Cleanup of planner code

- Use named axis indexes, `X_AXIS` etc.
- Replace `block.steps_A` with block.steps[A]`
- Replace `A_segment_time` with `segment_time[A]`
- Add `A_AXIS`, `B_AXIS` for `COREXY` axes
- Conditional compile based on `EXTRUDERS`
- Add BLOCK_MOD macro for planner block indexes
- Apply coding standards to `planner.h` and `planner.cpp`
- Small optimizations of planner code
- Update `stepper.cpp` for new `block` struct
- Replace `memcpy` with loops, let the compiler unroll them
- Make `movesplanned` into an inline function
This commit is contained in:
Scott Lahteine 2015-03-20 20:42:49 -07:00
parent 0d869703ca
commit 13fbf42d95
4 changed files with 616 additions and 754 deletions

View file

@ -183,7 +183,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#define disable_e3() /* nothing */ #define disable_e3() /* nothing */
#endif #endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots. //X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
void FlushSerialRequestResend(); void FlushSerialRequestResend();
@ -270,7 +270,7 @@ extern unsigned char fanSpeedSoftPwm;
extern bool filament_sensor; //indicates that filament sensor readings should control extrusion extern bool filament_sensor; //indicates that filament sensor readings should control extrusion
extern float filament_width_meas; //holds the filament diameter as accurately measured extern float filament_width_meas; //holds the filament diameter as accurately measured
extern signed char measurement_delay[]; //ring buffer to delay measurement extern signed char measurement_delay[]; //ring buffer to delay measurement
extern int delay_index1, delay_index2; //index into ring buffer extern int delay_index1, delay_index2; //ring buffer index. used by planner, temperature, and main code
extern float delay_dist; //delay distance counter extern float delay_dist; //delay distance counter
extern int meas_delay_cm; //delay distance extern int meas_delay_cm; //delay distance
#endif #endif

View file

@ -77,12 +77,12 @@ float mintravelfeedrate;
unsigned long axis_steps_per_sqr_second[NUM_AXIS]; unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
// this holds the required transform to compensate for bed level // this holds the required transform to compensate for bed level
matrix_3x3 plan_bed_level_matrix = { matrix_3x3 plan_bed_level_matrix = {
1.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 1.0 0.0, 0.0, 1.0
}; };
#endif // #ifdef ENABLE_AUTO_BED_LEVELING #endif // #ifdef ENABLE_AUTO_BED_LEVELING
// The current position of the tool in absolute steps // The current position of the tool in absolute steps
@ -91,10 +91,10 @@ static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
static float previous_nominal_speed; // Nominal speed of previous path line segment static float previous_nominal_speed; // Nominal speed of previous path line segment
#ifdef AUTOTEMP #ifdef AUTOTEMP
float autotemp_max=250; float autotemp_max = 250;
float autotemp_min=210; float autotemp_min = 210;
float autotemp_factor=0.1; float autotemp_factor = 0.1;
bool autotemp_enabled=false; bool autotemp_enabled = false;
#endif #endif
unsigned char g_uc_extruder_last_move[4] = {0,0,0,0}; unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
@ -110,55 +110,35 @@ volatile unsigned char block_buffer_tail; // Index of the block to pro
//=============================private variables ============================ //=============================private variables ============================
//=========================================================================== //===========================================================================
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
float extrude_min_temp=EXTRUDE_MINTEMP; float extrude_min_temp = EXTRUDE_MINTEMP;
#endif #endif
#ifdef XY_FREQUENCY_LIMIT #ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) // Used for the frequency limit
// Used for the frequency limit #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations // Old direction bits. Used for speed calculations
static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations static unsigned char old_direction_bits = 0;
static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in µs). Used for speed calculations
static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
#endif #endif
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
static char meas_sample; //temporary variable to hold filament measurement sample static char meas_sample; //temporary variable to hold filament measurement sample
#endif #endif
// Returns the index of the next block in the ring buffer // Get the next / previous index of the next block in the ring buffer
// NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
static int8_t next_block_index(int8_t block_index) { FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
block_index++; FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
if (block_index == BLOCK_BUFFER_SIZE) {
block_index = 0;
}
return(block_index);
}
// Returns the index of the previous block in the ring buffer
static int8_t prev_block_index(int8_t block_index) {
if (block_index == 0) {
block_index = BLOCK_BUFFER_SIZE;
}
block_index--;
return(block_index);
}
//=========================================================================== //===========================================================================
//=============================functions ============================ //================================ Functions ================================
//=========================================================================== //===========================================================================
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration: // given acceleration:
FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
{ if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
if (acceleration!=0) { return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration));
}
else {
return 0.0; // acceleration was 0, set acceleration distance to 0
}
} }
// This function gives you the point at which you must start braking (at the rate of -acceleration) if // This function gives you the point at which you must start braking (at the rate of -acceleration) if
@ -166,67 +146,55 @@ FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float targ
// a total travel of distance. This can be used to compute the intersection point between acceleration and // a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
{ if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
if (acceleration!=0) { return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) );
}
else {
return 0.0; // acceleration was 0, set intersection distance to 0
}
} }
// Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) { void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min) unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min) unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
// Limit minimal step rate (Otherwise the timer will overflow.) // Limit minimal step rate (Otherwise the timer will overflow.)
if(initial_rate <120) { if (initial_rate < 120) initial_rate = 120;
initial_rate=120; if (final_rate < 120) final_rate = 120;
}
if(final_rate < 120) {
final_rate=120;
}
long acceleration = block->acceleration_st; long acceleration = block->acceleration_st;
int32_t accelerate_steps = int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
int32_t decelerate_steps =
floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
// Calculate the size of Plateau of Nominal Rate. // Calculate the size of Plateau of Nominal Rate.
int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps; int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
// Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
// have to use intersection_distance() to calculate when to abort acceleration and start braking // have to use intersection_distance() to calculate when to abort acceleration and start braking
// in order to reach the final_rate exactly at the end of this block. // in order to reach the final_rate exactly at the end of this block.
if (plateau_steps < 0) { if (plateau_steps < 0) {
accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count)); accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
plateau_steps = 0; plateau_steps = 0;
} }
#ifdef ADVANCE #ifdef ADVANCE
volatile long initial_advance = block->advance*entry_factor*entry_factor; volatile long initial_advance = block->advance * entry_factor * entry_factor;
volatile long final_advance = block->advance*exit_factor*exit_factor; volatile long final_advance = block->advance * exit_factor * exit_factor;
#endif // ADVANCE #endif // ADVANCE
// block->accelerate_until = accelerate_steps; // block->accelerate_until = accelerate_steps;
// block->decelerate_after = accelerate_steps+plateau_steps; // block->decelerate_after = accelerate_steps+plateau_steps;
CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
if(block->busy == false) { // Don't update variables if block is busy. if (!block->busy) { // Don't update variables if block is busy.
block->accelerate_until = accelerate_steps; block->accelerate_until = accelerate_steps;
block->decelerate_after = accelerate_steps+plateau_steps; block->decelerate_after = accelerate_steps+plateau_steps;
block->initial_rate = initial_rate; block->initial_rate = initial_rate;
block->final_rate = final_rate; block->final_rate = final_rate;
#ifdef ADVANCE #ifdef ADVANCE
block->initial_advance = initial_advance; block->initial_advance = initial_advance;
block->final_advance = final_advance; block->final_advance = final_advance;
#endif //ADVANCE #endif
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
@ -234,7 +202,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance. // acceleration within the allotted distance.
FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity*target_velocity-2*acceleration*distance); return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
} }
// "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
@ -248,9 +216,7 @@ FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity
// The kernel called by planner_recalculate() when scanning the plan from last to first entry. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!current) { if (!current) return;
return;
}
if (next) { if (next) {
// If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
@ -260,9 +226,9 @@ void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *n
// If nominal length true, max junction speed is guaranteed to be reached. Only compute // If nominal length true, max junction speed is guaranteed to be reached. Only compute
// for max allowable speed if block is decelerating and nominal length is false. // for max allowable speed if block is decelerating and nominal length is false.
if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) { if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
current->entry_speed = min( current->max_entry_speed, current->entry_speed = min(current->max_entry_speed,
max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters)); max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
} }
else { else {
current->entry_speed = current->max_entry_speed; current->entry_speed = current->max_entry_speed;
@ -280,15 +246,14 @@ void planner_reverse_pass() {
//Make a local copy of block_buffer_tail, because the interrupt can alter it //Make a local copy of block_buffer_tail, because the interrupt can alter it
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
unsigned char tail = block_buffer_tail; unsigned char tail = block_buffer_tail;
CRITICAL_SECTION_END CRITICAL_SECTION_END
if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) { if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1); block_index = BLOCK_MOD(block_buffer_head - 3);
block_t *block[3] = { block_t *block[3] = { NULL, NULL, NULL };
NULL, NULL, NULL }; while (block_index != tail) {
while(block_index != tail) { block_index = prev_block_index(block_index);
block_index = prev_block_index(block_index);
block[2]= block[1]; block[2]= block[1];
block[1]= block[0]; block[1]= block[0];
block[0] = &block_buffer[block_index]; block[0] = &block_buffer[block_index];
@ -299,9 +264,7 @@ void planner_reverse_pass() {
// The kernel called by planner_recalculate() when scanning the plan from first to last entry. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) { void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
if(!previous) { if (!previous) return;
return;
}
// If the previous block is an acceleration block, but it is not long enough to complete the // If the previous block is an acceleration block, but it is not long enough to complete the
// full speed change within the block, we need to adjust the entry speed accordingly. Entry // full speed change within the block, we need to adjust the entry speed accordingly. Entry
@ -309,8 +272,8 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
// If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
if (!previous->nominal_length_flag) { if (!previous->nominal_length_flag) {
if (previous->entry_speed < current->entry_speed) { if (previous->entry_speed < current->entry_speed) {
double entry_speed = min( current->entry_speed, double entry_speed = min(current->entry_speed,
max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) ); max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
// Check for junction speed change // Check for junction speed change
if (current->entry_speed != entry_speed) { if (current->entry_speed != entry_speed) {
@ -321,18 +284,17 @@ void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *n
} }
} }
// planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
// implements the forward pass. // implements the forward pass.
void planner_forward_pass() { void planner_forward_pass() {
uint8_t block_index = block_buffer_tail; uint8_t block_index = block_buffer_tail;
block_t *block[3] = { block_t *block[3] = { NULL, NULL, NULL };
NULL, NULL, NULL };
while(block_index != block_buffer_head) { while (block_index != block_buffer_head) {
block[0] = block[1]; block[0] = block[1];
block[1] = block[2]; block[1] = block[2];
block[2] = &block_buffer[block_index]; block[2] = &block_buffer[block_index];
planner_forward_pass_kernel(block[0],block[1],block[2]); planner_forward_pass_kernel(block[0], block[1], block[2]);
block_index = next_block_index(block_index); block_index = next_block_index(block_index);
} }
planner_forward_pass_kernel(block[1], block[2], NULL); planner_forward_pass_kernel(block[1], block[2], NULL);
@ -346,22 +308,23 @@ void planner_recalculate_trapezoids() {
block_t *current; block_t *current;
block_t *next = NULL; block_t *next = NULL;
while(block_index != block_buffer_head) { while (block_index != block_buffer_head) {
current = next; current = next;
next = &block_buffer[block_index]; next = &block_buffer[block_index];
if (current) { if (current) {
// Recalculate if current block entry or exit junction speed has changed. // Recalculate if current block entry or exit junction speed has changed.
if (current->recalculate_flag || next->recalculate_flag) { if (current->recalculate_flag || next->recalculate_flag) {
// NOTE: Entry and exit factors always > 0 by all previous logic operations. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed, calculate_trapezoid_for_block(current,
next->entry_speed/current->nominal_speed); current->entry_speed / current->nominal_speed,
next->entry_speed / current->nominal_speed);
current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
} }
} }
block_index = next_block_index( block_index ); block_index = next_block_index( block_index );
} }
// Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
if(next != NULL) { if (next) {
calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed, calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
MINIMUM_PLANNER_SPEED/next->nominal_speed); MINIMUM_PLANNER_SPEED/next->nominal_speed);
next->recalculate_flag = false; next->recalculate_flag = false;
@ -392,148 +355,120 @@ void planner_recalculate() {
} }
void plan_init() { void plan_init() {
block_buffer_head = 0; block_buffer_head = block_buffer_tail = 0;
block_buffer_tail = 0;
memset(position, 0, sizeof(position)); // clear position memset(position, 0, sizeof(position)); // clear position
previous_speed[0] = 0.0; for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
previous_nominal_speed = 0.0; previous_nominal_speed = 0.0;
} }
#ifdef AUTOTEMP #ifdef AUTOTEMP
void getHighESpeed() void getHighESpeed() {
{ static float oldt = 0;
static float oldt=0;
if(!autotemp_enabled){
return;
}
if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
return; //do nothing
}
float high=0.0; if (!autotemp_enabled) return;
uint8_t block_index = block_buffer_tail; if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
while(block_index != block_buffer_head) { float high = 0.0;
if((block_buffer[block_index].steps_x != 0) || uint8_t block_index = block_buffer_tail;
(block_buffer[block_index].steps_y != 0) ||
(block_buffer[block_index].steps_z != 0)) { while (block_index != block_buffer_head) {
float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed; if ((block_buffer[block_index].steps[X_AXIS] != 0) ||
//se; mm/sec; (block_buffer[block_index].steps[Y_AXIS] != 0) ||
if(se>high) (block_buffer[block_index].steps[Z_AXIS] != 0)) {
{ float se=(float(block_buffer[block_index].steps[E_AXIS])/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
high=se; //se; mm/sec;
if (se > high) high = se;
} }
block_index = next_block_index(block_index);
} }
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
}
float g=autotemp_min+high*autotemp_factor; float t = autotemp_min + high * autotemp_factor;
float t=g; if (t < autotemp_min) t = autotemp_min;
if(t<autotemp_min) if (t > autotemp_max) t = autotemp_max;
t=autotemp_min; if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t;
if(t>autotemp_max) oldt = t;
t=autotemp_max; setTargetHotend0(t);
if(oldt>t)
{
t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
} }
oldt=t;
setTargetHotend0(t);
}
#endif #endif
void check_axes_activity() void check_axes_activity() {
{ unsigned char axis_active[NUM_AXIS],
unsigned char x_active = 0; tail_fan_speed = fanSpeed;
unsigned char y_active = 0;
unsigned char z_active = 0;
unsigned char e_active = 0;
unsigned char tail_fan_speed = fanSpeed;
#ifdef BARICUDA #ifdef BARICUDA
unsigned char tail_valve_pressure = ValvePressure; unsigned char tail_valve_pressure = ValvePressure,
unsigned char tail_e_to_p_pressure = EtoPPressure; tail_e_to_p_pressure = EtoPPressure;
#endif #endif
block_t *block; block_t *block;
if(block_buffer_tail != block_buffer_head) if (blocks_queued()) {
{
uint8_t block_index = block_buffer_tail; uint8_t block_index = block_buffer_tail;
tail_fan_speed = block_buffer[block_index].fan_speed; tail_fan_speed = block_buffer[block_index].fan_speed;
#ifdef BARICUDA #ifdef BARICUDA
tail_valve_pressure = block_buffer[block_index].valve_pressure; tail_valve_pressure = block_buffer[block_index].valve_pressure;
tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure; tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
#endif #endif
while(block_index != block_buffer_head) while (block_index != block_buffer_head) {
{
block = &block_buffer[block_index]; block = &block_buffer[block_index];
if(block->steps_x != 0) x_active++; for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
if(block->steps_y != 0) y_active++; block_index = next_block_index(block_index);
if(block->steps_z != 0) z_active++;
if(block->steps_e != 0) e_active++;
block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
} }
} }
if((DISABLE_X) && (x_active == 0)) disable_x(); if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
if((DISABLE_Y) && (y_active == 0)) disable_y(); if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
if((DISABLE_Z) && (z_active == 0)) disable_z(); if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
if((DISABLE_E) && (e_active == 0)) if (DISABLE_E && !axis_active[E_AXIS]) {
{
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
disable_e3(); disable_e3();
} }
#if defined(FAN_PIN) && FAN_PIN > -1
#ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > millis())
// Fan still spinning up.
tail_fan_speed = 255;
} else {
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = tail_fan_speed;
#else
analogWrite(FAN_PIN,tail_fan_speed);
#endif//!FAN_SOFT_PWM
#endif//FAN_PIN > -1
#ifdef AUTOTEMP
getHighESpeed();
#endif
#ifdef BARICUDA #if defined(FAN_PIN) && FAN_PIN > -1 // HAS_FAN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 #ifdef FAN_KICKSTART_TIME
static unsigned long fan_kick_end;
if (tail_fan_speed) {
if (fan_kick_end == 0) {
// Just starting up fan - run at full power.
fan_kick_end = millis() + FAN_KICKSTART_TIME;
tail_fan_speed = 255;
} else if (fan_kick_end > millis())
// Fan still spinning up.
tail_fan_speed = 255;
} else {
fan_kick_end = 0;
}
#endif//FAN_KICKSTART_TIME
#ifdef FAN_SOFT_PWM
fanSpeedSoftPwm = tail_fan_speed;
#else
analogWrite(FAN_PIN, tail_fan_speed);
#endif //!FAN_SOFT_PWM
#endif //FAN_PIN > -1
#ifdef AUTOTEMP
getHighESpeed();
#endif
#ifdef BARICUDA
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 // HAS_HEATER_1
analogWrite(HEATER_1_PIN,tail_valve_pressure); analogWrite(HEATER_1_PIN,tail_valve_pressure);
#endif #endif
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 // HAS_HEATER_2
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
analogWrite(HEATER_2_PIN,tail_e_to_p_pressure); analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
#endif
#endif #endif
#endif
} }
float junction_deviation = 0.1; float junction_deviation = 0.1;
// Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
// mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
// calculation the caller must also provide the physical length of the line in millimeters. // calculation the caller must also provide the physical length of the line in millimeters.
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder) void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
#else #else
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder) void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
#endif //ENABLE_AUTO_BED_LEVELING #endif //ENABLE_AUTO_BED_LEVELING
{ {
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte
@ -541,45 +476,45 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
// If the buffer is full: good! That means we are well ahead of the robot. // If the buffer is full: good! That means we are well ahead of the robot.
// Rest here until there is room in the buffer. // Rest here until there is room in the buffer.
while(block_buffer_tail == next_buffer_head) while(block_buffer_tail == next_buffer_head) {
{
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
apply_rotation_xyz(plan_bed_level_matrix, x, y, z); apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif // ENABLE_AUTO_BED_LEVELING #endif
// The target position of the tool in absolute steps // The target position of the tool in absolute steps
// Calculate target position in absolute steps // Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target[4]; long target[NUM_AXIS];
target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
float dx = target[X_AXIS] - position[X_AXIS],
dy = target[Y_AXIS] - position[Y_AXIS],
dz = target[Z_AXIS] - position[Z_AXIS],
de = target[E_AXIS] - position[E_AXIS];
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
if(target[E_AXIS]!=position[E_AXIS]) if (de) {
{ if (degHotend(active_extruder) < extrude_min_temp) {
if(degHotend(active_extruder)<extrude_min_temp) position[E_AXIS] = target[E_AXIS]; //behave as if the move really took place, but ignore E part
{ SERIAL_ECHO_START;
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
SERIAL_ECHO_START; }
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); #ifdef PREVENT_LENGTHY_EXTRUDE
if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
} }
#ifdef PREVENT_LENGTHY_EXTRUDE
if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
{
position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
#endif #endif
// Prepare to set up new block // Prepare to set up new block
@ -589,139 +524,122 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
block->busy = false; block->busy = false;
// Number of steps for each axis // Number of steps for each axis
#ifndef COREXY #ifdef COREXY
// default non-h-bot planning // corexy planning
block->steps_x = labs(target[X_AXIS]-position[X_AXIS]); // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]); block->steps[A_AXIS] = labs(dx + dy);
#else block->steps[B_AXIS] = labs(dx - dy);
// corexy planning #else
// these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html // default non-h-bot planning
block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS])); block->steps[X_AXIS] = labs(dx);
block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS])); block->steps[Y_AXIS] = labs(dy);
#endif #endif
block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
block->steps_e = labs(target[E_AXIS]-position[E_AXIS]); block->steps[Z_AXIS] = labs(dz);
block->steps_e *= volumetric_multiplier[active_extruder]; block->steps[E_AXIS] = labs(de);
block->steps_e *= extrudemultiply; block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
block->steps_e /= 100; block->steps[E_AXIS] *= extrudemultiply;
block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e))); block->steps[E_AXIS] /= 100;
block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
// Bail if this is a zero-length block // Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) if (block->step_event_count <= dropsegments) return;
{
return;
}
block->fan_speed = fanSpeed; block->fan_speed = fanSpeed;
#ifdef BARICUDA #ifdef BARICUDA
block->valve_pressure = ValvePressure; block->valve_pressure = ValvePressure;
block->e_to_p_pressure = EtoPPressure; block->e_to_p_pressure = EtoPPressure;
#endif #endif
// Compute direction bits for this block // Compute direction bits for this block
block->direction_bits = 0; uint8_t db = 0;
#ifndef COREXY #ifdef COREXY
if (target[X_AXIS] < position[X_AXIS]) if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
{ if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
block->direction_bits |= BIT(X_AXIS); if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
} if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
if (target[Y_AXIS] < position[Y_AXIS]) #else
{ if (dx < 0) db |= BIT(X_AXIS);
block->direction_bits |= BIT(Y_AXIS); if (dy < 0) db |= BIT(Y_AXIS);
} #endif
#else if (dz < 0) db |= BIT(Z_AXIS);
if (target[X_AXIS] < position[X_AXIS]) if (de < 0) db |= BIT(E_AXIS);
{ block->direction_bits = db;
block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
}
if (target[Y_AXIS] < position[Y_AXIS])
{
block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
}
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
}
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
}
#endif
if (target[Z_AXIS] < position[Z_AXIS])
{
block->direction_bits |= BIT(Z_AXIS);
}
if (target[E_AXIS] < position[E_AXIS])
{
block->direction_bits |= BIT(E_AXIS);
}
block->active_extruder = extruder; block->active_extruder = extruder;
//enable active axes //enable active axes
#ifdef COREXY #ifdef COREXY
if((block->steps_x != 0) || (block->steps_y != 0)) if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
{ enable_x();
enable_x(); enable_y();
enable_y(); }
}
#else #else
if(block->steps_x != 0) enable_x(); if (block->steps[X_AXIS]) enable_x();
if(block->steps_y != 0) enable_y(); if (block->steps[Y_AXIS]) enable_y();
#endif
#ifndef Z_LATE_ENABLE
if (block->steps[Z_AXIS]) enable_z();
#endif #endif
#ifndef Z_LATE_ENABLE
if(block->steps_z != 0) enable_z();
#endif
// Enable extruder(s) // Enable extruder(s)
if(block->steps_e != 0) if (block->steps[E_AXIS]) {
{ if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
if (DISABLE_INACTIVE_EXTRUDER) //enable only selected extruder
{
if(g_uc_extruder_last_move[0] > 0) g_uc_extruder_last_move[0]--; for (int i=0; i<EXTRUDERS; i++)
if(g_uc_extruder_last_move[1] > 0) g_uc_extruder_last_move[1]--; if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
if(g_uc_extruder_last_move[2] > 0) g_uc_extruder_last_move[2]--;
if(g_uc_extruder_last_move[3] > 0) g_uc_extruder_last_move[3]--;
switch(extruder) switch(extruder) {
{ case 0:
case 0: enable_e0();
enable_e0(); g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE*2; #if EXTRUDERS > 1
if (g_uc_extruder_last_move[1] == 0) disable_e1();
if(g_uc_extruder_last_move[1] == 0) disable_e1(); #if EXTRUDERS > 2
if(g_uc_extruder_last_move[2] == 0) disable_e2(); if (g_uc_extruder_last_move[2] == 0) disable_e2();
if(g_uc_extruder_last_move[3] == 0) disable_e3(); #if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
#endif
#endif
#endif
break; break;
case 1: #if EXTRUDERS > 1
enable_e1(); case 1:
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2; enable_e1();
g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
if(g_uc_extruder_last_move[0] == 0) disable_e0(); if (g_uc_extruder_last_move[0] == 0) disable_e0();
if(g_uc_extruder_last_move[2] == 0) disable_e2(); #if EXTRUDERS > 2
if(g_uc_extruder_last_move[3] == 0) disable_e3(); if (g_uc_extruder_last_move[2] == 0) disable_e2();
break; #if EXTRUDERS > 3
case 2: if (g_uc_extruder_last_move[3] == 0) disable_e3();
enable_e2(); #endif
g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2; #endif
break;
if(g_uc_extruder_last_move[0] == 0) disable_e0(); #if EXTRUDERS > 2
if(g_uc_extruder_last_move[1] == 0) disable_e1(); case 2:
if(g_uc_extruder_last_move[3] == 0) disable_e3(); enable_e2();
break; g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
case 3: if (g_uc_extruder_last_move[0] == 0) disable_e0();
enable_e3(); if (g_uc_extruder_last_move[1] == 0) disable_e1();
g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2; #if EXTRUDERS > 3
if (g_uc_extruder_last_move[3] == 0) disable_e3();
if(g_uc_extruder_last_move[0] == 0) disable_e0(); #endif
if(g_uc_extruder_last_move[1] == 0) disable_e1(); break;
if(g_uc_extruder_last_move[2] == 0) disable_e2(); #if EXTRUDERS > 3
break; case 3:
enable_e3();
g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
if (g_uc_extruder_last_move[0] == 0) disable_e0();
if (g_uc_extruder_last_move[1] == 0) disable_e1();
if (g_uc_extruder_last_move[2] == 0) disable_e2();
break;
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
} }
} }
else //enable all else { // enable all
{
enable_e0(); enable_e0();
enable_e1(); enable_e1();
enable_e2(); enable_e2();
@ -729,276 +647,256 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
} }
} }
if (block->steps_e == 0) if (block->steps[E_AXIS]) {
{ if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate;
if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
} }
else else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate;
{
if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
}
/* This part of the code calculates the total length of the movement. /**
For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * This part of the code calculates the total length of the movement.
But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
*/ * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
#ifndef COREXY */
float delta_mm[4]; #ifdef COREXY
delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
#else
float delta_mm[6]; float delta_mm[6];
delta_mm[X_HEAD] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS]; delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
delta_mm[Y_HEAD] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]; delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS]; delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS]; delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
#else
float delta_mm[4];
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
#endif #endif
delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]; delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*volumetric_multiplier[active_extruder]*extrudemultiply/100.0; delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extrudemultiply / 100.0;
if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
{ if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);
} }
else else {
{ block->millimeters = sqrt(
#ifndef COREXY #ifdef COREXY
block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])); square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
#else #else
block->millimeters = sqrt(square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])); square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
#endif #endif
+ square(delta_mm[Z_AXIS])
);
} }
float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate speed in mm/second for each axis. No divide by zero due to previous checks. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
float inverse_second = feed_rate * inverse_millimeters; float inverse_second = feed_rate * inverse_millimeters;
int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1); int moves_queued = movesplanned();
// slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
#ifdef OLD_SLOWDOWN bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) #ifdef OLD_SLOWDOWN
feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5); if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
#endif #endif
#ifdef SLOWDOWN #ifdef SLOWDOWN
// segment time im micro seconds // segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second); unsigned long segment_time = lround(1000000.0/inverse_second);
if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) if (mq) {
{ if (segment_time < minsegmenttime) {
if (segment_time < minsegmenttime) // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
{ // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued)); #ifdef XY_FREQUENCY_LIMIT
#ifdef XY_FREQUENCY_LIMIT segment_time = lround(1000000.0 / inverse_second);
segment_time = lround(1000000.0/inverse_second); #endif
#endif }
} }
} #endif
#endif
// END OF SLOW DOWN SECTION // END OF SLOW DOWN SECTION
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
//FMM update ring buffer used for delay with filament measurements //FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
if((extruder==FILAMENT_SENSOR_EXTRUDER_NUM) && (delay_index2 > -1)) //only for extruder with filament sensor and if ring buffer is initialized
{
delay_dist = delay_dist + delta_mm[E_AXIS]; //increment counter with next move in e axis
while (delay_dist >= (10*(MAX_MEASUREMENT_DELAY+1))) //check if counter is over max buffer size in mm
delay_dist = delay_dist - 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
while (delay_dist<0)
delay_dist = delay_dist + 10*(MAX_MEASUREMENT_DELAY+1); //loop around the buffer
delay_index1=delay_dist/10.0; //calculate index
//ensure the number is within range of the array after converting from floating point
if(delay_index1<0)
delay_index1=0;
else if (delay_index1>MAX_MEASUREMENT_DELAY)
delay_index1=MAX_MEASUREMENT_DELAY;
if(delay_index1 != delay_index2) //moved index
{
meas_sample=widthFil_to_size_ratio()-100; //subtract off 100 to reduce magnitude - to store in a signed char
}
while( delay_index1 != delay_index2)
{
delay_index2 = delay_index2 + 1;
if(delay_index2>MAX_MEASUREMENT_DELAY)
delay_index2=delay_index2-(MAX_MEASUREMENT_DELAY+1); //loop around buffer when incrementing
if(delay_index2<0)
delay_index2=0;
else if (delay_index2>MAX_MEASUREMENT_DELAY)
delay_index2=MAX_MEASUREMENT_DELAY;
measurement_delay[delay_index2]=meas_sample;
}
}
#endif
const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
while (delay_dist < 0) delay_dist += MMD10;
delay_index1 = delay_dist / 10.0; // calculate index
delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
if (delay_index1 != delay_index2) { // moved index
meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
while (delay_index1 != delay_index2) {
// Increment and loop around buffer
if (++delay_index2 >= MMD) delay_index2 -= MMD;
delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
measurement_delay[delay_index2] = meas_sample;
}
}
}
#endif
// Calculate and limit speed in mm/sec for each axis // Calculate and limit speed in mm/sec for each axis
float current_speed[4]; float current_speed[NUM_AXIS];
float speed_factor = 1.0; //factor <=1 do decrease speed float speed_factor = 1.0; //factor <=1 do decrease speed
for(int i=0; i < 4; i++) for (int i = 0; i < NUM_AXIS; i++) {
{
current_speed[i] = delta_mm[i] * inverse_second; current_speed[i] = delta_mm[i] * inverse_second;
if(fabs(current_speed[i]) > max_feedrate[i]) float cs = fabs(current_speed[i]), mf = max_feedrate[i];
speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i])); if (cs > mf) speed_factor = min(speed_factor, mf / cs);
} }
// Max segement time in us. // Max segement time in us.
#ifdef XY_FREQUENCY_LIMIT #ifdef XY_FREQUENCY_LIMIT
#define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
// Check and limit the xy direction change frequency
unsigned char direction_change = block->direction_bits ^ old_direction_bits; // Check and limit the xy direction change frequency
old_direction_bits = block->direction_bits; unsigned char direction_change = block->direction_bits ^ old_direction_bits;
segment_time = lround((float)segment_time / speed_factor); old_direction_bits = block->direction_bits;
segment_time = lround((float)segment_time / speed_factor);
if((direction_change & BIT(X_AXIS)) == 0) long xs0 = axis_segment_time[X_AXIS][0],
{ xs1 = axis_segment_time[X_AXIS][1],
x_segment_time[0] += segment_time; xs2 = axis_segment_time[X_AXIS][2],
} ys0 = axis_segment_time[Y_AXIS][0],
else ys1 = axis_segment_time[Y_AXIS][1],
{ ys2 = axis_segment_time[Y_AXIS][2];
x_segment_time[2] = x_segment_time[1];
x_segment_time[1] = x_segment_time[0]; if ((direction_change & BIT(X_AXIS)) != 0) {
x_segment_time[0] = segment_time; xs2 = axis_segment_time[X_AXIS][2] = xs1;
} xs1 = axis_segment_time[X_AXIS][1] = xs0;
if((direction_change & BIT(Y_AXIS)) == 0) xs0 = 0;
{ }
y_segment_time[0] += segment_time; xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
}
else if ((direction_change & BIT(Y_AXIS)) != 0) {
{ ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
y_segment_time[2] = y_segment_time[1]; ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
y_segment_time[1] = y_segment_time[0]; ys0 = 0;
y_segment_time[0] = segment_time; }
} ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2])); long max_x_segment_time = max(xs0, max(xs1, xs2)),
long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time); max_y_segment_time = max(ys0, max(ys1, ys2)),
if(min_xy_segment_time < MAX_FREQ_TIME) min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME); if (min_xy_segment_time < MAX_FREQ_TIME) {
#endif // XY_FREQUENCY_LIMIT float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
speed_factor = min(speed_factor, low_sf);
}
#endif // XY_FREQUENCY_LIMIT
// Correct the speed // Correct the speed
if( speed_factor < 1.0) if (speed_factor < 1.0) {
{ for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
for(unsigned char i=0; i < 4; i++)
{
current_speed[i] *= speed_factor;
}
block->nominal_speed *= speed_factor; block->nominal_speed *= speed_factor;
block->nominal_rate *= speed_factor; block->nominal_rate *= speed_factor;
} }
// Compute and limit the acceleration rate for the trapezoid generator. // Compute and limit the acceleration rate for the trapezoid generator.
float steps_per_mm = block->step_event_count/block->millimeters; float steps_per_mm = block->step_event_count / block->millimeters;
if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
{ if (bsx == 0 && bsy == 0 && bsz == 0) {
block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
else if(block->steps_e == 0) else if (bse == 0) {
{
block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
else else {
{
block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
} }
// Limit acceleration per axis // Limit acceleration per axis
if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS]) unsigned long acc_st = block->acceleration_st,
block->acceleration_st = axis_steps_per_sqr_second[X_AXIS]; xsteps = axis_steps_per_sqr_second[X_AXIS],
if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS]) ysteps = axis_steps_per_sqr_second[Y_AXIS],
block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS]; zsteps = axis_steps_per_sqr_second[Z_AXIS],
if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS]) esteps = axis_steps_per_sqr_second[E_AXIS];
block->acceleration_st = axis_steps_per_sqr_second[E_AXIS]; if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS]) if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS]; if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
block->acceleration = block->acceleration_st / steps_per_mm; block->acceleration_st = acc_st;
block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0))); block->acceleration = acc_st / steps_per_mm;
block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
#if 0 // Use old jerk for now #if 0 // Use old jerk for now
// Compute path unit vector // Compute path unit vector
double unit_vec[3]; double unit_vec[3];
unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters; unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters; unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters; unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
// Compute maximum allowable entry speed at junction by centripetal acceleration approximation. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
// Let a circle be tangent to both previous and current path line segments, where the junction // Let a circle be tangent to both previous and current path line segments, where the junction
// deviation is defined as the distance from the junction to the closest edge of the circle, // deviation is defined as the distance from the junction to the closest edge of the circle,
// colinear with the circle center. The circular segment joining the two paths represents the // colinear with the circle center. The circular segment joining the two paths represents the
// path of centripetal acceleration. Solve for max velocity based on max acceleration about the // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
// radius of the circle, defined indirectly by junction deviation. This may be also viewed as // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
// path width or max_jerk in the previous grbl version. This approach does not actually deviate // path width or max_jerk in the previous grbl version. This approach does not actually deviate
// from path, but used as a robust way to compute cornering speeds, as it takes into account the // from path, but used as a robust way to compute cornering speeds, as it takes into account the
// nonlinearities of both the junction angle and junction velocity. // nonlinearities of both the junction angle and junction velocity.
double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
// Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
// Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
// NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
- previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
- previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
// Skip and use default max junction speed for 0 degree acute junction. // Skip and use default max junction speed for 0 degree acute junction.
if (cos_theta < 0.95) { if (cos_theta < 0.95) {
vmax_junction = min(previous_nominal_speed,block->nominal_speed); vmax_junction = min(previous_nominal_speed,block->nominal_speed);
// Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
if (cos_theta > -0.95) { if (cos_theta > -0.95) {
// Compute maximum junction velocity based on maximum acceleration and junction deviation // Compute maximum junction velocity based on maximum acceleration and junction deviation
double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
vmax_junction = min(vmax_junction, vmax_junction = min(vmax_junction,
sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) ); sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
}
} }
} }
} #endif
#endif
// Start with a safe speed // Start with a safe speed
float vmax_junction = max_xy_jerk/2; float vmax_junction = max_xy_jerk / 2;
float vmax_junction_factor = 1.0; float vmax_junction_factor = 1.0;
if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2) float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
vmax_junction = min(vmax_junction, max_z_jerk/2); float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
if(fabs(current_speed[E_AXIS]) > max_e_jerk/2) if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
vmax_junction = min(vmax_junction, max_e_jerk/2); if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
vmax_junction = min(vmax_junction, block->nominal_speed); vmax_junction = min(vmax_junction, block->nominal_speed);
float safe_speed = vmax_junction; float safe_speed = vmax_junction;
if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2)); float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
// if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
dz = fabs(csz - previous_speed[Z_AXIS]),
de = fabs(cse - previous_speed[E_AXIS]),
jerk = sqrt(dx * dx + dy * dy);
// if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
vmax_junction = block->nominal_speed; vmax_junction = block->nominal_speed;
// } // }
if (jerk > max_xy_jerk) { if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
vmax_junction_factor = (max_xy_jerk/jerk); if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
} if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
}
if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
}
vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
} }
block->max_entry_speed = vmax_junction; block->max_entry_speed = vmax_junction;
// Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters); double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
block->entry_speed = min(vmax_junction, v_allowable); block->entry_speed = min(vmax_junction, v_allowable);
// Initialize planner efficiency flags // Initialize planner efficiency flags
@ -1009,119 +907,95 @@ Having the real displacement of the head, we can calculate the total movement le
// block nominal speed limits both the current and next maximum junction speeds. Hence, in both // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
// the reverse and forward planners, the corresponding block junction speed will always be at the // the reverse and forward planners, the corresponding block junction speed will always be at the
// the maximum junction speed and may always be ignored for any speed reduction checks. // the maximum junction speed and may always be ignored for any speed reduction checks.
if (block->nominal_speed <= v_allowable) { block->nominal_length_flag = (block->nominal_speed <= v_allowable);
block->nominal_length_flag = true;
}
else {
block->nominal_length_flag = false;
}
block->recalculate_flag = true; // Always calculate trapezoid for new block block->recalculate_flag = true; // Always calculate trapezoid for new block
// Update previous path unit_vector and nominal speed // Update previous path unit_vector and nominal speed
memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[] for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
previous_nominal_speed = block->nominal_speed; previous_nominal_speed = block->nominal_speed;
#ifdef ADVANCE
#ifdef ADVANCE // Calculate advance rate
// Calculate advance rate if (!bse || (!bsx && !bsy && !bsz)) {
if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
block->advance_rate = 0;
block->advance = 0;
}
else {
long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
(current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUSION_AREA * EXTRUSION_AREA)*256;
block->advance = advance;
if(acc_dist == 0) {
block->advance_rate = 0; block->advance_rate = 0;
} block->advance = 0;
else {
block->advance_rate = advance / (float)acc_dist;
} }
} else {
/* long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
SERIAL_ECHO_START; float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
SERIAL_ECHOPGM("advance :"); block->advance = advance;
SERIAL_ECHO(block->advance/256.0); block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
SERIAL_ECHOPGM("advance rate :"); }
SERIAL_ECHOLN(block->advance_rate/256.0); /*
*/ SERIAL_ECHO_START;
#endif // ADVANCE SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed, calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
safe_speed/block->nominal_speed);
// Move buffer head // Move buffer head
block_buffer_head = next_buffer_head; block_buffer_head = next_buffer_head;
// Update position // Update position
memcpy(position, target, sizeof(target)); // position[] = target[] for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
planner_recalculate(); planner_recalculate();
st_wake_up(); st_wake_up();
}
#if defined(ENABLE_AUTO_BED_LEVELING) && not defined(DELTA) } // plan_buffer_line()
vector_3 plan_get_position() {
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
//position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get bed_level");
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
//inverse.debug("in plan_get inverse");
position.apply_rotation(inverse);
//position.debug("after rotation");
return position;
}
#endif // ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
void plan_set_position(float x, float y, float z, const float &e)
{ #ifndef DELTA
apply_rotation_xyz(plan_bed_level_matrix, x, y, z); vector_3 plan_get_position() {
vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
//position.debug("in plan_get position");
//plan_bed_level_matrix.debug("in plan_get bed_level");
matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
//inverse.debug("in plan_get inverse");
position.apply_rotation(inverse);
//position.debug("after rotation");
return position;
}
#endif //!DELTA
void plan_set_position(float x, float y, float z, const float &e)
#else #else
void plan_set_position(const float &x, const float &y, const float &z, const float &e) void plan_set_position(const float &x, const float &y, const float &z, const float &e)
{
#endif // ENABLE_AUTO_BED_LEVELING #endif // ENABLE_AUTO_BED_LEVELING
{
#ifdef ENABLE_AUTO_BED_LEVELING
apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
#endif
position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]); float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]); float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]); float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]); float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]); st_set_position(nx, ny, nz, ne);
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
previous_speed[0] = 0.0;
previous_speed[1] = 0.0;
previous_speed[2] = 0.0;
previous_speed[3] = 0.0;
}
void plan_set_e_position(const float &e) for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
{ }
position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
void plan_set_e_position(const float &e) {
position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
st_set_e_position(position[E_AXIS]); st_set_e_position(position[E_AXIS]);
} }
uint8_t movesplanned()
{
return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
}
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp) void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
{
extrude_min_temp=temp;
}
#endif #endif
// Calculate the steps/s^2 acceleration rates, based on the mm/s^s // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
void reset_acceleration_rates() void reset_acceleration_rates() {
{ for (int i = 0; i < NUM_AXIS; i++)
for(int8_t i=0; i < NUM_AXIS; i++) axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
{
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
}
} }

View file

@ -21,20 +21,16 @@
// This module is to be considered a sub-module of stepper.c. Please don't include // This module is to be considered a sub-module of stepper.c. Please don't include
// this file from any other module. // this file from any other module.
#ifndef planner_h #ifndef PLANNER_H
#define planner_h #define PLANNER_H
#include "Marlin.h" #include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h"
#endif // ENABLE_AUTO_BED_LEVELING
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in // This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
// the source g-code and may never actually be reached if acceleration management is active. // the source g-code and may never actually be reached if acceleration management is active.
typedef struct { typedef struct {
// Fields used by the bresenham algorithm for tracing the line // Fields used by the bresenham algorithm for tracing the line
long steps_x, steps_y, steps_z, steps_e; // Step count along each axis long steps[NUM_AXIS]; // Step count along each axis
unsigned long step_event_count; // The number of step events required to complete this block unsigned long step_event_count; // The number of step events required to complete this block
long accelerate_until; // The index of the step event on which to stop acceleration long accelerate_until; // The index of the step event on which to stop acceleration
long decelerate_after; // The index of the step event on which to start decelerating long decelerate_after; // The index of the step event on which to start decelerating
@ -49,7 +45,7 @@ typedef struct {
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration
// float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis // float speed_x, speed_y, speed_z, speed_e; // Nominal mm/sec for each axis
float nominal_speed; // The nominal speed for this block in mm/sec float nominal_speed; // The nominal speed for this block in mm/sec
float entry_speed; // Entry speed at previous-current junction in mm/sec float entry_speed; // Entry speed at previous-current junction in mm/sec
float max_entry_speed; // Maximum allowable junction entry speed in mm/sec float max_entry_speed; // Maximum allowable junction entry speed in mm/sec
@ -65,48 +61,44 @@ typedef struct {
unsigned long acceleration_st; // acceleration steps/sec^2 unsigned long acceleration_st; // acceleration steps/sec^2
unsigned long fan_speed; unsigned long fan_speed;
#ifdef BARICUDA #ifdef BARICUDA
unsigned long valve_pressure; unsigned long valve_pressure;
unsigned long e_to_p_pressure; unsigned long e_to_p_pressure;
#endif #endif
volatile char busy; volatile char busy;
} block_t; } block_t;
#ifdef ENABLE_AUTO_BED_LEVELING #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
// this holds the required transform to compensate for bed level
extern matrix_3x3 plan_bed_level_matrix;
#endif // #ifdef ENABLE_AUTO_BED_LEVELING
// Initialize the motion plan subsystem // Initialize the motion plan subsystem
void plan_init(); void plan_init();
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in void check_axes_activity();
// millimaters. Feed rate specifies the speed of the motion.
// Get the number of buffered moves
extern volatile unsigned char block_buffer_head;
extern volatile unsigned char block_buffer_tail;
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder); #include "vector_3.h"
// this holds the required transform to compensate for bed level
extern matrix_3x3 plan_bed_level_matrix;
// Add a new linear movement to the buffer. x, y and z is the signed, absolute target position in
// millimaters. Feed rate specifies the speed of the motion.
void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);
// Set position. Used for G92 instructions.
void plan_set_position(float x, float y, float z, const float &e);
#ifndef DELTA #ifndef DELTA
// Get the position applying the bed level matrix if enabled // Get the position applying the bed level matrix if enabled
vector_3 plan_get_position(); vector_3 plan_get_position();
#endif #endif
#else #else //!ENABLE_AUTO_BED_LEVELING
void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder); void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
#endif // ENABLE_AUTO_BED_LEVELING void plan_set_position(const float &x, const float &y, const float &z, const float &e);
#endif //!ENABLE_AUTO_BED_LEVELING
// Set position. Used for G92 instructions.
#ifdef ENABLE_AUTO_BED_LEVELING
void plan_set_position(float x, float y, float z, const float &e);
#else
void plan_set_position(const float &x, const float &y, const float &z, const float &e);
#endif // ENABLE_AUTO_BED_LEVELING
void plan_set_e_position(const float &e); void plan_set_e_position(const float &e);
void check_axes_activity();
uint8_t movesplanned(); //return the nr of buffered moves
extern unsigned long minsegmenttime; extern unsigned long minsegmenttime;
extern float max_feedrate[NUM_AXIS]; // set the max speeds extern float max_feedrate[NUM_AXIS]; // set the max speeds
extern float axis_steps_per_unit[NUM_AXIS]; extern float axis_steps_per_unit[NUM_AXIS];
@ -122,44 +114,41 @@ extern float mintravelfeedrate;
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS]; extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];
#ifdef AUTOTEMP #ifdef AUTOTEMP
extern bool autotemp_enabled; extern bool autotemp_enabled;
extern float autotemp_max; extern float autotemp_max;
extern float autotemp_min; extern float autotemp_min;
extern float autotemp_factor; extern float autotemp_factor;
#endif #endif
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instructions
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
extern volatile unsigned char block_buffer_tail; extern volatile unsigned char block_buffer_tail;
// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
FORCE_INLINE void plan_discard_current_block()
{
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
}
}
// Gets the current block. Returns NULL if buffer empty
FORCE_INLINE block_t *plan_get_current_block()
{
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
// Returns true if the buffer has a queued block, false otherwise // Returns true if the buffer has a queued block, false otherwise
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); } FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
// Called when the current block is no longer needed. Discards
// the block and makes the memory available for new blocks.
FORCE_INLINE void plan_discard_current_block() {
if (blocks_queued())
block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}
// Gets the current block. Returns NULL if buffer empty
FORCE_INLINE block_t *plan_get_current_block() {
if (blocks_queued()) {
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return block;
}
else
return NULL;
}
#ifdef PREVENT_DANGEROUS_EXTRUDE #ifdef PREVENT_DANGEROUS_EXTRUDE
void set_extrude_min_temp(float temp); void set_extrude_min_temp(float temp);
#endif #endif
void reset_acceleration_rates(); void reset_acceleration_rates();
#endif
#endif //PLANNER_H

View file

@ -370,7 +370,7 @@ ISR(TIMER1_COMPA_vect) {
step_events_completed = 0; step_events_completed = 0;
#ifdef Z_LATE_ENABLE #ifdef Z_LATE_ENABLE
if (current_block->steps_z > 0) { if (current_block->steps[Z_AXIS] > 0) {
enable_z(); enable_z();
OCR1A = 2000; //1ms wait OCR1A = 2000; //1ms wait
return; return;
@ -411,7 +411,7 @@ ISR(TIMER1_COMPA_vect) {
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \ #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \ bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \ if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \ endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
endstop_## axis ##_hit = true; \ endstop_## axis ##_hit = true; \
step_events_completed = current_block->step_event_count; \ step_events_completed = current_block->step_event_count; \
@ -420,54 +420,54 @@ ISR(TIMER1_COMPA_vect) {
// Check X and Y endstops // Check X and Y endstops
if (check_endstops) { if (check_endstops) {
#ifndef COREXY #ifdef COREXY
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
#else
// Head direction in -X axis for CoreXY bots. // Head direction in -X axis for CoreXY bots.
// If DeltaX == -DeltaY, the movement is only in Y axis // If DeltaX == -DeltaY, the movement is only in Y axis
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS))) if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
if (TEST(out_bits, X_HEAD)) if (TEST(out_bits, X_HEAD))
#endif
{ // -direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
UPDATE_ENDSTOP(x, X, min, MIN);
#endif
}
}
else { // +direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
UPDATE_ENDSTOP(x, X, max, MAX);
#endif
}
}
#ifndef COREXY
if (TEST(out_bits, Y_AXIS)) // -direction
#else #else
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
#endif
{ // -direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
UPDATE_ENDSTOP(x, X, min, MIN);
#endif
}
}
else { // +direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
UPDATE_ENDSTOP(x, X, max, MAX);
#endif
}
}
#ifdef COREXY
// Head direction in -Y axis for CoreXY bots. // Head direction in -Y axis for CoreXY bots.
// If DeltaX == DeltaY, the movement is only in X axis // If DeltaX == DeltaY, the movement is only in X axis
if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS))) if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
if (TEST(out_bits, Y_HEAD)) if (TEST(out_bits, Y_HEAD))
#else
if (TEST(out_bits, Y_AXIS)) // -direction
#endif #endif
{ // -direction { // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0 #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
UPDATE_ENDSTOP(y, Y, min, MIN); UPDATE_ENDSTOP(y, Y, min, MIN);
#endif #endif
} }
else { // +direction else { // +direction
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0 #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
UPDATE_ENDSTOP(y, Y, max, MAX); UPDATE_ENDSTOP(y, Y, max, MAX);
#endif #endif
} }
} }
if (TEST(out_bits, Z_AXIS)) { // -direction if (TEST(out_bits, Z_AXIS)) { // -direction
@ -515,7 +515,7 @@ ISR(TIMER1_COMPA_vect) {
#endif #endif
#ifdef ADVANCE #ifdef ADVANCE
counter_e += current_block->steps_e; counter_e += current_block->steps[E_AXIS];
if (counter_e > 0) { if (counter_e > 0) {
counter_e -= current_block->step_event_count; counter_e -= current_block->step_event_count;
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1; e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
@ -529,15 +529,14 @@ ISR(TIMER1_COMPA_vect) {
* instead of doing each in turn. The extra tests add enough * instead of doing each in turn. The extra tests add enough
* lag to allow it work with without needing NOPs * lag to allow it work with without needing NOPs
*/ */
counter_x += current_block->steps_x; #define STEP_ADD(axis, AXIS) \
if (counter_x > 0) X_STEP_WRITE(HIGH); counter_## axis += current_block->steps[AXIS ##_AXIS]; \
counter_y += current_block->steps_y; if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
if (counter_y > 0) Y_STEP_WRITE(HIGH); STEP_ADD(x,X);
counter_z += current_block->steps_z; STEP_ADD(y,Y);
if (counter_z > 0) Z_STEP_WRITE(HIGH); STEP_ADD(z,Z);
#ifndef ADVANCE #ifndef ADVANCE
counter_e += current_block->steps_e; STEP_ADD(e,E);
if (counter_e > 0) E_STEP_WRITE(HIGH);
#endif #endif
#define STEP_IF_COUNTER(axis, AXIS) \ #define STEP_IF_COUNTER(axis, AXIS) \
@ -557,7 +556,7 @@ ISR(TIMER1_COMPA_vect) {
#else // !CONFIG_STEPPERS_TOSHIBA #else // !CONFIG_STEPPERS_TOSHIBA
#define APPLY_MOVEMENT(axis, AXIS) \ #define APPLY_MOVEMENT(axis, AXIS) \
counter_## axis += current_block->steps_## axis; \ counter_## axis += current_block->steps[AXIS ##_AXIS]; \
if (counter_## axis > 0) { \ if (counter_## axis > 0) { \
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \ AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
counter_## axis -= current_block->step_event_count; \ counter_## axis -= current_block->step_event_count; \