Merge pull request #9056 from thinkyhead/bf2_new_eeprom_powers

[2.0.x] New EEPROM powers
This commit is contained in:
Scott Lahteine 2018-01-05 18:19:35 -06:00 committed by GitHub
commit 013c911a82
Signed by: GitHub
GPG key ID: 4AEE18F83AFDEB23
14 changed files with 537 additions and 414 deletions

View file

@ -38,10 +38,10 @@ bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
return false; return false;
} }
bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) { bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing/*=true*/) {
do { do {
uint8_t c = eeprom_read_byte((unsigned char*)pos); uint8_t c = eeprom_read_byte((unsigned char*)pos);
*value = c; if (writing) *value = c;
crc16(crc, &c, 1); crc16(crc, &c, 1);
pos++; pos++;
value++; value++;

View file

@ -43,10 +43,10 @@ bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
return false; return false;
} }
bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) { bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing/*=true*/) {
do { do {
uint8_t c = eeprom_read_byte((unsigned char*)pos); uint8_t c = eeprom_read_byte((unsigned char*)pos);
*value = c; if (writing) *value = c;
crc16(crc, &c, 1); crc16(crc, &c, 1);
pos++; pos++;
value++; value++;

View file

@ -128,7 +128,7 @@ bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
return (bytes_written != size); // return true for any error return (bytes_written != size); // return true for any error
} }
bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) { bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing/*=true*/) {
UINT bytes_read = 0; UINT bytes_read = 0;
FRESULT s; FRESULT s;
s = f_lseek(&eeprom_file, pos); s = f_lseek(&eeprom_file, pos);
@ -140,7 +140,15 @@ bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
SERIAL_PROTOCOLLNPAIR(" f_lseek()=", (int)s); SERIAL_PROTOCOLLNPAIR(" f_lseek()=", (int)s);
return true; return true;
} }
if (writing) {
s = f_read(&eeprom_file, (void *)value, size, &bytes_read); s = f_read(&eeprom_file, (void *)value, size, &bytes_read);
crc16(crc, value, size);
}
else {
uint8_t temp[size];
s = f_read(&eeprom_file, (void *)temp, size, &bytes_read);
crc16(crc, temp, size);
}
if (s) { if (s) {
SERIAL_PROTOCOLPAIR(" read_data(", pos); // This extra chit-chat goes away soon. But it is helpful SERIAL_PROTOCOLPAIR(" read_data(", pos); // This extra chit-chat goes away soon. But it is helpful
SERIAL_PROTOCOLPAIR(",", (int)value); // right now to see errors that are happening in the SERIAL_PROTOCOLPAIR(",", (int)value); // right now to see errors that are happening in the
@ -151,7 +159,6 @@ bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
SERIAL_PROTOCOLLNPAIR("\n bytes_read=", bytes_read); SERIAL_PROTOCOLLNPAIR("\n bytes_read=", bytes_read);
return true; return true;
} }
crc16(crc, value, size);
pos = pos + size; pos = pos + size;
return bytes_read != size; // return true for any error return bytes_read != size; // return true for any error
} }

View file

@ -93,13 +93,13 @@ bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
return true; return true;
} }
void read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) { void read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing/*=true*/) {
for (uint16_t i = 0; i < size; i++) { for (uint16_t i = 0; i < size; i++) {
byte* accessPoint = (byte*)(pageBase + pos + i); byte* accessPoint = (byte*)(pageBase + pos + i);
value[i] = *accessPoint; uint8_t c = *accessPoint;
if (writing) value[i] = c;
crc16(crc, &c, 1);
} }
crc16(crc, value, size);
pos += ((size + 1) & ~1); pos += ((size + 1) & ~1);
} }

View file

@ -62,7 +62,6 @@ bool access_start() {
return true; return true;
} }
bool access_finish(){ bool access_finish(){
if (!card.cardOK) return false; if (!card.cardOK) return false;
int16_t bytes_written = 0; int16_t bytes_written = 0;
@ -81,11 +80,12 @@ bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
return false; return false;
} }
bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) { bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing/*=true*/) {
for (int i = 0; i < size; i++) { for (int i = 0; i < size; i++) {
value[i] = HAL_STM32F1_eeprom_content [pos + i]; uint8_t c = HAL_STM32F1_eeprom_content[pos + i];
if (writing) value[i] = c`;
crc16(crc, &c, 1);
} }
crc16(crc, value, size);
pos += size; pos += size;
return false; return false;
} }

View file

@ -38,10 +38,10 @@ bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
return false; return false;
} }
bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) { bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing/*=true*/) {
do { do {
uint8_t c = eeprom_read_byte((unsigned char*)pos); uint8_t c = eeprom_read_byte((unsigned char*)pos);
*value = c; if (writing) *value = c;
crc16(crc, &c, 1); crc16(crc, &c, 1);
pos++; pos++;
value++; value++;

View file

@ -10,7 +10,7 @@ namespace PersistentStore {
bool access_start(); bool access_start();
bool access_finish(); bool access_finish();
bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc); bool write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc);
bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc); bool read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc, const bool writing=true);
} // PersistentStore } // PersistentStore
} // HAL } // HAL

View file

@ -309,12 +309,6 @@
void unified_bed_leveling::G29() { void unified_bed_leveling::G29() {
if (!settings.calc_num_meshes()) {
SERIAL_PROTOCOLLNPGM("?Enable EEPROM and init with");
SERIAL_PROTOCOLLNPGM("M502, M500, M501 in that order.\n");
return;
}
if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem, if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem,
// Check for commands that require the printer to be homed // Check for commands that require the printer to be homed
@ -1272,8 +1266,8 @@
SERIAL_EOL(); SERIAL_EOL();
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.get_start_of_meshes())); SERIAL_PROTOCOLPAIR("Meshes go from ", hex_address((void*)settings.meshes_start_index()));
SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.get_end_of_meshes())); SERIAL_PROTOCOLLNPAIR(" to ", hex_address((void*)settings.meshes_end_index()));
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
@ -1282,7 +1276,7 @@
SERIAL_EOL(); SERIAL_EOL();
safe_delay(25); safe_delay(25);
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.get_end_of_meshes() - settings.get_start_of_meshes()))); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: ", hex_address((void*)(settings.meshes_end_index() - settings.meshes_start_index())));
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes()); SERIAL_PROTOCOLPAIR("EEPROM can hold ", settings.calc_num_meshes());

View file

@ -55,3 +55,15 @@ void GcodeSuite::M502() {
} }
#endif // !DISABLE_M503 #endif // !DISABLE_M503
#if ENABLED(EEPROM_SETTINGS)
/**
* M504: Validate EEPROM Contents
*/
void GcodeSuite::M504() {
if (settings.validate()) {
SERIAL_ECHO_START();
SERIAL_ECHOLNPGM("EEPROM OK");
}
}
#endif

View file

@ -610,6 +610,9 @@ void GcodeSuite::process_parsed_command() {
#if DISABLED(DISABLE_M503) #if DISABLED(DISABLE_M503)
case 503: M503(); break; // M503: print settings currently in memory case 503: M503(); break; // M503: print settings currently in memory
#endif #endif
#if ENABLED(EEPROM_SETTINGS)
case 504: M504(); break; // M504: Validate EEPROM contents
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
case 540: M540(); break; // M540: Set abort on endstop hit for SD printing case 540: M540(); break; // M540: Set abort on endstop hit for SD printing

View file

@ -271,8 +271,8 @@ public:
static WorkspacePlane workspace_plane; static WorkspacePlane workspace_plane;
#endif #endif
#if ENABLED(CNC_COORDINATE_SYSTEMS)
#define MAX_COORDINATE_SYSTEMS 9 #define MAX_COORDINATE_SYSTEMS 9
#if ENABLED(CNC_COORDINATE_SYSTEMS)
static int8_t active_coordinate_system; static int8_t active_coordinate_system;
static float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; static float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
static bool select_coordinate_system(const int8_t _new); static bool select_coordinate_system(const int8_t _new);
@ -681,6 +681,9 @@ private:
#if DISABLED(DISABLE_M503) #if DISABLED(DISABLE_M503)
static void M503(); static void M503();
#endif #endif
#if ENABLED(EEPROM_SETTINGS)
static void M504();
#endif
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
static void M540(); static void M540();

View file

@ -2309,7 +2309,6 @@ void kill_screen(const char* lcd_msg) {
MENU_BACK(MSG_UBL_LEVEL_BED); MENU_BACK(MSG_UBL_LEVEL_BED);
if (!WITHIN(ubl_storage_slot, 0, a - 1)) { if (!WITHIN(ubl_storage_slot, 0, a - 1)) {
STATIC_ITEM(MSG_NO_STORAGE); STATIC_ITEM(MSG_NO_STORAGE);
STATIC_ITEM(MSG_INIT_EEPROM);
} }
else { else {
MENU_ITEM_EDIT(int3, MSG_UBL_STORAGE_SLOT, &ubl_storage_slot, 0, a - 1); MENU_ITEM_EDIT(int3, MSG_UBL_STORAGE_SLOT, &ubl_storage_slot, 0, a - 1);

View file

@ -36,174 +36,25 @@
* *
*/ */
// Change EEPROM version if the structure changes
#define EEPROM_VERSION "V48" #define EEPROM_VERSION "V48"
// Change EEPROM version if these are changed:
#define EEPROM_OFFSET 100 #define EEPROM_OFFSET 100
/** // Check the integrity of data offsets.
* V48 EEPROM Layout: // Can be disabled for production build.
* //#define DEBUG_EEPROM_READWRITE
* 100 Version (char x4)
* 104 EEPROM CRC16 (uint16_t)
*
* 106 E_STEPPERS (uint8_t)
* 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8) + 64
* 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8) + 64
* 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8) + 64
* 155 M204 P planner.acceleration (float)
* 159 M204 R planner.retract_acceleration (float)
* 163 M204 T planner.travel_acceleration (float)
* 167 M205 S planner.min_feedrate_mm_s (float)
* 171 M205 T planner.min_travel_feedrate_mm_s (float)
* 175 M205 B planner.min_segment_time_us (ulong)
* 179 M205 X planner.max_jerk[X_AXIS] (float)
* 183 M205 Y planner.max_jerk[Y_AXIS] (float)
* 187 M205 Z planner.max_jerk[Z_AXIS] (float)
* 191 M205 E planner.max_jerk[E_AXIS] (float)
* 195 M206 XYZ home_offset (float x3)
* 207 M218 XYZ hotend_offset (float x3 per additional hotend) +16
*
* Global Leveling: 4 bytes
* 219 z_fade_height (float)
*
* MESH_BED_LEVELING: 43 bytes
* 223 M420 S planner.leveling_active (bool)
* 224 mbl.z_offset (float)
* 228 GRID_MAX_POINTS_X (uint8_t)
* 229 GRID_MAX_POINTS_Y (uint8_t)
* 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
*
* HAS_BED_PROBE: 4 bytes
* 266 M851 zprobe_zoffset (float)
*
* ABL_PLANAR: 36 bytes
* 270 planner.bed_level_matrix (matrix_3x3 = float x9)
*
* AUTO_BED_LEVELING_BILINEAR: 46 bytes
* 306 GRID_MAX_POINTS_X (uint8_t)
* 307 GRID_MAX_POINTS_Y (uint8_t)
* 308 bilinear_grid_spacing (int x2)
* 312 G29 L F bilinear_start (int x2)
* 316 z_values[][] (float x9, up to float x256) +988
*
* AUTO_BED_LEVELING_UBL: 2 bytes
* 352 G29 A planner.leveling_active (bool)
* 353 G29 S ubl.storage_slot (int8_t)
*
* DELTA: 44 bytes
* 354 M666 H delta_height (float)
* 358 M666 XYZ delta_endstop_adj (float x3)
* 370 M665 R delta_radius (float)
* 374 M665 L delta_diagonal_rod (float)
* 378 M665 S delta_segments_per_second (float)
* 382 M665 B delta_calibration_radius (float)
* 386 M665 X delta_tower_angle_trim[A] (float)
* 390 M665 Y delta_tower_angle_trim[B] (float)
* 394 M665 Z delta_tower_angle_trim[C] (float)
*
* [XYZ]_DUAL_ENDSTOPS: 12 bytes
* 354 M666 X x_endstop_adj (float)
* 358 M666 Y y_endstop_adj (float)
* 362 M666 Z z_endstop_adj (float)
*
* ULTIPANEL: 6 bytes
* 398 M145 S0 H lcd_preheat_hotend_temp (int x2)
* 402 M145 S0 B lcd_preheat_bed_temp (int x2)
* 406 M145 S0 F lcd_preheat_fan_speed (int x2)
*
* PIDTEMP: 82 bytes
* 410 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
* 426 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
* 442 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
* 458 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 474 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 490 M301 L lpq_len (int)
*
* PIDTEMPBED: 12 bytes
* 492 M304 PID bedKp, .bedKi, .bedKd (float x3)
*
* DOGLCD: 2 bytes
* 504 M250 C lcd_contrast (uint16_t)
*
* FWRETRACT: 33 bytes
* 506 M209 S autoretract_enabled (bool)
* 507 M207 S retract_length (float)
* 511 M207 F retract_feedrate_mm_s (float)
* 515 M207 Z retract_zlift (float)
* 519 M208 S retract_recover_length (float)
* 523 M208 F retract_recover_feedrate_mm_s (float)
* 527 M207 W swap_retract_length (float)
* 531 M208 W swap_retract_recover_length (float)
* 535 M208 R swap_retract_recover_feedrate_mm_s (float)
*
* Volumetric Extrusion: 21 bytes
* 539 M200 D parser.volumetric_enabled (bool)
* 540 M200 T D planner.filament_size (float x5) (T0..4)
*
* HAS_TRINAMIC: 22 bytes
* 560 M906 X Stepper X current (uint16_t)
* 562 M906 Y Stepper Y current (uint16_t)
* 564 M906 Z Stepper Z current (uint16_t)
* 566 M906 X2 Stepper X2 current (uint16_t)
* 568 M906 Y2 Stepper Y2 current (uint16_t)
* 570 M906 Z2 Stepper Z2 current (uint16_t)
* 572 M906 E0 Stepper E0 current (uint16_t)
* 574 M906 E1 Stepper E1 current (uint16_t)
* 576 M906 E2 Stepper E2 current (uint16_t)
* 578 M906 E3 Stepper E3 current (uint16_t)
* 580 M906 E4 Stepper E4 current (uint16_t)
*
* SENSORLESS_HOMING: 4 bytes
* 582 M914 X Stepper X and X2 threshold (int16_t)
* 584 M914 Y Stepper Y and Y2 threshold (int16_t)
*
* LIN_ADVANCE: 8 bytes
* 586 M900 K extruder_advance_k (float)
* 590 M900 WHD advance_ed_ratio (float)
*
* HAS_MOTOR_CURRENT_PWM:
* 594 M907 X Stepper XY current (uint32_t)
* 598 M907 Z Stepper Z current (uint32_t)
* 602 M907 E Stepper E current (uint32_t)
*
* CNC_COORDINATE_SYSTEMS: 108 bytes
* 606 G54-G59.3 coordinate_system (float x 27)
*
* SKEW_CORRECTION: 12 bytes
* 714 M852 I planner.xy_skew_factor (float)
* 718 M852 J planner.xz_skew_factor (float)
* 722 M852 K planner.yz_skew_factor (float)
*
* ADVANCED_PAUSE_FEATURE: 40 bytes
* 726 M603 T U filament_change_unload_length (float x 5) (T0..4)
* 746 M603 T L filament_change_load_length (float x 5) (T0..4)
*
* 766 Minimum end-point
* 2295 (766 + 208 + 36 + 9 + 288 + 988) Maximum end-point
*
* ========================================================================
* meshes_begin (between max and min end-point, directly above)
* -- MESHES --
* meshes_end
* -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
* mat_end = E2END (0xFFF)
*
*/
#include "configuration_store.h" #include "configuration_store.h"
MarlinSettings settings;
#include "endstops.h" #include "endstops.h"
#include "planner.h" #include "planner.h"
#include "stepper.h" #include "stepper.h"
#include "temperature.h" #include "temperature.h"
#include "../lcd/ultralcd.h" #include "../lcd/ultralcd.h"
#include "../core/language.h" #include "../core/language.h"
#include "../libs/vector_3.h"
#include "../gcode/gcode.h"
#include "../Marlin.h" #include "../Marlin.h"
#include "../gcode/parser.h"
#if HAS_LEVELING #if HAS_LEVELING
#include "../feature/bedlevel/bedlevel.h" #include "../feature/bedlevel/bedlevel.h"
#endif #endif
@ -220,13 +71,198 @@ MarlinSettings settings;
#include "../feature/fwretract.h" #include "../feature/fwretract.h"
#endif #endif
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) typedef struct PID { float Kp, Ki, Kd; } PID;
float new_z_fade_height; typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
#endif
/**
* Current EEPROM Layout
*
* Keep this data structure up to date so
* EEPROM size is known at compile time!
*/
typedef struct SettingsDataStruct {
char version[4]; // Vnn\0
uint16_t crc; // Data Checksum
//
// DISTINCT_E_FACTORS
//
uint8_t esteppers; // XYZE_N - XYZ
float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N]
planner_max_feedrate_mm_s[XYZE_N]; // M203 XYZE planner.max_feedrate_mm_s[XYZE_N]
uint32_t planner_max_acceleration_mm_per_s2[XYZE_N]; // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N]
float planner_acceleration, // M204 P planner.acceleration
planner_retract_acceleration, // M204 R planner.retract_acceleration
planner_travel_acceleration, // M204 T planner.travel_acceleration
planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
planner_min_travel_feedrate_mm_s; // M205 T planner.min_travel_feedrate_mm_s
uint32_t planner_min_segment_time_us; // M205 B planner.min_segment_time_us
float planner_max_jerk[XYZE]; // M205 XYZE planner.max_jerk[XYZE]
float home_offset[XYZ]; // M206 XYZ
#if HOTENDS > 1
float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
#endif
//
// ENABLE_LEVELING_FADE_HEIGHT
//
float planner_z_fade_height; // M420 Zn planner.z_fade_height
//
// MESH_BED_LEVELING
//
bool mbl_has_mesh; // mbl.has_mesh
float mbl_z_offset; // mbl.z_offset
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
#if ENABLED(MESH_BED_LEVELING)
float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
#else
float mbl_z_values[3][3];
#endif
//
// HAS_BED_PROBE
//
float zprobe_zoffset; // M851 Z
//
// ABL_PLANAR
//
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
//
// AUTO_BED_LEVELING_BILINEAR
//
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
int bilinear_grid_spacing[2],
bilinear_start[2]; // G29 L F
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
#else
float z_values[3][3];
#endif
//
// AUTO_BED_LEVELING_UBL
//
bool planner_leveling_active; // M420 S planner.leveling_active
int8_t ubl_storage_slot; // ubl.storage_slot
//
// DELTA / [XYZ]_DUAL_ENDSTOPS
//
#if ENABLED(DELTA)
float delta_height, // M666 H
delta_endstop_adj[ABC], // M666 XYZ
delta_radius, // M665 R
delta_diagonal_rod, // M665 L
delta_segments_per_second, // M665 S
delta_calibration_radius, // M665 B
delta_tower_angle_trim[ABC]; // M665 XYZ
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
float x_endstop_adj, // M666 X
y_endstop_adj, // M666 Y
z_endstop_adj; // M666 Z
float xyz_dual_reserved[8];
#else
float xyz_dual_placeholder[11];
#endif
//
// ULTIPANEL
//
int lcd_preheat_hotend_temp[2], // M145 S0 H
lcd_preheat_bed_temp[2], // M145 S0 B
lcd_preheat_fan_speed[2]; // M145 S0 F
//
// PIDTEMP
//
PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U
int lpq_len; // M301 L
//
// PIDTEMPBED
//
PID bedPID; // M304 PID / M303 E-1 U
//
// HAS_LCD_CONTRAST
//
uint16_t lcd_contrast; // M250 C
//
// FWRETRACT
//
bool autoretract_enabled; // M209 S
float retract_length, // M207 S
retract_feedrate_mm_s, // M207 F
retract_zlift, // M207 Z
retract_recover_length, // M208 S
retract_recover_feedrate_mm_s, // M208 F
swap_retract_length, // M207 W
swap_retract_recover_length, // M208 W
swap_retract_recover_feedrate_mm_s; // M208 R
//
// !NO_VOLUMETRIC
//
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[]
//
// HAS_TRINAMIC
//
uint16_t tmc_stepper_current[11]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
int16_t tmc_sgt[2]; // M914 X Y
//
// LIN_ADVANCE
//
float planner_extruder_advance_k, // M900 K planner.extruder_advance_k
planner_advance_ed_ratio; // M900 WHD planner.advance_ed_ratio
//
// HAS_MOTOR_CURRENT_PWM
//
uint32_t motor_current_setting[XYZ]; // M907 X Z E
//
// CNC_COORDINATE_SYSTEMS
//
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
//
// SKEW_CORRECTION
//
float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
planner_xz_skew_factor, // M852 J planner.xz_skew_factor
planner_yz_skew_factor; // M852 K planner.yz_skew_factor
//
// ADVANCED_PAUSE_FEATURE
//
float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U
filament_change_load_length[MAX_EXTRUDERS]; // M603 T L
} SettingsData;
MarlinSettings settings;
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
/** /**
* Post-process after Retrieve or Reset * Post-process after Retrieve or Reset
*/ */
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float new_z_fade_height;
#endif
void MarlinSettings::postprocess() { void MarlinSettings::postprocess() {
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] }; const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
@ -289,16 +325,32 @@ void MarlinSettings::postprocess() {
#define EEPROM_FINISH() HAL::PersistentStore::access_finish() #define EEPROM_FINISH() HAL::PersistentStore::access_finish()
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR) #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
#define EEPROM_WRITE(VAR) HAL::PersistentStore::write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc) #define EEPROM_WRITE(VAR) HAL::PersistentStore::write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_READ(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc) #define EEPROM_READ(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0) #define EEPROM_READ_ALWAYS(VAR) HAL::PersistentStore::read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(ERR); eeprom_error = true; }while(0)
#if ENABLED(DEBUG_EEPROM_READWRITE)
#define _FIELD_TEST(FIELD) \
EEPROM_ASSERT( \
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD), \
"Field " STRINGIFY(FIELD) " mismatch." \
)
#else
#define _FIELD_TEST(FIELD) NOOP
#endif
const char version[4] = EEPROM_VERSION; const char version[4] = EEPROM_VERSION;
bool MarlinSettings::eeprom_error; bool MarlinSettings::eeprom_error, MarlinSettings::validating;
#if ENABLED(AUTO_BED_LEVELING_UBL) bool MarlinSettings::size_error(const uint16_t size) {
int16_t MarlinSettings::meshes_begin; if (size != datasize()) {
#endif SERIAL_ERROR_START();
SERIAL_ERRORLNPGM("EEPROM datasize error.");
return true;
}
return false;
}
/** /**
* M500 - Store Configuration * M500 - Store Configuration
@ -321,6 +373,8 @@ void MarlinSettings::postprocess() {
working_crc = 0; // clear before first "real data" working_crc = 0; // clear before first "real data"
_FIELD_TEST(esteppers);
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ; const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
EEPROM_WRITE(esteppers); EEPROM_WRITE(esteppers);
@ -335,6 +389,9 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(planner.min_travel_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time_us); EEPROM_WRITE(planner.min_segment_time_us);
EEPROM_WRITE(planner.max_jerk); EEPROM_WRITE(planner.max_jerk);
_FIELD_TEST(home_offset);
#if !HAS_HOME_OFFSET #if !HAS_HOME_OFFSET
const float home_offset[XYZ] = { 0 }; const float home_offset[XYZ] = { 0 };
#endif #endif
@ -384,6 +441,8 @@ void MarlinSettings::postprocess() {
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy); for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
_FIELD_TEST(zprobe_zoffset);
#if !HAS_BED_PROBE #if !HAS_BED_PROBE
const float zprobe_zoffset = 0; const float zprobe_zoffset = 0;
#endif #endif
@ -428,6 +487,8 @@ void MarlinSettings::postprocess() {
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy); for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
#endif // AUTO_BED_LEVELING_BILINEAR #endif // AUTO_BED_LEVELING_BILINEAR
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_WRITE(planner.leveling_active); EEPROM_WRITE(planner.leveling_active);
EEPROM_WRITE(ubl.storage_slot); EEPROM_WRITE(ubl.storage_slot);
@ -440,6 +501,7 @@ void MarlinSettings::postprocess() {
// 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS // 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
#if ENABLED(DELTA) #if ENABLED(DELTA)
_FIELD_TEST(delta_height);
EEPROM_WRITE(delta_height); // 1 float EEPROM_WRITE(delta_height); // 1 float
EEPROM_WRITE(delta_endstop_adj); // 3 floats EEPROM_WRITE(delta_endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float EEPROM_WRITE(delta_radius); // 1 float
@ -449,6 +511,7 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
_FIELD_TEST(x_endstop_adj);
// Write dual endstops in X, Y, Z order. Unused = 0.0 // Write dual endstops in X, Y, Z order. Unused = 0.0
dummy = 0.0f; dummy = 0.0f;
#if ENABLED(X_DUAL_ENDSTOPS) #if ENABLED(X_DUAL_ENDSTOPS)
@ -476,6 +539,8 @@ void MarlinSettings::postprocess() {
for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy); for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
#endif #endif
_FIELD_TEST(lcd_preheat_hotend_temp);
#if DISABLED(ULTIPANEL) #if DISABLED(ULTIPANEL)
constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND }, constexpr int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED }, lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
@ -525,6 +590,8 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(thermalManager.bedKd); EEPROM_WRITE(thermalManager.bedKd);
#endif #endif
_FIELD_TEST(lcd_contrast);
#if !HAS_LCD_CONTRAST #if !HAS_LCD_CONTRAST
const uint16_t lcd_contrast = 32; const uint16_t lcd_contrast = 32;
#endif #endif
@ -550,6 +617,7 @@ void MarlinSettings::postprocess() {
// //
// Volumetric & Filament Size // Volumetric & Filament Size
// //
_FIELD_TEST(parser_volumetric_enabled);
#if DISABLED(NO_VOLUMETRICS) #if DISABLED(NO_VOLUMETRICS)
EEPROM_WRITE(parser.volumetric_enabled); EEPROM_WRITE(parser.volumetric_enabled);
@ -560,81 +628,81 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(dummy); EEPROM_WRITE(dummy);
} }
#else
const bool volumetric_enabled = false;
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
EEPROM_WRITE(volumetric_enabled);
for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy);
#endif #endif
//
// Save TMC2130 or TMC2208 Configuration, and placeholder values // Save TMC2130 or TMC2208 Configuration, and placeholder values
uint16_t val; //
_FIELD_TEST(tmc_stepper_current);
uint16_t currents[11] = {
#if HAS_TRINAMIC #if HAS_TRINAMIC
#if X_IS_TRINAMIC #if X_IS_TRINAMIC
val = stepperX.getCurrent(); stepperX.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if Y_IS_TRINAMIC #if Y_IS_TRINAMIC
val = stepperY.getCurrent(); stepperY.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if Z_IS_TRINAMIC #if Z_IS_TRINAMIC
val = stepperZ.getCurrent(); stepperZ.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if X2_IS_TRINAMIC #if X2_IS_TRINAMIC
val = stepperX2.getCurrent(); stepperX2.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if Y2_IS_TRINAMIC #if Y2_IS_TRINAMIC
val = stepperY2.getCurrent(); stepperY2.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if Z2_IS_TRINAMIC #if Z2_IS_TRINAMIC
val = stepperZ2.getCurrent(); stepperZ2.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if E0_IS_TRINAMIC #if E0_IS_TRINAMIC
val = stepperE0.getCurrent(); stepperE0.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if E1_IS_TRINAMIC #if E1_IS_TRINAMIC
val = stepperE1.getCurrent(); stepperE1.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if E2_IS_TRINAMIC #if E2_IS_TRINAMIC
val = stepperE2.getCurrent(); stepperE2.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if E3_IS_TRINAMIC #if E3_IS_TRINAMIC
val = stepperE3.getCurrent(); stepperE3.getCurrent(),
#else #else
val = 0; 0,
#endif #endif
EEPROM_WRITE(val);
#if E4_IS_TRINAMIC #if E4_IS_TRINAMIC
val = stepperE4.getCurrent(); stepperE4.getCurrent()
#else #else
val = 0; 0
#endif #endif
EEPROM_WRITE(val);
#else #else
val = 0; 0
for (uint8_t q = 11; q--;) EEPROM_WRITE(val);
#endif #endif
};
EEPROM_WRITE(currents);
// //
// TMC2130 Sensorless homing threshold // TMC2130 Sensorless homing threshold
@ -661,7 +729,7 @@ void MarlinSettings::postprocess() {
// //
// Linear Advance // Linear Advance
// //
_FIELD_TEST(planner_extruder_advance_k);
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_k); EEPROM_WRITE(planner.extruder_advance_k);
EEPROM_WRITE(planner.advance_ed_ratio); EEPROM_WRITE(planner.advance_ed_ratio);
@ -681,18 +749,18 @@ void MarlinSettings::postprocess() {
// //
// CNC Coordinate Systems // CNC Coordinate Systems
// //
_FIELD_TEST(coordinate_system);
#if ENABLED(CNC_COORDINATE_SYSTEMS) #if ENABLED(CNC_COORDINATE_SYSTEMS)
EEPROM_WRITE(coordinate_system); // 27 floats EEPROM_WRITE(coordinate_system); // 27 floats
#else #else
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q = 27; q--;) EEPROM_WRITE(dummy); for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
#endif #endif
// //
// Skew correction factors // Skew correction factors
// //
_FIELD_TEST(planner_xy_skew_factor);
#if ENABLED(SKEW_CORRECTION) #if ENABLED(SKEW_CORRECTION)
EEPROM_WRITE(planner.xy_skew_factor); EEPROM_WRITE(planner.xy_skew_factor);
EEPROM_WRITE(planner.xz_skew_factor); EEPROM_WRITE(planner.xz_skew_factor);
@ -705,6 +773,7 @@ void MarlinSettings::postprocess() {
// //
// Advanced Pause filament load & unload lengths // Advanced Pause filament load & unload lengths
// //
_FIELD_TEST(filament_change_unload_length);
#if ENABLED(ADVANCED_PAUSE_FEATURE) #if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q]; if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q];
@ -719,12 +788,12 @@ void MarlinSettings::postprocess() {
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy); for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
#endif #endif
//
// Validate CRC and Data Size
//
if (!eeprom_error) { if (!eeprom_error) {
#if ENABLED(EEPROM_CHITCHAT) const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
const int eeprom_size = eeprom_index; final_crc = working_crc;
#endif
const uint16_t final_crc = working_crc;
// Write the EEPROM header // Write the EEPROM header
eeprom_index = EEPROM_OFFSET; eeprom_index = EEPROM_OFFSET;
@ -735,13 +804,18 @@ void MarlinSettings::postprocess() {
// Report storage size // Report storage size
#if ENABLED(EEPROM_CHITCHAT) #if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET)); SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc); SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)final_crc);
SERIAL_ECHOLNPGM(")"); SERIAL_ECHOLNPGM(")");
#endif #endif
eeprom_error |= size_error(eeprom_size);
} }
EEPROM_FINISH(); EEPROM_FINISH();
//
// UBL Mesh
//
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500) #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
if (ubl.storage_slot >= 0) if (ubl.storage_slot >= 0)
store_mesh(ubl.storage_slot); store_mesh(ubl.storage_slot);
@ -753,16 +827,16 @@ void MarlinSettings::postprocess() {
/** /**
* M501 - Retrieve Configuration * M501 - Retrieve Configuration
*/ */
bool MarlinSettings::load() { bool MarlinSettings::_load() {
uint16_t working_crc = 0; uint16_t working_crc = 0;
EEPROM_START(); EEPROM_START();
char stored_ver[4]; char stored_ver[4];
EEPROM_READ(stored_ver); EEPROM_READ_ALWAYS(stored_ver);
uint16_t stored_crc; uint16_t stored_crc;
EEPROM_READ(stored_crc); EEPROM_READ_ALWAYS(stored_crc);
// Version has to match or defaults are used // Version has to match or defaults are used
if (strncmp(version, stored_ver, 3) != 0) { if (strncmp(version, stored_ver, 3) != 0) {
@ -776,7 +850,8 @@ void MarlinSettings::postprocess() {
SERIAL_ECHOPAIR("(EEPROM=", stored_ver); SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")"); SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
#endif #endif
reset(); if (!validating) reset();
eeprom_error = true;
} }
else { else {
float dummy = 0; float dummy = 0;
@ -788,7 +863,7 @@ void MarlinSettings::postprocess() {
// Number of esteppers may change // Number of esteppers may change
uint8_t esteppers; uint8_t esteppers;
EEPROM_READ(esteppers); EEPROM_READ_ALWAYS(esteppers);
// //
// Planner Motion // Planner Motion
@ -803,7 +878,7 @@ void MarlinSettings::postprocess() {
EEPROM_READ(tmp1); EEPROM_READ(tmp1);
EEPROM_READ(tmp2); EEPROM_READ(tmp2);
EEPROM_READ(tmp3); EEPROM_READ(tmp3);
LOOP_XYZE_N(i) { if (!validating) LOOP_XYZE_N(i) {
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1]; planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1]; planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1]; planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
@ -852,21 +927,23 @@ void MarlinSettings::postprocess() {
bool leveling_is_on; bool leveling_is_on;
uint8_t mesh_num_x, mesh_num_y; uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(leveling_is_on); EEPROM_READ_ALWAYS(leveling_is_on);
EEPROM_READ(dummy); EEPROM_READ(dummy);
EEPROM_READ(mesh_num_x); EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ(mesh_num_y); EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
if (!validating) {
mbl.has_mesh = leveling_is_on; mbl.has_mesh = leveling_is_on;
mbl.z_offset = dummy; mbl.z_offset = dummy;
}
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) { if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh // EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values); EEPROM_READ(mbl.z_values);
} }
else { else {
// EEPROM data is stale // EEPROM data is stale
mbl.reset(); if (!validating) mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy); for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
} }
#else #else
@ -894,11 +971,11 @@ void MarlinSettings::postprocess() {
// //
uint8_t grid_max_x, grid_max_y; uint8_t grid_max_x, grid_max_y;
EEPROM_READ(grid_max_x); // 1 byte EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
EEPROM_READ(grid_max_y); // 1 byte EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) { if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
set_bed_leveling_enabled(false); if (!validating) set_bed_leveling_enabled(false);
EEPROM_READ(bilinear_grid_spacing); // 2 ints EEPROM_READ(bilinear_grid_spacing); // 2 ints
EEPROM_READ(bilinear_start); // 2 ints EEPROM_READ(bilinear_start); // 2 ints
EEPROM_READ(z_values); // 9 to 256 floats EEPROM_READ(z_values); // 9 to 256 floats
@ -990,7 +1067,7 @@ void MarlinSettings::postprocess() {
EEPROM_READ(dummy); // Kp EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled // do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy; if (!validating) PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e)); EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e)); EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING) #if ENABLED(PID_EXTRUSION_SCALING)
@ -1024,7 +1101,7 @@ void MarlinSettings::postprocess() {
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) { if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy; if (!validating) thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi); EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd); EEPROM_READ(thermalManager.bedKd);
} }
@ -1069,63 +1146,62 @@ void MarlinSettings::postprocess() {
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy); EEPROM_READ(dummy);
if (q < COUNT(planner.filament_size)) planner.filament_size[q] = dummy; if (!validating && q < COUNT(planner.filament_size))
planner.filament_size[q] = dummy;
} }
#else
EEPROM_READ(dummyb);
for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy);
#endif #endif
// //
// TMC2130 Stepper Current // TMC2130 Stepper Current
// //
uint16_t val;
#if HAS_TRINAMIC #if HAS_TRINAMIC
#define SET_CURR(N,Q) stepper##Q.setCurrent(val[N], R_SENSE, HOLD_MULTIPLIER)
uint16_t val[11];
EEPROM_READ(val); EEPROM_READ(val);
if (!validating) {
#if X_IS_TRINAMIC #if X_IS_TRINAMIC
stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(0, X);
#endif #endif
EEPROM_READ(val);
#if Y_IS_TRINAMIC #if Y_IS_TRINAMIC
stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(1, Y);
#endif #endif
EEPROM_READ(val);
#if Z_IS_TRINAMIC #if Z_IS_TRINAMIC
stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(2, Z);
#endif #endif
EEPROM_READ(val);
#if X2_IS_TRINAMIC #if X2_IS_TRINAMIC
stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(3, X2);
#endif #endif
EEPROM_READ(val);
#if Y2_IS_TRINAMIC #if Y2_IS_TRINAMIC
stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(4, Y2);
#endif #endif
EEPROM_READ(val);
#if Z2_IS_TRINAMIC #if Z2_IS_TRINAMIC
stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(5, Z2);
#endif #endif
EEPROM_READ(val);
#if E0_IS_TRINAMIC #if E0_IS_TRINAMIC
stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(6, E0);
#endif #endif
EEPROM_READ(val);
#if E1_IS_TRINAMIC #if E1_IS_TRINAMIC
stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(7, E1);
#endif #endif
EEPROM_READ(val);
#if E2_IS_TRINAMIC #if E2_IS_TRINAMIC
stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(8, E2);
#endif #endif
EEPROM_READ(val);
#if E3_IS_TRINAMIC #if E3_IS_TRINAMIC
stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(9, E3);
#endif #endif
EEPROM_READ(val);
#if E4_IS_TRINAMIC #if E4_IS_TRINAMIC
stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER); SET_CURR(10, E4);
#endif #endif
}
#else #else
for (uint8_t q = 11; q--;) EEPROM_READ(val); uint16_t val;
for (uint8_t q=11; q--;) EEPROM_READ(val);
#endif #endif
/* /*
@ -1136,19 +1212,23 @@ void MarlinSettings::postprocess() {
int16_t thrs; int16_t thrs;
#if ENABLED(SENSORLESS_HOMING) #if ENABLED(SENSORLESS_HOMING)
EEPROM_READ(thrs); EEPROM_READ(thrs);
if (!validating) {
#if ENABLED(X_IS_TMC2130) #if ENABLED(X_IS_TMC2130)
stepperX.sgt(thrs); stepperX.sgt(thrs);
#endif #endif
#if ENABLED(X2_IS_TMC2130) #if ENABLED(X2_IS_TMC2130)
stepperX2.sgt(thrs); stepperX2.sgt(thrs);
#endif #endif
}
EEPROM_READ(thrs); EEPROM_READ(thrs);
if (!validating) {
#if ENABLED(Y_IS_TMC2130) #if ENABLED(Y_IS_TMC2130)
stepperY.sgt(thrs); stepperY.sgt(thrs);
#endif #endif
#if ENABLED(Y2_IS_TMC2130) #if ENABLED(Y2_IS_TMC2130)
stepperY2.sgt(thrs); stepperY2.sgt(thrs);
#endif #endif
}
#else #else
for (uint8_t q = 0; q < 2; q++) EEPROM_READ(thrs); for (uint8_t q = 0; q < 2; q++) EEPROM_READ(thrs);
#endif #endif
@ -1181,10 +1261,10 @@ void MarlinSettings::postprocess() {
// //
#if ENABLED(CNC_COORDINATE_SYSTEMS) #if ENABLED(CNC_COORDINATE_SYSTEMS)
(void)gcode.select_coordinate_system(-1); // Go back to machine space if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
EEPROM_READ(gcode.coordinate_system); // 27 floats EEPROM_READ(gcode.coordinate_system); // 27 floats
#else #else
for (uint8_t q = 27; q--;) EEPROM_READ(dummy); for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
#endif #endif
// //
@ -1211,27 +1291,24 @@ void MarlinSettings::postprocess() {
#if ENABLED(ADVANCED_PAUSE_FEATURE) #if ENABLED(ADVANCED_PAUSE_FEATURE)
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy); EEPROM_READ(dummy);
if (q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy; if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
} }
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy); EEPROM_READ(dummy);
if (q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy; if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
} }
#else #else
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy); for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
#endif #endif
if (working_crc == stored_crc) { eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
postprocess(); if (eeprom_error) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHO(version); SERIAL_ECHOPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)));
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET)); SERIAL_ECHOLNPAIR(" Size: ", datasize());
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
SERIAL_ECHOLNPGM(")");
#endif
} }
else { else if (working_crc != stored_crc) {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT) #if ENABLED(EEPROM_CHITCHAT)
SERIAL_ERROR_START(); SERIAL_ERROR_START();
SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) "); SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
@ -1240,15 +1317,25 @@ void MarlinSettings::postprocess() {
SERIAL_ERROR(working_crc); SERIAL_ERROR(working_crc);
SERIAL_ERRORLNPGM(" (calculated)!"); SERIAL_ERRORLNPGM(" (calculated)!");
#endif #endif
reset(); }
else if (!validating) {
#if ENABLED(EEPROM_CHITCHAT)
SERIAL_ECHO_START();
SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
SERIAL_ECHOPAIR(" bytes; crc ", (uint32_t)working_crc);
SERIAL_ECHOLNPGM(")");
#endif
}
if (!validating) {
if (eeprom_error) reset(); else postprocess();
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
// can float up or down a little bit without
// disrupting the mesh data
ubl.report_state(); ubl.report_state();
if (!validating) {
if (!ubl.sanity_check()) { if (!ubl.sanity_check()) {
SERIAL_EOL(); SERIAL_EOL();
#if ENABLED(EEPROM_CHITCHAT) #if ENABLED(EEPROM_CHITCHAT)
@ -1257,6 +1344,7 @@ void MarlinSettings::postprocess() {
#endif #endif
} }
else { else {
eeprom_error = true;
#if ENABLED(EEPROM_CHITCHAT) #if ENABLED(EEPROM_CHITCHAT)
SERIAL_PROTOCOLPGM("?Can't enable "); SERIAL_PROTOCOLPGM("?Can't enable ");
ubl.echo_name(); ubl.echo_name();
@ -1278,17 +1366,31 @@ void MarlinSettings::postprocess() {
SERIAL_ECHOLNPGM("UBL System reset()"); SERIAL_ECHOLNPGM("UBL System reset()");
#endif #endif
} }
}
#endif #endif
} }
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503) #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
report(); if (!validating) report();
#endif #endif
EEPROM_FINISH(); EEPROM_FINISH();
return !eeprom_error; return !eeprom_error;
} }
bool MarlinSettings::validate() {
validating = true;
const bool success = _load();
validating = false;
return success;
}
bool MarlinSettings::load() {
if (validate()) return _load();
reset();
return true;
}
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(EEPROM_CHITCHAT) #if ENABLED(EEPROM_CHITCHAT)
@ -1299,12 +1401,13 @@ void MarlinSettings::postprocess() {
} }
#endif #endif
int16_t MarlinSettings::meshes_start_index() {
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
// or down a little bit without disrupting the mesh data
}
uint16_t MarlinSettings::calc_num_meshes() { uint16_t MarlinSettings::calc_num_meshes() {
//obviously this will get more sophisticated once we've added an actual MAT return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
if (meshes_begin <= 0) return 0;
return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
} }
void MarlinSettings::store_mesh(const int8_t slot) { void MarlinSettings::store_mesh(const int8_t slot) {

View file

@ -29,31 +29,31 @@ class MarlinSettings {
public: public:
MarlinSettings() { } MarlinSettings() { }
static uint16_t datasize();
static void reset(); static void reset();
static bool save(); static bool save(); // Return 'true' if data was saved
FORCE_INLINE static bool init_eeprom() { FORCE_INLINE static bool init_eeprom() {
bool success = true; bool success = true;
reset(); reset();
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
if ((success = save())) { success = save();
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(EEPROM_CHITCHAT)
success = load(); // UBL uses load() to know the end of EEPROM if (success) report();
#elif ENABLED(EEPROM_CHITCHAT)
report();
#endif #endif
}
#endif #endif
return success; return success;
} }
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
static bool load(); static bool load(); // Return 'true' if data was loaded ok
static bool validate(); // Return 'true' if EEPROM data is ok
#if ENABLED(AUTO_BED_LEVELING_UBL) // Eventually make these available if any leveling system #if ENABLED(AUTO_BED_LEVELING_UBL) // Eventually make these available if any leveling system
// That can store is enabled // That can store is enabled
FORCE_INLINE static int16_t get_start_of_meshes() { return meshes_begin; } static int16_t meshes_start_index();
FORCE_INLINE static int16_t get_end_of_meshes() { return meshes_end; } FORCE_INLINE static int16_t meshes_end_index() { return meshes_end; }
static uint16_t calc_num_meshes(); static uint16_t calc_num_meshes();
static void store_mesh(const int8_t slot); static void store_mesh(const int8_t slot);
static void load_mesh(const int8_t slot, void * const into=NULL); static void load_mesh(const int8_t slot, void * const into=NULL);
@ -77,16 +77,18 @@ class MarlinSettings {
static void postprocess(); static void postprocess();
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
static bool eeprom_error;
static bool eeprom_error, validating;
#if ENABLED(AUTO_BED_LEVELING_UBL) // Eventually make these available if any leveling system #if ENABLED(AUTO_BED_LEVELING_UBL) // Eventually make these available if any leveling system
// That can store is enabled // That can store is enabled
static int16_t meshes_begin;
const static int16_t meshes_end = E2END - 128; // 128 is a placeholder for the size of the MAT; the MAT will always const static int16_t meshes_end = E2END - 128; // 128 is a placeholder for the size of the MAT; the MAT will always
// live at the very end of the eeprom // live at the very end of the eeprom
#endif #endif
static bool _load();
static bool size_error(const uint16_t size);
#endif #endif
}; };