1) {
PIN_FUNC_SELECT(GPIO_PIN_MUX_REG[gpio], PIN_FUNC_GPIO);
gpio_set_direction((gpio_num_t)gpio, (gpio_mode_t)GPIO_MODE_DEF_OUTPUT);
gpio_matrix_out(gpio, signal_idx, out_inv, oen_inv);
}
}
static esp_err_t i2s_reset_fifo(i2s_port_t i2s_num) {
I2S_ENTER_CRITICAL();
I2S[i2s_num]->conf.rx_fifo_reset = 1;
I2S[i2s_num]->conf.rx_fifo_reset = 0;
I2S[i2s_num]->conf.tx_fifo_reset = 1;
I2S[i2s_num]->conf.tx_fifo_reset = 0;
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_start(i2s_port_t i2s_num) {
//start DMA link
I2S_ENTER_CRITICAL();
i2s_reset_fifo(i2s_num);
//reset dma
I2S[i2s_num]->lc_conf.in_rst = 1;
I2S[i2s_num]->lc_conf.in_rst = 0;
I2S[i2s_num]->lc_conf.out_rst = 1;
I2S[i2s_num]->lc_conf.out_rst = 0;
I2S[i2s_num]->conf.tx_reset = 1;
I2S[i2s_num]->conf.tx_reset = 0;
I2S[i2s_num]->conf.rx_reset = 1;
I2S[i2s_num]->conf.rx_reset = 0;
I2S[i2s_num]->int_clr.val = 0xFFFFFFFF;
I2S[i2s_num]->out_link.start = 1;
I2S[i2s_num]->conf.tx_start = 1;
I2S_EXIT_CRITICAL();
return ESP_OK;
}
esp_err_t i2s_stop(i2s_port_t i2s_num) {
I2S_ENTER_CRITICAL();
I2S[i2s_num]->out_link.stop = 1;
I2S[i2s_num]->conf.tx_start = 0;
I2S[i2s_num]->int_clr.val = I2S[i2s_num]->int_st.val; //clear pending interrupt
I2S_EXIT_CRITICAL();
return ESP_OK;
}
static void IRAM_ATTR i2s_intr_handler_default(void *arg) {
int dummy;
lldesc_t *finish_desc;
portBASE_TYPE high_priority_task_awoken = pdFALSE;
if (I2S0.int_st.out_eof) {
// Get the descriptor of the last item in the linkedlist
finish_desc = (lldesc_t*) I2S0.out_eof_des_addr;
// If the queue is full it's because we have an underflow,
// more than buf_count isr without new data, remove the front buffer
if (xQueueIsQueueFullFromISR(dma.queue))
xQueueReceiveFromISR(dma.queue, &dummy, &high_priority_task_awoken);
xQueueSendFromISR(dma.queue, (void *)(&finish_desc->buf), &high_priority_task_awoken);
}
if (high_priority_task_awoken == pdTRUE) portYIELD_FROM_ISR();
// clear interrupt
I2S0.int_clr.val = I2S0.int_st.val; //clear pending interrupt
}
void stepperTask(void* parameter) {
uint32_t i, remaining = 0;
while (1) {
xQueueReceive(dma.queue, &dma.current, portMAX_DELAY);
dma.rw_pos = 0;
for (i = 0; i < DMA_SAMPLE_COUNT; i++) {
// Fill with the port data post pulse_phase until the next step
if (remaining) {
i2s_push_sample();
remaining--;
}
else {
Stepper::stepper_pulse_phase_isr();
remaining = Stepper::stepper_block_phase_isr();
}
}
}
}
int i2s_init() {
periph_module_enable(PERIPH_I2S0_MODULE);
/**
2019-02-12 21:25:35 +01:00
* Each i2s transfer will take
* fpll = PLL_D2_CLK -- clka_en = 0
2019-02-12 21:25:35 +01:00
*
* fi2s = fpll / N + b/a -- N = clkm_div_num
* fi2s = 160MHz / 2
* fi2s = 80MHz
2019-02-12 21:25:35 +01:00
*
* fbclk = fi2s / M -- M = tx_bck_div_num
* fbclk = 80MHz / 2
* fbclk = 40MHz
2019-02-12 21:25:35 +01:00
*
* fwclk = fbclk / 32
2019-02-12 21:25:35 +01:00
*
* for fwclk = 250kHz (4uS pulse time)
* N = 10
* M = 20
*/
// Allocate the array of pointers to the buffers
dma.buffers = (uint32_t **)malloc(sizeof(uint32_t*) * DMA_BUF_COUNT);
if (dma.buffers == NULL) return -1;
// Allocate each buffer that can be used by the DMA controller
for (int buf_idx = 0; buf_idx < DMA_BUF_COUNT; buf_idx++) {
dma.buffers[buf_idx] = (uint32_t*) heap_caps_calloc(1, DMA_BUF_LEN, MALLOC_CAP_DMA);
if (dma.buffers[buf_idx] == NULL) return -1;
}
// Allocate the array of DMA descriptors
dma.desc = (lldesc_t**) malloc(sizeof(lldesc_t*) * DMA_BUF_COUNT);
if (dma.desc == NULL) return -1;
// Allocate each DMA descriptor that will be used by the DMA controller
for (int buf_idx = 0; buf_idx < DMA_BUF_COUNT; buf_idx++) {
dma.desc[buf_idx] = (lldesc_t*) heap_caps_malloc(sizeof(lldesc_t), MALLOC_CAP_DMA);
if (dma.desc[buf_idx] == NULL) return -1;
}
// Initialize
for (int buf_idx = 0; buf_idx < DMA_BUF_COUNT; buf_idx++) {
dma.desc[buf_idx]->owner = 1;
dma.desc[buf_idx]->eof = 1; // set to 1 will trigger the interrupt
dma.desc[buf_idx]->sosf = 0;
dma.desc[buf_idx]->length = DMA_BUF_LEN;
dma.desc[buf_idx]->size = DMA_BUF_LEN;
dma.desc[buf_idx]->buf = (uint8_t *) dma.buffers[buf_idx];
dma.desc[buf_idx]->offset = 0;
dma.desc[buf_idx]->empty = (uint32_t)((buf_idx < (DMA_BUF_COUNT - 1)) ? (dma.desc[buf_idx + 1]) : dma.desc[0]);
}
dma.queue = xQueueCreate(DMA_BUF_COUNT, sizeof(uint32_t *));
// Set the first DMA descriptor
I2S0.out_link.addr = (uint32_t)dma.desc[0];
// stop i2s
i2s_stop(I2S_NUM_0);
// configure I2S data port interface.
i2s_reset_fifo(I2S_NUM_0);
//reset i2s
I2S0.conf.tx_reset = 1;
I2S0.conf.tx_reset = 0;
I2S0.conf.rx_reset = 1;
I2S0.conf.rx_reset = 0;
//reset dma
I2S0.lc_conf.in_rst = 1;
I2S0.lc_conf.in_rst = 0;
I2S0.lc_conf.out_rst = 1;
I2S0.lc_conf.out_rst = 0;
//Enable and configure DMA
I2S0.lc_conf.check_owner = 0;
I2S0.lc_conf.out_loop_test = 0;
I2S0.lc_conf.out_auto_wrback = 0;
I2S0.lc_conf.out_data_burst_en = 0;
I2S0.lc_conf.outdscr_burst_en = 0;
I2S0.lc_conf.out_no_restart_clr = 0;
I2S0.lc_conf.indscr_burst_en = 0;
I2S0.lc_conf.out_eof_mode = 1;
I2S0.conf2.lcd_en = 0;
I2S0.conf2.camera_en = 0;
I2S0.pdm_conf.pcm2pdm_conv_en = 0;
I2S0.pdm_conf.pdm2pcm_conv_en = 0;
I2S0.fifo_conf.dscr_en = 0;
I2S0.conf_chan.tx_chan_mod = 0;
I2S0.fifo_conf.tx_fifo_mod = 0;
I2S0.conf.tx_mono = 0;
I2S0.conf_chan.rx_chan_mod = 0;
I2S0.fifo_conf.rx_fifo_mod = 0;
I2S0.conf.rx_mono = 0;
I2S0.fifo_conf.dscr_en = 1; //connect dma to fifo
I2S0.conf.tx_start = 0;
I2S0.conf.rx_start = 0;
I2S0.conf.tx_msb_right = 1;
I2S0.conf.tx_right_first = 1;
I2S0.conf.tx_slave_mod = 0; // Master
I2S0.fifo_conf.tx_fifo_mod_force_en = 1;
I2S0.pdm_conf.rx_pdm_en = 0;
I2S0.pdm_conf.tx_pdm_en = 0;
I2S0.conf.tx_short_sync = 0;
I2S0.conf.rx_short_sync = 0;
I2S0.conf.tx_msb_shift = 0;
I2S0.conf.rx_msb_shift = 0;
// set clock
I2S0.clkm_conf.clka_en = 0; // Use PLL/2 as reference
I2S0.clkm_conf.clkm_div_num = 10; // minimum value of 2, reset value of 4, max 256
I2S0.clkm_conf.clkm_div_a = 0; // 0 at reset, what about divide by 0? (not an issue)
I2S0.clkm_conf.clkm_div_b = 0; // 0 at reset
// fbck = fi2s / tx_bck_div_num
I2S0.sample_rate_conf.tx_bck_div_num = 2; // minimum value of 2 defaults to 6
// Enable TX interrupts
I2S0.int_ena.out_eof = 1;
I2S0.int_ena.out_dscr_err = 0;
I2S0.int_ena.out_total_eof = 0;
I2S0.int_ena.out_done = 0;
// Allocate and Enable the I2S interrupt
intr_handle_t i2s_isr_handle;
esp_intr_alloc(ETS_I2S0_INTR_SOURCE, 0, i2s_intr_handler_default, NULL, &i2s_isr_handle);
esp_intr_enable(i2s_isr_handle);
// Create the task that will feed the buffer
xTaskCreate(stepperTask, "StepperTask", 10000, NULL, 1, NULL);
// Route the i2s pins to the appropriate GPIO
2019-04-15 23:13:59 +02:00
gpio_matrix_out_check(I2S_DATA, I2S0O_DATA_OUT23_IDX, 0, 0);
gpio_matrix_out_check(I2S_BCK, I2S0O_BCK_OUT_IDX, 0, 0);
gpio_matrix_out_check(I2S_WS, I2S0O_WS_OUT_IDX, 0, 0);
// Start the I2S peripheral
return i2s_start(I2S_NUM_0);
}
void i2s_write(uint8_t pin, uint8_t val) {
SET_BIT_TO(i2s_port_data, pin, val);
}
void i2s_push_sample() {
dma.current[dma.rw_pos++] = i2s_port_data;
}
#endif // ARDUINO_ARCH_ESP32