This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/lcd/menu/game/snake.cpp

324 lines
9.5 KiB
C++
Raw Normal View History

2019-04-04 10:06:19 +02:00
/**
* Marlin 3D Printer Firmware
2019-06-28 06:57:50 +02:00
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
2019-04-04 10:06:19 +02:00
*
* Based on Sprinter and grbl.
2019-06-28 06:57:50 +02:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
2019-04-04 10:06:19 +02:00
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "../../../inc/MarlinConfigPre.h"
#if ENABLED(MARLIN_SNAKE)
#include "game.h"
#define SNAKE_BOX 4
#define HEADER_H (MENU_FONT_ASCENT - 2)
#define SNAKE_WH (SNAKE_BOX + 1)
#define IDEAL_L 2
#define IDEAL_R (LCD_PIXEL_WIDTH - 1 - 2)
#define IDEAL_T (HEADER_H + 2)
#define IDEAL_B (LCD_PIXEL_HEIGHT - 1 - 2)
#define IDEAL_W (IDEAL_R - (IDEAL_L) + 1)
#define IDEAL_H (IDEAL_B - (IDEAL_T) + 1)
#define GAME_W int((IDEAL_W) / (SNAKE_WH))
#define GAME_H int((IDEAL_H) / (SNAKE_WH))
#define BOARD_W ((SNAKE_WH) * (GAME_W) + 1)
#define BOARD_H ((SNAKE_WH) * (GAME_H) + 1)
#define BOARD_L ((LCD_PIXEL_WIDTH - (BOARD_W) + 1) / 2)
#define BOARD_R (BOARD_L + BOARD_W - 1)
#define BOARD_T (((LCD_PIXEL_HEIGHT + IDEAL_T) - (BOARD_H)) / 2)
#define BOARD_B (BOARD_T + BOARD_H - 1)
#define GAMEX(X) (BOARD_L + ((X) * (SNAKE_WH)))
#define GAMEY(Y) (BOARD_T + ((Y) * (SNAKE_WH)))
#if SNAKE_BOX > 2
#define FOOD_WH SNAKE_BOX
#else
#define FOOD_WH 2
#endif
#if SNAKE_BOX < 1
#define SNAKE_SIZ 1
#else
#define SNAKE_SIZ SNAKE_BOX
#endif
constexpr fixed_t snakev = FTOP(0.20);
snake_data_t &sdat = marlin_game_data.snake;
2019-04-04 10:06:19 +02:00
// Remove the first pixel from the tail.
// If needed, shift out the first segment.
void shorten_tail() {
pos_t &p = sdat.snake_tail[0], &q = sdat.snake_tail[1];
2019-04-04 10:06:19 +02:00
bool shift = false;
if (p.x == q.x) {
// Vertical line
p.y += (q.y > p.y) ? 1 : -1;
shift = p.y == q.y;
}
else {
// Horizontal line
p.x += (q.x > p.x) ? 1 : -1;
shift = p.x == q.x;
}
if (shift) {
sdat.head_ind--;
for (uint8_t i = 0; i <= sdat.head_ind; ++i)
sdat.snake_tail[i] = sdat.snake_tail[i + 1];
2019-04-04 10:06:19 +02:00
}
}
// The food is on a line
inline bool food_on_line() {
for (uint8_t n = 0; n < sdat.head_ind; ++n) {
pos_t &p = sdat.snake_tail[n], &q = sdat.snake_tail[n + 1];
2019-04-04 10:06:19 +02:00
if (p.x == q.x) {
if ((sdat.foodx == p.x - 1 || sdat.foodx == p.x) && WITHIN(sdat.foody, _MIN(p.y, q.y), _MAX(p.y, q.y)))
2019-04-04 10:06:19 +02:00
return true;
}
else if ((sdat.foody == p.y - 1 || sdat.foody == p.y) && WITHIN(sdat.foodx, _MIN(p.x, q.x), _MAX(p.x, q.x)))
2019-04-04 10:06:19 +02:00
return true;
}
return false;
}
// Add a new food blob
void food_reset() {
do {
sdat.foodx = random(0, GAME_W);
sdat.foody = random(0, GAME_H);
2019-04-04 10:06:19 +02:00
} while (food_on_line());
}
// Turn the snake cw or ccw
inline void turn_snake(const bool cw) {
sdat.snake_dir += cw ? 1 : -1;
sdat.snake_dir &= 0x03;
sdat.head_ind++;
sdat.snake_tail[sdat.head_ind].x = FTOB(sdat.snakex);
sdat.snake_tail[sdat.head_ind].y = FTOB(sdat.snakey);
2019-04-04 10:06:19 +02:00
}
// Reset the snake for a new game
void snake_reset() {
// Init the head and velocity
sdat.snakex = BTOF(1);
sdat.snakey = BTOF(GAME_H / 2);
2019-04-04 10:06:19 +02:00
//snakev = FTOP(0.25);
// Init the tail with a cw turn
sdat.snake_dir = 0;
sdat.head_ind = 0;
sdat.snake_tail[0].x = 0;
sdat.snake_tail[0].y = GAME_H / 2;
2019-04-04 10:06:19 +02:00
turn_snake(true);
// Clear food flag
sdat.food_cnt = 5;
2019-04-04 10:06:19 +02:00
// Clear the controls
ui.encoderPosition = 0;
sdat.old_encoder = 0;
2019-04-04 10:06:19 +02:00
}
// Check if head segment overlaps another
bool snake_overlap() {
// 4 lines must exist before a collision is possible
if (sdat.head_ind < 4) return false;
2019-04-04 10:06:19 +02:00
// Is the last segment crossing any others?
const pos_t &h1 = sdat.snake_tail[sdat.head_ind - 1], &h2 = sdat.snake_tail[sdat.head_ind];
2019-04-04 10:06:19 +02:00
// VERTICAL head segment?
if (h1.x == h2.x) {
// Loop from oldest to segment two away from head
for (uint8_t n = 0; n < sdat.head_ind - 2; ++n) {
2019-04-04 10:06:19 +02:00
// Segment p to q
const pos_t &p = sdat.snake_tail[n], &q = sdat.snake_tail[n + 1];
2019-04-04 10:06:19 +02:00
if (p.x != q.x) {
// Crossing horizontal segment
if (WITHIN(h1.x, _MIN(p.x, q.x), _MAX(p.x, q.x)) && (h1.y <= p.y) == (h2.y >= p.y)) return true;
2019-04-04 10:06:19 +02:00
} // Overlapping vertical segment
else if (h1.x == p.x && _MIN(h1.y, h2.y) <= _MAX(p.y, q.y) && _MAX(h1.y, h2.y) >= _MIN(p.y, q.y)) return true;
2019-04-04 10:06:19 +02:00
}
}
else {
// Loop from oldest to segment two away from head
for (uint8_t n = 0; n < sdat.head_ind - 2; ++n) {
2019-04-04 10:06:19 +02:00
// Segment p to q
const pos_t &p = sdat.snake_tail[n], &q = sdat.snake_tail[n + 1];
2019-04-04 10:06:19 +02:00
if (p.y != q.y) {
// Crossing vertical segment
if (WITHIN(h1.y, _MIN(p.y, q.y), _MAX(p.y, q.y)) && (h1.x <= p.x) == (h2.x >= p.x)) return true;
2019-04-04 10:06:19 +02:00
} // Overlapping horizontal segment
else if (h1.y == p.y && _MIN(h1.x, h2.x) <= _MAX(p.x, q.x) && _MAX(h1.x, h2.x) >= _MIN(p.x, q.x)) return true;
2019-04-04 10:06:19 +02:00
}
}
return false;
}
void SnakeGame::game_screen() {
// Run the snake logic
if (game_frame()) do { // Run logic twice for finer resolution
// Move the snake's head one unit in the current direction
const int8_t oldx = FTOB(sdat.snakex), oldy = FTOB(sdat.snakey);
switch (sdat.snake_dir) {
case 0: sdat.snakey -= snakev; break;
case 1: sdat.snakex += snakev; break;
case 2: sdat.snakey += snakev; break;
case 3: sdat.snakex -= snakev; break;
2019-04-04 10:06:19 +02:00
}
const int8_t x = FTOB(sdat.snakex), y = FTOB(sdat.snakey);
2019-04-04 10:06:19 +02:00
// If movement took place...
if (oldx != x || oldy != y) {
if (!WITHIN(x, 0, GAME_W - 1) || !WITHIN(y, 0, GAME_H - 1)) {
game_state = 0; // Game Over
_BUZZ(400, 40); // Bzzzt!
break; // ...out of do-while
}
sdat.snake_tail[sdat.head_ind].x = x;
sdat.snake_tail[sdat.head_ind].y = y;
2019-04-04 10:06:19 +02:00
// Change snake direction if set
const int8_t enc = int8_t(ui.encoderPosition), diff = enc - sdat.old_encoder;
2019-04-04 10:06:19 +02:00
if (diff) {
sdat.old_encoder = enc;
2019-04-04 10:06:19 +02:00
turn_snake(diff > 0);
}
if (sdat.food_cnt) --sdat.food_cnt; else shorten_tail();
2019-04-04 10:06:19 +02:00
// Did the snake collide with itself or go out of bounds?
if (snake_overlap()) {
game_state = 0; // Game Over
_BUZZ(400, 40); // Bzzzt!
}
// Is the snake at the food?
else if (x == sdat.foodx && y == sdat.foody) {
2019-04-04 10:06:19 +02:00
_BUZZ(5, 220);
_BUZZ(5, 280);
score++;
sdat.food_cnt = 2;
2019-04-04 10:06:19 +02:00
food_reset();
}
}
} while(0);
u8g.setColorIndex(1);
// Draw Score
2019-08-23 02:36:18 +02:00
if (PAGE_UNDER(HEADER_H)) lcd_put_int(0, HEADER_H - 1, score);
2019-04-04 10:06:19 +02:00
// DRAW THE PLAYFIELD BORDER
u8g.drawFrame(BOARD_L - 2, BOARD_T - 2, BOARD_R - BOARD_L + 4, BOARD_B - BOARD_T + 4);
// Draw the snake (tail)
#if SNAKE_WH < 2
// At this scale just draw a line
for (uint8_t n = 0; n < sdat.head_ind; ++n) {
const pos_t &p = sdat.snake_tail[n], &q = sdat.snake_tail[n + 1];
2019-04-04 10:06:19 +02:00
if (p.x == q.x) {
const int8_t y1 = GAMEY(_MIN(p.y, q.y)), y2 = GAMEY(_MAX(p.y, q.y));
2019-04-04 10:06:19 +02:00
if (PAGE_CONTAINS(y1, y2))
u8g.drawVLine(GAMEX(p.x), y1, y2 - y1 + 1);
}
else if (PAGE_CONTAINS(GAMEY(p.y), GAMEY(p.y))) {
const int8_t x1 = GAMEX(_MIN(p.x, q.x)), x2 = GAMEX(_MAX(p.x, q.x));
2019-04-04 10:06:19 +02:00
u8g.drawHLine(x1, GAMEY(p.y), x2 - x1 + 1);
}
}
#elif SNAKE_WH == 2
// At this scale draw two lines
for (uint8_t n = 0; n < sdat.head_ind; ++n) {
const pos_t &p = sdat.snake_tail[n], &q = sdat.snake_tail[n + 1];
2019-04-04 10:06:19 +02:00
if (p.x == q.x) {
const int8_t y1 = GAMEY(_MIN(p.y, q.y)), y2 = GAMEY(_MAX(p.y, q.y));
2019-04-04 10:06:19 +02:00
if (PAGE_CONTAINS(y1, y2 + 1))
u8g.drawFrame(GAMEX(p.x), y1, 2, y2 - y1 + 1 + 1);
}
else {
const int8_t py = GAMEY(p.y);
if (PAGE_CONTAINS(py, py + 1)) {
const int8_t x1 = GAMEX(_MIN(p.x, q.x)), x2 = GAMEX(_MAX(p.x, q.x));
2019-04-04 10:06:19 +02:00
u8g.drawFrame(x1, py, x2 - x1 + 1 + 1, 2);
}
}
}
#else
// Draw a series of boxes
for (uint8_t n = 0; n < sdat.head_ind; ++n) {
const pos_t &p = sdat.snake_tail[n], &q = sdat.snake_tail[n + 1];
2019-04-04 10:06:19 +02:00
if (p.x == q.x) {
const int8_t y1 = _MIN(p.y, q.y), y2 = _MAX(p.y, q.y);
2019-04-04 10:06:19 +02:00
if (PAGE_CONTAINS(GAMEY(y1), GAMEY(y2) + SNAKE_SIZ - 1)) {
for (int8_t i = y1; i <= y2; ++i) {
const int8_t y = GAMEY(i);
if (PAGE_CONTAINS(y, y + SNAKE_SIZ - 1))
u8g.drawBox(GAMEX(p.x), y, SNAKE_SIZ, SNAKE_SIZ);
}
}
}
else {
const int8_t py = GAMEY(p.y);
if (PAGE_CONTAINS(py, py + SNAKE_SIZ - 1)) {
const int8_t x1 = _MIN(p.x, q.x), x2 = _MAX(p.x, q.x);
2019-04-04 10:06:19 +02:00
for (int8_t i = x1; i <= x2; ++i)
u8g.drawBox(GAMEX(i), py, SNAKE_SIZ, SNAKE_SIZ);
}
}
}
#endif
// Draw food
const int8_t fy = GAMEY(sdat.foody);
2019-04-04 10:06:19 +02:00
if (PAGE_CONTAINS(fy, fy + FOOD_WH - 1)) {
const int8_t fx = GAMEX(sdat.foodx);
2019-04-04 10:06:19 +02:00
u8g.drawFrame(fx, fy, FOOD_WH, FOOD_WH);
if (FOOD_WH == 5) u8g.drawPixel(fx + 2, fy + 2);
}
// Draw GAME OVER
if (!game_state) draw_game_over();
// A click always exits this game
if (ui.use_click()) exit_game();
2019-04-04 10:06:19 +02:00
}
void SnakeGame::enter_game() {
init_game(1, game_screen); // 1 = Game running
snake_reset();
food_reset();
}
#endif // MARLIN_SNAKE