smaller changes

This commit is contained in:
Christian Thalhammer 2012-02-13 12:31:53 +01:00
parent 4cc8e37bf1
commit 0e3631ff4b
3 changed files with 301 additions and 85 deletions

View file

@ -4,8 +4,8 @@
// This determines the communication speed of the printer // This determines the communication speed of the printer
#define BAUDRATE 250000 //#define BAUDRATE 250000
//#define BAUDRATE 115200 #define BAUDRATE 115200
//#define BAUDRATE 230400 //#define BAUDRATE 230400
#define EXTRUDERS 1 #define EXTRUDERS 1
@ -26,11 +26,11 @@
// MEGA/RAMPS up to 1.2 = 3, // MEGA/RAMPS up to 1.2 = 3,
// RAMPS 1.3 = 33 // RAMPS 1.3 = 33
// Gen6 = 5, // Gen6 = 5,
// Sanguinololu 1.2 and above = 62, // Sanguinololu 1.2 and above = 62
// Ultimaker = 7,
// Gen7 = 77, // Gen7 = 77,
// Ultimaker = 7,
// Teensylu = 8 // Teensylu = 8
#define MOTHERBOARD 7 #define MOTHERBOARD 77
//=========================================================================== //===========================================================================
//=============================Thermal Settings ============================ //=============================Thermal Settings ============================
@ -45,23 +45,23 @@
// 6 is EPCOS 100k // 6 is EPCOS 100k
// 7 is 100k Honeywell thermistor 135-104LAG-J01 // 7 is 100k Honeywell thermistor 135-104LAG-J01
//#define THERMISTORHEATER_0 3 #define THERMISTORHEATER_0 1
//#define THERMISTORHEATER_1 1 //#define THERMISTORHEATER_1 1
//#define THERMISTORHEATER_2 1 //#define THERMISTORHEATER_2 1
//#define HEATER_0_USES_THERMISTOR #define HEATER_0_USES_THERMISTOR
//#define HEATER_1_USES_THERMISTOR //#define HEATER_1_USES_THERMISTOR
//#define HEATER_2_USES_THERMISTOR //#define HEATER_2_USES_THERMISTOR
#define HEATER_0_USES_AD595 //#define HEATER_0_USES_AD595
//#define HEATER_1_USES_AD595 //#define HEATER_1_USES_AD595
//#define HEATER_2_USES_AD595 //#define HEATER_2_USES_AD595
// Select one of these only to define how the bed temp is read. // Select one of these only to define how the bed temp is read.
//#define THERMISTORBED 1 #define THERMISTORBED 1
//#define BED_USES_THERMISTOR #define BED_USES_THERMISTOR
//#define BED_LIMIT_SWITCHING //#define BED_LIMIT_SWITCHING
#ifdef BED_LIMIT_SWITCHING #ifdef BED_LIMIT_SWITCHING
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS #define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif #endif
//#define BED_USES_AD595 //#define BED_USES_AD595
@ -75,10 +75,10 @@
// Actual temperature must be close to target for this long before M109 returns success // Actual temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 30 // (seconds) #define TEMP_RESIDENCY_TIME 30 // (seconds)
#define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one #define TEMP_HYSTERESIS 3 // (C°) range of +/- temperatures considered "close" to the target one
//// The minimal temperature defines the temperature below which the heater will not be enabled //// The minimal temperature defines the temperature below which the heater will not be enabled
#define HEATER_0_MINTEMP 5 //#define HEATER_0_MINTEMP 5
//#define HEATER_1_MINTEMP 5 //#define HEATER_1_MINTEMP 5
//#define HEATER_2_MINTEMP 5 //#define HEATER_2_MINTEMP 5
//#define BED_MINTEMP 5 //#define BED_MINTEMP 5
@ -107,37 +107,37 @@
#define PIDTEMP #define PIDTEMP
#define PID_MAX 255 // limits current to nozzle; 255=full current #define PID_MAX 255 // limits current to nozzle; 255=full current
#ifdef PIDTEMP #ifdef PIDTEMP
//#define PID_DEBUG // Sends debug data to the serial port. //#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in % //#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
#define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX 255 //limit for the integral term
#define K1 0.95 //smoothing factor withing the PID #define K1 0.95 //smoothing factor withing the PID
#define PID_dT 0.128 //sampling period of the PID #define PID_dT 0.128 //sampling period of the PID
//To develop some PID settings for your machine, you can initiall follow //To develop some PID settings for your machine, you can initiall follow
// the Ziegler-Nichols method. // the Ziegler-Nichols method.
// set Ki and Kd to zero. // set Ki and Kd to zero.
// heat with a defined Kp and see if the temperature stabilizes // heat with a defined Kp and see if the temperature stabilizes
// ideally you do this graphically with repg. // ideally you do this graphically with repg.
// the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde // the PID_CRITIAL_GAIN should be the Kp at which temperature oscillatins are not dampned out/decreas in amplitutde
// PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain // PID_SWING_AT_CRITIAL is the time for a full period of the oscillations at the critical Gain
// usually further manual tunine is necessary. // usually further manual tunine is necessary.
#define PID_CRITIAL_GAIN 50 #define PID_CRITIAL_GAIN 50
#define PID_SWING_AT_CRITIAL 47 //seconds #define PID_SWING_AT_CRITIAL 47 //seconds
//#define PID_PI //no differentail term
#define PID_PID //normal PID
#ifdef PID_PID //#define PID_PI //no differentail term
//PID according to Ziegler-Nichols method #define PID_PID //normal PID
#ifdef PID_PID
//PID according to Ziegler-Nichols method
// #define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN) // #define DEFAULT_Kp (0.6*PID_CRITIAL_GAIN)
// #define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT) // #define DEFAULT_Ki (2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
// #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT) // #define DEFAULT_Kd (PID_SWING_AT_CRITIAL/8./PID_dT)
// Ultitmaker // Ultitmaker
#define DEFAULT_Kp 22.2 #define DEFAULT_Kp 22.2
#define DEFAULT_Ki (1.25*PID_dT) #define DEFAULT_Ki (1.25*PID_dT)
#define DEFAULT_Kd (99/PID_dT) #define DEFAULT_Kd (99/PID_dT)
// Makergear // Makergear
// #define DEFAULT_Kp 7.0 // #define DEFAULT_Kp 7.0
@ -148,21 +148,21 @@
// #define DEFAULT_Kp 63.0 // #define DEFAULT_Kp 63.0
// #define DEFAULT_Ki (2.25*PID_dT) // #define DEFAULT_Ki (2.25*PID_dT)
// #define DEFAULT_Kd (440/PID_dT) // #define DEFAULT_Kd (440/PID_dT)
#endif #endif
#ifdef PID_PI #ifdef PID_PI
//PI according to Ziegler-Nichols method //PI according to Ziegler-Nichols method
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2) #define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT) #define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
#define DEFAULT_Kd (0) #define DEFAULT_Kd (0)
#endif #endif
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed. // this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
// if Kc is choosen well, the additional required power due to increased melting should be compensated. // if Kc is choosen well, the additional required power due to increased melting should be compensated.
#define PID_ADD_EXTRUSION_RATE #define PID_ADD_EXTRUSION_RATE
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed) #define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
#endif #endif
#endif // PIDTEMP #endif // PIDTEMP
// extruder run-out prevention. // extruder run-out prevention.
@ -184,9 +184,9 @@
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins. // The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
const bool X_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. const bool X_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Y_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. const bool Y_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops. const bool Z_ENDSTOPS_INVERTING = false; // set to true to invert the logic of the endstops.
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false // For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing #define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
@ -209,9 +209,9 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true //#define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
//#define INVERT_E*_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false, used for all extruders //#define INVERT_E*_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false, used for all extruders
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true #define INVERT_X_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false #define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true #define INVERT_Z_DIR false // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
@ -256,7 +256,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate #define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0 #define DEFAULT_MINTRAVELFEEDRATE 0.0
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff. // minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while
//printing high speed & high detail. It will slowdown on the detailed stuff.
#define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this #define DEFAULT_MINSEGMENTTIME 20000 // Obsolete delete this
#define DEFAULT_XYJERK 20.0 // (mm/sec) #define DEFAULT_XYJERK 20.0 // (mm/sec)
#define DEFAULT_ZJERK 0.4 // (mm/sec) #define DEFAULT_ZJERK 0.4 // (mm/sec)
@ -290,7 +291,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// this enables the watchdog interrupt. // this enables the watchdog interrupt.
//#define USE_WATCHDOG //#define USE_WATCHDOG
//#ifdef USE_WATCHDOG //#ifdef USE_WATCHDOG
// you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby: // you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
//#define RESET_MANUAL //#define RESET_MANUAL
//#define WATCHDOG_TIMEOUT 4 //seconds //#define WATCHDOG_TIMEOUT 4 //seconds
//#endif //#endif
@ -305,12 +306,12 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
//#define ADVANCE //#define ADVANCE
#ifdef ADVANCE #ifdef ADVANCE
#define EXTRUDER_ADVANCE_K .0 #define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85 #define D_FILAMENT 2.85
#define STEPS_MM_E 836 #define STEPS_MM_E 836
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159) #define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA) #define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
#endif // ADVANCE #endif // ADVANCE
@ -321,18 +322,18 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers? #define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y E" // no z because of layer shift. #define SD_FINISHED_RELEASECOMMAND "M84 X Y E" // no z because of layer shift.
//#define ULTIPANEL #define ULTIPANEL
#ifdef ULTIPANEL #ifdef ULTIPANEL
//#define NEWPANEL //enable this if you have a click-encoder panel #define NEWPANEL //enable this if you have a click-encoder panel
#define SDSUPPORT #define SDSUPPORT
#define ULTRA_LCD #define ULTRA_LCD
#define LCD_WIDTH 20 #define LCD_WIDTH 20
#define LCD_HEIGHT 4 #define LCD_HEIGHT 4
#else //no panel but just lcd #else //no panel but just lcd
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#define LCD_WIDTH 16 #define LCD_WIDTH 16
#define LCD_HEIGHT 2 #define LCD_HEIGHT 2
#endif #endif
#endif #endif
// A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software. // A debugging feature to compare calculated vs performed steps, to see if steps are lost by the software.
@ -353,13 +354,13 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
// on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode // on an ultimaker, some initial testing worked with M109 S215 T260 F0.1 in the start.gcode
//#define AUTOTEMP //#define AUTOTEMP
#ifdef AUTOTEMP #ifdef AUTOTEMP
#define AUTOTEMP_OLDWEIGHT 0.98 #define AUTOTEMP_OLDWEIGHT 0.98
#endif #endif
//this prevents dangerous Extruder moves, i.e. if the temperature is under the limit //this prevents dangerous Extruder moves, i.e. if the temperature is under the limit
//can be software-disabled for whatever purposes by //can be software-disabled for whatever purposes by
#define PREVENT_DANGEROUS_EXTRUDE #define PREVENT_DANGEROUS_EXTRUDE
#define EXTRUDE_MINTEMP 190 #define EXTRUDE_MINTEMP 0
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances. #define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) //prevent extrusion of very large distances.
const int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement const int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
@ -378,9 +379,9 @@ const int dropsegments=5; //everything with less than this number of steps will
// The number of linear motions that can be in the plan at any give time. // The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering. // THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
#if defined SDSUPPORT #if defined SDSUPPORT
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller #define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else #else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer #define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif #endif
@ -392,3 +393,5 @@ const int dropsegments=5; //everything with less than this number of steps will
#include "thermistortables.h" #include "thermistortables.h"
#endif //__CONFIGURATION_H #endif //__CONFIGURATION_H

View file

@ -237,9 +237,11 @@ void setup_photpin()
void setup_powerhold() void setup_powerhold()
{ {
#ifdef SUICIDE_PIN #ifdef SUICIDE_PIN
#if (SUICIDE_PIN> -1)
SET_OUTPUT(SUICIDE_PIN); SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH); WRITE(SUICIDE_PIN, HIGH);
#endif #endif
#endif
} }
void suicide() void suicide()

View file

@ -527,23 +527,119 @@ void MainMenu::showAxisMove()
MENUITEM( lcdprintPGM(" Main \003") , BLOCK;status=Main_Menu;beepshort(); ) ; MENUITEM( lcdprintPGM(" Main \003") , BLOCK;status=Main_Menu;beepshort(); ) ;
break; break;
case ItemAM_X: case ItemAM_X:
MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ; // MENUITEM( lcdprintPGM(" X+") , BLOCK;enquecommand("G92 X0");enquecommand("G1 F700 X10");beepshort(); ) ;
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" X:");
lcd.setCursor(13,line);lcd.print(ftostr3(current_position[X_AXIS]));
}
if((activeline!=line) )
break;
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=current_position[X_AXIS];
}
else
{
enquecommand("G1 F700 X"+encoderpos);
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>200) encoderpos=200;
lcd.setCursor(13,line);lcd.print(current_position[X_AXIS]);
}
}
break; break;
case ItemAM_Y: case ItemAM_Y:
MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ; //MENUITEM( lcdprintPGM(" Y+") , BLOCK;enquecommand("G92 Y0");enquecommand("G1 F700 Y10");beepshort(); ) ;
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" Y:");
lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Y_AXIS]));
}
if((activeline!=line) )
break;
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=current_position[Y_AXIS];
}
else
{
enquecommand("G1 F700 Y"+encoderpos);
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>200) encoderpos=200;
lcd.setCursor(13,line);lcd.print(current_position[Y_AXIS]);
}
}
break; break;
case ItemAM_Z: case ItemAM_Z:
MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ; //MENUITEM( lcdprintPGM(" Z+") , BLOCK;enquecommand("G92 Z0");enquecommand("G1 F700 Z10");beepshort(); ) ;
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" Z:");
lcd.setCursor(13,line);lcd.print(ftostr3(current_position[Z_AXIS]));
}
if((activeline!=line) )
break;
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=current_position[Z_AXIS];
}
else
{
enquecommand("G1 F700 Z"+encoderpos);
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<1) encoderpos=1;
if(encoderpos>170) encoderpos=170;
lcd.setCursor(13,line);lcd.print(current_position[Z_AXIS]);
}
}
break; break;
case ItemAM_E: case ItemAM_E:
MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E50");beepshort(); ) ; MENUITEM( lcdprintPGM(" Extrude") , BLOCK;enquecommand("G92 E0");enquecommand("G1 F700 E10");beepshort(); ) ;
break; break;
default: default:
break; break;
} }
line++; line++;
} }
updateActiveLines(ItemAM_Z,encoderpos); updateActiveLines(ItemAM_E,encoderpos);
} }
enum {ItemT_exit,ItemT_speed,ItemT_flow,ItemT_nozzle, enum {ItemT_exit,ItemT_speed,ItemT_flow,ItemT_nozzle,
@ -1189,7 +1285,7 @@ enum {
ItemCM_vmaxx, ItemCM_vmaxy, ItemCM_vmaxz, ItemCM_vmaxe, ItemCM_vmaxx, ItemCM_vmaxy, ItemCM_vmaxz, ItemCM_vmaxe,
ItemCM_vtravmin,ItemCM_vmin, ItemCM_vtravmin,ItemCM_vmin,
ItemCM_amaxx, ItemCM_amaxy, ItemCM_amaxz, ItemCM_amaxe, ItemCM_amaxx, ItemCM_amaxy, ItemCM_amaxz, ItemCM_amaxe,
ItemCM_aret,ItemCM_esteps ItemCM_aret, ItemCM_xsteps,ItemCM_ysteps, ItemCM_zsteps, ItemCM_esteps
}; };
@ -1465,11 +1561,126 @@ void MainMenu::showControlMotion()
} }
}break; }break;
case ItemCM_xsteps://axis_steps_per_unit[i] = code_value();
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" X steps/mm:");
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[0]));
}
if((activeline!=line) )
break;
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)axis_steps_per_unit[0];
}
else
{
float factor=float(encoderpos)/float(axis_steps_per_unit[0]);
position[X_AXIS]=lround(position[X_AXIS]*factor);
//current_position[3]*=factor;
axis_steps_per_unit[X_AXIS]= encoderpos;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<5) encoderpos=5;
if(encoderpos>9999) encoderpos=9999;
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
}
}break;
case ItemCM_ysteps://axis_steps_per_unit[i] = code_value();
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" Y steps/mm:");
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[1]));
}
if((activeline!=line) )
break;
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)axis_steps_per_unit[1];
}
else
{
float factor=float(encoderpos)/float(axis_steps_per_unit[1]);
position[Y_AXIS]=lround(position[Y_AXIS]*factor);
//current_position[3]*=factor;
axis_steps_per_unit[Y_AXIS]= encoderpos;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<5) encoderpos=5;
if(encoderpos>9999) encoderpos=9999;
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
}
}break;
case ItemCM_zsteps://axis_steps_per_unit[i] = code_value();
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" Z steps/mm:");
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[2]));
}
if((activeline!=line) )
break;
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=(int)axis_steps_per_unit[2];
}
else
{
float factor=float(encoderpos)/float(axis_steps_per_unit[2]);
position[Z_AXIS]=lround(position[Z_AXIS]*factor);
//current_position[3]*=factor;
axis_steps_per_unit[Z_AXIS]= encoderpos;
encoderpos=activeline*lcdslow;
}
BLOCK;
beepshort();
}
if(linechanging)
{
if(encoderpos<5) encoderpos=5;
if(encoderpos>9999) encoderpos=9999;
lcd.setCursor(13,line);lcd.print(itostr4(encoderpos));
}
}break;
case ItemCM_esteps://axis_steps_per_unit[i] = code_value(); case ItemCM_esteps://axis_steps_per_unit[i] = code_value();
{ {
if(force_lcd_update) if(force_lcd_update)
{ {
lcd.setCursor(0,line);lcdprintPGM(" Esteps/mm:"); lcd.setCursor(0,line);lcdprintPGM(" E steps/mm:");
lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3])); lcd.setCursor(13,line);lcd.print(itostr4(axis_steps_per_unit[3]));
} }