Fixed Z_PROBE_PIN pullup bug.

Documented some additional areas that should be addressed if Z_PROBE is
fully separated from Z_MIN or Z_MAX.
Fixed a documentation error in sanity checks. Servos start at 0 not 1.
This commit is contained in:
Chris Roadfeldt 2015-03-31 02:56:41 -05:00
parent ec1d9c0b8f
commit 17707e7479
4 changed files with 581 additions and 413 deletions

View file

@ -186,7 +186,7 @@
#define ENDSTOPPULLUP_ZMIN
#endif
#ifndef DISABLE_Z_PROBE_ENDSTOP
#define ENDSTOPPULL_ZPROBE
#define ENDSTOPPULLUP_ZPROBE
#endif
#endif

View file

@ -79,7 +79,7 @@
// G4 - Dwell S<seconds> or P<milliseconds>
// G10 - retract filament according to settings of M207
// G11 - retract recover filament according to settings of M208
// G28 - Home all Axis
// G28 - Home one or more axes
// G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
// G30 - Single Z Probe, probes bed at current XY location.
// G31 - Dock sled (Z_PROBE_SLED only)
@ -170,10 +170,10 @@
// M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
// M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
// M406 - Turn off Filament Sensor extrusion control
// M407 - Display measured filament diameter
// M407 - Displays measured filament diameter
// M500 - Store parameters in EEPROM
// M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
// M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
// M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
// M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
@ -210,7 +210,6 @@ int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedmultiply = 100; //100->1 200->2
int saved_feedmultiply;
int extrudemultiply = 100; //100->1 200->2
int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
@ -273,7 +272,7 @@ int fanSpeed = 0;
#endif // FWRETRACT
#if defined(ULTIPANEL) && HAS_POWER_SWITCH
#ifdef ULTIPANEL
bool powersupply =
#ifdef PS_DEFAULT_OFF
false
@ -306,19 +305,19 @@ int fanSpeed = 0;
#ifdef SCARA
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
static float delta[3] = { 0, 0, 0 };
#endif
#endif
bool cancel_heatup = false;
#ifdef FILAMENT_SENSOR
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int delay_index1 = 0; //index into ring buffer
int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist = 0; //delay distance counter
int delay_index1=0; //index into ring buffer
int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist=0; //delay distance counter
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
@ -477,8 +476,6 @@ bool enquecommand(const char *cmd)
return true;
}
void setup_killpin()
{
#if defined(KILL_PIN) && KILL_PIN > -1
@ -519,8 +516,8 @@ void setup_powerhold()
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if HAS_POWER_SWITCH
#ifdef PS_DEFAULT_OFF
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
#if defined(PS_DEFAULT_OFF)
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
@ -932,7 +929,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
else
// In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
@ -961,15 +958,15 @@ static void axis_is_at_home(int axis) {
if (axis == X_AXIS) {
if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
return;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
float xoff = home_offset[X_AXIS];
current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
return;
}
}
@ -1023,178 +1020,189 @@ static void axis_is_at_home(int axis) {
}
/**
* Shorthand to tell the planner our current position (in mm).
* Some planner shorthand inline functions
*/
inline void line_to_current_position() {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_z(float zPosition) {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_destination() {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
}
inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef AUTO_BED_LEVELING_GRID
#ifndef DELTA
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
#ifdef AUTO_BED_LEVELING_GRID
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
#ifndef DELTA
vector_3 corrected_position = plan_get_position();
//corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
sync_plan_position();
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
//corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
sync_plan_position();
}
#endif // !DELTA
#else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
sync_plan_position();
}
#endif // !AUTO_BED_LEVELING_GRID
static void run_z_probe() {
#ifdef DELTA
float start_z = current_position[Z_AXIS];
long start_steps = st_get_position(Z_AXIS);
// move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_raw();
st_synchronize();
endstops_hit_on_purpose();
// we have to let the planner know where we are right now as it is not where we said to go.
long stop_steps = st_get_position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else // !DELTA
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
line_to_z(zPosition);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_retract_mm(Z_AXIS);
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose();
// move back down slowly to find bed
if (homing_bump_divisor[Z_AXIS] >= 1)
feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
else {
feedrate = homing_feedrate[Z_AXIS] / 10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
}
zPosition -= home_retract_mm(Z_AXIS) * 2;
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
sync_plan_position();
#endif // !DELTA
}
#endif
#else // not AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
sync_plan_position();
}
#endif // AUTO_BED_LEVELING_GRID
static void run_z_probe() {
#ifdef DELTA
float start_z = current_position[Z_AXIS];
long start_steps = st_get_position(Z_AXIS);
// move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_raw();
st_synchronize();
endstops_hit_on_purpose();
// we have to let the planner know where we are right now as it is not where we said to go.
long stop_steps = st_get_position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// move down until you find the bed
float zPosition = -10;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_retract_mm(Z_AXIS);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
// move back down slowly to find bed
if (homing_bump_divisor[Z_AXIS] >= 1) {
feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
}
else {
feedrate = homing_feedrate[Z_AXIS]/10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
}
zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to
sync_plan_position();
#endif
}
static void do_blocking_move_to(float x, float y, float z) {
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
#ifdef DELTA
#ifdef DELTA
feedrate = XY_TRAVEL_SPEED;
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[Z_AXIS] = z;
prepare_move_raw();
st_synchronize();
feedrate = XY_TRAVEL_SPEED;
#else
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[Z_AXIS] = z;
prepare_move_raw();
st_synchronize();
feedrate = homing_feedrate[Z_AXIS];
#else
current_position[Z_AXIS] = z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = homing_feedrate[Z_AXIS];
feedrate = xy_travel_speed;
current_position[Z_AXIS] = z;
line_to_current_position();
st_synchronize();
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
feedrate = xy_travel_speed;
#endif
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
line_to_current_position();
st_synchronize();
#endif
feedrate = oldFeedRate;
}
}
static void setup_for_endstop_move() {
static void setup_for_endstop_move() {
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
feedmultiply = 100;
previous_millis_cmd = millis();
enable_endstops(true);
}
static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
}
static void clean_up_after_endstop_move() {
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
}
}
<<<<<<< HEAD
static void engage_z_probe() {
// Engage Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
@ -1229,6 +1237,9 @@ static void engage_z_probe() {
st_synchronize();
// If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
// it's own unique entity, then the following logic will need to be modified
// so it only uses the Z_PROBE
#if defined(Z_PROBE_AND_ENDSTOP)
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if (z_probe_endstop)
@ -1242,13 +1253,59 @@ static void engage_z_probe() {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
=======
static void engage_z_probe() {
#ifdef SERVO_ENDSTOPS
// Engage Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) {
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#elif defined(Z_PROBE_ALLEN_KEY)
feedrate = homing_feedrate[X_AXIS];
// Move to the start position to initiate deployment
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
prepare_move_raw();
// Home X to touch the belt
feedrate = homing_feedrate[X_AXIS]/10;
destination[X_AXIS] = 0;
prepare_move_raw();
// Home Y for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[Y_AXIS] = 0;
prepare_move_raw();
st_synchronize();
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (z_min_endstop) {
if (!Stopped) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
>>>>>>> MarlinFirmware/Development
}
Stop();
}
#endif
}
}
#endif // Z_PROBE_ALLEN_KEY
<<<<<<< HEAD
static void retract_z_probe() {
// Retract Z Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
@ -1298,6 +1355,9 @@ static void retract_z_probe() {
st_synchronize();
// If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
// it's own unique entity, then the following logic will need to be modified
// so it only uses the Z_PROBE
#if defined(Z_PROBE_AND_ENDSTOP)
bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if (z_probe_endstop)
@ -1311,126 +1371,219 @@ static void retract_z_probe() {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
=======
}
static void retract_z_probe(const float z_after=Z_RAISE_AFTER_PROBING) {
#ifdef SERVO_ENDSTOPS
// Retract Z Servo endstop if enabled
if (servo_endstops[Z_AXIS] >= 0) {
if (z_after > 0) {
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_after);
st_synchronize();
>>>>>>> MarlinFirmware/Development
}
#if SERVO_LEVELING
servos[servo_endstops[Z_AXIS]].attach(0);
#endif
servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
#if SERVO_LEVELING
delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_endstops[Z_AXIS]].detach();
#endif
}
#elif defined(Z_PROBE_ALLEN_KEY)
// Move up for safety
feedrate = homing_feedrate[X_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_raw();
// Move to the start position to initiate retraction
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
prepare_move_raw();
// Move the nozzle down to push the probe into retracted position
feedrate = homing_feedrate[Z_AXIS]/10;
destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
prepare_move_raw();
// Move up for safety
feedrate = homing_feedrate[Z_AXIS]/2;
destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
prepare_move_raw();
// Home XY for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[X_AXIS] = 0;
destination[Y_AXIS] = 0;
prepare_move_raw();
st_synchronize();
// If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
// it's own unique entity, then the following logic will need to be modified
// so it only uses the Z_PROBE
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (!z_min_endstop) {
if (!Stopped) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
}
#endif
}
enum ProbeAction {
ProbeStay = 0,
ProbeEngage = BIT(0),
ProbeRetract = BIT(1),
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
};
// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeEngage) engage_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeRetract) retract_z_probe(z_before);
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
}
#endif
}
enum ProbeAction {
ProbeStay = 0,
ProbeEngage = BIT(0),
ProbeRetract = BIT(1),
ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
};
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeEngage) engage_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
if (retract_action & ProbeRetract) retract_z_probe();
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
return measured_z;
}
return measured_z;
}
#ifdef DELTA
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
if (bed_level[x][y] != 0.0) {
return; // Don't overwrite good values.
}
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
}
#ifdef DELTA
// Fill in the unprobed points (corners of circular print surface)
// using linear extrapolation, away from the center.
static void extrapolate_unprobed_bed_level() {
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
for (int y = 0; y <= half; y++) {
for (int x = 0; x <= half; x++) {
if (x + y < 3) continue;
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
/**
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
*/
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
if (bed_level[x][y] != 0.0) {
return; // Don't overwrite good values.
}
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
}
}
}
// Print calibration results for plotting or manual frame adjustment.
static void print_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
SERIAL_PROTOCOLPGM(" ");
// Fill in the unprobed points (corners of circular print surface)
// using linear extrapolation, away from the center.
static void extrapolate_unprobed_bed_level() {
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
for (int y = 0; y <= half; y++) {
for (int x = 0; x <= half; x++) {
if (x + y < 3) continue;
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
}
}
}
SERIAL_ECHOLN("");
}
}
// Reset calibration results to zero.
void reset_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
bed_level[x][y] = 0.0;
// Print calibration results for plotting or manual frame adjustment.
static void print_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
SERIAL_PROTOCOLPGM(" ");
}
SERIAL_ECHOLN("");
}
}
}
}
#endif // DELTA
// Reset calibration results to zero.
void reset_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
bed_level[x][y] = 0.0;
}
}
}
#endif // DELTA
#endif // ENABLE_AUTO_BED_LEVELING
static void homeaxis(int axis) {
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis==X_AXIS ? HOMEAXIS_DO(X) :
axis==Y_AXIS ? HOMEAXIS_DO(Y) :
axis==Z_AXIS ? HOMEAXIS_DO(Z) :
0) {
int axis_home_dir = home_dir(axis);
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS)
axis_home_dir = x_home_dir(active_extruder);
#endif
if (axis == X_AXIS ? HOMEAXIS_DO(X) :
axis == Y_AXIS ? HOMEAXIS_DO(Y) :
axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
int axis_home_dir;
#ifdef DUAL_X_CARRIAGE
if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
#else
axis_home_dir = home_dir(axis);
#endif
current_position[axis] = 0;
sync_plan_position();
#ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled
#ifdef SERVO_ENDSTOPS
#if SERVO_LEVELING
if (axis == Z_AXIS) {
engage_z_probe();
}
else
#endif // SERVO_LEVELING
if (servo_endstops[axis] > -1)
servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
#endif // SERVO_ENDSTOPS
#endif // Z_PROBE_SLED
<<<<<<< HEAD
#ifndef Z_PROBE_SLED
// Engage Servo endstop if enabled and we are not using Z_PROBE_AND_ENDSTOP unless we are using Z_SAFE_HOMING
#ifdef SERVO_ENDSTOPS && (defined (Z_SAFE_HOMING) || ! defined (Z_PROBE_AND_ENDSTOP))
@ -1445,33 +1598,33 @@ static void homeaxis(int axis) {
}
#endif
#endif // Z_PROBE_SLED
=======
>>>>>>> MarlinFirmware/Development
#ifdef Z_DUAL_ENDSTOPS
if (axis==Z_AXIS) In_Homing_Process(true);
if (axis == Z_AXIS) In_Homing_Process(true);
#endif
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
current_position[axis] = 0;
sync_plan_position();
destination[axis] = -home_retract_mm(axis) * axis_home_dir;
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
if (homing_bump_divisor[axis] >= 1)
{
feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
}
else
{
feedrate = homing_feedrate[axis]/10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
else {
feedrate = homing_feedrate[axis] / 10;
SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
#ifdef Z_DUAL_ENDSTOPS
if (axis==Z_AXIS)
@ -1486,7 +1639,7 @@ static void homeaxis(int axis) {
destination[axis] = fabs(z_endstop_adj);
if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
Lock_z_motor(false);
Lock_z2_motor(false);
@ -1499,7 +1652,7 @@ static void homeaxis(int axis) {
if (endstop_adj[axis] * axis_home_dir < 0) {
sync_plan_position();
destination[axis] = endstop_adj[axis];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
}
#endif
@ -1544,7 +1697,7 @@ void refresh_cmd_timeout(void)
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_feedrate*60;
feedrate = retract_feedrate * 60;
retracted[active_extruder]=true;
prepare_move();
if(retract_zlift > 0.01) {
@ -1580,8 +1733,8 @@ void refresh_cmd_timeout(void)
}
plan_set_e_position(current_position[E_AXIS]);
float oldFeedrate = feedrate;
feedrate=retract_recover_feedrate*60;
retracted[active_extruder]=false;
feedrate = retract_recover_feedrate * 60;
retracted[active_extruder] = false;
prepare_move();
feedrate = oldFeedrate;
}
@ -1735,17 +1888,16 @@ inline void gcode_G4() {
*/
inline void gcode_G28() {
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#ifdef DELTA
reset_bed_level();
#else
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif
#endif
#if defined(MESH_BED_LEVELING)
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
#endif // MESH_BED_LEVELING
#endif
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
@ -1768,7 +1920,7 @@ inline void gcode_G28() {
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
endstops_hit_on_purpose();
@ -1816,7 +1968,7 @@ inline void gcode_G28() {
} else {
feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
}
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
st_synchronize();
axis_is_at_home(X_AXIS);
@ -1824,7 +1976,7 @@ inline void gcode_G28() {
sync_plan_position();
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose();
@ -1891,7 +2043,7 @@ inline void gcode_G28() {
#if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
line_to_destination();
st_synchronize();
#endif
HOMEAXIS(Z);
@ -1903,11 +2055,11 @@ inline void gcode_G28() {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED / 60;
feedrate = XY_TRAVEL_SPEED;
current_position[Z_AXIS] = 0;
sync_plan_position();
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
line_to_destination();
st_synchronize();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
@ -1929,7 +2081,7 @@ inline void gcode_G28() {
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
line_to_destination();
st_synchronize();
HOMEAXIS(Z);
}
@ -1982,7 +2134,7 @@ inline void gcode_G28() {
destination[Z_AXIS] = current_position[Z_AXIS];
destination[E_AXIS] = current_position[E_AXIS];
feedrate = homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
line_to_destination();
st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
sync_plan_position();
@ -1996,6 +2148,19 @@ inline void gcode_G28() {
endstops_hit_on_purpose();
}
#if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
// Check for known positions in X and Y
inline bool can_run_bed_leveling() {
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return false;
}
#endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
#ifdef MESH_BED_LEVELING
/**
@ -2010,6 +2175,10 @@ inline void gcode_G28() {
*
*/
inline void gcode_G29() {
// Prevent leveling without first homing in X and Y
if (!can_run_bed_leveling()) return;
static int probe_point = -1;
int state = 0;
if (code_seen('S') || code_seen('s')) {
@ -2126,13 +2295,8 @@ inline void gcode_G28() {
*/
inline void gcode_G29() {
// Prevent user from running a G29 without first homing in X and Y
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
// Prevent leveling without first homing in X and Y
if (!can_run_bed_leveling()) return;
int verbose_level = 1;
@ -2214,16 +2378,15 @@ inline void gcode_G28() {
st_synchronize();
if (!dryrun)
{
if (!dryrun) {
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
plan_bed_level_matrix.set_to_identity();
#ifdef DELTA
reset_bed_level();
#else //!DELTA
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position during G29");
current_position[X_AXIS] = uncorrected_position.x;
@ -2231,7 +2394,7 @@ inline void gcode_G28() {
current_position[Z_AXIS] = uncorrected_position.z;
sync_plan_position();
#endif
#endif // !DELTA
}
setup_for_endstop_move();
@ -2292,13 +2455,12 @@ inline void gcode_G28() {
// raise extruder
float measured_z,
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
#ifdef DELTA
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
if (distance_from_center > DELTA_PROBABLE_RADIUS)
continue;
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
#endif //DELTA
// Enhanced G29 - Do not retract servo between probes
@ -2326,6 +2488,11 @@ inline void gcode_G28() {
#endif
probePointCounter++;
manage_heater();
manage_inactivity();
lcd_update();
} //xProbe
} //yProbe
@ -2412,16 +2579,14 @@ inline void gcode_G28() {
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
// Correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
if (!dryrun)
{
float x_tmp, y_tmp, z_tmp, real_z;
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
z_tmp = current_position[Z_AXIS];
if (!dryrun) {
// Correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
z_tmp = current_position[Z_AXIS],
real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
@ -2757,11 +2922,13 @@ inline void gcode_M42() {
} // code_seen('S')
}
// If Z_PROBE_AND_ENDSTOP is changed to completely break it's bonds from Z_MIN_ENDSTOP and become
// it's own unique entity, then the following logic will need to be modified
// so it only uses the Z_PROBE
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#if (Z_MIN_PIN == -1) && (! defined (Z_PROBE_PIN) || Z_PROBE_PIN == -1)
#error "You must have a Z_MIN or Z_PROBE endstop in order to enable calculation of Z-Probe repeatability."
#endif
/**
@ -3267,7 +3434,7 @@ inline void gcode_M140() {
if (code_seen('S')) setTargetBed(code_value());
}
#if HAS_POWER_SWITCH
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
/**
* M80: Turn on Power Supply
@ -3289,12 +3456,10 @@ inline void gcode_M140() {
#endif
}
#endif // HAS_POWER_SWITCH
#endif // PS_ON_PIN
/**
* M81: Turn off Power, including Power Supply, if there is one.
*
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
* M81: Turn off Power Supply
*/
inline void gcode_M81() {
disable_heater();
@ -3309,19 +3474,16 @@ inline void gcode_M81() {
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize();
suicide();
#elif HAS_POWER_SWITCH
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#ifdef ULTIPANEL
#if HAS_POWER_SWITCH
powersupply = false;
#endif
powersupply = false;
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
lcd_update();
#endif
}
/**
* M82: Set E codes absolute (default)
*/
@ -3490,7 +3652,7 @@ inline void gcode_M119() {
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if defined(Z_PROBE_PIN) && Z_PROBE_PIN >-1
#if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
@ -3794,7 +3956,7 @@ inline void gcode_M221() {
extruder_multiply[tmp_extruder] = sval;
}
else {
extrudemultiply = sval;
extruder_multiply[active_extruder] = sval;
}
}
}
@ -4231,7 +4393,7 @@ inline void gcode_M400() { st_synchronize(); }
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrudemultiply);
//SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
}
/**
@ -4704,18 +4866,14 @@ void process_commands() {
gcode_G28();
break;
#if defined(MESH_BED_LEVELING)
case 29: // G29 Handle mesh based leveling
#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29();
break;
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29();
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
@ -4862,15 +5020,15 @@ void process_commands() {
#endif //HEATER_2_PIN
#endif //BARICUDA
#if HAS_POWER_SWITCH
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
gcode_M80();
break;
#endif // HAS_POWER_SWITCH
#endif // PS_ON_PIN
case 81: // M81 - Turn off Power, including Power Supply, if possible
case 81: // M81 - Turn off Power Supply
gcode_M81();
break;
@ -5410,69 +5568,72 @@ void prepare_move()
#ifdef SCARA //for now same as delta-code
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float difference[NUM_AXIS];
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(scara_segments_per_second * seconds));
//SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
//SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
//SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i = 0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
}
calculate_delta(destination);
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // SCARA
#ifdef DELTA
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) {
difference[i] = destination[i] - current_position[i];
}
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
if (cartesian_mm < 0.000001) { return; }
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i] + difference[i] * fraction;
calculate_delta(destination);
//SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
//SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
//SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // SCARA
#endif // DELTA
#ifdef DELTA
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
sq(difference[Y_AXIS]) +
sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return;
float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
calculate_delta(destination);
#ifdef ENABLE_AUTO_BED_LEVELING
adjust_delta(destination);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
destination[E_AXIS], feedrate*feedmultiply/60/100.0,
active_extruder);
}
#endif // DELTA
#ifdef DUAL_X_CARRIAGE
if (active_extruder_parked)
@ -5518,13 +5679,13 @@ for (int s = 1; s <= steps; s++) {
#if ! (defined DELTA || defined SCARA)
// Do not use feedmultiply for E or Z only moves
if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
line_to_destination();
} else {
#if defined(MESH_BED_LEVELING)
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
return;
#else
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
#endif // MESH_BED_LEVELING
}
#endif // !(DELTA || SCARA)
@ -5844,17 +6005,19 @@ void kill()
disable_e2();
disable_e3();
#if HAS_POWER_SWITCH
pinMode(PS_ON_PIN, INPUT);
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
LCD_ALERTMESSAGEPGM(MSG_KILLED);
// FMC small patch to update the LCD before ending
sei(); // enable interrupts
for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
for ( int i=5; i--; lcd_update())
{
delay(200);
}
cli(); // disable interrupts
suicide();
while(1) { /* Intentionally left empty */ } // Wait for reset

View file

@ -116,7 +116,7 @@
#error You must have at least 1 servo defined for NUM_SERVOS to use Z_PROBE_AND_ENDSTOP
#endif
#ifndef SERVO_ENDSTOPS
#error You must have SERVO_ENDSTOPS defined and have the Z index set to at least 1 to use Z_PROBE_AND_ENDSTOP
#error You must have SERVO_ENDSTOPS defined and have the Z index set to at least 0 or above to use Z_PROBE_AND_ENDSTOP
#endif
#ifndef SERVO_ENDSTOP_ANGLES
#error You must have SERVO_ENDSTOP_ANGLES defined for Z Extend and Retract to use Z_PROBE_AND_ENSTOP

View file

@ -76,6 +76,7 @@ volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile bool endstop_x_hit = false;
static volatile bool endstop_y_hit = false;
static volatile bool endstop_z_hit = false;
static volatile bool endstop_z_probe_hit = false;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
@ -258,11 +259,11 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
void endstops_hit_on_purpose() {
endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false;
}
void checkHitEndstops() {
if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if (endstop_x_hit) {
@ -277,6 +278,10 @@ void checkHitEndstops() {
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
if (endstop_z_probe_hit) {
SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
}
SERIAL_EOL;
endstops_hit_on_purpose();
@ -549,7 +554,7 @@ ISR(TIMER1_COMPA_vect) {
if(z_probe_endstop && old_z_probe_endstop)
{
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
endstop_z_probe_hit=true;
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
}
@ -596,7 +601,7 @@ ISR(TIMER1_COMPA_vect) {
if(z_probe_endstop && old_z_probe_endstop)
{
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_z_hit=true;
endstop_z_probe_hit=true;
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
}
old_z_probe_endstop = z_probe_endstop;