Merge pull request #8773 from thinkyhead/bf2_filwidth_refinement
[2.0.x] Comment, fix filament width sensor
This commit is contained in:
commit
21a7b4f26d
8 changed files with 69 additions and 47 deletions
|
@ -56,7 +56,7 @@ void GcodeSuite::M405() {
|
||||||
}
|
}
|
||||||
|
|
||||||
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
||||||
const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
|
const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
|
||||||
|
|
||||||
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
||||||
measurement_delay[i] = temp_ratio;
|
measurement_delay[i] = temp_ratio;
|
||||||
|
@ -65,11 +65,6 @@ void GcodeSuite::M405() {
|
||||||
}
|
}
|
||||||
|
|
||||||
filament_sensor = true;
|
filament_sensor = true;
|
||||||
|
|
||||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
||||||
//SERIAL_PROTOCOL(filament_width_meas);
|
|
||||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
||||||
//SERIAL_PROTOCOL(planner.flow_percentage[active_extruder]);
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
|
|
@ -660,10 +660,12 @@ static void lcd_implementation_status_screen() {
|
||||||
strcpy(zstring, ftostr52sp(FIXFLOAT(LOGICAL_Z_POSITION(current_position[Z_AXIS]))));
|
strcpy(zstring, ftostr52sp(FIXFLOAT(LOGICAL_Z_POSITION(current_position[Z_AXIS]))));
|
||||||
#if ENABLED(FILAMENT_LCD_DISPLAY)
|
#if ENABLED(FILAMENT_LCD_DISPLAY)
|
||||||
strcpy(wstring, ftostr12ns(filament_width_meas));
|
strcpy(wstring, ftostr12ns(filament_width_meas));
|
||||||
if (parser.volumetric_enabled)
|
strcpy(mstring, itostr3(100.0 * (
|
||||||
strcpy(mstring, itostr3(100.0 * planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
parser.volumetric_enabled
|
||||||
else
|
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
||||||
strcpy_P(mstring, PSTR("---"));
|
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
||||||
|
)
|
||||||
|
));
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -884,12 +884,13 @@ static void lcd_implementation_status_screen() {
|
||||||
lcd_printPGM(PSTR("Dia "));
|
lcd_printPGM(PSTR("Dia "));
|
||||||
lcd.print(ftostr12ns(filament_width_meas));
|
lcd.print(ftostr12ns(filament_width_meas));
|
||||||
lcd_printPGM(PSTR(" V"));
|
lcd_printPGM(PSTR(" V"));
|
||||||
if (parser.volumetric_enabled) {
|
lcd.print(itostr3(100.0 * (
|
||||||
lcd.print(itostr3(100.0 * planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));
|
parser.volumetric_enabled
|
||||||
lcd.write('%');
|
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
||||||
}
|
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
||||||
else
|
)
|
||||||
lcd_printPGM(PSTR("--- "));
|
));
|
||||||
|
lcd.write('%');
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -561,10 +561,19 @@ void Planner::check_axes_activity() {
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Get a volumetric multiplier from a filament diameter.
|
||||||
|
* This is the reciprocal of the circular cross-section area.
|
||||||
|
* Return 1.0 with volumetric off or a diameter of 0.0.
|
||||||
|
*/
|
||||||
inline float calculate_volumetric_multiplier(const float &diameter) {
|
inline float calculate_volumetric_multiplier(const float &diameter) {
|
||||||
return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
|
return (parser.volumetric_enabled && diameter) ? 1.0 / CIRCLE_AREA(diameter * 0.5) : 1.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert the filament sizes into volumetric multipliers.
|
||||||
|
* The multiplier converts a given E value into a length.
|
||||||
|
*/
|
||||||
void Planner::calculate_volumetric_multipliers() {
|
void Planner::calculate_volumetric_multipliers() {
|
||||||
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
|
for (uint8_t i = 0; i < COUNT(filament_size); i++) {
|
||||||
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
||||||
|
@ -572,6 +581,25 @@ void Planner::calculate_volumetric_multipliers() {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
|
/**
|
||||||
|
* Convert the ratio value given by the filament width sensor
|
||||||
|
* into a volumetric multiplier. Conversion differs when using
|
||||||
|
* linear extrusion vs volumetric extrusion.
|
||||||
|
*/
|
||||||
|
void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
|
||||||
|
// Reconstitute the nominal/measured ratio
|
||||||
|
const float nom_meas_ratio = 1.0 + 0.01 * encoded_ratio,
|
||||||
|
ratio_2 = sq(nom_meas_ratio);
|
||||||
|
|
||||||
|
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
|
||||||
|
? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5) // Volumetric uses a true volumetric multiplier
|
||||||
|
: ratio_2; // Linear squares the ratio, which scales the volume
|
||||||
|
|
||||||
|
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
#if PLANNER_LEVELING
|
#if PLANNER_LEVELING
|
||||||
/**
|
/**
|
||||||
* rx, ry, rz - Cartesian positions in mm
|
* rx, ry, rz - Cartesian positions in mm
|
||||||
|
@ -1057,7 +1085,7 @@ void Planner::_buffer_steps(const int32_t (&target)[XYZE], float fr_mm_s, const
|
||||||
// If the index has changed (must have gone forward)...
|
// If the index has changed (must have gone forward)...
|
||||||
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
|
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
|
||||||
filwidth_e_count = 0; // Reset the E movement counter
|
filwidth_e_count = 0; // Reset the E movement counter
|
||||||
const uint8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
|
const uint8_t meas_sample = thermalManager.widthFil_to_size_ratio();
|
||||||
do {
|
do {
|
||||||
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
||||||
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
||||||
|
|
|
@ -293,6 +293,10 @@ class Planner {
|
||||||
// Update multipliers based on new diameter measurements
|
// Update multipliers based on new diameter measurements
|
||||||
static void calculate_volumetric_multipliers();
|
static void calculate_volumetric_multipliers();
|
||||||
|
|
||||||
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
|
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
|
||||||
|
#endif
|
||||||
|
|
||||||
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
|
FORCE_INLINE static void set_filament_size(const uint8_t e, const float &v) {
|
||||||
filament_size[e] = v;
|
filament_size[e] = v;
|
||||||
// make sure all extruders have some sane value for the filament size
|
// make sure all extruders have some sane value for the filament size
|
||||||
|
|
|
@ -688,7 +688,7 @@ void Stepper::isr() {
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
const hal_timer_t interval = calc_timer_interval(acc_step_rate);
|
const hal_timer_t interval = calc_timer_interval(acc_step_rate);
|
||||||
|
|
||||||
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
||||||
_NEXT_ISR(ocr_val);
|
_NEXT_ISR(ocr_val);
|
||||||
|
|
||||||
acceleration_time += interval;
|
acceleration_time += interval;
|
||||||
|
@ -725,7 +725,7 @@ void Stepper::isr() {
|
||||||
// step_rate to timer interval
|
// step_rate to timer interval
|
||||||
const hal_timer_t interval = calc_timer_interval(step_rate);
|
const hal_timer_t interval = calc_timer_interval(step_rate);
|
||||||
|
|
||||||
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
||||||
_NEXT_ISR(ocr_val);
|
_NEXT_ISR(ocr_val);
|
||||||
deceleration_time += interval;
|
deceleration_time += interval;
|
||||||
|
|
||||||
|
@ -754,7 +754,7 @@ void Stepper::isr() {
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
|
||||||
_NEXT_ISR(ocr_val);
|
_NEXT_ISR(ocr_val);
|
||||||
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
// ensure we're running at the correct step rate, even if we just came off an acceleration
|
||||||
step_loops = step_loops_nominal;
|
step_loops = step_loops_nominal;
|
||||||
|
|
|
@ -740,17 +740,6 @@ float Temperature::get_pid_output(const int8_t e) {
|
||||||
* - Apply filament width to the extrusion rate (may move)
|
* - Apply filament width to the extrusion rate (may move)
|
||||||
* - Update the heated bed PID output value
|
* - Update the heated bed PID output value
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/**
|
|
||||||
* The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
|
|
||||||
* compile error.
|
|
||||||
* thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
|
|
||||||
*
|
|
||||||
* This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
|
|
||||||
*
|
|
||||||
* The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
|
|
||||||
*/
|
|
||||||
//void Temperature::manage_heater() __attribute__((__optimize__("O2")));
|
|
||||||
void Temperature::manage_heater() {
|
void Temperature::manage_heater() {
|
||||||
|
|
||||||
if (!temp_meas_ready) return;
|
if (!temp_meas_ready) return;
|
||||||
|
@ -805,18 +794,16 @@ void Temperature::manage_heater() {
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Control the extruder rate based on the width sensor
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
|
/**
|
||||||
|
* Filament Width Sensor dynamically sets the volumetric multiplier
|
||||||
|
* based on a delayed measurement of the filament diameter.
|
||||||
|
*/
|
||||||
if (filament_sensor) {
|
if (filament_sensor) {
|
||||||
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
||||||
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
||||||
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
||||||
|
calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index])
|
||||||
// Get the delayed info and add 100 to reconstitute to a percent of
|
|
||||||
// the nominal filament diameter then square it to get an area
|
|
||||||
const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
|
|
||||||
planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
|
|
||||||
planner.refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
|
||||||
}
|
}
|
||||||
#endif // FILAMENT_WIDTH_SENSOR
|
#endif // FILAMENT_WIDTH_SENSOR
|
||||||
|
|
||||||
|
@ -1004,12 +991,18 @@ void Temperature::updateTemperaturesFromRawValues() {
|
||||||
return current_raw_filwidth * 5.0 * (1.0 / 16383.0);
|
return current_raw_filwidth * 5.0 * (1.0 / 16383.0);
|
||||||
}
|
}
|
||||||
|
|
||||||
// Convert raw Filament Width to a ratio
|
/**
|
||||||
int Temperature::widthFil_to_size_ratio() {
|
* Convert Filament Width (mm) to a simple ratio
|
||||||
float temp = filament_width_meas;
|
* and reduce to an 8 bit value.
|
||||||
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; // Assume a bad sensor reading
|
*
|
||||||
else NOMORE(temp, MEASURED_UPPER_LIMIT);
|
* A nominal width of 1.75 and measured width of 1.73
|
||||||
return filament_width_nominal / temp * 100;
|
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
||||||
|
* a return value of 1.
|
||||||
|
*/
|
||||||
|
int8_t Temperature::widthFil_to_size_ratio() {
|
||||||
|
if (WITHIN(filament_width_meas, MEASURED_LOWER_LIMIT, MEASURED_UPPER_LIMIT))
|
||||||
|
return int(100.0 * filament_width_nominal / filament_width_meas) - 100;
|
||||||
|
return 0;
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -325,11 +325,10 @@ class Temperature {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
static float analog2widthFil(); // Convert raw Filament Width to millimeters
|
static float analog2widthFil(); // Convert raw Filament Width to millimeters
|
||||||
static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
|
static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
//high level conversion routines, for use outside of temperature.cpp
|
//high level conversion routines, for use outside of temperature.cpp
|
||||||
//inline so that there is no performance decrease.
|
//inline so that there is no performance decrease.
|
||||||
//deg=degreeCelsius
|
//deg=degreeCelsius
|
||||||
|
|
Reference in a new issue