diff --git a/Marlin/planner.cpp b/Marlin/planner.cpp index 3ffa00f3f..7ced932c9 100644 --- a/Marlin/planner.cpp +++ b/Marlin/planner.cpp @@ -804,15 +804,9 @@ void Planner::check_axes_activity() { #endif #else float delta_mm[4]; - #if ENABLED(DELTA) - // On delta all axes (should!) have the same steps-per-mm - // so calculate distance in steps first, then do one division - // at the end to get millimeters - #else - delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS]; - delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS]; - delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS]; - #endif + delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS]; + delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS]; + delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS]; #endif delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder]; @@ -827,21 +821,15 @@ void Planner::check_axes_activity() { sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD]) #elif ENABLED(COREYZ) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD]) - #elif ENABLED(DELTA) - sq(dx) + sq(dy) + sq(dz) #else sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS]) #endif - ) - #if ENABLED(DELTA) - * steps_to_mm[X_AXIS] - #endif - ; + ); } float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides // Calculate moves/second for this move. No divide by zero due to previous checks. - float inverse_second = fr_mm_s * inverse_millimeters; + float inverse_mm_s = fr_mm_s * inverse_millimeters; int moves_queued = movesplanned(); @@ -853,21 +841,21 @@ void Planner::check_axes_activity() { #endif #if ENABLED(SLOWDOWN) // segment time im micro seconds - unsigned long segment_time = lround(1000000.0/inverse_second); + unsigned long segment_time = lround(1000000.0/inverse_mm_s); if (mq) { if (segment_time < min_segment_time) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. - inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); + inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); #ifdef XY_FREQUENCY_LIMIT - segment_time = lround(1000000.0 / inverse_second); + segment_time = lround(1000000.0 / inverse_mm_s); #endif } } #endif #endif - block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 - block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 + block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0 + block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0 #if ENABLED(FILAMENT_WIDTH_SENSOR) static float filwidth_e_count = 0, filwidth_delay_dist = 0; @@ -907,7 +895,7 @@ void Planner::check_axes_activity() { float current_speed[NUM_AXIS]; float speed_factor = 1.0; //factor <=1 do decrease speed LOOP_XYZE(i) { - current_speed[i] = delta_mm[i] * inverse_second; + current_speed[i] = delta_mm[i] * inverse_mm_s; float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i]; if (cs > mf) speed_factor = min(speed_factor, mf / cs); }