Cleanup of planner code
- Use named axis indexes, `X_AXIS` etc. - Replace `block.steps_A` with block.steps[A]` - Replace `A_segment_time` with `segment_time[A]` - Add `A_AXIS`, `B_AXIS` for `COREXY` axes - Conditional compile based on `EXTRUDERS` - Add BLOCK_MOD macro for planner block indexes - Apply coding standards to `planner.h` and `planner.cpp` - Small optimizations of planner code - Update `stepper.cpp` for new `block` struct - Replace `memcpy` with loops, let the compiler unroll them - Make `movesplanned` into an inline function
This commit is contained in:
parent
0d869703ca
commit
13fbf42d95
4 changed files with 616 additions and 754 deletions
|
@ -183,7 +183,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
|
||||||
#define disable_e3() /* nothing */
|
#define disable_e3() /* nothing */
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
|
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
|
||||||
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
|
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
|
||||||
|
|
||||||
void FlushSerialRequestResend();
|
void FlushSerialRequestResend();
|
||||||
|
@ -270,7 +270,7 @@ extern unsigned char fanSpeedSoftPwm;
|
||||||
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
|
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
|
||||||
extern float filament_width_meas; //holds the filament diameter as accurately measured
|
extern float filament_width_meas; //holds the filament diameter as accurately measured
|
||||||
extern signed char measurement_delay[]; //ring buffer to delay measurement
|
extern signed char measurement_delay[]; //ring buffer to delay measurement
|
||||||
extern int delay_index1, delay_index2; //index into ring buffer
|
extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code
|
||||||
extern float delay_dist; //delay distance counter
|
extern float delay_dist; //delay distance counter
|
||||||
extern int meas_delay_cm; //delay distance
|
extern int meas_delay_cm; //delay distance
|
||||||
#endif
|
#endif
|
||||||
|
|
1142
Marlin/planner.cpp
1142
Marlin/planner.cpp
|
@ -77,12 +77,12 @@ float mintravelfeedrate;
|
||||||
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
// this holds the required transform to compensate for bed level
|
// this holds the required transform to compensate for bed level
|
||||||
matrix_3x3 plan_bed_level_matrix = {
|
matrix_3x3 plan_bed_level_matrix = {
|
||||||
1.0, 0.0, 0.0,
|
1.0, 0.0, 0.0,
|
||||||
0.0, 1.0, 0.0,
|
0.0, 1.0, 0.0,
|
||||||
0.0, 0.0, 1.0
|
0.0, 0.0, 1.0
|
||||||
};
|
};
|
||||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
|
||||||
// The current position of the tool in absolute steps
|
// The current position of the tool in absolute steps
|
||||||
|
@ -91,10 +91,10 @@ static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
|
||||||
static float previous_nominal_speed; // Nominal speed of previous path line segment
|
static float previous_nominal_speed; // Nominal speed of previous path line segment
|
||||||
|
|
||||||
#ifdef AUTOTEMP
|
#ifdef AUTOTEMP
|
||||||
float autotemp_max=250;
|
float autotemp_max = 250;
|
||||||
float autotemp_min=210;
|
float autotemp_min = 210;
|
||||||
float autotemp_factor=0.1;
|
float autotemp_factor = 0.1;
|
||||||
bool autotemp_enabled=false;
|
bool autotemp_enabled = false;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
|
unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
|
||||||
|
@ -110,55 +110,35 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
|
||||||
//=============================private variables ============================
|
//=============================private variables ============================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||||
float extrude_min_temp=EXTRUDE_MINTEMP;
|
float extrude_min_temp = EXTRUDE_MINTEMP;
|
||||||
#endif
|
#endif
|
||||||
#ifdef XY_FREQUENCY_LIMIT
|
#ifdef XY_FREQUENCY_LIMIT
|
||||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
// Used for the frequency limit
|
||||||
// Used for the frequency limit
|
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
||||||
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
|
// Old direction bits. Used for speed calculations
|
||||||
static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
|
static unsigned char old_direction_bits = 0;
|
||||||
static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
|
// Segment times (in µs). Used for speed calculations
|
||||||
|
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef FILAMENT_SENSOR
|
#ifdef FILAMENT_SENSOR
|
||||||
static char meas_sample; //temporary variable to hold filament measurement sample
|
static char meas_sample; //temporary variable to hold filament measurement sample
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Returns the index of the next block in the ring buffer
|
// Get the next / previous index of the next block in the ring buffer
|
||||||
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
|
// NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
|
||||||
static int8_t next_block_index(int8_t block_index) {
|
FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
|
||||||
block_index++;
|
FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
|
||||||
if (block_index == BLOCK_BUFFER_SIZE) {
|
|
||||||
block_index = 0;
|
|
||||||
}
|
|
||||||
return(block_index);
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
// Returns the index of the previous block in the ring buffer
|
|
||||||
static int8_t prev_block_index(int8_t block_index) {
|
|
||||||
if (block_index == 0) {
|
|
||||||
block_index = BLOCK_BUFFER_SIZE;
|
|
||||||
}
|
|
||||||
block_index--;
|
|
||||||
return(block_index);
|
|
||||||
}
|
|
||||||
|
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
//=============================functions ============================
|
//================================ Functions ================================
|
||||||
//===========================================================================
|
//===========================================================================
|
||||||
|
|
||||||
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
|
||||||
// given acceleration:
|
// given acceleration:
|
||||||
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
|
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
|
||||||
{
|
if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
|
||||||
if (acceleration!=0) {
|
return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
|
||||||
return((target_rate*target_rate-initial_rate*initial_rate)/
|
|
||||||
(2.0*acceleration));
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return 0.0; // acceleration was 0, set acceleration distance to 0
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
// This function gives you the point at which you must start braking (at the rate of -acceleration) if
|
||||||
|
@ -166,67 +146,55 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ
|
||||||
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
// a total travel of distance. This can be used to compute the intersection point between acceleration and
|
||||||
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
|
||||||
|
|
||||||
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
|
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
|
||||||
{
|
if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
|
||||||
if (acceleration!=0) {
|
return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
|
||||||
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
|
|
||||||
(4.0*acceleration) );
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
return 0.0; // acceleration was 0, set intersection distance to 0
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
|
||||||
|
|
||||||
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
|
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
|
||||||
unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
|
unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
|
||||||
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
|
unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
|
||||||
|
|
||||||
// Limit minimal step rate (Otherwise the timer will overflow.)
|
// Limit minimal step rate (Otherwise the timer will overflow.)
|
||||||
if(initial_rate <120) {
|
if (initial_rate < 120) initial_rate = 120;
|
||||||
initial_rate=120;
|
if (final_rate < 120) final_rate = 120;
|
||||||
}
|
|
||||||
if(final_rate < 120) {
|
|
||||||
final_rate=120;
|
|
||||||
}
|
|
||||||
|
|
||||||
long acceleration = block->acceleration_st;
|
long acceleration = block->acceleration_st;
|
||||||
int32_t accelerate_steps =
|
int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
|
||||||
ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
|
int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
|
||||||
int32_t decelerate_steps =
|
|
||||||
floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
|
|
||||||
|
|
||||||
// Calculate the size of Plateau of Nominal Rate.
|
// Calculate the size of Plateau of Nominal Rate.
|
||||||
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
|
int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
|
||||||
|
|
||||||
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
|
||||||
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
// have to use intersection_distance() to calculate when to abort acceleration and start braking
|
||||||
// in order to reach the final_rate exactly at the end of this block.
|
// in order to reach the final_rate exactly at the end of this block.
|
||||||
if (plateau_steps < 0) {
|
if (plateau_steps < 0) {
|
||||||
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
|
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
|
||||||
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
|
accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
|
||||||
accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
|
accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
|
||||||
plateau_steps = 0;
|
plateau_steps = 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
volatile long initial_advance = block->advance*entry_factor*entry_factor;
|
volatile long initial_advance = block->advance * entry_factor * entry_factor;
|
||||||
volatile long final_advance = block->advance*exit_factor*exit_factor;
|
volatile long final_advance = block->advance * exit_factor * exit_factor;
|
||||||
#endif // ADVANCE
|
#endif // ADVANCE
|
||||||
|
|
||||||
// block->accelerate_until = accelerate_steps;
|
// block->accelerate_until = accelerate_steps;
|
||||||
// block->decelerate_after = accelerate_steps+plateau_steps;
|
// block->decelerate_after = accelerate_steps+plateau_steps;
|
||||||
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
|
||||||
if(block->busy == false) { // Don't update variables if block is busy.
|
if (!block->busy) { // Don't update variables if block is busy.
|
||||||
block->accelerate_until = accelerate_steps;
|
block->accelerate_until = accelerate_steps;
|
||||||
block->decelerate_after = accelerate_steps+plateau_steps;
|
block->decelerate_after = accelerate_steps+plateau_steps;
|
||||||
block->initial_rate = initial_rate;
|
block->initial_rate = initial_rate;
|
||||||
block->final_rate = final_rate;
|
block->final_rate = final_rate;
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
block->initial_advance = initial_advance;
|
block->initial_advance = initial_advance;
|
||||||
block->final_advance = final_advance;
|
block->final_advance = final_advance;
|
||||||
#endif //ADVANCE
|
#endif
|
||||||
}
|
}
|
||||||
CRITICAL_SECTION_END;
|
CRITICAL_SECTION_END;
|
||||||
}
|
}
|
||||||
|
@ -234,7 +202,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
|
||||||
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
|
||||||
// acceleration within the allotted distance.
|
// acceleration within the allotted distance.
|
||||||
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
|
||||||
return sqrt(target_velocity*target_velocity-2*acceleration*distance);
|
return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
|
||||||
}
|
}
|
||||||
|
|
||||||
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
|
||||||
|
@ -248,9 +216,7 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
|
||||||
|
|
||||||
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
// The kernel called by planner_recalculate() when scanning the plan from last to first entry.
|
||||||
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||||
if(!current) {
|
if (!current) return;
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (next) {
|
if (next) {
|
||||||
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
|
||||||
|
@ -260,9 +226,9 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
|
||||||
|
|
||||||
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
// If nominal length true, max junction speed is guaranteed to be reached. Only compute
|
||||||
// for max allowable speed if block is decelerating and nominal length is false.
|
// for max allowable speed if block is decelerating and nominal length is false.
|
||||||
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
|
if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
|
||||||
current->entry_speed = min( current->max_entry_speed,
|
current->entry_speed = min(current->max_entry_speed,
|
||||||
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
|
max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
current->entry_speed = current->max_entry_speed;
|
current->entry_speed = current->max_entry_speed;
|
||||||
|
@ -280,15 +246,14 @@ void planner_reverse_pass() {
|
||||||
|
|
||||||
//Make a local copy of block_buffer_tail, because the interrupt can alter it
|
//Make a local copy of block_buffer_tail, because the interrupt can alter it
|
||||||
CRITICAL_SECTION_START;
|
CRITICAL_SECTION_START;
|
||||||
unsigned char tail = block_buffer_tail;
|
unsigned char tail = block_buffer_tail;
|
||||||
CRITICAL_SECTION_END
|
CRITICAL_SECTION_END
|
||||||
|
|
||||||
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
|
if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
|
||||||
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
|
block_index = BLOCK_MOD(block_buffer_head - 3);
|
||||||
block_t *block[3] = {
|
block_t *block[3] = { NULL, NULL, NULL };
|
||||||
NULL, NULL, NULL };
|
while (block_index != tail) {
|
||||||
while(block_index != tail) {
|
block_index = prev_block_index(block_index);
|
||||||
block_index = prev_block_index(block_index);
|
|
||||||
block[2]= block[1];
|
block[2]= block[1];
|
||||||
block[1]= block[0];
|
block[1]= block[0];
|
||||||
block[0] = &block_buffer[block_index];
|
block[0] = &block_buffer[block_index];
|
||||||
|
@ -299,9 +264,7 @@ void planner_reverse_pass() {
|
||||||
|
|
||||||
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
// The kernel called by planner_recalculate() when scanning the plan from first to last entry.
|
||||||
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
|
||||||
if(!previous) {
|
if (!previous) return;
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
// If the previous block is an acceleration block, but it is not long enough to complete the
|
// If the previous block is an acceleration block, but it is not long enough to complete the
|
||||||
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
// full speed change within the block, we need to adjust the entry speed accordingly. Entry
|
||||||
|
@ -309,8 +272,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
||||||
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
|
||||||
if (!previous->nominal_length_flag) {
|
if (!previous->nominal_length_flag) {
|
||||||
if (previous->entry_speed < current->entry_speed) {
|
if (previous->entry_speed < current->entry_speed) {
|
||||||
double entry_speed = min( current->entry_speed,
|
double entry_speed = min(current->entry_speed,
|
||||||
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
|
max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
|
||||||
|
|
||||||
// Check for junction speed change
|
// Check for junction speed change
|
||||||
if (current->entry_speed != entry_speed) {
|
if (current->entry_speed != entry_speed) {
|
||||||
|
@ -321,18 +284,17 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
|
||||||
// implements the forward pass.
|
// implements the forward pass.
|
||||||
void planner_forward_pass() {
|
void planner_forward_pass() {
|
||||||
uint8_t block_index = block_buffer_tail;
|
uint8_t block_index = block_buffer_tail;
|
||||||
block_t *block[3] = {
|
block_t *block[3] = { NULL, NULL, NULL };
|
||||||
NULL, NULL, NULL };
|
|
||||||
|
|
||||||
while(block_index != block_buffer_head) {
|
while (block_index != block_buffer_head) {
|
||||||
block[0] = block[1];
|
block[0] = block[1];
|
||||||
block[1] = block[2];
|
block[1] = block[2];
|
||||||
block[2] = &block_buffer[block_index];
|
block[2] = &block_buffer[block_index];
|
||||||
planner_forward_pass_kernel(block[0],block[1],block[2]);
|
planner_forward_pass_kernel(block[0], block[1], block[2]);
|
||||||
block_index = next_block_index(block_index);
|
block_index = next_block_index(block_index);
|
||||||
}
|
}
|
||||||
planner_forward_pass_kernel(block[1], block[2], NULL);
|
planner_forward_pass_kernel(block[1], block[2], NULL);
|
||||||
|
@ -346,22 +308,23 @@ void planner_recalculate_trapezoids() {
|
||||||
block_t *current;
|
block_t *current;
|
||||||
block_t *next = NULL;
|
block_t *next = NULL;
|
||||||
|
|
||||||
while(block_index != block_buffer_head) {
|
while (block_index != block_buffer_head) {
|
||||||
current = next;
|
current = next;
|
||||||
next = &block_buffer[block_index];
|
next = &block_buffer[block_index];
|
||||||
if (current) {
|
if (current) {
|
||||||
// Recalculate if current block entry or exit junction speed has changed.
|
// Recalculate if current block entry or exit junction speed has changed.
|
||||||
if (current->recalculate_flag || next->recalculate_flag) {
|
if (current->recalculate_flag || next->recalculate_flag) {
|
||||||
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
// NOTE: Entry and exit factors always > 0 by all previous logic operations.
|
||||||
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
|
calculate_trapezoid_for_block(current,
|
||||||
next->entry_speed/current->nominal_speed);
|
current->entry_speed / current->nominal_speed,
|
||||||
|
next->entry_speed / current->nominal_speed);
|
||||||
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
block_index = next_block_index( block_index );
|
block_index = next_block_index( block_index );
|
||||||
}
|
}
|
||||||
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
|
||||||
if(next != NULL) {
|
if (next) {
|
||||||
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
|
||||||
MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
MINIMUM_PLANNER_SPEED/next->nominal_speed);
|
||||||
next->recalculate_flag = false;
|
next->recalculate_flag = false;
|
||||||
|
@ -392,148 +355,120 @@ void planner_recalculate() {
|
||||||
}
|
}
|
||||||
|
|
||||||
void plan_init() {
|
void plan_init() {
|
||||||
block_buffer_head = 0;
|
block_buffer_head = block_buffer_tail = 0;
|
||||||
block_buffer_tail = 0;
|
|
||||||
memset(position, 0, sizeof(position)); // clear position
|
memset(position, 0, sizeof(position)); // clear position
|
||||||
previous_speed[0] = 0.0;
|
for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||||
previous_speed[1] = 0.0;
|
|
||||||
previous_speed[2] = 0.0;
|
|
||||||
previous_speed[3] = 0.0;
|
|
||||||
previous_nominal_speed = 0.0;
|
previous_nominal_speed = 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#ifdef AUTOTEMP
|
#ifdef AUTOTEMP
|
||||||
void getHighESpeed()
|
void getHighESpeed() {
|
||||||
{
|
static float oldt = 0;
|
||||||
static float oldt=0;
|
|
||||||
if(!autotemp_enabled){
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
|
|
||||||
return; //do nothing
|
|
||||||
}
|
|
||||||
|
|
||||||
float high=0.0;
|
if (!autotemp_enabled) return;
|
||||||
uint8_t block_index = block_buffer_tail;
|
if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
|
||||||
|
|
||||||
while(block_index != block_buffer_head) {
|
float high = 0.0;
|
||||||
if((block_buffer[block_index].steps_x != 0) ||
|
uint8_t block_index = block_buffer_tail;
|
||||||
(block_buffer[block_index].steps_y != 0) ||
|
|
||||||
(block_buffer[block_index].steps_z != 0)) {
|
while (block_index != block_buffer_head) {
|
||||||
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
|
if ((block_buffer[block_index].steps[X_AXIS] != 0) ||
|
||||||
//se; mm/sec;
|
(block_buffer[block_index].steps[Y_AXIS] != 0) ||
|
||||||
if(se>high)
|
(block_buffer[block_index].steps[Z_AXIS] != 0)) {
|
||||||
{
|
float se=(float(block_buffer[block_index].steps[E_AXIS])/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
|
||||||
high=se;
|
//se; mm/sec;
|
||||||
|
if (se > high) high = se;
|
||||||
}
|
}
|
||||||
|
block_index = next_block_index(block_index);
|
||||||
}
|
}
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
float g=autotemp_min+high*autotemp_factor;
|
float t = autotemp_min + high * autotemp_factor;
|
||||||
float t=g;
|
if (t < autotemp_min) t = autotemp_min;
|
||||||
if(t<autotemp_min)
|
if (t > autotemp_max) t = autotemp_max;
|
||||||
t=autotemp_min;
|
if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t;
|
||||||
if(t>autotemp_max)
|
oldt = t;
|
||||||
t=autotemp_max;
|
setTargetHotend0(t);
|
||||||
if(oldt>t)
|
|
||||||
{
|
|
||||||
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
|
|
||||||
}
|
}
|
||||||
oldt=t;
|
|
||||||
setTargetHotend0(t);
|
|
||||||
}
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void check_axes_activity()
|
void check_axes_activity() {
|
||||||
{
|
unsigned char axis_active[NUM_AXIS],
|
||||||
unsigned char x_active = 0;
|
tail_fan_speed = fanSpeed;
|
||||||
unsigned char y_active = 0;
|
|
||||||
unsigned char z_active = 0;
|
|
||||||
unsigned char e_active = 0;
|
|
||||||
unsigned char tail_fan_speed = fanSpeed;
|
|
||||||
#ifdef BARICUDA
|
#ifdef BARICUDA
|
||||||
unsigned char tail_valve_pressure = ValvePressure;
|
unsigned char tail_valve_pressure = ValvePressure,
|
||||||
unsigned char tail_e_to_p_pressure = EtoPPressure;
|
tail_e_to_p_pressure = EtoPPressure;
|
||||||
#endif
|
#endif
|
||||||
block_t *block;
|
block_t *block;
|
||||||
|
|
||||||
if(block_buffer_tail != block_buffer_head)
|
if (blocks_queued()) {
|
||||||
{
|
|
||||||
uint8_t block_index = block_buffer_tail;
|
uint8_t block_index = block_buffer_tail;
|
||||||
tail_fan_speed = block_buffer[block_index].fan_speed;
|
tail_fan_speed = block_buffer[block_index].fan_speed;
|
||||||
#ifdef BARICUDA
|
#ifdef BARICUDA
|
||||||
tail_valve_pressure = block_buffer[block_index].valve_pressure;
|
tail_valve_pressure = block_buffer[block_index].valve_pressure;
|
||||||
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
|
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
|
||||||
#endif
|
#endif
|
||||||
while(block_index != block_buffer_head)
|
while (block_index != block_buffer_head) {
|
||||||
{
|
|
||||||
block = &block_buffer[block_index];
|
block = &block_buffer[block_index];
|
||||||
if(block->steps_x != 0) x_active++;
|
for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
|
||||||
if(block->steps_y != 0) y_active++;
|
block_index = next_block_index(block_index);
|
||||||
if(block->steps_z != 0) z_active++;
|
|
||||||
if(block->steps_e != 0) e_active++;
|
|
||||||
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if((DISABLE_X) && (x_active == 0)) disable_x();
|
if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
|
||||||
if((DISABLE_Y) && (y_active == 0)) disable_y();
|
if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
|
||||||
if((DISABLE_Z) && (z_active == 0)) disable_z();
|
if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
|
||||||
if((DISABLE_E) && (e_active == 0))
|
if (DISABLE_E && !axis_active[E_AXIS]) {
|
||||||
{
|
|
||||||
disable_e0();
|
disable_e0();
|
||||||
disable_e1();
|
disable_e1();
|
||||||
disable_e2();
|
disable_e2();
|
||||||
disable_e3();
|
disable_e3();
|
||||||
}
|
}
|
||||||
#if defined(FAN_PIN) && FAN_PIN > -1
|
|
||||||
#ifdef FAN_KICKSTART_TIME
|
|
||||||
static unsigned long fan_kick_end;
|
|
||||||
if (tail_fan_speed) {
|
|
||||||
if (fan_kick_end == 0) {
|
|
||||||
// Just starting up fan - run at full power.
|
|
||||||
fan_kick_end = millis() + FAN_KICKSTART_TIME;
|
|
||||||
tail_fan_speed = 255;
|
|
||||||
} else if (fan_kick_end > millis())
|
|
||||||
// Fan still spinning up.
|
|
||||||
tail_fan_speed = 255;
|
|
||||||
} else {
|
|
||||||
fan_kick_end = 0;
|
|
||||||
}
|
|
||||||
#endif//FAN_KICKSTART_TIME
|
|
||||||
#ifdef FAN_SOFT_PWM
|
|
||||||
fanSpeedSoftPwm = tail_fan_speed;
|
|
||||||
#else
|
|
||||||
analogWrite(FAN_PIN,tail_fan_speed);
|
|
||||||
#endif//!FAN_SOFT_PWM
|
|
||||||
#endif//FAN_PIN > -1
|
|
||||||
#ifdef AUTOTEMP
|
|
||||||
getHighESpeed();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#ifdef BARICUDA
|
#if defined(FAN_PIN) && FAN_PIN > -1 // HAS_FAN
|
||||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
#ifdef FAN_KICKSTART_TIME
|
||||||
|
static unsigned long fan_kick_end;
|
||||||
|
if (tail_fan_speed) {
|
||||||
|
if (fan_kick_end == 0) {
|
||||||
|
// Just starting up fan - run at full power.
|
||||||
|
fan_kick_end = millis() + FAN_KICKSTART_TIME;
|
||||||
|
tail_fan_speed = 255;
|
||||||
|
} else if (fan_kick_end > millis())
|
||||||
|
// Fan still spinning up.
|
||||||
|
tail_fan_speed = 255;
|
||||||
|
} else {
|
||||||
|
fan_kick_end = 0;
|
||||||
|
}
|
||||||
|
#endif//FAN_KICKSTART_TIME
|
||||||
|
#ifdef FAN_SOFT_PWM
|
||||||
|
fanSpeedSoftPwm = tail_fan_speed;
|
||||||
|
#else
|
||||||
|
analogWrite(FAN_PIN, tail_fan_speed);
|
||||||
|
#endif //!FAN_SOFT_PWM
|
||||||
|
#endif //FAN_PIN > -1
|
||||||
|
|
||||||
|
#ifdef AUTOTEMP
|
||||||
|
getHighESpeed();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifdef BARICUDA
|
||||||
|
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 // HAS_HEATER_1
|
||||||
analogWrite(HEATER_1_PIN,tail_valve_pressure);
|
analogWrite(HEATER_1_PIN,tail_valve_pressure);
|
||||||
#endif
|
#endif
|
||||||
|
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 // HAS_HEATER_2
|
||||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
|
||||||
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
|
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
|
||||||
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
float junction_deviation = 0.1;
|
float junction_deviation = 0.1;
|
||||||
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
|
// Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
|
||||||
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
|
||||||
// calculation the caller must also provide the physical length of the line in millimeters.
|
// calculation the caller must also provide the physical length of the line in millimeters.
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
|
||||||
#else
|
#else
|
||||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
|
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
|
||||||
#endif //ENABLE_AUTO_BED_LEVELING
|
#endif //ENABLE_AUTO_BED_LEVELING
|
||||||
{
|
{
|
||||||
// Calculate the buffer head after we push this byte
|
// Calculate the buffer head after we push this byte
|
||||||
|
@ -541,45 +476,45 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||||
|
|
||||||
// If the buffer is full: good! That means we are well ahead of the robot.
|
// If the buffer is full: good! That means we are well ahead of the robot.
|
||||||
// Rest here until there is room in the buffer.
|
// Rest here until there is room in the buffer.
|
||||||
while(block_buffer_tail == next_buffer_head)
|
while(block_buffer_tail == next_buffer_head) {
|
||||||
{
|
|
||||||
manage_heater();
|
manage_heater();
|
||||||
manage_inactivity();
|
manage_inactivity();
|
||||||
lcd_update();
|
lcd_update();
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
#endif
|
||||||
|
|
||||||
// The target position of the tool in absolute steps
|
// The target position of the tool in absolute steps
|
||||||
// Calculate target position in absolute steps
|
// Calculate target position in absolute steps
|
||||||
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
|
||||||
long target[4];
|
long target[NUM_AXIS];
|
||||||
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
|
||||||
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
|
||||||
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
|
||||||
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||||
|
|
||||||
|
float dx = target[X_AXIS] - position[X_AXIS],
|
||||||
|
dy = target[Y_AXIS] - position[Y_AXIS],
|
||||||
|
dz = target[Z_AXIS] - position[Z_AXIS],
|
||||||
|
de = target[E_AXIS] - position[E_AXIS];
|
||||||
|
|
||||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||||
if(target[E_AXIS]!=position[E_AXIS])
|
if (de) {
|
||||||
{
|
if (degHotend(active_extruder) < extrude_min_temp) {
|
||||||
if(degHotend(active_extruder)<extrude_min_temp)
|
position[E_AXIS] = target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
||||||
{
|
SERIAL_ECHO_START;
|
||||||
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
||||||
SERIAL_ECHO_START;
|
}
|
||||||
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
#ifdef PREVENT_LENGTHY_EXTRUDE
|
||||||
|
if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
|
||||||
|
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
|
||||||
|
SERIAL_ECHO_START;
|
||||||
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef PREVENT_LENGTHY_EXTRUDE
|
|
||||||
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
|
|
||||||
{
|
|
||||||
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
|
|
||||||
SERIAL_ECHO_START;
|
|
||||||
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Prepare to set up new block
|
// Prepare to set up new block
|
||||||
|
@ -589,139 +524,122 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
|
||||||
block->busy = false;
|
block->busy = false;
|
||||||
|
|
||||||
// Number of steps for each axis
|
// Number of steps for each axis
|
||||||
#ifndef COREXY
|
#ifdef COREXY
|
||||||
// default non-h-bot planning
|
// corexy planning
|
||||||
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
|
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
||||||
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
|
block->steps[A_AXIS] = labs(dx + dy);
|
||||||
#else
|
block->steps[B_AXIS] = labs(dx - dy);
|
||||||
// corexy planning
|
#else
|
||||||
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
|
// default non-h-bot planning
|
||||||
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
|
block->steps[X_AXIS] = labs(dx);
|
||||||
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
|
block->steps[Y_AXIS] = labs(dy);
|
||||||
#endif
|
#endif
|
||||||
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
|
|
||||||
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
|
block->steps[Z_AXIS] = labs(dz);
|
||||||
block->steps_e *= volumetric_multiplier[active_extruder];
|
block->steps[E_AXIS] = labs(de);
|
||||||
block->steps_e *= extrudemultiply;
|
block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
|
||||||
block->steps_e /= 100;
|
block->steps[E_AXIS] *= extrudemultiply;
|
||||||
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
|
block->steps[E_AXIS] /= 100;
|
||||||
|
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
|
||||||
|
|
||||||
// Bail if this is a zero-length block
|
// Bail if this is a zero-length block
|
||||||
if (block->step_event_count <= dropsegments)
|
if (block->step_event_count <= dropsegments) return;
|
||||||
{
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
block->fan_speed = fanSpeed;
|
block->fan_speed = fanSpeed;
|
||||||
#ifdef BARICUDA
|
#ifdef BARICUDA
|
||||||
block->valve_pressure = ValvePressure;
|
block->valve_pressure = ValvePressure;
|
||||||
block->e_to_p_pressure = EtoPPressure;
|
block->e_to_p_pressure = EtoPPressure;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Compute direction bits for this block
|
// Compute direction bits for this block
|
||||||
block->direction_bits = 0;
|
uint8_t db = 0;
|
||||||
#ifndef COREXY
|
#ifdef COREXY
|
||||||
if (target[X_AXIS] < position[X_AXIS])
|
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
|
||||||
{
|
if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
|
||||||
block->direction_bits |= BIT(X_AXIS);
|
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
|
||||||
}
|
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
|
||||||
if (target[Y_AXIS] < position[Y_AXIS])
|
#else
|
||||||
{
|
if (dx < 0) db |= BIT(X_AXIS);
|
||||||
block->direction_bits |= BIT(Y_AXIS);
|
if (dy < 0) db |= BIT(Y_AXIS);
|
||||||
}
|
#endif
|
||||||
#else
|
if (dz < 0) db |= BIT(Z_AXIS);
|
||||||
if (target[X_AXIS] < position[X_AXIS])
|
if (de < 0) db |= BIT(E_AXIS);
|
||||||
{
|
block->direction_bits = db;
|
||||||
block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
|
||||||
}
|
|
||||||
if (target[Y_AXIS] < position[Y_AXIS])
|
|
||||||
{
|
|
||||||
block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
|
||||||
}
|
|
||||||
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
|
||||||
{
|
|
||||||
block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
|
||||||
}
|
|
||||||
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
|
||||||
{
|
|
||||||
block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
if (target[Z_AXIS] < position[Z_AXIS])
|
|
||||||
{
|
|
||||||
block->direction_bits |= BIT(Z_AXIS);
|
|
||||||
}
|
|
||||||
if (target[E_AXIS] < position[E_AXIS])
|
|
||||||
{
|
|
||||||
block->direction_bits |= BIT(E_AXIS);
|
|
||||||
}
|
|
||||||
|
|
||||||
block->active_extruder = extruder;
|
block->active_extruder = extruder;
|
||||||
|
|
||||||
//enable active axes
|
//enable active axes
|
||||||
#ifdef COREXY
|
#ifdef COREXY
|
||||||
if((block->steps_x != 0) || (block->steps_y != 0))
|
if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
|
||||||
{
|
enable_x();
|
||||||
enable_x();
|
enable_y();
|
||||||
enable_y();
|
}
|
||||||
}
|
|
||||||
#else
|
#else
|
||||||
if(block->steps_x != 0) enable_x();
|
if (block->steps[X_AXIS]) enable_x();
|
||||||
if(block->steps_y != 0) enable_y();
|
if (block->steps[Y_AXIS]) enable_y();
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#ifndef Z_LATE_ENABLE
|
||||||
|
if (block->steps[Z_AXIS]) enable_z();
|
||||||
#endif
|
#endif
|
||||||
#ifndef Z_LATE_ENABLE
|
|
||||||
if(block->steps_z != 0) enable_z();
|
|
||||||
#endif
|
|
||||||
|
|
||||||
// Enable extruder(s)
|
// Enable extruder(s)
|
||||||
if(block->steps_e != 0)
|
if (block->steps[E_AXIS]) {
|
||||||
{
|
if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
|
||||||
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
|
|
||||||
{
|
|
||||||
|
|
||||||
if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--;
|
for (int i=0; i<EXTRUDERS; i++)
|
||||||
if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--;
|
if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
|
||||||
if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
|
|
||||||
if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--;
|
|
||||||
|
|
||||||
switch(extruder)
|
switch(extruder) {
|
||||||
{
|
case 0:
|
||||||
case 0:
|
enable_e0();
|
||||||
enable_e0();
|
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
|
||||||
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2;
|
#if EXTRUDERS > 1
|
||||||
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
||||||
if(g_uc_extruder_last_move[1] == 0) disable_e1();
|
#if EXTRUDERS > 2
|
||||||
if(g_uc_extruder_last_move[2] == 0) disable_e2();
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
||||||
if(g_uc_extruder_last_move[3] == 0) disable_e3();
|
#if EXTRUDERS > 3
|
||||||
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
|
#endif
|
||||||
break;
|
break;
|
||||||
case 1:
|
#if EXTRUDERS > 1
|
||||||
enable_e1();
|
case 1:
|
||||||
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
|
enable_e1();
|
||||||
|
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
|
||||||
if(g_uc_extruder_last_move[0] == 0) disable_e0();
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
||||||
if(g_uc_extruder_last_move[2] == 0) disable_e2();
|
#if EXTRUDERS > 2
|
||||||
if(g_uc_extruder_last_move[3] == 0) disable_e3();
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
||||||
break;
|
#if EXTRUDERS > 3
|
||||||
case 2:
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
||||||
enable_e2();
|
#endif
|
||||||
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
|
#endif
|
||||||
|
break;
|
||||||
if(g_uc_extruder_last_move[0] == 0) disable_e0();
|
#if EXTRUDERS > 2
|
||||||
if(g_uc_extruder_last_move[1] == 0) disable_e1();
|
case 2:
|
||||||
if(g_uc_extruder_last_move[3] == 0) disable_e3();
|
enable_e2();
|
||||||
break;
|
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
|
||||||
case 3:
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
||||||
enable_e3();
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
||||||
g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
|
#if EXTRUDERS > 3
|
||||||
|
if (g_uc_extruder_last_move[3] == 0) disable_e3();
|
||||||
if(g_uc_extruder_last_move[0] == 0) disable_e0();
|
#endif
|
||||||
if(g_uc_extruder_last_move[1] == 0) disable_e1();
|
break;
|
||||||
if(g_uc_extruder_last_move[2] == 0) disable_e2();
|
#if EXTRUDERS > 3
|
||||||
break;
|
case 3:
|
||||||
|
enable_e3();
|
||||||
|
g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
|
||||||
|
if (g_uc_extruder_last_move[0] == 0) disable_e0();
|
||||||
|
if (g_uc_extruder_last_move[1] == 0) disable_e1();
|
||||||
|
if (g_uc_extruder_last_move[2] == 0) disable_e2();
|
||||||
|
break;
|
||||||
|
#endif // EXTRUDERS > 3
|
||||||
|
#endif // EXTRUDERS > 2
|
||||||
|
#endif // EXTRUDERS > 1
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else //enable all
|
else { // enable all
|
||||||
{
|
|
||||||
enable_e0();
|
enable_e0();
|
||||||
enable_e1();
|
enable_e1();
|
||||||
enable_e2();
|
enable_e2();
|
||||||
|
@ -729,276 +647,256 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (block->steps_e == 0)
|
if (block->steps[E_AXIS]) {
|
||||||
{
|
if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate;
|
||||||
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
|
|
||||||
}
|
}
|
||||||
else
|
else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate;
|
||||||
{
|
|
||||||
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
|
|
||||||
}
|
|
||||||
|
|
||||||
/* This part of the code calculates the total length of the movement.
|
/**
|
||||||
For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
* This part of the code calculates the total length of the movement.
|
||||||
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
* For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
|
||||||
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
* But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
|
||||||
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
* and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
|
||||||
Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
* So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
|
||||||
*/
|
* Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
|
||||||
#ifndef COREXY
|
*/
|
||||||
float delta_mm[4];
|
#ifdef COREXY
|
||||||
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
|
||||||
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
|
||||||
#else
|
|
||||||
float delta_mm[6];
|
float delta_mm[6];
|
||||||
delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
|
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
||||||
delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
|
delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
|
||||||
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
|
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
||||||
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
|
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
||||||
|
#else
|
||||||
|
float delta_mm[4];
|
||||||
|
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
||||||
|
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
||||||
#endif
|
#endif
|
||||||
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
|
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
||||||
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0;
|
delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0;
|
||||||
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
|
|
||||||
{
|
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
|
||||||
block->millimeters = fabs(delta_mm[E_AXIS]);
|
block->millimeters = fabs(delta_mm[E_AXIS]);
|
||||||
}
|
}
|
||||||
else
|
else {
|
||||||
{
|
block->millimeters = sqrt(
|
||||||
#ifndef COREXY
|
#ifdef COREXY
|
||||||
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
|
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
|
||||||
#else
|
#else
|
||||||
block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]));
|
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
|
||||||
#endif
|
#endif
|
||||||
|
+ square(delta_mm[Z_AXIS])
|
||||||
|
);
|
||||||
}
|
}
|
||||||
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
|
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
|
||||||
|
|
||||||
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
|
||||||
float inverse_second = feed_rate * inverse_millimeters;
|
float inverse_second = feed_rate * inverse_millimeters;
|
||||||
|
|
||||||
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
int moves_queued = movesplanned();
|
||||||
|
|
||||||
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
|
||||||
#ifdef OLD_SLOWDOWN
|
bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
|
||||||
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
|
#ifdef OLD_SLOWDOWN
|
||||||
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
|
if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef SLOWDOWN
|
#ifdef SLOWDOWN
|
||||||
// segment time im micro seconds
|
// segment time im micro seconds
|
||||||
unsigned long segment_time = lround(1000000.0/inverse_second);
|
unsigned long segment_time = lround(1000000.0/inverse_second);
|
||||||
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
|
if (mq) {
|
||||||
{
|
if (segment_time < minsegmenttime) {
|
||||||
if (segment_time < minsegmenttime)
|
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
||||||
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
|
inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
|
||||||
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
|
#ifdef XY_FREQUENCY_LIMIT
|
||||||
#ifdef XY_FREQUENCY_LIMIT
|
segment_time = lround(1000000.0 / inverse_second);
|
||||||
segment_time = lround(1000000.0/inverse_second);
|
#endif
|
||||||
#endif
|
}
|
||||||
}
|
}
|
||||||
}
|
#endif
|
||||||
#endif
|
|
||||||
// END OF SLOW DOWN SECTION
|
// END OF SLOW DOWN SECTION
|
||||||
|
|
||||||
|
|
||||||
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
|
||||||
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
|
||||||
|
|
||||||
#ifdef FILAMENT_SENSOR
|
#ifdef FILAMENT_SENSOR
|
||||||
//FMM update ring buffer used for delay with filament measurements
|
//FMM update ring buffer used for delay with filament measurements
|
||||||
|
|
||||||
|
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
|
||||||
if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
|
|
||||||
{
|
|
||||||
delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
|
|
||||||
|
|
||||||
while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
|
|
||||||
delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
|
|
||||||
while (delay_dist<0)
|
|
||||||
delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
|
|
||||||
|
|
||||||
delay_index1=delay_dist/10.0; //calculate index
|
|
||||||
|
|
||||||
//ensure the number is within range of the array after converting from floating point
|
|
||||||
if(delay_index1<0)
|
|
||||||
delay_index1=0;
|
|
||||||
else if (delay_index1>MAX_MEASUREMENT_DELAY)
|
|
||||||
delay_index1=MAX_MEASUREMENT_DELAY;
|
|
||||||
|
|
||||||
if(delay_index1 != delay_index2) //moved index
|
|
||||||
{
|
|
||||||
meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
|
|
||||||
}
|
|
||||||
while( delay_index1 != delay_index2)
|
|
||||||
{
|
|
||||||
delay_index2 = delay_index2 + 1;
|
|
||||||
if(delay_index2>MAX_MEASUREMENT_DELAY)
|
|
||||||
delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
|
|
||||||
if(delay_index2<0)
|
|
||||||
delay_index2=0;
|
|
||||||
else if (delay_index2>MAX_MEASUREMENT_DELAY)
|
|
||||||
delay_index2=MAX_MEASUREMENT_DELAY;
|
|
||||||
|
|
||||||
measurement_delay[delay_index2]=meas_sample;
|
|
||||||
}
|
|
||||||
|
|
||||||
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
|
||||||
|
|
||||||
|
delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
|
||||||
|
while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
|
||||||
|
while (delay_dist < 0) delay_dist += MMD10;
|
||||||
|
|
||||||
|
delay_index1 = delay_dist / 10.0; // calculate index
|
||||||
|
delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
|
||||||
|
|
||||||
|
if (delay_index1 != delay_index2) { // moved index
|
||||||
|
meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
|
||||||
|
while (delay_index1 != delay_index2) {
|
||||||
|
// Increment and loop around buffer
|
||||||
|
if (++delay_index2 >= MMD) delay_index2 -= MMD;
|
||||||
|
delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
|
||||||
|
measurement_delay[delay_index2] = meas_sample;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
// Calculate and limit speed in mm/sec for each axis
|
// Calculate and limit speed in mm/sec for each axis
|
||||||
float current_speed[4];
|
float current_speed[NUM_AXIS];
|
||||||
float speed_factor = 1.0; //factor <=1 do decrease speed
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||||
for(int i=0; i < 4; i++)
|
for (int i = 0; i < NUM_AXIS; i++) {
|
||||||
{
|
|
||||||
current_speed[i] = delta_mm[i] * inverse_second;
|
current_speed[i] = delta_mm[i] * inverse_second;
|
||||||
if(fabs(current_speed[i]) > max_feedrate[i])
|
float cs = fabs(current_speed[i]), mf = max_feedrate[i];
|
||||||
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
|
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Max segement time in us.
|
// Max segement time in us.
|
||||||
#ifdef XY_FREQUENCY_LIMIT
|
#ifdef XY_FREQUENCY_LIMIT
|
||||||
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
|
#define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
|
||||||
// Check and limit the xy direction change frequency
|
|
||||||
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
// Check and limit the xy direction change frequency
|
||||||
old_direction_bits = block->direction_bits;
|
unsigned char direction_change = block->direction_bits ^ old_direction_bits;
|
||||||
segment_time = lround((float)segment_time / speed_factor);
|
old_direction_bits = block->direction_bits;
|
||||||
|
segment_time = lround((float)segment_time / speed_factor);
|
||||||
|
|
||||||
if((direction_change & BIT(X_AXIS)) == 0)
|
long xs0 = axis_segment_time[X_AXIS][0],
|
||||||
{
|
xs1 = axis_segment_time[X_AXIS][1],
|
||||||
x_segment_time[0] += segment_time;
|
xs2 = axis_segment_time[X_AXIS][2],
|
||||||
}
|
ys0 = axis_segment_time[Y_AXIS][0],
|
||||||
else
|
ys1 = axis_segment_time[Y_AXIS][1],
|
||||||
{
|
ys2 = axis_segment_time[Y_AXIS][2];
|
||||||
x_segment_time[2] = x_segment_time[1];
|
|
||||||
x_segment_time[1] = x_segment_time[0];
|
if ((direction_change & BIT(X_AXIS)) != 0) {
|
||||||
x_segment_time[0] = segment_time;
|
xs2 = axis_segment_time[X_AXIS][2] = xs1;
|
||||||
}
|
xs1 = axis_segment_time[X_AXIS][1] = xs0;
|
||||||
if((direction_change & BIT(Y_AXIS)) == 0)
|
xs0 = 0;
|
||||||
{
|
}
|
||||||
y_segment_time[0] += segment_time;
|
xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
|
||||||
}
|
|
||||||
else
|
if ((direction_change & BIT(Y_AXIS)) != 0) {
|
||||||
{
|
ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
|
||||||
y_segment_time[2] = y_segment_time[1];
|
ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
|
||||||
y_segment_time[1] = y_segment_time[0];
|
ys0 = 0;
|
||||||
y_segment_time[0] = segment_time;
|
}
|
||||||
}
|
ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
|
||||||
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
|
|
||||||
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
|
long max_x_segment_time = max(xs0, max(xs1, xs2)),
|
||||||
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
|
max_y_segment_time = max(ys0, max(ys1, ys2)),
|
||||||
if(min_xy_segment_time < MAX_FREQ_TIME)
|
min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
|
||||||
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
|
if (min_xy_segment_time < MAX_FREQ_TIME) {
|
||||||
#endif // XY_FREQUENCY_LIMIT
|
float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
|
||||||
|
speed_factor = min(speed_factor, low_sf);
|
||||||
|
}
|
||||||
|
#endif // XY_FREQUENCY_LIMIT
|
||||||
|
|
||||||
// Correct the speed
|
// Correct the speed
|
||||||
if( speed_factor < 1.0)
|
if (speed_factor < 1.0) {
|
||||||
{
|
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
|
||||||
for(unsigned char i=0; i < 4; i++)
|
|
||||||
{
|
|
||||||
current_speed[i] *= speed_factor;
|
|
||||||
}
|
|
||||||
block->nominal_speed *= speed_factor;
|
block->nominal_speed *= speed_factor;
|
||||||
block->nominal_rate *= speed_factor;
|
block->nominal_rate *= speed_factor;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Compute and limit the acceleration rate for the trapezoid generator.
|
// Compute and limit the acceleration rate for the trapezoid generator.
|
||||||
float steps_per_mm = block->step_event_count/block->millimeters;
|
float steps_per_mm = block->step_event_count / block->millimeters;
|
||||||
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
|
long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
|
||||||
{
|
if (bsx == 0 && bsy == 0 && bsz == 0) {
|
||||||
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
}
|
}
|
||||||
else if(block->steps_e == 0)
|
else if (bse == 0) {
|
||||||
{
|
|
||||||
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
}
|
}
|
||||||
else
|
else {
|
||||||
{
|
|
||||||
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
|
||||||
}
|
}
|
||||||
// Limit acceleration per axis
|
// Limit acceleration per axis
|
||||||
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
|
unsigned long acc_st = block->acceleration_st,
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
|
xsteps = axis_steps_per_sqr_second[X_AXIS],
|
||||||
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
|
ysteps = axis_steps_per_sqr_second[Y_AXIS],
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
|
zsteps = axis_steps_per_sqr_second[Z_AXIS],
|
||||||
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
|
esteps = axis_steps_per_sqr_second[E_AXIS];
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
|
if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
|
||||||
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
|
if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
|
||||||
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
|
if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
|
||||||
|
if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
|
||||||
|
|
||||||
block->acceleration = block->acceleration_st / steps_per_mm;
|
block->acceleration_st = acc_st;
|
||||||
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
|
block->acceleration = acc_st / steps_per_mm;
|
||||||
|
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
|
||||||
|
|
||||||
#if 0 // Use old jerk for now
|
#if 0 // Use old jerk for now
|
||||||
// Compute path unit vector
|
// Compute path unit vector
|
||||||
double unit_vec[3];
|
double unit_vec[3];
|
||||||
|
|
||||||
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
|
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
|
||||||
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
|
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
|
||||||
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
|
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
|
||||||
|
|
||||||
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
|
||||||
// Let a circle be tangent to both previous and current path line segments, where the junction
|
// Let a circle be tangent to both previous and current path line segments, where the junction
|
||||||
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
// deviation is defined as the distance from the junction to the closest edge of the circle,
|
||||||
// colinear with the circle center. The circular segment joining the two paths represents the
|
// colinear with the circle center. The circular segment joining the two paths represents the
|
||||||
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the
|
||||||
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as
|
||||||
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
|
// path width or max_jerk in the previous grbl version. This approach does not actually deviate
|
||||||
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
// from path, but used as a robust way to compute cornering speeds, as it takes into account the
|
||||||
// nonlinearities of both the junction angle and junction velocity.
|
// nonlinearities of both the junction angle and junction velocity.
|
||||||
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
|
||||||
|
|
||||||
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
|
||||||
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
|
||||||
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
|
||||||
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
|
||||||
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
|
||||||
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
|
||||||
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
|
||||||
|
|
||||||
// Skip and use default max junction speed for 0 degree acute junction.
|
// Skip and use default max junction speed for 0 degree acute junction.
|
||||||
if (cos_theta < 0.95) {
|
if (cos_theta < 0.95) {
|
||||||
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
vmax_junction = min(previous_nominal_speed,block->nominal_speed);
|
||||||
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
|
||||||
if (cos_theta > -0.95) {
|
if (cos_theta > -0.95) {
|
||||||
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
// Compute maximum junction velocity based on maximum acceleration and junction deviation
|
||||||
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
|
||||||
vmax_junction = min(vmax_junction,
|
vmax_junction = min(vmax_junction,
|
||||||
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
#endif
|
||||||
#endif
|
|
||||||
// Start with a safe speed
|
// Start with a safe speed
|
||||||
float vmax_junction = max_xy_jerk/2;
|
float vmax_junction = max_xy_jerk / 2;
|
||||||
float vmax_junction_factor = 1.0;
|
float vmax_junction_factor = 1.0;
|
||||||
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
|
float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
|
||||||
vmax_junction = min(vmax_junction, max_z_jerk/2);
|
float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
|
||||||
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
|
if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
|
||||||
vmax_junction = min(vmax_junction, max_e_jerk/2);
|
if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
|
||||||
vmax_junction = min(vmax_junction, block->nominal_speed);
|
vmax_junction = min(vmax_junction, block->nominal_speed);
|
||||||
float safe_speed = vmax_junction;
|
float safe_speed = vmax_junction;
|
||||||
|
|
||||||
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
|
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
|
||||||
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
|
float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
|
||||||
// if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
|
||||||
|
dz = fabs(csz - previous_speed[Z_AXIS]),
|
||||||
|
de = fabs(cse - previous_speed[E_AXIS]),
|
||||||
|
jerk = sqrt(dx * dx + dy * dy);
|
||||||
|
|
||||||
|
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
|
||||||
vmax_junction = block->nominal_speed;
|
vmax_junction = block->nominal_speed;
|
||||||
// }
|
// }
|
||||||
if (jerk > max_xy_jerk) {
|
if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
|
||||||
vmax_junction_factor = (max_xy_jerk/jerk);
|
if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
|
||||||
}
|
if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
|
||||||
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
|
|
||||||
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
|
|
||||||
}
|
|
||||||
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
|
|
||||||
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
|
|
||||||
}
|
|
||||||
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
|
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
|
||||||
}
|
}
|
||||||
block->max_entry_speed = vmax_junction;
|
block->max_entry_speed = vmax_junction;
|
||||||
|
|
||||||
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
|
||||||
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
|
double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
|
||||||
block->entry_speed = min(vmax_junction, v_allowable);
|
block->entry_speed = min(vmax_junction, v_allowable);
|
||||||
|
|
||||||
// Initialize planner efficiency flags
|
// Initialize planner efficiency flags
|
||||||
|
@ -1009,119 +907,95 @@ Having the real displacement of the head, we can calculate the total movement le
|
||||||
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both
|
||||||
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
// the reverse and forward planners, the corresponding block junction speed will always be at the
|
||||||
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
// the maximum junction speed and may always be ignored for any speed reduction checks.
|
||||||
if (block->nominal_speed <= v_allowable) {
|
block->nominal_length_flag = (block->nominal_speed <= v_allowable);
|
||||||
block->nominal_length_flag = true;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
block->nominal_length_flag = false;
|
|
||||||
}
|
|
||||||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||||
|
|
||||||
// Update previous path unit_vector and nominal speed
|
// Update previous path unit_vector and nominal speed
|
||||||
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
|
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
|
||||||
previous_nominal_speed = block->nominal_speed;
|
previous_nominal_speed = block->nominal_speed;
|
||||||
|
|
||||||
|
#ifdef ADVANCE
|
||||||
#ifdef ADVANCE
|
// Calculate advance rate
|
||||||
// Calculate advance rate
|
if (!bse || (!bsx && !bsy && !bsz)) {
|
||||||
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
|
|
||||||
block->advance_rate = 0;
|
|
||||||
block->advance = 0;
|
|
||||||
}
|
|
||||||
else {
|
|
||||||
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
|
||||||
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
|
|
||||||
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
|
|
||||||
block->advance = advance;
|
|
||||||
if(acc_dist == 0) {
|
|
||||||
block->advance_rate = 0;
|
block->advance_rate = 0;
|
||||||
}
|
block->advance = 0;
|
||||||
else {
|
|
||||||
block->advance_rate = advance / (float)acc_dist;
|
|
||||||
}
|
}
|
||||||
}
|
else {
|
||||||
/*
|
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
|
||||||
SERIAL_ECHO_START;
|
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
|
||||||
SERIAL_ECHOPGM("advance :");
|
block->advance = advance;
|
||||||
SERIAL_ECHO(block->advance/256.0);
|
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
|
||||||
SERIAL_ECHOPGM("advance rate :");
|
}
|
||||||
SERIAL_ECHOLN(block->advance_rate/256.0);
|
/*
|
||||||
*/
|
SERIAL_ECHO_START;
|
||||||
#endif // ADVANCE
|
SERIAL_ECHOPGM("advance :");
|
||||||
|
SERIAL_ECHO(block->advance/256.0);
|
||||||
|
SERIAL_ECHOPGM("advance rate :");
|
||||||
|
SERIAL_ECHOLN(block->advance_rate/256.0);
|
||||||
|
*/
|
||||||
|
#endif // ADVANCE
|
||||||
|
|
||||||
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
|
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
|
||||||
safe_speed/block->nominal_speed);
|
|
||||||
|
|
||||||
// Move buffer head
|
// Move buffer head
|
||||||
block_buffer_head = next_buffer_head;
|
block_buffer_head = next_buffer_head;
|
||||||
|
|
||||||
// Update position
|
// Update position
|
||||||
memcpy(position, target, sizeof(target)); // position[] = target[]
|
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
|
||||||
|
|
||||||
planner_recalculate();
|
planner_recalculate();
|
||||||
|
|
||||||
st_wake_up();
|
st_wake_up();
|
||||||
}
|
|
||||||
|
|
||||||
#if defined(ENABLE_AUTO_BED_LEVELING) && not defined(DELTA)
|
} // plan_buffer_line()
|
||||||
vector_3 plan_get_position() {
|
|
||||||
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
|
|
||||||
|
|
||||||
//position.debug("in plan_get position");
|
|
||||||
//plan_bed_level_matrix.debug("in plan_get bed_level");
|
|
||||||
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
|
|
||||||
//inverse.debug("in plan_get inverse");
|
|
||||||
position.apply_rotation(inverse);
|
|
||||||
//position.debug("after rotation");
|
|
||||||
|
|
||||||
return position;
|
|
||||||
}
|
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
void plan_set_position(float x, float y, float z, const float &e)
|
|
||||||
{
|
#ifndef DELTA
|
||||||
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
vector_3 plan_get_position() {
|
||||||
|
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
|
||||||
|
|
||||||
|
//position.debug("in plan_get position");
|
||||||
|
//plan_bed_level_matrix.debug("in plan_get bed_level");
|
||||||
|
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
|
||||||
|
//inverse.debug("in plan_get inverse");
|
||||||
|
position.apply_rotation(inverse);
|
||||||
|
//position.debug("after rotation");
|
||||||
|
|
||||||
|
return position;
|
||||||
|
}
|
||||||
|
#endif //!DELTA
|
||||||
|
|
||||||
|
void plan_set_position(float x, float y, float z, const float &e)
|
||||||
#else
|
#else
|
||||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
|
void plan_set_position(const float &x, const float &y, const float &z, const float &e)
|
||||||
{
|
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
#endif // ENABLE_AUTO_BED_LEVELING
|
||||||
|
{
|
||||||
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
|
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
|
||||||
|
#endif
|
||||||
|
|
||||||
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
|
float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
|
||||||
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
|
float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
|
||||||
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
|
float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
|
||||||
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||||
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
|
st_set_position(nx, ny, nz, ne);
|
||||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||||
previous_speed[0] = 0.0;
|
|
||||||
previous_speed[1] = 0.0;
|
|
||||||
previous_speed[2] = 0.0;
|
|
||||||
previous_speed[3] = 0.0;
|
|
||||||
}
|
|
||||||
|
|
||||||
void plan_set_e_position(const float &e)
|
for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
|
||||||
{
|
}
|
||||||
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
|
|
||||||
|
void plan_set_e_position(const float &e) {
|
||||||
|
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
|
||||||
st_set_e_position(position[E_AXIS]);
|
st_set_e_position(position[E_AXIS]);
|
||||||
}
|
}
|
||||||
|
|
||||||
uint8_t movesplanned()
|
|
||||||
{
|
|
||||||
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||||
void set_extrude_min_temp(float temp)
|
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
|
||||||
{
|
|
||||||
extrude_min_temp=temp;
|
|
||||||
}
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
|
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s
|
||||||
void reset_acceleration_rates()
|
void reset_acceleration_rates() {
|
||||||
{
|
for (int i = 0; i < NUM_AXIS; i++)
|
||||||
for(int8_t i=0; i < NUM_AXIS; i++)
|
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
||||||
{
|
|
||||||
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
117
Marlin/planner.h
117
Marlin/planner.h
|
@ -21,20 +21,16 @@
|
||||||
// This module is to be considered a sub-module of stepper.c. Please don't include
|
// This module is to be considered a sub-module of stepper.c. Please don't include
|
||||||
// this file from any other module.
|
// this file from any other module.
|
||||||
|
|
||||||
#ifndef planner_h
|
#ifndef PLANNER_H
|
||||||
#define planner_h
|
#define PLANNER_H
|
||||||
|
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
#include "vector_3.h"
|
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
|
||||||
// the source g-code and may never actually be reached if acceleration management is active.
|
// the source g-code and may never actually be reached if acceleration management is active.
|
||||||
typedef struct {
|
typedef struct {
|
||||||
// Fields used by the bresenham algorithm for tracing the line
|
// Fields used by the bresenham algorithm for tracing the line
|
||||||
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis
|
long steps[NUM_AXIS]; // Step count along each axis
|
||||||
unsigned long step_event_count; // The number of step events required to complete this block
|
unsigned long step_event_count; // The number of step events required to complete this block
|
||||||
long accelerate_until; // The index of the step event on which to stop acceleration
|
long accelerate_until; // The index of the step event on which to stop acceleration
|
||||||
long decelerate_after; // The index of the step event on which to start decelerating
|
long decelerate_after; // The index of the step event on which to start decelerating
|
||||||
|
@ -49,7 +45,7 @@ typedef struct {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Fields used by the motion planner to manage acceleration
|
// Fields used by the motion planner to manage acceleration
|
||||||
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
|
||||||
float nominal_speed; // The nominal speed for this block in mm/sec
|
float nominal_speed; // The nominal speed for this block in mm/sec
|
||||||
float entry_speed; // Entry speed at previous-current junction in mm/sec
|
float entry_speed; // Entry speed at previous-current junction in mm/sec
|
||||||
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
|
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
|
||||||
|
@ -65,48 +61,44 @@ typedef struct {
|
||||||
unsigned long acceleration_st; // acceleration steps/sec^2
|
unsigned long acceleration_st; // acceleration steps/sec^2
|
||||||
unsigned long fan_speed;
|
unsigned long fan_speed;
|
||||||
#ifdef BARICUDA
|
#ifdef BARICUDA
|
||||||
unsigned long valve_pressure;
|
unsigned long valve_pressure;
|
||||||
unsigned long e_to_p_pressure;
|
unsigned long e_to_p_pressure;
|
||||||
#endif
|
#endif
|
||||||
volatile char busy;
|
volatile char busy;
|
||||||
} block_t;
|
} block_t;
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
|
||||||
// this holds the required transform to compensate for bed level
|
|
||||||
extern matrix_3x3 plan_bed_level_matrix;
|
|
||||||
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
// Initialize the motion plan subsystem
|
// Initialize the motion plan subsystem
|
||||||
void plan_init();
|
void plan_init();
|
||||||
|
|
||||||
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
void check_axes_activity();
|
||||||
// millimaters. Feed rate specifies the speed of the motion.
|
|
||||||
|
// Get the number of buffered moves
|
||||||
|
extern volatile unsigned char block_buffer_head;
|
||||||
|
extern volatile unsigned char block_buffer_tail;
|
||||||
|
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
|
||||||
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||||
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
#include "vector_3.h"
|
||||||
|
// this holds the required transform to compensate for bed level
|
||||||
|
extern matrix_3x3 plan_bed_level_matrix;
|
||||||
|
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
|
||||||
|
// millimaters. Feed rate specifies the speed of the motion.
|
||||||
|
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||||
|
// Set position. Used for G92 instructions.
|
||||||
|
void plan_set_position(float x, float y, float z, const float &e);
|
||||||
#ifndef DELTA
|
#ifndef DELTA
|
||||||
// Get the position applying the bed level matrix if enabled
|
// Get the position applying the bed level matrix if enabled
|
||||||
vector_3 plan_get_position();
|
vector_3 plan_get_position();
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else //!ENABLE_AUTO_BED_LEVELING
|
||||||
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
||||||
|
#endif //!ENABLE_AUTO_BED_LEVELING
|
||||||
// Set position. Used for G92 instructions.
|
|
||||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
|
||||||
void plan_set_position(float x, float y, float z, const float &e);
|
|
||||||
#else
|
|
||||||
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
|
|
||||||
#endif // ENABLE_AUTO_BED_LEVELING
|
|
||||||
|
|
||||||
void plan_set_e_position(const float &e);
|
void plan_set_e_position(const float &e);
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
void check_axes_activity();
|
|
||||||
uint8_t movesplanned(); //return the nr of buffered moves
|
|
||||||
|
|
||||||
extern unsigned long minsegmenttime;
|
extern unsigned long minsegmenttime;
|
||||||
extern float max_feedrate[NUM_AXIS]; // set the max speeds
|
extern float max_feedrate[NUM_AXIS]; // set the max speeds
|
||||||
extern float axis_steps_per_unit[NUM_AXIS];
|
extern float axis_steps_per_unit[NUM_AXIS];
|
||||||
|
@ -122,44 +114,41 @@ extern float mintravelfeedrate;
|
||||||
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
|
||||||
|
|
||||||
#ifdef AUTOTEMP
|
#ifdef AUTOTEMP
|
||||||
extern bool autotemp_enabled;
|
extern bool autotemp_enabled;
|
||||||
extern float autotemp_max;
|
extern float autotemp_max;
|
||||||
extern float autotemp_min;
|
extern float autotemp_min;
|
||||||
extern float autotemp_factor;
|
extern float autotemp_factor;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
|
||||||
|
|
||||||
|
|
||||||
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
|
|
||||||
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
|
||||||
extern volatile unsigned char block_buffer_tail;
|
extern volatile unsigned char block_buffer_tail;
|
||||||
// Called when the current block is no longer needed. Discards the block and makes the memory
|
|
||||||
// availible for new blocks.
|
|
||||||
FORCE_INLINE void plan_discard_current_block()
|
|
||||||
{
|
|
||||||
if (block_buffer_head != block_buffer_tail) {
|
|
||||||
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// Gets the current block. Returns NULL if buffer empty
|
|
||||||
FORCE_INLINE block_t *plan_get_current_block()
|
|
||||||
{
|
|
||||||
if (block_buffer_head == block_buffer_tail) {
|
|
||||||
return(NULL);
|
|
||||||
}
|
|
||||||
block_t *block = &block_buffer[block_buffer_tail];
|
|
||||||
block->busy = true;
|
|
||||||
return(block);
|
|
||||||
}
|
|
||||||
|
|
||||||
// Returns true if the buffer has a queued block, false otherwise
|
// Returns true if the buffer has a queued block, false otherwise
|
||||||
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
|
||||||
|
|
||||||
|
// Called when the current block is no longer needed. Discards
|
||||||
|
// the block and makes the memory available for new blocks.
|
||||||
|
FORCE_INLINE void plan_discard_current_block() {
|
||||||
|
if (blocks_queued())
|
||||||
|
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Gets the current block. Returns NULL if buffer empty
|
||||||
|
FORCE_INLINE block_t *plan_get_current_block() {
|
||||||
|
if (blocks_queued()) {
|
||||||
|
block_t *block = &block_buffer[block_buffer_tail];
|
||||||
|
block->busy = true;
|
||||||
|
return block;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
return NULL;
|
||||||
|
}
|
||||||
|
|
||||||
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
#ifdef PREVENT_DANGEROUS_EXTRUDE
|
||||||
void set_extrude_min_temp(float temp);
|
void set_extrude_min_temp(float temp);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
void reset_acceleration_rates();
|
void reset_acceleration_rates();
|
||||||
#endif
|
|
||||||
|
#endif //PLANNER_H
|
||||||
|
|
|
@ -370,7 +370,7 @@ ISR(TIMER1_COMPA_vect) {
|
||||||
step_events_completed = 0;
|
step_events_completed = 0;
|
||||||
|
|
||||||
#ifdef Z_LATE_ENABLE
|
#ifdef Z_LATE_ENABLE
|
||||||
if (current_block->steps_z > 0) {
|
if (current_block->steps[Z_AXIS] > 0) {
|
||||||
enable_z();
|
enable_z();
|
||||||
OCR1A = 2000; //1ms wait
|
OCR1A = 2000; //1ms wait
|
||||||
return;
|
return;
|
||||||
|
@ -411,7 +411,7 @@ ISR(TIMER1_COMPA_vect) {
|
||||||
|
|
||||||
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
|
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
|
||||||
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
|
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
|
||||||
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
|
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
|
||||||
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
|
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
|
||||||
endstop_## axis ##_hit = true; \
|
endstop_## axis ##_hit = true; \
|
||||||
step_events_completed = current_block->step_event_count; \
|
step_events_completed = current_block->step_event_count; \
|
||||||
|
@ -420,54 +420,54 @@ ISR(TIMER1_COMPA_vect) {
|
||||||
|
|
||||||
// Check X and Y endstops
|
// Check X and Y endstops
|
||||||
if (check_endstops) {
|
if (check_endstops) {
|
||||||
#ifndef COREXY
|
#ifdef COREXY
|
||||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
|
|
||||||
#else
|
|
||||||
// Head direction in -X axis for CoreXY bots.
|
// Head direction in -X axis for CoreXY bots.
|
||||||
// If DeltaX == -DeltaY, the movement is only in Y axis
|
// If DeltaX == -DeltaY, the movement is only in Y axis
|
||||||
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
|
if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
|
||||||
if (TEST(out_bits, X_HEAD))
|
if (TEST(out_bits, X_HEAD))
|
||||||
#endif
|
|
||||||
{ // -direction
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
||||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
|
||||||
UPDATE_ENDSTOP(x, X, min, MIN);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
else { // +direction
|
|
||||||
#ifdef DUAL_X_CARRIAGE
|
|
||||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
|
||||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
|
||||||
#endif
|
|
||||||
{
|
|
||||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
|
||||||
UPDATE_ENDSTOP(x, X, max, MAX);
|
|
||||||
#endif
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#ifndef COREXY
|
|
||||||
if (TEST(out_bits, Y_AXIS)) // -direction
|
|
||||||
#else
|
#else
|
||||||
|
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
|
||||||
|
#endif
|
||||||
|
{ // -direction
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||||
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||||
|
UPDATE_ENDSTOP(x, X, min, MIN);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
else { // +direction
|
||||||
|
#ifdef DUAL_X_CARRIAGE
|
||||||
|
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||||
|
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||||
|
#endif
|
||||||
|
{
|
||||||
|
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||||
|
UPDATE_ENDSTOP(x, X, max, MAX);
|
||||||
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#ifdef COREXY
|
||||||
// Head direction in -Y axis for CoreXY bots.
|
// Head direction in -Y axis for CoreXY bots.
|
||||||
// If DeltaX == DeltaY, the movement is only in X axis
|
// If DeltaX == DeltaY, the movement is only in X axis
|
||||||
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
|
if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
|
||||||
if (TEST(out_bits, Y_HEAD))
|
if (TEST(out_bits, Y_HEAD))
|
||||||
|
#else
|
||||||
|
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||||
#endif
|
#endif
|
||||||
{ // -direction
|
{ // -direction
|
||||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||||
UPDATE_ENDSTOP(y, Y, min, MIN);
|
UPDATE_ENDSTOP(y, Y, min, MIN);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
else { // +direction
|
else { // +direction
|
||||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||||
UPDATE_ENDSTOP(y, Y, max, MAX);
|
UPDATE_ENDSTOP(y, Y, max, MAX);
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (TEST(out_bits, Z_AXIS)) { // -direction
|
if (TEST(out_bits, Z_AXIS)) { // -direction
|
||||||
|
@ -515,7 +515,7 @@ ISR(TIMER1_COMPA_vect) {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
counter_e += current_block->steps_e;
|
counter_e += current_block->steps[E_AXIS];
|
||||||
if (counter_e > 0) {
|
if (counter_e > 0) {
|
||||||
counter_e -= current_block->step_event_count;
|
counter_e -= current_block->step_event_count;
|
||||||
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
||||||
|
@ -529,15 +529,14 @@ ISR(TIMER1_COMPA_vect) {
|
||||||
* instead of doing each in turn. The extra tests add enough
|
* instead of doing each in turn. The extra tests add enough
|
||||||
* lag to allow it work with without needing NOPs
|
* lag to allow it work with without needing NOPs
|
||||||
*/
|
*/
|
||||||
counter_x += current_block->steps_x;
|
#define STEP_ADD(axis, AXIS) \
|
||||||
if (counter_x > 0) X_STEP_WRITE(HIGH);
|
counter_## axis += current_block->steps[AXIS ##_AXIS]; \
|
||||||
counter_y += current_block->steps_y;
|
if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
|
||||||
if (counter_y > 0) Y_STEP_WRITE(HIGH);
|
STEP_ADD(x,X);
|
||||||
counter_z += current_block->steps_z;
|
STEP_ADD(y,Y);
|
||||||
if (counter_z > 0) Z_STEP_WRITE(HIGH);
|
STEP_ADD(z,Z);
|
||||||
#ifndef ADVANCE
|
#ifndef ADVANCE
|
||||||
counter_e += current_block->steps_e;
|
STEP_ADD(e,E);
|
||||||
if (counter_e > 0) E_STEP_WRITE(HIGH);
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#define STEP_IF_COUNTER(axis, AXIS) \
|
#define STEP_IF_COUNTER(axis, AXIS) \
|
||||||
|
@ -557,7 +556,7 @@ ISR(TIMER1_COMPA_vect) {
|
||||||
#else // !CONFIG_STEPPERS_TOSHIBA
|
#else // !CONFIG_STEPPERS_TOSHIBA
|
||||||
|
|
||||||
#define APPLY_MOVEMENT(axis, AXIS) \
|
#define APPLY_MOVEMENT(axis, AXIS) \
|
||||||
counter_## axis += current_block->steps_## axis; \
|
counter_## axis += current_block->steps[AXIS ##_AXIS]; \
|
||||||
if (counter_## axis > 0) { \
|
if (counter_## axis > 0) { \
|
||||||
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
|
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
|
||||||
counter_## axis -= current_block->step_event_count; \
|
counter_## axis -= current_block->step_event_count; \
|
||||||
|
|
Reference in a new issue