First arcs version. (Arcs not working ok)

This commit is contained in:
Erik van der Zalm 2011-11-06 12:39:00 +01:00
parent 2e8e8878e5
commit 0b82465168
4 changed files with 1784 additions and 1479 deletions

View file

@ -1,245 +1,248 @@
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
//#define DEBUG_STEPS
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
//// The following define selects which electronics board you have. Please choose the one that matches your setup
// MEGA/RAMPS up to 1.2 = 3,
// RAMPS 1.3 = 33
// Gen6 = 5,
// Sanguinololu 1.2 and above = 62
// Ultimaker = 7,
#define MOTHERBOARD 7
//#define MOTHERBOARD 5
//// Thermistor settings:
// 1 is 100k thermistor
// 2 is 200k thermistor
// 3 is mendel-parts thermistor
// 4 is 10k thermistor
// 5 is ParCan supplied 104GT-2 100K
// 6 is EPCOS 100k
// 7 is 100k Honeywell thermistor 135-104LAG-J01
#define THERMISTORHEATER_1 3
#define THERMISTORHEATER_2 3
#define THERMISTORBED 3
//#define HEATER_0_USES_THERMISTOR
//#define HEATER_1_USES_THERMISTOR
#define HEATER_0_USES_AD595
//#define HEATER_1_USES_AD595
// Select one of these only to define how the bed temp is read.
//#define BED_USES_THERMISTOR
//#define BED_USES_AD595
#define HEATER_CHECK_INTERVAL 50
#define BED_CHECK_INTERVAL 5000
//// Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200
//#define BAUDRATE 230400
// Comment out (using // at the start of the line) to disable SD support:
// #define ULTRA_LCD //any lcd
#define ULTIPANEL
#define ULTIPANEL
#ifdef ULTIPANEL
//#define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#else //no panel but just lcd
#ifdef ULTRA_LCD
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
const int dropsegments=5; //everything with this number of steps will be ignored as move
//// ADVANCED SETTINGS - to tweak parameters
#include "thermistortables.h"
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0
// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false
// Inverting axis direction
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
//// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
#define X_MAX_LENGTH 210
#define Y_MAX_LENGTH 210
#define Z_MAX_LENGTH 210
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
//note: on bernhards ultimaker 200 200 12 are working well.
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
#define TRAVELING_AT_MAXSPEED
#define AXIS_RELATIVE_MODES {false, false, false, false}
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 10
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000
#define DEFAULT_XYJERK 30.0*60
#define DEFAULT_ZJERK 10.0*60
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
//this enables the watchdog interrupt.
#define USE_WATCHDOG
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
#define RESET_MANUAL
#define WATCHDOG_TIMEOUT 4
//// Experimental watchdog and minimal temp
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
//#define WATCHPERIOD 5000 //5 seconds
// Actual temperature must be close to target for this long before M109 returns success
//#define TEMP_RESIDENCY_TIME 20 // (seconds)
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
//// The minimal temperature defines the temperature below which the heater will not be enabled
#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5
//#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
//#define_HEATER_1_MAXTEMP 275
//#define BED_MAXTEMP 150
#define PIDTEMP
#ifdef PIDTEMP
/// PID settings:
// Uncomment the following line to enable PID support.
//#define SMOOTHING
//#define SMOOTHFACTOR 5.0
//float current_raw_average=0;
#define K1 0.95 //smoothing of the PID
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
#define PID_MAX 255 // limits current to nozzle
#define PID_INTEGRAL_DRIVE_MAX 255
#define PID_dT 0.1
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
#define PID_CRITIAL_GAIN 3000
#define PID_SWING_AT_CRITIAL 45 //seconds
#define PIDIADD 5
/*
//PID according to Ziegler-Nichols method
float Kp = 0.6*PID_CRITIAL_GAIN;
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
*/
//PI according to Ziegler-Nichols method
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
#define DEFAULT_Kd (0)
#define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
#endif
#endif // PIDTEMP
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
//
// hooke's law says: force = k * distance
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .3
#define D_FILAMENT 1.7
#define STEPS_MM_E 65
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
#if defined SDSUPPORT
// The number of linear motions that can be in the plan at any give time.
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
#endif
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
//#define DEBUG_STEPS
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
//// The following define selects which electronics board you have. Please choose the one that matches your setup
// MEGA/RAMPS up to 1.2 = 3,
// RAMPS 1.3 = 33
// Gen6 = 5,
// Sanguinololu 1.2 and above = 62
// Ultimaker = 7,
#define MOTHERBOARD 7
//#define MOTHERBOARD 5
//// Thermistor settings:
// 1 is 100k thermistor
// 2 is 200k thermistor
// 3 is mendel-parts thermistor
// 4 is 10k thermistor
// 5 is ParCan supplied 104GT-2 100K
// 6 is EPCOS 100k
// 7 is 100k Honeywell thermistor 135-104LAG-J01
#define THERMISTORHEATER_1 3
#define THERMISTORHEATER_2 3
#define THERMISTORBED 3
//#define HEATER_0_USES_THERMISTOR
//#define HEATER_1_USES_THERMISTOR
#define HEATER_0_USES_AD595
//#define HEATER_1_USES_AD595
// Select one of these only to define how the bed temp is read.
//#define BED_USES_THERMISTOR
//#define BED_USES_AD595
#define HEATER_CHECK_INTERVAL 50
#define BED_CHECK_INTERVAL 5000
//// Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
// This determines the communication speed of the printer
#define BAUDRATE 250000
//#define BAUDRATE 115200
//#define BAUDRATE 230400
// Comment out (using // at the start of the line) to disable SD support:
// #define ULTRA_LCD //any lcd
#define ULTIPANEL
#define ULTIPANEL
#ifdef ULTIPANEL
//#define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT
#define ULTRA_LCD
#define LCD_WIDTH 20
#define LCD_HEIGHT 4
#else //no panel but just lcd
#ifdef ULTRA_LCD
#define LCD_WIDTH 16
#define LCD_HEIGHT 2
#endif
#endif
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
const int dropsegments=5; //everything with this number of steps will be ignored as move
//// ADVANCED SETTINGS - to tweak parameters
#include "thermistortables.h"
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0
// Disables axis when it's not being used.
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
#define DISABLE_E false
// Inverting axis direction
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
//// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
#define X_MAX_LENGTH 210
#define Y_MAX_LENGTH 210
#define Z_MAX_LENGTH 210
//// MOVEMENT SETTINGS
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
//note: on bernhards ultimaker 200 200 12 are working well.
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
#define TRAVELING_AT_MAXSPEED
#define AXIS_RELATIVE_MODES {false, false, false, false}
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
// default settings
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 10
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000
#define DEFAULT_XYJERK 30.0*60
#define DEFAULT_ZJERK 10.0*60
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
//this enables the watchdog interrupt.
#define USE_WATCHDOG
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
#define RESET_MANUAL
#define WATCHDOG_TIMEOUT 4
//// Experimental watchdog and minimal temp
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
//#define WATCHPERIOD 5000 //5 seconds
// Actual temperature must be close to target for this long before M109 returns success
//#define TEMP_RESIDENCY_TIME 20 // (seconds)
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
//// The minimal temperature defines the temperature below which the heater will not be enabled
#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5
//#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
//#define_HEATER_1_MAXTEMP 275
//#define BED_MAXTEMP 150
#define PIDTEMP
#ifdef PIDTEMP
/// PID settings:
// Uncomment the following line to enable PID support.
//#define SMOOTHING
//#define SMOOTHFACTOR 5.0
//float current_raw_average=0;
#define K1 0.95 //smoothing of the PID
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
#define PID_MAX 255 // limits current to nozzle
#define PID_INTEGRAL_DRIVE_MAX 255
#define PID_dT 0.1
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
#define PID_CRITIAL_GAIN 3000
#define PID_SWING_AT_CRITIAL 45 //seconds
#define PIDIADD 5
/*
//PID according to Ziegler-Nichols method
float Kp = 0.6*PID_CRITIAL_GAIN;
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
*/
//PI according to Ziegler-Nichols method
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
#define DEFAULT_Kd (0)
#define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
#endif
#endif // PIDTEMP
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
//
// hooke's law says: force = k * distance
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .3
#define D_FILAMENT 1.7
#define STEPS_MM_E 65
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
#if defined SDSUPPORT
// The number of linear motions that can be in the plan at any give time.
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
#endif

View file

@ -1,1235 +1,1372 @@
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
Reprap firmware based on Sprinter and grbl.
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "EEPROMwrite.h"
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "streaming.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "motion_control.h"
#ifdef SIMPLE_LCD
#include "Simplelcd.h"
#endif
char version_string[] = "1.0.0 Alpha 1";
#ifdef SDSUPPORT
#include "SdFat.h"
#endif //SDSUPPORT
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M42 - Change pin status via gcode
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
// M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {
'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
float offset[3] = {0.0, 0.0, 0.0};
bool home_all_axis = true;
float feedrate = 1500.0, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN;
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
uint8_t fanpwm=0;
volatile int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
// comm variables
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
int i = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
extern float HeaterPower;
#include "EEPROM.h"
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
float tt = 0, bt = 0;
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
#endif //WATCHPERIOD
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
unsigned long starttime=0;
unsigned long stoptime=0;
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
uint32_t filesize = 0;
uint32_t sdpos = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
int16_t n;
unsigned long autostart_atmillis=0;
void initsd(){
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
Serial.println("SD init fail");
}
else if (!volume.init(&card))
Serial.println("volume.init failed");
else if (!root.openRoot(&volume))
Serial.println("openRoot failed");
else
{
sdactive = true;
Serial.println("SD card ok");
}
#endif //SDSS
}
void quickinitsd(){
sdactive=false;
autostart_atmillis=millis()+5000;
}
inline void write_command(char *buf){
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL){
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
end[1] = '\r';
end[2] = '\n';
end[3] = '\0';
//Serial.println(begin);
file.write(begin);
if (file.writeError){
Serial.println("error writing to file");
}
}
#endif //SDSUPPORT
///adds an command to the main command buffer
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happsens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup()
{
Serial.begin(BAUDRATE);
ECHOLN("Marlin "<<version_string);
Serial.println("start");
#if defined FANCY_LCD || defined SIMPLE_LCD
lcd_init();
#endif
for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false;
}
RetrieveSettings(); // loads data from EEPROM if available
for(int i=0; i < NUM_AXIS; i++){
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
#ifdef SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif //SDPOWER
quickinitsd();
#endif //SDSUPPORT
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
//checkautostart();
}
#ifdef SDSUPPORT
bool autostart_stilltocheck=true;
void checkautostart(bool force)
{
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return;
}
autostart_stilltocheck=false;
if(!sdactive)
{
initsd();
if(!sdactive) //fail
return;
}
static int lastnr=0;
char autoname[30];
sprintf(autoname,"auto%i.g",lastnr);
for(int i=0;i<(int)strlen(autoname);i++)
autoname[i]=tolower(autoname[i]);
dir_t p;
root.rewind();
//char filename[11];
//int cnt=0;
bool found=false;
while (root.readDir(p) > 0)
{
for(int i=0;i<(int)strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30];
sprintf(cmd,"M23 %s",autoname);
//sprintf(cmd,"M115");
//enquecommand("G92 Z0");
//enquecommand("G1 Z10 F2000");
//enquecommand("G28 X-105 Y-105");
enquecommand(cmd);
enquecommand("M24");
found=true;
}
}
if(!found)
lastnr=-1;
else
lastnr++;
}
#else
inline void checkautostart(bool x)
{
}
#endif
void loop()
{
if(buflen<3)
get_command();
checkautostart(false);
if(buflen)
{
#ifdef SDSUPPORT
if(savetosd){
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
write_command(cmdbuffer[bufindr]);
Serial.println("ok");
}
else{
file.sync();
file.close();
savetosd = false;
Serial.println("Done saving file.");
}
}
else{
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
LCD_STATUS;
}
inline void get_command()
{
while( Serial.available() > 0 && buflen < BUFSIZE) {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = false;
if(strstr(cmdbuffer[bufindw], "N") != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
Serial.println(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strstr(cmdbuffer[bufindw], "*") != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
Serial.print("Error: checksum mismatch, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
Serial.print("Error: No Checksum with line number, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strstr(cmdbuffer[bufindw], "*") != NULL))
{
Serial.print("Error: No Line Number with checksum, Last Line:");
Serial.println(gcode_LastN);
serial_count = 0;
return;
}
}
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
case 0:
case 1:
case 2:
case 3:
#ifdef SDSUPPORT
if(savetosd)
break;
#endif //SDSUPPORT
Serial.println("ok");
break;
default:
break;
}
}
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!sdmode || serial_count!=0){
return;
}
while( filesize > sdpos && buflen < BUFSIZE) {
n = file.read();
serial_char = (char)n;
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
{
sdpos = file.curPosition();
if(sdpos >= filesize){
sdmode = false;
Serial.println("Done printing file");
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
checkautostart(true);
}
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
inline float code_value() {
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}
inline long code_value_long() {
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}
inline bool code_seen(char code_string[]) {
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
} //Return True if the string was found
inline bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
inline void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
//ClearToSend();
return;
//break;
case 2: // G2 - CW ARC
get_arc_coordinates();
prepare_arc_move(true);
previous_millis_cmd = millis();
return;
case 3: // G3 - CCW ARC
get_arc_coordinates();
prepare_arc_move(false);
previous_millis_cmd = millis();
return;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum ){
manage_heater();
}
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
for(int i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS];
prepare_move();
// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move();
// st_synchronize();
destination[X_AXIS] = 10 * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
// st_synchronize();
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0.0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS];
prepare_move();
// st_synchronize();
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move();
// st_synchronize();
destination[Y_AXIS] = 10 * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
// st_synchronize();
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0.0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS];
prepare_move();
// st_synchronize();
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move();
// st_synchronize();
destination[Z_AXIS] = 3 * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
// st_synchronize();
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS];
feedrate = 0.0;
}
}
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
break;
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef SDSUPPORT
case 20: // M20 - list SD card
Serial.println("Begin file list");
root.ls();
Serial.println("End file list");
break;
case 21: // M21 - init SD card
sdmode = false;
initsd();
break;
case 22: //M22 - release SD card
sdmode = false;
sdactive = false;
break;
case 23: //M23 - Select file
if(sdactive){
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
if (file.open(&root, strchr_pointer + 4, O_READ)) {
Serial.print("File opened:");
Serial.print(strchr_pointer + 4);
Serial.print(" Size:");
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
Serial.println("File selected");
}
else{
Serial.println("file.open failed");
}
}
break;
case 24: //M24 - Start SD print
if(sdactive){
sdmode = true;
starttime=millis();
}
break;
case 25: //M25 - Pause SD print
if(sdmode){
sdmode = false;
}
break;
case 26: //M26 - Set SD index
if(sdactive && code_seen('S')){
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
if(sdactive){
Serial.print("SD printing byte ");
Serial.print(sdpos);
Serial.print("/");
Serial.println(filesize);
}
else{
Serial.println("Not SD printing");
}
break;
case 28: //M28 - Start SD write
if(sdactive){
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
Serial.print("open failed, File: ");
Serial.print(strchr_pointer + 4);
Serial.print(".");
}
else{
savetosd = true;
Serial.print("Writing to file: ");
Serial.println(strchr_pointer + 4);
}
}
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//savetosd = false;
break;
case 30:
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
}
break;
#endif //SDSUPPORT
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
{
int pin_number = code_value();
for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
}
break;
case 104: // M104
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEM
#ifdef WATCHPERIOD
if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
watchmillis = max(1,millis());
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
}else{
watchmillis = 0;
}
#endif
break;
case 140: // M140 set bed temp
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
#endif
#if TEMP_1_PIN > -1
bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
Serial.print("ok T:");
Serial.print(tt);
// Serial.print(", raw:");
// Serial.print(current_raw);
#if TEMP_1_PIN > -1
#ifdef PIDTEMP
Serial.print(" B:");
#if TEMP_1_PIN > -1
Serial.println(bt);
#else
Serial.println(HeaterPower);
#endif
#else
Serial.println();
#endif
#else
Serial.println();
#endif
#else
Serial.println("No thermistors - no temp");
#endif
return;
//break;
case 109: {// M109 - Wait for extruder heater to reach target.
LCD_MESSAGE("Heating...");
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEM
#ifdef WATCHPERIOD
if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
watchmillis = max(1,millis());
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
} else {
watchmillis = 0;
}
#endif //WATCHPERIOD
codenum = millis();
/* See if we are heating up or cooling down */
bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
Serial.print("T:");
Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
codenum = millis();
}
manage_heater();
LCD_STATUS;
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
(residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
(residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGE("Marlin ready.");
}
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
codenum = millis();
while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
Serial.print("T:");
Serial.println( tt );
Serial.print("ok T:");
Serial.print( tt );
Serial.print(" B:");
Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
codenum = millis();
}
manage_heater();
}
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
WRITE(FAN_PIN,HIGH);
fanpwm=constrain(code_value(),0,255);
analogWrite(FAN_PIN, fanpwm);
}
else {
WRITE(FAN_PIN,HIGH);
fanpwm=255;
analogWrite(FAN_PIN, fanpwm);
}
break;
case 107: //M107 Fan Off
WRITE(FAN_PIN,LOW);
analogWrite(FAN_PIN, 0);
break;
#endif
#if (PS_ON_PIN > -1)
case 80: // M80 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND
break;
case 81: // M81 - ATX Power Off
SET_INPUT(PS_ON_PIN); //Floating
break;
#endif
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18:
case 84:
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else{
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e();
}
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
}
break;
case 115: // M115
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break;
case 114: // M114
Serial.print("X:");
Serial.print(current_position[X_AXIS]);
Serial.print("Y:");
Serial.print(current_position[Y_AXIS]);
Serial.print("Z:");
Serial.print(current_position[Z_AXIS]);
Serial.print("E:");
Serial.print(current_position[E_AXIS]);
#ifdef DEBUG_STEPS
Serial.print(" Count X:");
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
Serial.print("Y:");
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
Serial.print("Z:");
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
#endif
Serial.println("");
break;
case 119: // M119
#if (X_MIN_PIN > -1)
Serial.print("x_min:");
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
Serial.print("x_max:");
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
Serial.print("y_min:");
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
Serial.print("y_max:");
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
Serial.print("z_min:");
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
Serial.print("z_max:");
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
Serial.println("");
break;
//TODO: update for all axis, use for loop
case 201: // M201
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
}
break;
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
feedmultiplychanged=true;
}
}
break;
#ifdef PIDTEMP
case 301: // M301
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT;
// ECHOLN("Kp "<<_FLOAT(Kp,2));
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
// temp_iState_min = 0.0;
// if (Ki!=0) {
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
// }
// else temp_iState_max = 1.0e10;
break;
#endif //PIDTEMP
case 500: // Store settings in EEPROM
{
StoreSettings();
}
break;
case 501: // Read settings from EEPROM
{
RetrieveSettings();
}
break;
case 502: // Revert to default settings
{
RetrieveSettings(true);
}
break;
}
}
else{
Serial.println("Unknown command:");
Serial.println(cmdbuffer[bufindr]);
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
Serial.print("Resend:");
Serial.println(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif //SDSUPPORT
Serial.println("ok");
}
inline void get_coordinates()
{
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
inline void get_arc_coordinates()
{
get_coordinates();
if(code_seen("I")) offset[0] = code_value();
if(code_seen("J")) offset[1] = code_value();
}
void prepare_move()
{
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
for(int i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
void prepare_arc_move(char isclockwise) {
#if 0
if (radius_mode) {
/*
We need to calculate the center of the circle that has the designated radius and passes
through both the current position and the target position. This method calculates the following
set of equations where [x,y] is the vector from current to target position, d == magnitude of
that vector, h == hypotenuse of the triangle formed by the radius of the circle, the distance to
the center of the travel vector. A vector perpendicular to the travel vector [-y,x] is scaled to the
length of h [-y/d*h, x/d*h] and added to the center of the travel vector [x/2,y/2] to form the new point
[i,j] at [x/2-y/d*h, y/2+x/d*h] which will be the center of our arc.
d^2 == x^2 + y^2
h^2 == r^2 - (d/2)^2
i == x/2 - y/d*h
j == y/2 + x/d*h
O <- [i,j]
- |
r - |
- |
- | h
- |
[0,0] -> C -----------------+--------------- T <- [x,y]
| <------ d/2 ---->|
C - Current position
T - Target position
O - center of circle that pass through both C and T
d - distance from C to T
r - designated radius
h - distance from center of CT to O
Expanding the equations:
d -> sqrt(x^2 + y^2)
h -> sqrt(4 * r^2 - x^2 - y^2)/2
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2)) / sqrt(x^2 + y^2)) / 2
Which can be written:
i -> (x - (y * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
j -> (y + (x * sqrt(4 * r^2 - x^2 - y^2))/sqrt(x^2 + y^2))/2
Which we for size and speed reasons optimize to:
h_x2_div_d = sqrt(4 * r^2 - x^2 - y^2)/sqrt(x^2 + y^2)
i = (x - (y * h_x2_div_d))/2
j = (y + (x * h_x2_div_d))/2
*/
// Calculate the change in position along each selected axis
double x = target[gc.plane_axis_0]-gc.position[gc.plane_axis_0];
double y = target[gc.plane_axis_1]-gc.position[gc.plane_axis_1];
clear_vector(offset);
double h_x2_div_d = -sqrt(4 * r*r - x*x - y*y)/hypot(x,y); // == -(h * 2 / d)
// If r is smaller than d, the arc is now traversing the complex plane beyond the reach of any
// real CNC, and thus - for practical reasons - we will terminate promptly:
if(isnan(h_x2_div_d)) { FAIL(STATUS_FLOATING_POINT_ERROR); return(gc.status_code); }
// Invert the sign of h_x2_div_d if the circle is counter clockwise (see sketch below)
if (gc.motion_mode == MOTION_MODE_CCW_ARC) { h_x2_div_d = -h_x2_div_d; }
/* The counter clockwise circle lies to the left of the target direction. When offset is positive,
the left hand circle will be generated - when it is negative the right hand circle is generated.
T <-- Target position
^
Clockwise circles with this center | Clockwise circles with this center will have
will have > 180 deg of angular travel | < 180 deg of angular travel, which is a good thing!
\ | /
center of arc when h_x2_div_d is positive -> x <----- | -----> x <- center of arc when h_x2_div_d is negative
|
|
C <-- Current position */
// Negative R is g-code-alese for "I want a circle with more than 180 degrees of travel" (go figure!),
// even though it is advised against ever generating such circles in a single line of g-code. By
// inverting the sign of h_x2_div_d the center of the circles is placed on the opposite side of the line of
// travel and thus we get the unadvisably long arcs as prescribed.
if (r < 0) {
h_x2_div_d = -h_x2_div_d;
r = -r; // Finished with r. Set to positive for mc_arc
}
// Complete the operation by calculating the actual center of the arc
offset[gc.plane_axis_0] = 0.5*(x-(y*h_x2_div_d));
offset[gc.plane_axis_1] = 0.5*(y+(x*h_x2_div_d));
} else { // Offset mode specific computations
#endif
float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
// }
// Set clockwise/counter-clockwise sign for mc_arc computations
// uint8_t isclockwise = false;
// if (gc.motion_mode == MOTION_MODE_CW_ARC) { isclockwise = true; }
// Trace the arc
mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60.0/100.0, r, isclockwise);
// }
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
for(int ii=0; ii < NUM_AXIS; ii++) {
current_position[ii] = destination[ii];
}
}
#ifdef USE_WATCHDOG
#include <avr/wdt.h>
#include <avr/interrupt.h>
volatile uint8_t timeout_seconds=0;
void(* ctrlaltdelete) (void) = 0;
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
{
kill();
#ifdef RESET_MANUAL
LCD_MESSAGE("Please Reset!");
ECHOLN("echo_: Something is wrong, please turn off the printer.");
#else
LCD_MESSAGE("Timeout, resetting!");
#endif
//disable watchdog, it will survife reboot.
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = 0;
#ifdef RESET_MANUAL
while(1); //wait for user or serial reset
#else
ctrlaltdelete();
#endif
}
}
/// intialise watch dog with a 1 sec interrupt time
void wd_init() {
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
}
/// reset watchdog. MUST be called every 1s after init or avr will reset.
void wd_reset() {
wdt_reset();
timeout_seconds=0; //reset counter for resets
}
#endif /* USE_WATCHDOG */
inline void kill()
{
#if TEMP_0_PIN > -1
target_raw[0]=0;
#if HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
target_raw[1]=0;
#if HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
target_raw[2]=0;
#if HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
disable_x();
disable_y();
disable_z();
disable_e();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
Serial.println("!! Printer halted. kill() called !!");
while(1); // Wait for reset
}
void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
disable_x();
disable_y();
disable_z();
disable_e();
}
check_axes_activity();
}
/*
This firmware is a mashup between Sprinter and grbl.
(https://github.com/kliment/Sprinter)
(https://github.com/simen/grbl/tree)
It has preliminary support for Matthew Roberts advance algorithm
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "EEPROMwrite.h"
#include "fastio.h"
#include "Configuration.h"
#include "pins.h"
#include "Marlin.h"
#include "ultralcd.h"
#include "streaming.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#ifdef SIMPLE_LCD
#include "Simplelcd.h"
#endif
char version_string[] = "1.0.0 Alpha 1";
#ifdef SDSUPPORT
#include "SdFat.h"
#endif //SDSUPPORT
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
//Implemented Codes
//-------------------
// G0 -> G1
// G1 - Coordinated Movement X Y Z E
// G2 - CW ARC
// G3 - CCW ARC
// G4 - Dwell S<seconds> or P<milliseconds>
// G28 - Home all Axis
// G90 - Use Absolute Coordinates
// G91 - Use Relative Coordinates
// G92 - Set current position to cordinates given
//RepRap M Codes
// M104 - Set extruder target temp
// M105 - Read current temp
// M106 - Fan on
// M107 - Fan off
// M109 - Wait for extruder current temp to reach target temp.
// M114 - Display current position
//Custom M Codes
// M20 - List SD card
// M21 - Init SD card
// M22 - Release SD card
// M23 - Select SD file (M23 filename.g)
// M24 - Start/resume SD print
// M25 - Pause SD print
// M26 - Set SD position in bytes (M26 S12345)
// M27 - Report SD print status
// M28 - Start SD write (M28 filename.g)
// M29 - Stop SD write
// M42 - Change pin status via gcode
// M80 - Turn on Power Supply
// M81 - Turn off Power Supply
// M82 - Set E codes absolute (default)
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
// M84 - Disable steppers until next move,
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
// M92 - Set axis_steps_per_unit - same syntax as G92
// M115 - Capabilities string
// M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp.
// M200 - Set filament diameter
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
// M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D
// M500 - stores paramters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//Stepper Movement Variables
char axis_codes[NUM_AXIS] = {
'X', 'Y', 'Z', 'E'};
float destination[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
float current_position[NUM_AXIS] = {
0.0, 0.0, 0.0, 0.0};
bool home_all_axis = true;
float feedrate = 1500.0, next_feedrate, saved_feedrate;
long gcode_N, gcode_LastN;
float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
bool relative_mode = false; //Determines Absolute or Relative Coordinates
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
uint8_t fanpwm=0;
volatile int feedmultiply=100; //100->1 200->2
int saved_feedmultiply;
volatile bool feedmultiplychanged=false;
// comm variables
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
bool fromsd[BUFSIZE];
int bufindr = 0;
int bufindw = 0;
int buflen = 0;
int i = 0;
char serial_char;
int serial_count = 0;
boolean comment_mode = false;
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
extern float HeaterPower;
#include "EEPROM.h"
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
float tt = 0, bt = 0;
#ifdef WATCHPERIOD
int watch_raw = -1000;
unsigned long watchmillis = 0;
#endif //WATCHPERIOD
//Inactivity shutdown variables
unsigned long previous_millis_cmd = 0;
unsigned long max_inactive_time = 0;
unsigned long stepper_inactive_time = 0;
unsigned long starttime=0;
unsigned long stoptime=0;
#ifdef SDSUPPORT
Sd2Card card;
SdVolume volume;
SdFile root;
SdFile file;
uint32_t filesize = 0;
uint32_t sdpos = 0;
bool sdmode = false;
bool sdactive = false;
bool savetosd = false;
int16_t n;
unsigned long autostart_atmillis=0;
void initsd(){
sdactive = false;
#if SDSS >- 1
if(root.isOpen())
root.close();
if (!card.init(SPI_FULL_SPEED,SDSS)){
//if (!card.init(SPI_HALF_SPEED,SDSS))
Serial.println("SD init fail");
}
else if (!volume.init(&card))
Serial.println("volume.init failed");
else if (!root.openRoot(&volume))
Serial.println("openRoot failed");
else
{
sdactive = true;
Serial.println("SD card ok");
}
#endif //SDSS
}
void quickinitsd(){
sdactive=false;
autostart_atmillis=millis()+5000;
}
inline void write_command(char *buf){
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL){
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
end[1] = '\r';
end[2] = '\n';
end[3] = '\0';
//Serial.println(begin);
file.write(begin);
if (file.writeError){
Serial.println("error writing to file");
}
}
#endif //SDSUPPORT
///adds an command to the main command buffer
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happsens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup()
{
Serial.begin(BAUDRATE);
ECHOLN("Marlin "<<version_string);
Serial.println("start");
#if defined FANCY_LCD || defined SIMPLE_LCD
lcd_init();
#endif
for(int i = 0; i < BUFSIZE; i++){
fromsd[i] = false;
}
RetrieveSettings(); // loads data from EEPROM if available
for(int i=0; i < NUM_AXIS; i++){
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
#ifdef SDSUPPORT
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
#endif //SDPOWER
quickinitsd();
#endif //SDSUPPORT
plan_init(); // Initialize planner;
st_init(); // Initialize stepper;
tp_init(); // Initialize temperature loop
//checkautostart();
}
#ifdef SDSUPPORT
bool autostart_stilltocheck=true;
void checkautostart(bool force)
{
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return;
}
autostart_stilltocheck=false;
if(!sdactive)
{
initsd();
if(!sdactive) //fail
return;
}
static int lastnr=0;
char autoname[30];
sprintf(autoname,"auto%i.g",lastnr);
for(int i=0;i<(int)strlen(autoname);i++)
autoname[i]=tolower(autoname[i]);
dir_t p;
root.rewind();
//char filename[11];
//int cnt=0;
bool found=false;
while (root.readDir(p) > 0)
{
for(int i=0;i<(int)strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30];
sprintf(cmd,"M23 %s",autoname);
//sprintf(cmd,"M115");
//enquecommand("G92 Z0");
//enquecommand("G1 Z10 F2000");
//enquecommand("G28 X-105 Y-105");
enquecommand(cmd);
enquecommand("M24");
found=true;
}
}
if(!found)
lastnr=-1;
else
lastnr++;
}
#else
inline void checkautostart(bool x)
{
}
#endif
void loop()
{
if(buflen<3)
get_command();
checkautostart(false);
if(buflen)
{
#ifdef SDSUPPORT
if(savetosd){
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
write_command(cmdbuffer[bufindr]);
Serial.println("ok");
}
else{
file.sync();
file.close();
savetosd = false;
Serial.println("Done saving file.");
}
}
else{
process_commands();
}
#else
process_commands();
#endif //SDSUPPORT
buflen = (buflen-1);
bufindr = (bufindr + 1)%BUFSIZE;
}
//check heater every n milliseconds
manage_heater();
manage_inactivity(1);
LCD_STATUS;
}
inline void get_command()
{
while( Serial.available() > 0 && buflen < BUFSIZE) {
serial_char = Serial.read();
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
{
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = false;
if(strstr(cmdbuffer[bufindw], "N") != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
Serial.println(gcode_LastN);
//Serial.println(gcode_N);
FlushSerialRequestResend();
serial_count = 0;
return;
}
if(strstr(cmdbuffer[bufindw], "*") != NULL)
{
byte checksum = 0;
byte count = 0;
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
Serial.print("Error: checksum mismatch, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
//if no errors, continue parsing
}
else
{
Serial.print("Error: No Checksum with line number, Last Line:");
Serial.println(gcode_LastN);
FlushSerialRequestResend();
serial_count = 0;
return;
}
gcode_LastN = gcode_N;
//if no errors, continue parsing
}
else // if we don't receive 'N' but still see '*'
{
if((strstr(cmdbuffer[bufindw], "*") != NULL))
{
Serial.print("Error: No Line Number with checksum, Last Line:");
Serial.println(gcode_LastN);
serial_count = 0;
return;
}
}
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
case 0:
case 1:
#ifdef SDSUPPORT
if(savetosd)
break;
#endif //SDSUPPORT
Serial.println("ok");
break;
default:
break;
}
}
bufindw = (bufindw + 1)%BUFSIZE;
buflen += 1;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#ifdef SDSUPPORT
if(!sdmode || serial_count!=0){
return;
}
while( filesize > sdpos && buflen < BUFSIZE) {
n = file.read();
serial_char = (char)n;
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
{
sdpos = file.curPosition();
if(sdpos >= filesize){
sdmode = false;
Serial.println("Done printing file");
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
checkautostart(true);
}
if(!serial_count) return; //if empty line
cmdbuffer[bufindw][serial_count] = 0; //terminate string
if(!comment_mode){
fromsd[bufindw] = true;
buflen += 1;
bufindw = (bufindw + 1)%BUFSIZE;
}
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else
{
if(serial_char == ';') comment_mode = true;
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
}
}
#endif //SDSUPPORT
}
inline float code_value() {
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
}
inline long code_value_long() {
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
}
inline bool code_seen(char code_string[]) {
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
} //Return True if the string was found
inline bool code_seen(char code)
{
strchr_pointer = strchr(cmdbuffer[bufindr], code);
return (strchr_pointer != NULL); //Return True if a character was found
}
inline void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
get_coordinates(); // For X Y Z E F
prepare_move();
previous_millis_cmd = millis();
//ClearToSend();
return;
//break;
case 4: // G4 dwell
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
codenum += millis(); // keep track of when we started waiting
while(millis() < codenum ){
manage_heater();
}
break;
case 28: //G28 Home all Axis one at a time
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
for(int i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS];
prepare_move();
// st_synchronize();
current_position[X_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = -5 * X_HOME_DIR;
prepare_move();
// st_synchronize();
destination[X_AXIS] = 10 * X_HOME_DIR;
feedrate = homing_feedrate[X_AXIS]/2 ;
prepare_move();
// st_synchronize();
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = current_position[X_AXIS];
feedrate = 0.0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS];
prepare_move();
// st_synchronize();
current_position[Y_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = -5 * Y_HOME_DIR;
prepare_move();
// st_synchronize();
destination[Y_AXIS] = 10 * Y_HOME_DIR;
feedrate = homing_feedrate[Y_AXIS]/2;
prepare_move();
// st_synchronize();
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Y_AXIS] = current_position[Y_AXIS];
feedrate = 0.0;
}
}
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS];
prepare_move();
// st_synchronize();
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -2 * Z_HOME_DIR;
prepare_move();
// st_synchronize();
destination[Z_AXIS] = 3 * Z_HOME_DIR;
feedrate = homing_feedrate[Z_AXIS]/2;
prepare_move();
// st_synchronize();
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = current_position[Z_AXIS];
feedrate = 0.0;
}
}
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
break;
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) current_position[i] = code_value();
}
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef SDSUPPORT
case 20: // M20 - list SD card
Serial.println("Begin file list");
root.ls();
Serial.println("End file list");
break;
case 21: // M21 - init SD card
sdmode = false;
initsd();
break;
case 22: //M22 - release SD card
sdmode = false;
sdactive = false;
break;
case 23: //M23 - Select file
if(sdactive){
sdmode = false;
file.close();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos-1)='\0';
if (file.open(&root, strchr_pointer + 4, O_READ)) {
Serial.print("File opened:");
Serial.print(strchr_pointer + 4);
Serial.print(" Size:");
Serial.println(file.fileSize());
sdpos = 0;
filesize = file.fileSize();
Serial.println("File selected");
}
else{
Serial.println("file.open failed");
}
}
break;
case 24: //M24 - Start SD print
if(sdactive){
sdmode = true;
starttime=millis();
}
break;
case 25: //M25 - Pause SD print
if(sdmode){
sdmode = false;
}
break;
case 26: //M26 - Set SD index
if(sdactive && code_seen('S')){
sdpos = code_value_long();
file.seekSet(sdpos);
}
break;
case 27: //M27 - Get SD status
if(sdactive){
Serial.print("SD printing byte ");
Serial.print(sdpos);
Serial.print("/");
Serial.println(filesize);
}
else{
Serial.println("Not SD printing");
}
break;
case 28: //M28 - Start SD write
if(sdactive){
char* npos = 0;
file.close();
sdmode = false;
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos-1) = '\0';
}
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
Serial.print("open failed, File: ");
Serial.print(strchr_pointer + 4);
Serial.print(".");
}
else{
savetosd = true;
Serial.print("Writing to file: ");
Serial.println(strchr_pointer + 4);
}
}
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//savetosd = false;
break;
case 30:
{
stoptime=millis();
char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf(time,"%i min, %i sec",min,sec);
Serial.println(time);
LCD_MESSAGE(time);
}
break;
#endif //SDSUPPORT
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
{
int pin_number = code_value();
for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
{
if (sensitive_pins[i] == pin_number)
{
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
}
}
break;
case 104: // M104
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEM
#ifdef WATCHPERIOD
if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
watchmillis = max(1,millis());
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
}else{
watchmillis = 0;
}
#endif
break;
case 140: // M140 set bed temp
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
break;
case 105: // M105
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
#endif
#if TEMP_1_PIN > -1
bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
#endif
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
Serial.print("ok T:");
Serial.print(tt);
// Serial.print(", raw:");
// Serial.print(current_raw);
#if TEMP_1_PIN > -1
#ifdef PIDTEMP
Serial.print(" B:");
#if TEMP_1_PIN > -1
Serial.println(bt);
#else
Serial.println(HeaterPower);
#endif
#else
Serial.println();
#endif
#else
Serial.println();
#endif
#else
Serial.println("No thermistors - no temp");
#endif
return;
//break;
case 109: {// M109 - Wait for extruder heater to reach target.
LCD_MESSAGE("Heating...");
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
#ifdef PIDTEMP
pid_setpoint = code_value();
#endif //PIDTEM
#ifdef WATCHPERIOD
if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
watchmillis = max(1,millis());
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
} else {
watchmillis = 0;
}
#endif //WATCHPERIOD
codenum = millis();
/* See if we are heating up or cooling down */
bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
#else
while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
Serial.print("T:");
Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
codenum = millis();
}
manage_heater();
LCD_STATUS;
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
(residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
(residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
residencyStart = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGE("Marlin ready.");
}
break;
case 190: // M190 - Wait bed for heater to reach target.
#if TEMP_1_PIN > -1
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
codenum = millis();
while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
{
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
Serial.print("T:");
Serial.println( tt );
Serial.print("ok T:");
Serial.print( tt );
Serial.print(" B:");
Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
codenum = millis();
}
manage_heater();
}
#endif
break;
#if FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
WRITE(FAN_PIN,HIGH);
fanpwm=constrain(code_value(),0,255);
analogWrite(FAN_PIN, fanpwm);
}
else {
WRITE(FAN_PIN,HIGH);
fanpwm=255;
analogWrite(FAN_PIN, fanpwm);
}
break;
case 107: //M107 Fan Off
WRITE(FAN_PIN,LOW);
analogWrite(FAN_PIN, 0);
break;
#endif
#if (PS_ON_PIN > -1)
case 80: // M80 - ATX Power On
SET_OUTPUT(PS_ON_PIN); //GND
break;
case 81: // M81 - ATX Power Off
SET_INPUT(PS_ON_PIN); //Floating
break;
#endif
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18:
case 84:
if(code_seen('S')){
stepper_inactive_time = code_value() * 1000;
}
else{
st_synchronize();
disable_x();
disable_y();
disable_z();
disable_e();
}
break;
case 85: // M85
code_seen('S');
max_inactive_time = code_value() * 1000;
break;
case 92: // M92
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
}
break;
case 115: // M115
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break;
case 114: // M114
Serial.print("X:");
Serial.print(current_position[X_AXIS]);
Serial.print("Y:");
Serial.print(current_position[Y_AXIS]);
Serial.print("Z:");
Serial.print(current_position[Z_AXIS]);
Serial.print("E:");
Serial.print(current_position[E_AXIS]);
#ifdef DEBUG_STEPS
Serial.print(" Count X:");
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
Serial.print("Y:");
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
Serial.print("Z:");
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
#endif
Serial.println("");
break;
case 119: // M119
#if (X_MIN_PIN > -1)
Serial.print("x_min:");
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (X_MAX_PIN > -1)
Serial.print("x_max:");
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MIN_PIN > -1)
Serial.print("y_min:");
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Y_MAX_PIN > -1)
Serial.print("y_max:");
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MIN_PIN > -1)
Serial.print("z_min:");
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
#if (Z_MAX_PIN > -1)
Serial.print("z_max:");
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
#endif
Serial.println("");
break;
//TODO: update for all axis, use for loop
case 201: // M201
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ;
if(code_seen('T')) retract_acceleration = code_value() ;
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
}
break;
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
feedmultiplychanged=true;
}
}
break;
#ifdef PIDTEMP
case 301: // M301
if(code_seen('P')) Kp = code_value();
if(code_seen('I')) Ki = code_value()*PID_dT;
if(code_seen('D')) Kd = code_value()/PID_dT;
// ECHOLN("Kp "<<_FLOAT(Kp,2));
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
// temp_iState_min = 0.0;
// if (Ki!=0) {
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
// }
// else temp_iState_max = 1.0e10;
break;
#endif //PIDTEMP
case 500: // Store settings in EEPROM
{
StoreSettings();
}
break;
case 501: // Read settings from EEPROM
{
RetrieveSettings();
}
break;
case 502: // Revert to default settings
{
RetrieveSettings(true);
}
break;
}
}
else{
Serial.println("Unknown command:");
Serial.println(cmdbuffer[bufindr]);
}
ClearToSend();
}
void FlushSerialRequestResend()
{
//char cmdbuffer[bufindr][100]="Resend:";
Serial.flush();
Serial.print("Resend:");
Serial.println(gcode_LastN + 1);
ClearToSend();
}
void ClearToSend()
{
previous_millis_cmd = millis();
#ifdef SDSUPPORT
if(fromsd[bufindr])
return;
#endif //SDSUPPORT
Serial.println("ok");
}
inline void get_coordinates()
{
for(int i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
else destination[i] = current_position[i]; //Are these else lines really needed?
}
if(code_seen('F')) {
next_feedrate = code_value();
if(next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void prepare_move()
{
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
for(int i=0; i < NUM_AXIS; i++) {
current_position[i] = destination[i];
}
}
#ifdef USE_WATCHDOG
#include <avr/wdt.h>
#include <avr/interrupt.h>
volatile uint8_t timeout_seconds=0;
void(* ctrlaltdelete) (void) = 0;
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
{
kill();
#ifdef RESET_MANUAL
LCD_MESSAGE("Please Reset!");
ECHOLN("echo_: Something is wrong, please turn off the printer.");
#else
LCD_MESSAGE("Timeout, resetting!");
#endif
//disable watchdog, it will survife reboot.
WDTCSR |= (1<<WDCE) | (1<<WDE);
WDTCSR = 0;
#ifdef RESET_MANUAL
while(1); //wait for user or serial reset
#else
ctrlaltdelete();
#endif
}
}
/// intialise watch dog with a 1 sec interrupt time
void wd_init() {
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
}
/// reset watchdog. MUST be called every 1s after init or avr will reset.
void wd_reset() {
wdt_reset();
timeout_seconds=0; //reset counter for resets
}
#endif /* USE_WATCHDOG */
inline void kill()
{
#if TEMP_0_PIN > -1
target_raw[0]=0;
#if HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
#endif
#if TEMP_1_PIN > -1
target_raw[1]=0;
#if HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if TEMP_2_PIN > -1
target_raw[2]=0;
#if HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif
disable_x();
disable_y();
disable_z();
disable_e();
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
Serial.println("!! Printer halted. kill() called!!");
while(1); // Wait for reset
}
void manage_inactivity(byte debug) {
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
disable_x();
disable_y();
disable_z();
disable_e();
}
check_axes_activity();
}

133
Marlin/motion_control.cpp Normal file
View file

@ -0,0 +1,133 @@
/*
motion_control.c - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
//#include "motion_control.h"
#include "Configuration.h"
#include "Marlin.h"
//#include <util/delay.h>
//#include <math.h>
//#include <stdlib.h>
#include "stepper.h"
#include "planner.h"
// The arc is approximated by generating a huge number of tiny, linear segments. The length of each
// segment is configured in settings.mm_per_arc_segment.
void mc_arc(float *position, float *target, float *offset, uint8_t axis_0, uint8_t axis_1,
uint8_t axis_linear, float feed_rate, float radius, uint8_t isclockwise)
{
// int acceleration_manager_was_enabled = plan_is_acceleration_manager_enabled();
// plan_set_acceleration_manager_enabled(false); // disable acceleration management for the duration of the arc
Serial.println("mc_arc");
float center_axis0 = position[axis_0] + offset[axis_0];
float center_axis1 = position[axis_1] + offset[axis_1];
float linear_travel = target[axis_linear] - position[axis_linear];
float r_axis0 = -offset[axis_0]; // Radius vector from center to current location
float r_axis1 = -offset[axis_1];
float rt_axis0 = target[axis_0] - center_axis0;
float rt_axis1 = target[axis_1] - center_axis1;
// CCW angle between position and target from circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
if (angular_travel < 0) { angular_travel += 2*M_PI; }
if (isclockwise) { angular_travel -= 2*M_PI; }
float millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
if (millimeters_of_travel == 0.0) { return; }
uint16_t segments = floor(millimeters_of_travel/MM_PER_ARC_SEGMENT);
/*
// Multiply inverse feed_rate to compensate for the fact that this movement is approximated
// by a number of discrete segments. The inverse feed_rate should be correct for the sum of
// all segments.
if (invert_feed_rate) { feed_rate *= segments; }
*/
float theta_per_segment = angular_travel/segments;
float linear_per_segment = linear_travel/segments;
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
vector rotations. This requires only two cos() and sin() computations to form the rotation
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
all double numbers are single precision on the Arduino. (True double precision will not have
round off issues for CNC applications.) Single precision error can accumulate to be greater than
tool precision in some cases. Therefore, arc path correction is implemented.
Small angle approximation may be used to reduce computation overhead further. This approximation
holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
issue for CNC machines with the single precision Arduino calculations.
This approximation also allows mc_arc to immediately insert a line segment into the planner
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
float arc_target[3];
float sin_Ti;
float cos_Ti;
float r_axisi;
uint16_t i;
int8_t count = 0;
// Initialize the linear axis
arc_target[axis_linear] = position[axis_linear];
for (i = 1; i<segments; i++) { // Increment (segments-1)
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
r_axis1 = r_axisi;
count++;
} else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = cos(i*theta_per_segment);
sin_Ti = sin(i*theta_per_segment);
r_axis0 = -offset[axis_0]*cos_Ti + offset[axis_1]*sin_Ti;
r_axis1 = -offset[axis_0]*sin_Ti - offset[axis_1]*cos_Ti;
count = 0;
}
// Update arc_target location
arc_target[axis_0] = center_axis0 + r_axis0;
arc_target[axis_1] = center_axis1 + r_axis1;
arc_target[axis_linear] += linear_per_segment;
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], target[E_AXIS], feed_rate);
}
// Ensure last segment arrives at target location.
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate);
// plan_set_acceleration_manager_enabled(acceleration_manager_was_enabled);
}

32
Marlin/motion_control.h Normal file
View file

@ -0,0 +1,32 @@
/*
motion_control.h - high level interface for issuing motion commands
Part of Grbl
Copyright (c) 2009-2011 Simen Svale Skogsrud
Copyright (c) 2011 Sungeun K. Jeon
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef motion_control_h
#define motion_control_h
// Execute an arc in offset mode format. position == current xyz, target == target xyz,
// offset == offset from current xyz, axis_XXX defines circle plane in tool space, axis_linear is
// the direction of helical travel, radius == circle radius, isclockwise boolean. Used
// for vector transformation direction.
void mc_arc(float *position, float *target, float *offset, unsigned char axis_0, unsigned char axis_1,
unsigned char axis_linear, float feed_rate, float radius, unsigned char isclockwise);
#endif