This repository has been archived on 2022-01-28. You can view files and clone it, but cannot push or open issues or pull requests.
Marlin-Artillery-M600/Marlin/src/module/motion.h

374 lines
12 KiB
C
Raw Normal View History

/**
* Marlin 3D Printer Firmware
2019-06-28 06:57:50 +02:00
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
2019-06-28 06:57:50 +02:00
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
2019-07-05 05:44:12 +02:00
#pragma once
/**
* motion.h
*
* High-level motion commands to feed the planner
* Some of these methods may migrate to the planner class.
*/
#pragma once
#include "../inc/MarlinConfig.h"
2017-09-08 22:35:25 +02:00
#if IS_SCARA
2019-02-04 10:41:55 +01:00
#include "scara.h"
2017-09-08 22:35:25 +02:00
#endif
// Axis homed and known-position states
extern uint8_t axis_homed, axis_known_position;
constexpr uint8_t xyz_bits = _BV(X_AXIS) | _BV(Y_AXIS) | _BV(Z_AXIS);
FORCE_INLINE bool all_axes_homed() { return (axis_homed & xyz_bits) == xyz_bits; }
FORCE_INLINE bool all_axes_known() { return (axis_known_position & xyz_bits) == xyz_bits; }
FORCE_INLINE void set_all_unhomed() { axis_homed = 0; }
FORCE_INLINE void set_all_unknown() { axis_known_position = 0; }
2019-06-26 10:42:21 +02:00
FORCE_INLINE bool homing_needed() {
return !(
#if ENABLED(HOME_AFTER_DEACTIVATE)
all_axes_known()
#else
all_axes_homed()
#endif
);
}
2018-08-22 06:33:55 +02:00
// Error margin to work around float imprecision
constexpr float slop = 0.0001;
extern bool relative_mode;
2017-09-08 22:35:25 +02:00
extern float current_position[XYZE], // High-level current tool position
destination[XYZE]; // Destination for a move
// Scratch space for a cartesian result
extern float cartes[XYZ];
// Until kinematics.cpp is created, declare this here
#if IS_KINEMATIC
extern float delta[ABC];
#endif
2019-02-25 03:29:03 +01:00
#if HAS_ABL_NOT_UBL
2017-09-08 22:35:25 +02:00
extern float xy_probe_feedrate_mm_s;
#define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
#elif defined(XY_PROBE_SPEED)
#define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
#else
#define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
#endif
/**
* Feed rates are often configured with mm/m
* but the planner and stepper like mm/s units.
*/
extern const float homing_feedrate_mm_s[XYZ];
2017-09-08 22:35:25 +02:00
FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
float get_homing_bump_feedrate(const AxisEnum axis);
extern float feedrate_mm_s;
2017-09-08 22:35:25 +02:00
/**
* Feedrate scaling and conversion
*/
extern int16_t feedrate_percentage;
#define MMS_SCALED(MM_S) ((MM_S)*feedrate_percentage*0.01f)
2017-09-08 22:35:25 +02:00
// The active extruder (tool). Set with T<extruder> command.
#if EXTRUDERS > 1
extern uint8_t active_extruder;
#else
constexpr uint8_t active_extruder = 0;
#endif
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float(p); }
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte(p); }
#define XYZ_DEFS(type, array, CONFIG) \
extern const type array##_P[XYZ]; \
FORCE_INLINE type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
typedef void __void_##CONFIG##__
XYZ_DEFS(float, base_min_pos, MIN_POS);
XYZ_DEFS(float, base_max_pos, MAX_POS);
XYZ_DEFS(float, base_home_pos, HOME_POS);
XYZ_DEFS(float, max_length, MAX_LENGTH);
XYZ_DEFS(float, home_bump_mm, HOME_BUMP_MM);
XYZ_DEFS(signed char, home_dir, HOME_DIR);
#if HAS_WORKSPACE_OFFSET
void update_workspace_offset(const AxisEnum axis);
#else
#define update_workspace_offset(x) NOOP
#endif
#if HAS_HOTEND_OFFSET
extern float hotend_offset[XYZ][HOTENDS];
void reset_hotend_offsets();
#else
constexpr float hotend_offset[XYZ][HOTENDS] = { { 0 }, { 0 }, { 0 } };
#endif
typedef struct { float min, max; } axis_limits_t;
#if HAS_SOFTWARE_ENDSTOPS
extern bool soft_endstops_enabled;
extern axis_limits_t soft_endstop[XYZ];
void apply_motion_limits(float target[XYZ]);
void update_software_endstops(const AxisEnum axis
#if HAS_HOTEND_OFFSET
, const uint8_t old_tool_index=0, const uint8_t new_tool_index=0
#endif
);
#else
constexpr bool soft_endstops_enabled = false;
//constexpr axis_limits_t soft_endstop[XYZ] = { { X_MIN_POS, X_MAX_POS }, { Y_MIN_POS, Y_MAX_POS }, { Z_MIN_POS, Z_MAX_POS } };
#define apply_motion_limits(V) NOOP
#define update_software_endstops(...) NOOP
#endif
2017-09-08 22:35:25 +02:00
void report_current_position();
inline void set_current_from_destination() { COPY(current_position, destination); }
inline void set_destination_from_current() { COPY(destination, current_position); }
2017-09-08 22:35:25 +02:00
void get_cartesian_from_steppers();
void set_current_from_steppers_for_axis(const AxisEnum axis);
/**
* sync_plan_position
*
* Set the planner/stepper positions directly from current_position with
* no kinematic translation. Used for homing axes and cartesian/core syncing.
*/
void sync_plan_position();
void sync_plan_position_e();
/**
* Move the planner to the current position from wherever it last moved
* (or from wherever it has been told it is located).
*/
2019-02-25 21:28:01 +01:00
void line_to_current_position(const float &fr_mm_s=feedrate_mm_s);
/**
* Move the planner to the position stored in the destination array, which is
* used by G0/G1/G2/G3/G5 and many other functions to set a destination.
*/
2017-11-09 05:13:33 +01:00
void buffer_line_to_destination(const float fr_mm_s);
#if IS_KINEMATIC
2019-02-25 21:28:01 +01:00
void prepare_uninterpolated_move_to_destination(const float &fr_mm_s=0);
#endif
void prepare_move_to_destination();
2017-09-08 22:35:25 +02:00
/**
* Blocking movement and shorthand functions
*/
void do_blocking_move_to(const float rx, const float ry, const float rz, const float &fr_mm_s=0);
void do_blocking_move_to_x(const float &rx, const float &fr_mm_s=0);
void do_blocking_move_to_z(const float &rz, const float &fr_mm_s=0);
void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s=0);
2017-09-08 22:35:25 +02:00
2019-02-14 09:21:42 +01:00
FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZ], const float &fr_mm_s=0) {
do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
}
2019-02-14 09:21:42 +01:00
FORCE_INLINE void do_blocking_move_to(const float (&raw)[XYZE], const float &fr_mm_s=0) {
do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
}
2017-09-08 22:35:25 +02:00
void setup_for_endstop_or_probe_move();
void clean_up_after_endstop_or_probe_move();
//
// Homing
//
2019-03-12 02:57:54 +01:00
bool axis_unhomed_error(const bool x=true, const bool y=true, const bool z=true);
2017-09-08 22:35:25 +02:00
#if ENABLED(NO_MOTION_BEFORE_HOMING)
#define MOTION_CONDITIONS (IsRunning() && !axis_unhomed_error())
#else
#define MOTION_CONDITIONS IsRunning()
#endif
2017-09-08 22:35:25 +02:00
void set_axis_is_at_home(const AxisEnum axis);
void set_axis_is_not_at_home(const AxisEnum axis);
2017-09-08 22:35:25 +02:00
void homeaxis(const AxisEnum axis);
2018-02-23 07:42:42 +01:00
/**
* Workspace offsets
*/
2018-11-03 09:39:15 +01:00
#if HAS_HOME_OFFSET || HAS_POSITION_SHIFT
#if HAS_HOME_OFFSET
extern float home_offset[XYZ];
#endif
#if HAS_POSITION_SHIFT
extern float position_shift[XYZ];
#endif
2018-02-23 07:42:42 +01:00
#if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
extern float workspace_offset[XYZ];
#define WORKSPACE_OFFSET(AXIS) workspace_offset[AXIS]
#elif HAS_HOME_OFFSET
#define WORKSPACE_OFFSET(AXIS) home_offset[AXIS]
2018-11-03 09:39:15 +01:00
#else
2018-02-23 07:42:42 +01:00
#define WORKSPACE_OFFSET(AXIS) position_shift[AXIS]
#endif
#define NATIVE_TO_LOGICAL(POS, AXIS) ((POS) + WORKSPACE_OFFSET(AXIS))
#define LOGICAL_TO_NATIVE(POS, AXIS) ((POS) - WORKSPACE_OFFSET(AXIS))
#else
2018-02-23 07:42:42 +01:00
#define NATIVE_TO_LOGICAL(POS, AXIS) (POS)
#define LOGICAL_TO_NATIVE(POS, AXIS) (POS)
#endif
2018-02-23 07:42:42 +01:00
#define LOGICAL_X_POSITION(POS) NATIVE_TO_LOGICAL(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) NATIVE_TO_LOGICAL(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) NATIVE_TO_LOGICAL(POS, Z_AXIS)
#define RAW_X_POSITION(POS) LOGICAL_TO_NATIVE(POS, X_AXIS)
#define RAW_Y_POSITION(POS) LOGICAL_TO_NATIVE(POS, Y_AXIS)
#define RAW_Z_POSITION(POS) LOGICAL_TO_NATIVE(POS, Z_AXIS)
/**
* position_is_reachable family of functions
*/
#if IS_KINEMATIC // (DELTA or SCARA)
#if IS_SCARA
extern const float L1, L2;
#endif
#if HAS_SCARA_OFFSET
extern float scara_home_offset[ABC]; // A and B angular offsets, Z mm offset
#endif
// Return true if the given point is within the printable area
inline bool position_is_reachable(const float &rx, const float &ry, const float inset=0) {
#if ENABLED(DELTA)
return HYPOT2(rx, ry) <= sq(DELTA_PRINTABLE_RADIUS - inset);
#elif IS_SCARA
const float R2 = HYPOT2(rx - SCARA_OFFSET_X, ry - SCARA_OFFSET_Y);
return (
R2 <= sq(L1 + L2) - inset
#if MIDDLE_DEAD_ZONE_R > 0
&& R2 >= sq(float(MIDDLE_DEAD_ZONE_R))
#endif
);
#endif
}
#if HAS_BED_PROBE
// Return true if the both nozzle and the probe can reach the given point.
// Note: This won't work on SCARA since the probe offset rotates with the arm.
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
&& position_is_reachable(rx, ry, ABS(MIN_PROBE_EDGE));
}
#endif
#else // CARTESIAN
2018-08-22 06:33:55 +02:00
// Return true if the given position is within the machine bounds.
2017-11-03 05:59:42 +01:00
inline bool position_is_reachable(const float &rx, const float &ry) {
2018-08-22 06:33:55 +02:00
if (!WITHIN(ry, Y_MIN_POS - slop, Y_MAX_POS + slop)) return false;
#if ENABLED(DUAL_X_CARRIAGE)
2018-08-22 06:33:55 +02:00
if (active_extruder)
return WITHIN(rx, X2_MIN_POS - slop, X2_MAX_POS + slop);
else
return WITHIN(rx, X1_MIN_POS - slop, X1_MAX_POS + slop);
#else
2018-08-22 06:33:55 +02:00
return WITHIN(rx, X_MIN_POS - slop, X_MAX_POS + slop);
#endif
}
#if HAS_BED_PROBE
/**
* Return whether the given position is within the bed, and whether the nozzle
* can reach the position required to put the probe at the given position.
*
* Example: For a probe offset of -10,+10, then for the probe to reach 0,0 the
* nozzle must be be able to reach +10,-10.
*/
inline bool position_is_reachable_by_probe(const float &rx, const float &ry) {
return position_is_reachable(rx - (X_PROBE_OFFSET_FROM_EXTRUDER), ry - (Y_PROBE_OFFSET_FROM_EXTRUDER))
2018-08-22 06:33:55 +02:00
&& WITHIN(rx, MIN_PROBE_X - slop, MAX_PROBE_X + slop)
&& WITHIN(ry, MIN_PROBE_Y - slop, MAX_PROBE_Y + slop);
}
#endif
#endif // CARTESIAN
#if !HAS_BED_PROBE
FORCE_INLINE bool position_is_reachable_by_probe(const float &rx, const float &ry) { return position_is_reachable(rx, ry); }
#endif
2017-09-08 22:35:25 +02:00
/**
* Duplication mode
2017-09-08 22:35:25 +02:00
*/
#if HAS_DUPLICATION_MODE
extern bool extruder_duplication_enabled, // Used in Dual X mode 2
mirrored_duplication_mode; // Used in Dual X mode 3
#if ENABLED(MULTI_NOZZLE_DUPLICATION)
extern uint8_t duplication_e_mask;
#endif
#endif
2017-09-08 22:35:25 +02:00
/**
* Dual X Carriage
*/
#if ENABLED(DUAL_X_CARRIAGE)
2018-03-07 05:35:22 +01:00
enum DualXMode : char {
2018-09-17 08:06:22 +02:00
DXC_FULL_CONTROL_MODE,
DXC_AUTO_PARK_MODE,
DXC_DUPLICATION_MODE,
DXC_MIRRORED_MODE
};
extern DualXMode dual_x_carriage_mode;
extern float inactive_extruder_x_pos, // Used in mode 0 & 1
raised_parked_position[XYZE], // Used in mode 1
duplicate_extruder_x_offset; // Used in mode 2 & 3
extern bool active_extruder_parked; // Used in mode 1, 2 & 3
extern millis_t delayed_move_time; // Used in mode 1
extern int16_t duplicate_extruder_temp_offset; // Used in mode 2 & 3
2018-09-17 08:06:22 +02:00
FORCE_INLINE bool dxc_is_duplicating() { return dual_x_carriage_mode >= DXC_DUPLICATION_MODE; }
float x_home_pos(const int extruder);
FORCE_INLINE int x_home_dir(const uint8_t extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
#elif ENABLED(MULTI_NOZZLE_DUPLICATION)
2018-03-07 05:35:22 +01:00
enum DualXMode : char {
DXC_DUPLICATION_MODE = 2
};
#endif
2017-09-08 22:35:25 +02:00
#if HAS_M206_COMMAND
void set_home_offset(const AxisEnum axis, const float v);
#endif