This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/planner.h

167 lines
7 KiB
C
Raw Normal View History

/*
planner.h - buffers movement commands and manages the acceleration profile plan
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
// This module is to be considered a sub-module of stepper.c. Please don't include
// this file from any other module.
#ifndef PLANNER_H
#define PLANNER_H
2011-12-22 12:38:50 +01:00
2011-11-27 16:04:58 +01:00
#include "Marlin.h"
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
// the source g-code and may never actually be reached if acceleration management is active.
typedef struct {
// Fields used by the bresenham algorithm for tracing the line
long steps[NUM_AXIS]; // Step count along each axis
2011-11-19 21:32:47 +01:00
unsigned long step_event_count; // The number of step events required to complete this block
long accelerate_until; // The index of the step event on which to stop acceleration
long decelerate_after; // The index of the step event on which to start decelerating
long acceleration_rate; // The acceleration rate used for acceleration calculation
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
unsigned char active_extruder; // Selects the active extruder
#ifdef ADVANCE
long advance_rate;
volatile long initial_advance;
volatile long final_advance;
float advance;
#endif
// Fields used by the motion planner to manage acceleration
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
float nominal_speed; // The nominal speed for this block in mm/sec
float entry_speed; // Entry speed at previous-current junction in mm/sec
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
float millimeters; // The total travel of this block in mm
float acceleration; // acceleration mm/sec^2
unsigned char recalculate_flag; // Planner flag to recalculate trapezoids on entry junction
unsigned char nominal_length_flag; // Planner flag for nominal speed always reached
// Settings for the trapezoid generator
unsigned long nominal_rate; // The nominal step rate for this block in step_events/sec
unsigned long initial_rate; // The jerk-adjusted step rate at start of block
unsigned long final_rate; // The minimal rate at exit
unsigned long acceleration_st; // acceleration steps/sec^2
2012-03-04 13:05:26 +01:00
unsigned long fan_speed;
#ifdef BARICUDA
unsigned long valve_pressure;
unsigned long e_to_p_pressure;
#endif
volatile char busy;
} block_t;
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
// Initialize the motion plan subsystem
void plan_init();
void check_axes_activity();
// Get the number of buffered moves
extern volatile unsigned char block_buffer_head;
extern volatile unsigned char block_buffer_tail;
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
2015-03-15 10:43:26 +01:00
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
#if defined(ENABLE_AUTO_BED_LEVELING)
#include "vector_3.h"
// Transform required to compensate for bed level
extern matrix_3x3 plan_bed_level_matrix;
/**
* Get the position applying the bed level matrix
*/
vector_3 plan_get_position();
#endif // ENABLE_AUTO_BED_LEVELING
/**
* Add a new linear movement to the buffer. x, y, z are the signed, absolute target position in
* millimeters. Feed rate specifies the (target) speed of the motion.
*/
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
/**
* Set the planner positions. Used for G92 instructions.
* Multiplies by axis_steps_per_unit[] to set stepper positions.
* Clears previous speed values.
*/
void plan_set_position(float x, float y, float z, const float &e);
#else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
2015-03-15 10:43:26 +01:00
#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
void plan_set_e_position(const float &e);
extern unsigned long minsegmenttime;
2014-12-18 17:13:08 +01:00
extern float max_feedrate[NUM_AXIS]; // set the max speeds
extern float axis_steps_per_unit[NUM_AXIS];
extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
extern float minimumfeedrate;
extern float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
extern float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
extern float travel_acceleration; // Travel acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
extern float max_z_jerk;
2012-03-04 16:34:58 +01:00
extern float max_e_jerk;
extern float mintravelfeedrate;
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
2011-11-19 15:37:10 +01:00
#ifdef AUTOTEMP
extern bool autotemp_enabled;
extern float autotemp_max;
extern float autotemp_min;
extern float autotemp_factor;
#endif
2011-11-19 15:37:10 +01:00
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
extern volatile unsigned char block_buffer_tail;
// Returns true if the buffer has a queued block, false otherwise
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
// Called when the current block is no longer needed. Discards
// the block and makes the memory available for new blocks.
FORCE_INLINE void plan_discard_current_block() {
if (blocks_queued())
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
// Gets the current block. Returns NULL if buffer empty
FORCE_INLINE block_t *plan_get_current_block() {
if (blocks_queued()) {
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return block;
}
else
return NULL;
}
void reset_acceleration_rates();
#endif // PLANNER_H