Merge pull request #1565 from thinkyhead/gcode_handler_functions

Gcode handlers to inline functions
This commit is contained in:
Scott Lahteine 2015-03-05 04:55:46 -08:00
commit 273d00353f

View file

@ -30,7 +30,10 @@
#include "Marlin.h" #include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#include "vector_3.h" #if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
#endif
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h" #include "qr_solve.h"
#endif #endif
@ -124,6 +127,8 @@
// M115 - Capabilities string // M115 - Capabilities string
// M117 - display message // M117 - display message
// M119 - Output Endstop status to serial port // M119 - Output Endstop status to serial port
// M120 - Enable endstop detection
// M121 - Disable endstop detection
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil) // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
@ -739,7 +744,7 @@ void get_command()
if(strchr(cmdbuffer[bufindw], 'N') != NULL) if(strchr(cmdbuffer[bufindw], 'N') != NULL)
{ {
strchr_pointer = strchr(cmdbuffer[bufindw], 'N'); strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10)); gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) { if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_LINE_NO); SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
@ -757,7 +762,7 @@ void get_command()
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++]; while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*'); strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) { if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH); SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
SERIAL_ERRORLN(gcode_LastN); SERIAL_ERRORLN(gcode_LastN);
@ -793,7 +798,7 @@ void get_command()
} }
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){ if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G'); strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){ switch((int)((strtod(strchr_pointer + 1, NULL)))){
case 0: case 0:
case 1: case 1:
case 2: case 2:
@ -892,12 +897,12 @@ void get_command()
float code_value() float code_value()
{ {
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL)); return (strtod(strchr_pointer + 1, NULL));
} }
long code_value_long() long code_value_long()
{ {
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10)); return (strtol(strchr_pointer + 1, NULL, 10));
} }
bool code_seen(char code) bool code_seen(char code)
@ -1416,28 +1421,26 @@ static void dock_sled(bool dock, int offset=0) {
} }
#endif #endif
void process_commands() /**
{ *
unsigned long codenum; //throw away variable * G-Code Handler functions
char *starpos = NULL; *
#ifdef ENABLE_AUTO_BED_LEVELING */
float x_tmp, y_tmp, z_tmp, real_z;
#endif /**
if(code_seen('G')) * G0, G1: Coordinated movement of X Y Z E axes
{ */
switch((int)code_value()) inline void gcode_G0_G1() {
{ if (!Stopped) {
case 0: // G0 -> G1
case 1: // G1
if(Stopped == false) {
get_coordinates(); // For X Y Z E F get_coordinates(); // For X Y Z E F
#ifdef FWRETRACT #ifdef FWRETRACT
if(autoretract_enabled) if (autoretract_enabled)
if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange=destination[E_AXIS]-current_position[E_AXIS]; float echange = destination[E_AXIS] - current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted[active_extruder]) || (echange>MIN_RETRACT && retracted[active_extruder])) { //move appears to be an attempt to retract or recover // Is this move an attempt to retract or recover?
current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
plan_set_e_position(current_position[E_AXIS]); //AND from the planner current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
retract(!retracted[active_extruder]); retract(!retracted[active_extruder]);
return; return;
} }
@ -1446,57 +1449,68 @@ void process_commands()
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
} }
break; }
#ifndef SCARA //disable arc support
case 2: // G2 - CW ARC /**
if(Stopped == false) { * G2: Clockwise Arc
* G3: Counterclockwise Arc
*/
inline void gcode_G2_G3(bool clockwise) {
if (!Stopped) {
get_arc_coordinates(); get_arc_coordinates();
prepare_arc_move(true); prepare_arc_move(clockwise);
} }
break; }
case 3: // G3 - CCW ARC
if(Stopped == false) { /**
get_arc_coordinates(); * G4: Dwell S<seconds> or P<milliseconds>
prepare_arc_move(false); */
} inline void gcode_G4() {
break; unsigned long codenum;
#endif
case 4: // G4 dwell
LCD_MESSAGEPGM(MSG_DWELL); LCD_MESSAGEPGM(MSG_DWELL);
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
st_synchronize(); st_synchronize();
codenum += millis(); // keep track of when we started waiting
previous_millis_cmd = millis(); previous_millis_cmd = millis();
codenum += previous_millis_cmd; // keep track of when we started waiting
while(millis() < codenum) { while(millis() < codenum) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
break; }
#ifdef FWRETRACT
case 10: // G10 retract #ifdef FWRETRACT
/**
* G10 - Retract filament according to settings of M207
* G11 - Recover filament according to settings of M208
*/
inline void gcode_G10_G11(bool doRetract=false) {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument if (doRetract) {
retract(true,retracted_swap[active_extruder]); retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
#else }
retract(true);
#endif #endif
break; retract(doRetract
case 11: // G11 retract_recover
#if EXTRUDERS > 1 #if EXTRUDERS > 1
retract(false,retracted_swap[active_extruder]); , retracted_swap[active_extruder]
#else
retract(false);
#endif #endif
break; );
#endif //FWRETRACT }
case 28: //G28 Home all Axis one at a time
#ifdef ENABLE_AUTO_BED_LEVELING #endif //FWRETRACT
/**
* G28: Home all axes, one at a time
*/
inline void gcode_G28() {
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data) plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING #endif
saved_feedrate = feedrate; saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply; saved_feedmultiply = feedmultiply;
@ -1505,32 +1519,26 @@ void process_commands()
enable_endstops(true); enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++) { for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
destination[i] = current_position[i];
}
feedrate = 0.0; feedrate = 0.0;
#ifdef DELTA #ifdef DELTA
// A delta can only safely home all axis at the same time // A delta can only safely home all axis at the same time
// all axis have to home at the same time // all axis have to home at the same time
// Move all carriages up together until the first endstop is hit. // Move all carriages up together until the first endstop is hit.
current_position[X_AXIS] = 0; for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
current_position[Y_AXIS] = 0;
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 3 * Z_MAX_LENGTH; for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS]; feedrate = 1.732 * homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS]; // Destination reached
current_position[Y_AXIS] = destination[Y_AXIS]; for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
current_position[Z_AXIS] = destination[Z_AXIS];
// take care of back off and rehome now we are all at the top // take care of back off and rehome now we are all at the top
HOMEAXIS(X); HOMEAXIS(X);
@ -1540,20 +1548,19 @@ void process_commands()
calculate_delta(current_position); calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#else // NOT DELTA #else // NOT DELTA
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))); home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first #if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
HOMEAXIS(Z); HOMEAXIS(Z);
} }
#endif #endif
#ifdef QUICK_HOME #ifdef QUICK_HOME
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
{ current_position[X_AXIS] = current_position[Y_AXIS] = 0;
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
#ifndef DUAL_X_CARRIAGE #ifndef DUAL_X_CARRIAGE
int x_axis_home_dir = home_dir(X_AXIS); int x_axis_home_dir = home_dir(X_AXIS);
@ -1563,10 +1570,10 @@ void process_commands()
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS); destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS]; feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate) if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
feedrate = homing_feedrate[Y_AXIS];
if (max_length(X_AXIS) > max_length(Y_AXIS)) { if (max_length(X_AXIS) > max_length(Y_AXIS)) {
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1); feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
} else { } else {
@ -1591,10 +1598,9 @@ void process_commands()
current_position[Z_AXIS] = destination[Z_AXIS]; current_position[Z_AXIS] = destination[Z_AXIS];
#endif #endif
} }
#endif #endif //QUICK_HOME
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
{
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder; int tmp_extruder = active_extruder;
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
@ -1612,48 +1618,47 @@ void process_commands()
#endif #endif
} }
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) { if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
HOMEAXIS(Y);
}
if(code_seen(axis_codes[X_AXIS])) if (code_seen(axis_codes[X_AXIS])) {
{ if (code_value_long() != 0) {
if(code_value_long() != 0) { current_position[X_AXIS] = code_value()
#ifdef SCARA #ifndef SCARA
current_position[X_AXIS]=code_value(); + add_homing[X_AXIS]
#else
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
#endif #endif
;
} }
} }
if(code_seen(axis_codes[Y_AXIS])) { if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
if(code_value_long() != 0) { current_position[Y_AXIS] = code_value()
#ifdef SCARA #ifndef SCARA
current_position[Y_AXIS]=code_value(); + add_homing[Y_AXIS]
#else
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
#endif #endif
} ;
} }
#if Z_HOME_DIR < 0 // If homing towards BED do Z last #if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING #ifndef Z_SAFE_HOMING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0) if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS]; feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
#endif #endif
HOMEAXIS(Z); HOMEAXIS(Z);
} }
#else // Z Safe mode activated.
if(home_all_axis) { #else // Z_SAFE_HOMING
if (home_all_axis) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER); destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED/60; feedrate = XY_TRAVEL_SPEED / 60;
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
@ -1664,54 +1669,58 @@ void process_commands()
HOMEAXIS(Z); HOMEAXIS(Z);
} }
// Let's see if X and Y are homed and probe is inside bed area.
if(code_seen(axis_codes[Z_AXIS])) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS] >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[X_AXIS] <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[Y_AXIS] >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) \
&& (current_position[Y_AXIS] <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER)) {
// Let's see if X and Y are homed and probe is inside bed area.
if (code_seen(axis_codes[Z_AXIS])) {
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
current_position[Z_AXIS] = 0; current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS]; feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder); plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize(); st_synchronize();
HOMEAXIS(Z); HOMEAXIS(Z);
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) { }
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); else {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
} else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT); LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT); SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
} }
} }
#endif else {
#endif LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) {
current_position[Z_AXIS]=code_value()+add_homing[Z_AXIS];
} }
} }
#endif // Z_SAFE_HOMING
#endif // Z_HOME_DIR < 0
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative) current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
}
#endif #endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA
#ifdef SCARA #endif // else DELTA
#ifdef SCARA
calculate_delta(current_position); calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#endif // SCARA #endif
#ifdef ENDSTOPS_ONLY_FOR_HOMING #ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false); enable_endstops(false);
@ -1721,15 +1730,14 @@ void process_commands()
feedmultiply = saved_feedmultiply; feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis(); previous_millis_cmd = millis();
endstops_hit_on_purpose(); endstops_hit_on_purpose();
break; }
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling!!! Z_MIN_PIN must point to a valid hardware pin."
#endif
/** /**
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine * Enhanced G29 Auto Bed Leveling Probe Routine
* *
* Parameters With AUTO_BED_LEVELING_GRID: * Parameters With AUTO_BED_LEVELING_GRID:
@ -1757,22 +1765,21 @@ void process_commands()
* *
*/ */
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
// Use one of these defines to specify the origin // Use one of these defines to specify the origin
// for a topographical map to be printed for your bed. // for a topographical map to be printed for your bed.
#define ORIGIN_BACK_LEFT 1 enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define ORIGIN_FRONT_RIGHT 2 #define TOPO_ORIGIN OriginFrontLeft
#define ORIGIN_BACK_RIGHT 3
#define ORIGIN_FRONT_LEFT 4 inline void gcode_G29() {
#define TOPO_ORIGIN ORIGIN_FRONT_LEFT
float x_tmp, y_tmp, z_tmp, real_z;
// Prevent user from running a G29 without first homing in X and Y // Prevent user from running a G29 without first homing in X and Y
if (!(axis_known_position[X_AXIS] && axis_known_position[Y_AXIS])) { if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN); LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN); SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are return;
} }
bool enhanced_g29 = code_seen('E') || code_seen('e'); bool enhanced_g29 = code_seen('E') || code_seen('e');
@ -1788,7 +1795,7 @@ void process_commands()
verbose_level = code_value(); verbose_level = code_value();
if (verbose_level < 0 || verbose_level > 4) { if (verbose_level < 0 || verbose_level > 4) {
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n"); SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
break; return;
} }
if (verbose_level > 0) { if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n"); SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
@ -1800,7 +1807,7 @@ void process_commands()
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS; int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) { if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n"); SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
break; return;
} }
// Define the possible boundaries for probing based on the set limits. // Define the possible boundaries for probing based on the set limits.
@ -1846,16 +1853,17 @@ void process_commands()
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n"); SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE; back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
} }
break; return;
} }
#endif #endif // AUTO_BED_LEVELING_GRID
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED
dock_sled(false); // engage (un-dock) the probe dock_sled(false); // engage (un-dock) the probe
#endif #endif
st_synchronize(); st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm(); //vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29"); //corrected_position.debug("position before G29");
@ -1871,8 +1879,8 @@ void process_commands()
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
// probe at the points of a lattice grid
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1); int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1); int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
@ -1905,8 +1913,8 @@ void process_commands()
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) { for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
// raise extruder // raise extruder
float z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, float measured_z,
measured_z; z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
// Enhanced G29 - Do not retract servo between probes // Enhanced G29 - Do not retract servo between probes
ProbeAction act; ProbeAction act;
@ -1963,24 +1971,24 @@ void process_commands()
int xx, yy; int xx, yy;
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n"); SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
#if TOPO_ORIGIN == ORIGIN_FRONT_LEFT #if TOPO_ORIGIN == OriginFrontLeft
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
#else #else
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++) for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
#endif #endif
{ {
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT #if TOPO_ORIGIN == OriginBackRight
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--) for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#else #else
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++) for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
#endif #endif
{ {
int ind = int ind =
#if TOPO_ORIGIN == ORIGIN_BACK_RIGHT || TOPO_ORIGIN == ORIGIN_FRONT_LEFT #if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
yy * auto_bed_leveling_grid_points + xx yy * auto_bed_leveling_grid_points + xx
#elif TOPO_ORIGIN == ORIGIN_BACK_LEFT #elif TOPO_ORIGIN == OriginBackLeft
xx * auto_bed_leveling_grid_points + yy xx * auto_bed_leveling_grid_points + yy
#elif TOPO_ORIGIN == ORIGIN_FRONT_RIGHT #elif TOPO_ORIGIN == OriginFrontRight
abl2 - xx * auto_bed_leveling_grid_points - yy - 1 abl2 - xx * auto_bed_leveling_grid_points - yy - 1
#endif #endif
; ;
@ -2043,11 +2051,10 @@ void process_commands()
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
#endif #endif
} }
break;
#ifndef Z_PROBE_SLED #ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
{ inline void gcode_G30() {
engage_z_probe(); // Engage Z Servo endstop if available engage_z_probe(); // Engage Z Servo endstop if available
st_synchronize(); st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
@ -2068,62 +2075,48 @@ void process_commands()
clean_up_after_endstop_move(); clean_up_after_endstop_move();
retract_z_probe(); // Retract Z Servo endstop if available retract_z_probe(); // Retract Z Servo endstop if available
} }
break;
#else #endif //!Z_PROBE_SLED
case 31: // dock the sled
dock_sled(true); #endif //ENABLE_AUTO_BED_LEVELING
break;
case 32: // undock the sled /**
dock_sled(false); * G92: Set current position to given X Y Z E
break; */
#endif // Z_PROBE_SLED inline void gcode_G92() {
#endif // ENABLE_AUTO_BED_LEVELING if (!code_seen(axis_codes[E_AXIS]))
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
if(!code_seen(axis_codes[E_AXIS]))
st_synchronize(); st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) { for (int i=0;i<NUM_AXIS;i++) {
if(i == E_AXIS) { if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
current_position[i] = code_value(); current_position[i] = code_value();
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
} }
else { else {
#ifdef SCARA current_position[i] = code_value() +
if (i == X_AXIS || i == Y_AXIS) { #ifdef SCARA
current_position[i] = code_value(); ((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
} #else
else { add_homing[i]
current_position[i] = code_value()+add_homing[i]; #endif
} ;
#else
current_position[i] = code_value()+add_homing[i];
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
} }
} }
} }
break; }
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef ULTIPANEL #ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD /**
{ * M0: // M0 - Unconditional stop - Wait for user button press on LCD
* M1: // M1 - Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
char *src = strchr_pointer + 2; char *src = strchr_pointer + 2;
codenum = 0; unsigned long codenum = 0;
bool hasP = false, hasS = false; bool hasP = false, hasS = false;
if (code_seen('P')) { if (code_seen('P')) {
codenum = code_value(); // milliseconds to wait codenum = code_value(); // milliseconds to wait
@ -2133,30 +2126,29 @@ void process_commands()
codenum = code_value() * 1000; // seconds to wait codenum = code_value() * 1000; // seconds to wait
hasS = codenum > 0; hasS = codenum > 0;
} }
starpos = strchr(src, '*'); char* starpos = strchr(src, '*');
if (starpos != NULL) *(starpos) = '\0'; if (starpos != NULL) *(starpos) = '\0';
while (*src == ' ') ++src; while (*src == ' ') ++src;
if (!hasP && !hasS && *src != '\0') { if (!hasP && !hasS && *src != '\0')
lcd_setstatus(src); lcd_setstatus(src);
} else { else
LCD_MESSAGEPGM(MSG_USERWAIT); LCD_MESSAGEPGM(MSG_USERWAIT);
}
lcd_ignore_click(); lcd_ignore_click();
st_synchronize(); st_synchronize();
previous_millis_cmd = millis(); previous_millis_cmd = millis();
if (codenum > 0){ if (codenum > 0) {
codenum += millis(); // keep track of when we started waiting codenum += previous_millis_cmd; // keep track of when we started waiting
while(millis() < codenum && !lcd_clicked()){ while(millis() < codenum && !lcd_clicked()) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
lcd_ignore_click(false); lcd_ignore_click(false);
}else{ }
if (!lcd_detected()) else {
break; if (!lcd_detected()) return;
while(!lcd_clicked()){ while (!lcd_clicked()) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
@ -2167,9 +2159,13 @@ void process_commands()
else else
LCD_MESSAGEPGM(WELCOME_MSG); LCD_MESSAGEPGM(WELCOME_MSG);
} }
break;
#endif #endif // ULTIPANEL
case 17:
/**
* M17: Enable power on all stepper motors
*/
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE); LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_x(); enable_x();
enable_y(); enable_y();
@ -2178,195 +2174,247 @@ void process_commands()
enable_e1(); enable_e1();
enable_e2(); enable_e2();
enable_e3(); enable_e3();
break; }
#ifdef SDSUPPORT #ifdef SDSUPPORT
case 20: // M20 - list SD card
/**
* M20: List SD card to serial output
*/
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST); SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls(); card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST); SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
break; }
case 21: // M21 - init SD card
/**
* M21: Init SD Card
*/
inline void gcode_M21() {
card.initsd(); card.initsd();
}
break; /**
case 22: //M22 - release SD card * M22: Release SD Card
*/
inline void gcode_M22() {
card.release(); card.release();
}
break; /**
case 23: //M23 - Select file * M23: Select a file
starpos = (strchr(strchr_pointer + 4,'*')); */
if(starpos!=NULL) inline void gcode_M23() {
*(starpos)='\0'; char* codepos = strchr_pointer + 4;
card.openFile(strchr_pointer + 4,true); char* starpos = strchr(codepos, '*');
break; if (starpos) *starpos = '\0';
case 24: //M24 - Start SD print card.openFile(codepos, true);
}
/**
* M24: Start SD Print
*/
inline void gcode_M24() {
card.startFileprint(); card.startFileprint();
starttime=millis(); starttime = millis();
break; }
case 25: //M25 - Pause SD print
/**
* M25: Pause SD Print
*/
inline void gcode_M25() {
card.pauseSDPrint(); card.pauseSDPrint();
break; }
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')) { /**
* M26: Set SD Card file index
*/
inline void gcode_M26() {
if (card.cardOK && code_seen('S'))
card.setIndex(code_value_long()); card.setIndex(code_value_long());
} }
break;
case 27: //M27 - Get SD status /**
* M27: Get SD Card status
*/
inline void gcode_M27() {
card.getStatus(); card.getStatus();
break; }
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*')); /**
if(starpos != NULL){ * M28: Start SD Write
*/
inline void gcode_M28() {
char* codepos = strchr_pointer + 4;
char* starpos = strchr(strchr_pointer + 4, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N'); char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1; strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0'; *(starpos) = '\0';
} }
card.openFile(strchr_pointer+4,false); card.openFile(strchr_pointer + 4, false);
break; }
case 29: //M29 - Stop SD write
//processed in write to file routine above /**
//card,saving = false; * M29: Stop SD Write
break; * Processed in write to file routine above
case 30: //M30 <filename> Delete File */
if (card.cardOK){ inline void gcode_M29() {
// card.saving = false;
}
/**
* M30 <filename>: Delete SD Card file
*/
inline void gcode_M30() {
if (card.cardOK) {
card.closefile(); card.closefile();
starpos = (strchr(strchr_pointer + 4,'*')); char* starpos = strchr(strchr_pointer + 4, '*');
if(starpos != NULL){ if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N'); char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1; strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0'; *(starpos) = '\0';
} }
card.removeFile(strchr_pointer + 4); card.removeFile(strchr_pointer + 4);
} }
break;
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
} }
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start. #endif
if(namestartpos==NULL)
{
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
}
else
namestartpos++; //to skip the '!'
if(starpos!=NULL) /**
*(starpos)='\0'; * M31: Get the time since the start of SD Print (or last M109)
*/
bool call_procedure=(code_seen('P')); inline void gcode_M31() {
stoptime = millis();
if(strchr_pointer>namestartpos) unsigned long t = (stoptime - starttime) / 1000;
call_procedure=false; //false alert, 'P' found within filename int min = t / 60, sec = t % 60;
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
card.setIndex(code_value_long());
card.startFileprint();
if(!call_procedure)
starttime=millis(); //procedure calls count as normal print time.
}
} break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer+5);
break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
{
stoptime=millis();
char time[30]; char time[30];
unsigned long t=(stoptime-starttime)/1000;
int sec,min;
min=t/60;
sec=t%60;
sprintf_P(time, PSTR("%i min, %i sec"), min, sec); sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(time); SERIAL_ECHOLN(time);
lcd_setstatus(time); lcd_setstatus(time);
autotempShutdown(); autotempShutdown();
}
#ifdef SDSUPPORT
/**
* M32: Select file and start SD Print
*/
inline void gcode_M32() {
if (card.sdprinting)
st_synchronize();
char* codepos = strchr_pointer + 4;
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
if (! namestartpos)
namestartpos = codepos; //default name position, 4 letters after the M
else
namestartpos++; //to skip the '!'
char* starpos = strchr(codepos, '*');
if (starpos) *(starpos) = '\0';
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
if (card.cardOK) {
card.openFile(namestartpos, true, !call_procedure);
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
card.setIndex(code_value_long());
card.startFileprint();
if (!call_procedure)
starttime = millis(); //procedure calls count as normal print time.
} }
break; }
case 42: //M42 -Change pin status via gcode
if (code_seen('S')) /**
{ * M928: Start SD Write
int pin_status = code_value(); */
int pin_number = LED_PIN; inline void gcode_M928() {
char* starpos = strchr(strchr_pointer + 5, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer + 5);
}
#endif // SDSUPPORT
/**
* M42: Change pin status via GCode
*/
inline void gcode_M42() {
if (code_seen('S')) {
int pin_status = code_value(),
pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255) if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value(); pin_number = code_value();
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{ for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
if (sensitive_pins[i] == pin_number) if (sensitive_pins[i] == pin_number) {
{
pin_number = -1; pin_number = -1;
break; break;
} }
} }
#if defined(FAN_PIN) && FAN_PIN > -1 #if defined(FAN_PIN) && FAN_PIN > -1
if (pin_number == FAN_PIN) if (pin_number == FAN_PIN) fanSpeed = pin_status;
fanSpeed = pin_status;
#endif #endif
if (pin_number > -1)
{ if (pin_number > -1) {
pinMode(pin_number, OUTPUT); pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status); digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status); analogWrite(pin_number, pin_status);
} }
} } // code_seen('S')
break; }
// M48 Z-Probe repeatability measurement function.
//
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
#ifdef ENABLE_AUTO_BED_LEVELING #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
#ifdef Z_PROBE_REPEATABILITY_TEST
case 48: // M48 Z-Probe repeatability
{
#if Z_MIN_PIN == -1 #if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability." #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#endif #endif
double sum=0.0; /**
double mean=0.0; * M48: Z-Probe repeatability measurement function.
double sigma=0.0; *
double sample_set[50]; * Usage:
int verbose_level=1, n=0, j, n_samples = 10, n_legs=0, engage_probe_for_each_reading=0 ; * M48 <n#> <X#> <Y#> <V#> <E> <L#>
* n = Number of samples (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage probe for each reading
* L = Number of legs of movement before probe
*
* This function assumes the bed has been homed. Specificaly, that a G28 command
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated.
*
* The number of samples will default to 10 if not specified. You can use upper or lower case
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
* N for its communication protocol and will get horribly confused if you send it a capital N.
*/
inline void gcode_M48() {
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
double X_current, Y_current, Z_current; double X_current, Y_current, Z_current;
double X_probe_location, Y_probe_location, Z_start_location, ext_position; double X_probe_location, Y_probe_location, Z_start_location, ext_position;
if (code_seen('V') || code_seen('v')) { if (code_seen('V') || code_seen('v')) {
verbose_level = code_value(); verbose_level = code_value();
if (verbose_level<0 || verbose_level>4 ) { if (verbose_level < 0 || verbose_level > 4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n"); SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
goto Sigma_Exit; return;
} }
} }
@ -2377,9 +2425,9 @@ void process_commands()
if (code_seen('n')) { if (code_seen('n')) {
n_samples = code_value(); n_samples = code_value();
if (n_samples<4 || n_samples>50 ) { if (n_samples < 4 || n_samples > 50) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n"); SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
goto Sigma_Exit; return;
} }
} }
@ -2389,52 +2437,51 @@ void process_commands()
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING; Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
ext_position = st_get_position_mm(E_AXIS); ext_position = st_get_position_mm(E_AXIS);
if (code_seen('E') || code_seen('e') ) if (code_seen('E') || code_seen('e'))
engage_probe_for_each_reading++; engage_probe_for_each_reading++;
if (code_seen('X') || code_seen('x') ) { if (code_seen('X') || code_seen('x')) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER; X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location<X_MIN_POS || X_probe_location>X_MAX_POS ) { if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n"); SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
goto Sigma_Exit; return;
} }
} }
if (code_seen('Y') || code_seen('y') ) { if (code_seen('Y') || code_seen('y')) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER; Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location<Y_MIN_POS || Y_probe_location>Y_MAX_POS ) { if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n"); SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
goto Sigma_Exit; return;
} }
} }
if (code_seen('L') || code_seen('l') ) { if (code_seen('L') || code_seen('l')) {
n_legs = code_value(); n_legs = code_value();
if ( n_legs==1 ) if (n_legs == 1) n_legs = 2;
n_legs = 2; if (n_legs < 0 || n_legs > 15) {
if ( n_legs<0 || n_legs>15 ) { SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n"); return;
goto Sigma_Exit;
} }
} }
// //
// Do all the preliminary setup work. First raise the probe. // Do all the preliminary setup work. First raise the probe.
// //
st_synchronize(); st_synchronize();
plan_bed_level_matrix.set_to_identity(); plan_bed_level_matrix.set_to_identity();
plan_buffer_line( X_current, Y_current, Z_start_location, plan_buffer_line(X_current, Y_current, Z_start_location,
ext_position, ext_position,
homing_feedrate[Z_AXIS]/60, homing_feedrate[Z_AXIS] / 60,
active_extruder); active_extruder);
st_synchronize(); st_synchronize();
// //
// Now get everything to the specified probe point So we can safely do a probe to // Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe. // use that as a starting point for each probe.
// //
if (verbose_level > 2) if (verbose_level > 2)
SERIAL_PROTOCOL("Positioning probe for the test.\n"); SERIAL_PROTOCOL("Positioning probe for the test.\n");
@ -2449,10 +2496,10 @@ void process_commands()
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS); current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
// //
// OK, do the inital probe to get us close to the bed. // OK, do the inital probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes // Then retrace the right amount and use that in subsequent probes
// //
engage_z_probe(); engage_z_probe();
@ -2469,50 +2516,39 @@ void process_commands()
st_synchronize(); st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS); current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
if (engage_probe_for_each_reading) if (engage_probe_for_each_reading) retract_z_probe();
retract_z_probe();
for( n=0; n<n_samples; n++) { for (n=0; n < n_samples; n++) {
do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
if ( n_legs) { if (n_legs) {
double radius=0.0, theta=0.0, x_sweep, y_sweep; double radius=0.0, theta=0.0, x_sweep, y_sweep;
int rotational_direction, l; int l;
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise //SERIAL_ECHOPAIR("starting radius: ",radius);
radius = (unsigned long) millis() % (long) (X_MAX_LENGTH/4); // limit how far out to go //SERIAL_ECHOPAIR(" theta: ",theta);
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");
//SERIAL_ECHOPAIR("starting radius: ",radius); float dir = rotational_direction ? 1 : -1;
//SERIAL_ECHOPAIR(" theta: ",theta); for (l = 0; l < n_legs - 1; l++) {
//SERIAL_ECHOPAIR(" direction: ",rotational_direction); theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
//SERIAL_PROTOCOLLNPGM("");
for( l=0; l<n_legs-1; l++) { radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
if (rotational_direction==1) if (radius < 0.0) radius = -radius;
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
else
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
if ( radius<0.0 )
radius = -radius;
X_current = X_probe_location + cos(theta) * radius; X_current = X_probe_location + cos(theta) * radius;
Y_current = Y_probe_location + sin(theta) * radius; Y_current = Y_probe_location + sin(theta) * radius;
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane // Make sure our X & Y are sane
X_current = X_MIN_POS; X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
if ( X_current>X_MAX_POS) Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
X_current = X_MAX_POS;
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane if (verbose_level > 3) {
Y_current = Y_MIN_POS;
if ( Y_current>Y_MAX_POS)
Y_current = Y_MAX_POS;
if (verbose_level>3 ) {
SERIAL_ECHOPAIR("x: ", X_current); SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current); SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_PROTOCOLLNPGM(""); SERIAL_PROTOCOLLNPGM("");
@ -2533,23 +2569,19 @@ void process_commands()
sample_set[n] = current_position[Z_AXIS]; sample_set[n] = current_position[Z_AXIS];
// //
// Get the current mean for the data points we have so far // Get the current mean for the data points we have so far
// //
sum=0.0; sum = 0.0;
for( j=0; j<=n; j++) { for (j=0; j<=n; j++) sum += sample_set[j];
sum = sum + sample_set[j];
}
mean = sum / (double (n+1)); mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum=0.0; //
for( j=0; j<=n; j++) { // Now, use that mean to calculate the standard deviation for the
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean); // data points we have so far
} //
sum = 0.0;
for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
sigma = sqrt( sum / (double (n+1)) ); sigma = sqrt( sum / (double (n+1)) );
if (verbose_level > 1) { if (verbose_level > 1) {
@ -2563,7 +2595,6 @@ void process_commands()
if (verbose_level > 2) { if (verbose_level > 2) {
SERIAL_PROTOCOL(" mean: "); SERIAL_PROTOCOL(" mean: ");
SERIAL_PROTOCOL_F(mean,6); SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOL(" sigma: "); SERIAL_PROTOCOL(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6); SERIAL_PROTOCOL_F(sigma,6);
} }
@ -2571,7 +2602,7 @@ void process_commands()
if (verbose_level > 0) if (verbose_level > 0)
SERIAL_PROTOCOLPGM("\n"); SERIAL_PROTOCOLPGM("\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location, plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder); current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize(); st_synchronize();
@ -2586,7 +2617,7 @@ void process_commands()
clean_up_after_endstop_move(); clean_up_after_endstop_move();
// enable_endstops(true); // enable_endstops(true);
if (verbose_level > 0) { if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOLPGM("Mean: ");
@ -2594,37 +2625,33 @@ void process_commands()
SERIAL_PROTOCOLPGM("\n"); SERIAL_PROTOCOLPGM("\n");
} }
SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6); SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n"); SERIAL_PROTOCOLPGM("\n\n");
Sigma_Exit:
break;
} }
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
case 104: // M104 #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
if(setTargetedHotend(104)){
break; /**
} * M104: Set hot end temperature
*/
inline void gcode_M104() {
if (setTargetedHotend(104)) return;
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder); if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset); setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif #endif
setWatch(); setWatch();
break; }
case 112: // M112 -Emergency Stop
kill(); /**
break; * M105: Read hot end and bed temperature
case 140: // M140 set bed temp */
if (code_seen('S')) setTargetBed(code_value()); inline void gcode_M105() {
break; if (setTargetedHotend(105)) return;
case 105 : // M105
if(setTargetedHotend(105)){
break;
}
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1 #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM("ok T:"); SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
@ -2683,44 +2710,49 @@ Sigma_Exit:
#endif #endif
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
return; }
break;
case 109: #if defined(FAN_PIN) && FAN_PIN > -1
{// M109 - Wait for extruder heater to reach target.
if(setTargetedHotend(109)){ /**
break; * M106: Set Fan Speed
} */
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M107: Fan Off
*/
inline void gcode_M107() { fanSpeed = 0; }
#endif //FAN_PIN
/**
* M109: Wait for extruder(s) to reach temperature
*/
inline void gcode_M109() {
if (setTargetedHotend(109)) return;
LCD_MESSAGEPGM(MSG_HEATING); LCD_MESSAGEPGM(MSG_HEATING);
#ifdef AUTOTEMP
autotemp_enabled=false; CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif #endif
if (code_seen('S')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = false;
} }
#ifdef AUTOTEMP #ifdef AUTOTEMP
if (code_seen('S')) autotemp_min=code_value(); autotemp_enabled = code_seen('F');
if (code_seen('B')) autotemp_max=code_value(); if (autotemp_enabled) autotemp_factor = code_value();
if (code_seen('F')) if (code_seen('S')) autotemp_min = code_value();
{ if (code_seen('B')) autotemp_max = code_value();
autotemp_factor=code_value();
autotemp_enabled=true;
}
#endif #endif
setWatch(); setWatch();
codenum = millis();
unsigned long timetemp = millis();
/* See if we are heating up or cooling down */ /* See if we are heating up or cooling down */
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
@ -2728,43 +2760,41 @@ Sigma_Exit:
cancel_heatup = false; cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
long residencyStart; long residencyStart = -1;
residencyStart = -1;
/* continue to loop until we have reached the target temp /* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */ _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residencyStart == -1) || while((!cancel_heatup)&&((residencyStart == -1) ||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) { (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
#else #else
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) { while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
#endif //TEMP_RESIDENCY_TIME #endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down { // while loop
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1); SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)tmp_extruder); SERIAL_PROTOCOL((int)tmp_extruder);
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:"); SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1) if (residencyStart > -1) {
{ timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL; SERIAL_PROTOCOLLN( timetemp );
SERIAL_PROTOCOLLN( codenum );
} }
else else {
{
SERIAL_PROTOCOLLN( "?" ); SERIAL_PROTOCOLLN( "?" );
} }
#else #else
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
#endif #endif
codenum = millis(); timetemp = millis();
} }
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
#ifdef TEMP_RESIDENCY_TIME #ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */ // or when current temp falls outside the hysteresis after target temp was reached
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) || if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) || (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) ) (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
@ -2773,39 +2803,40 @@ Sigma_Exit:
} }
#endif //TEMP_RESIDENCY_TIME #endif //TEMP_RESIDENCY_TIME
} }
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE); LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
starttime=millis(); starttime = previous_millis_cmd = millis();
previous_millis_cmd = millis(); }
}
break; #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 /**
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
*/
inline void gcode_M190() {
LCD_MESSAGEPGM(MSG_BED_HEATING); LCD_MESSAGEPGM(MSG_BED_HEATING);
if (code_seen('S')) { CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R'))
setTargetBed(code_value()); setTargetBed(code_value());
CooldownNoWait = true;
} else if (code_seen('R')) { unsigned long timetemp = millis();
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = millis();
cancel_heatup = false; cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
{ unsigned long ms = millis();
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
{ timetemp = ms;
float tt=degHotend(active_extruder); float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:"); SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt); SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder); SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(),1); SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
codenum = millis();
} }
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
@ -2813,62 +2844,62 @@ Sigma_Exit:
} }
LCD_MESSAGEPGM(MSG_BED_DONE); LCD_MESSAGEPGM(MSG_BED_DONE);
previous_millis_cmd = millis(); previous_millis_cmd = millis();
#endif }
break;
#endif // TEMP_BED_PIN > -1
/**
* M112: Emergency Stop
*/
inline void gcode_M112() {
kill();
}
#ifdef BARICUDA
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
}
else {
fanSpeed=255;
}
break;
case 107: //M107 Fan Off
fanSpeed = 0;
break;
#endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
case 126: //M126 valve open /**
if (code_seen('S')){ * M126: Heater 1 valve open
ValvePressure=constrain(code_value(),0,255); */
} inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
else { /**
ValvePressure=255; * M127: Heater 1 valve close
} */
break; inline void gcode_M127() { ValvePressure = 0; }
case 127: //M127 valve closed
ValvePressure = 0;
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
case 128: //M128 valve open
if (code_seen('S')){
EtoPPressure=constrain(code_value(),0,255);
}
else {
EtoPPressure=255;
}
break;
case 129: //M129 valve closed
EtoPPressure = 0;
break;
#endif //HEATER_2_PIN
#endif #endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1 #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
case 80: // M80 - Turn on Power Supply /**
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND * M128: Heater 2 valve open
*/
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M129: Heater 2 valve close
*/
inline void gcode_M129() { EtoPPressure = 0; }
#endif
#endif //BARICUDA
/**
* M140: Set bed temperature
*/
inline void gcode_M140() {
if (code_seen('S')) setTargetBed(code_value());
}
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
/**
* M80: Turn on Power Supply
*/
inline void gcode_M80() {
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
// If you have a switch on suicide pin, this is useful // If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after // if you want to start another print with suicide feature after
// a print without suicide... // a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1 #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
OUT_WRITE(SUICIDE_PIN, HIGH); OUT_WRITE(SUICIDE_PIN, HIGH);
#endif #endif
@ -2877,10 +2908,14 @@ Sigma_Exit:
LCD_MESSAGEPGM(WELCOME_MSG); LCD_MESSAGEPGM(WELCOME_MSG);
lcd_update(); lcd_update();
#endif #endif
break; }
#endif
case 81: // M81 - Turn off Power Supply #endif // PS_ON_PIN
/**
* M81: Turn off Power Supply
*/
inline void gcode_M81() {
disable_heater(); disable_heater();
st_synchronize(); st_synchronize();
disable_e0(); disable_e0();
@ -2889,7 +2924,7 @@ Sigma_Exit:
disable_e3(); disable_e3();
finishAndDisableSteppers(); finishAndDisableSteppers();
fanSpeed = 0; fanSpeed = 0;
delay(1000); // Wait a little before to switch off delay(1000); // Wait 1 second before switching off
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1 #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize(); st_synchronize();
suicide(); suicide();
@ -2898,27 +2933,31 @@ Sigma_Exit:
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
powersupply = false; powersupply = false;
LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF"."); LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
lcd_update(); lcd_update();
#endif #endif
break; }
case 82: /**
axis_relative_modes[3] = false; * M82: Set E codes absolute (default)
break; */
case 83: inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
axis_relative_modes[3] = true;
break; /**
case 18: //compatibility * M82: Set E codes relative while in Absolute Coordinates (G90) mode
case 84: // M84 */
if(code_seen('S')){ inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
* M18, M84: Disable all stepper motors
*/
inline void gcode_M18_M84() {
if (code_seen('S')) {
stepper_inactive_time = code_value() * 1000; stepper_inactive_time = code_value() * 1000;
} }
else else {
{
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS]))); bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis) if (all_axis) {
{
st_synchronize(); st_synchronize();
disable_e0(); disable_e0();
disable_e1(); disable_e1();
@ -2926,14 +2965,13 @@ Sigma_Exit:
disable_e3(); disable_e3();
finishAndDisableSteppers(); finishAndDisableSteppers();
} }
else else {
{
st_synchronize(); st_synchronize();
if(code_seen('X')) disable_x(); if (code_seen('X')) disable_x();
if(code_seen('Y')) disable_y(); if (code_seen('Y')) disable_y();
if(code_seen('Z')) disable_z(); if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if(code_seen('E')) { if (code_seen('E')) {
disable_e0(); disable_e0();
disable_e1(); disable_e1();
disable_e2(); disable_e2();
@ -2942,20 +2980,24 @@ Sigma_Exit:
#endif #endif
} }
} }
break; }
case 85: // M85
if(code_seen('S')) { /**
max_inactive_time = code_value() * 1000; * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
} */
break; inline void gcode_M85() {
case 92: // M92 if (code_seen('S')) max_inactive_time = code_value() * 1000;
for(int8_t i=0; i < NUM_AXIS; i++) }
{
if(code_seen(axis_codes[i])) /**
{ * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
if(i == 3) { // E */
inline void gcode_M92() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
float value = code_value(); float value = code_value();
if(value < 20.0) { if (value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_e_jerk *= factor; max_e_jerk *= factor;
max_feedrate[i] *= factor; max_feedrate[i] *= factor;
@ -2968,17 +3010,12 @@ Sigma_Exit:
} }
} }
} }
break; }
case 115: // M115
SERIAL_PROTOCOLPGM(MSG_M115_REPORT); /**
break; * M114: Output current position to serial port
case 117: // M117 display message */
starpos = (strchr(strchr_pointer + 5,'*')); inline void gcode_M114() {
if(starpos!=NULL)
*(starpos)='\0';
lcd_setstatus(strchr_pointer + 5);
break;
case 114: // M114
SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOLPGM(" Y:");
@ -2996,7 +3033,8 @@ Sigma_Exit:
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]); SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
#ifdef SCARA
#ifdef SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:"); SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOLPGM(" Psi+Theta:");
@ -3015,15 +3053,30 @@ Sigma_Exit:
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]); SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
#endif #endif
break; }
case 120: // M120
enable_endstops(false) ; /**
break; * M115: Capabilities string
case 121: // M121 */
enable_endstops(true) ; inline void gcode_M115() {
break; SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
case 119: // M119 }
/**
* M117: Set LCD Status Message
*/
inline void gcode_M117() {
char* codepos = strchr_pointer + 5;
char* starpos = strchr(codepos, '*');
if (starpos) *starpos = '\0';
lcd_setstatus(codepos);
}
/**
* M119: Output endstop states to serial output
*/
inline void gcode_M119() {
SERIAL_PROTOCOLLN(MSG_M119_REPORT); SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_X_MIN); SERIAL_PROTOCOLPGM(MSG_X_MIN);
@ -3049,38 +3102,51 @@ Sigma_Exit:
SERIAL_PROTOCOLPGM(MSG_Z_MAX); SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN)); SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif #endif
break; }
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
{
byte red;
byte grn;
byte blu;
if(code_seen('R')) red = code_value(); /**
if(code_seen('U')) grn = code_value(); * M120: Enable endstops
if(code_seen('B')) blu = code_value(); */
inline void gcode_M120() { enable_endstops(false); }
SendColors(red,grn,blu); /**
* M121: Disable endstops
*/
inline void gcode_M121() { enable_endstops(true); }
#ifdef BLINKM
/**
* M150: Set Status LED Color - Use R-U-B for R-G-B
*/
inline void gcode_M150() {
SendColors(
code_seen('R') ? (byte)code_value() : 0,
code_seen('U') ? (byte)code_value() : 0,
code_seen('B') ? (byte)code_value() : 0
);
} }
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
{
#endif // BLINKM
/**
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
* T<extruder>
* D<millimeters>
*/
inline void gcode_M200() {
tmp_extruder = active_extruder; tmp_extruder = active_extruder;
if(code_seen('T')) { if (code_seen('T')) {
tmp_extruder = code_value(); tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) { if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER); SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
break; return;
} }
} }
float area = .0; float area = .0;
if(code_seen('D')) { if (code_seen('D')) {
float diameter = code_value(); float diameter = code_value();
// setting any extruder filament size disables volumetric on the assumption that // setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds // slicers either generate in extruder values as cubic mm or as as filament feeds
@ -3092,163 +3158,184 @@ Sigma_Exit:
for (int i=0; i<EXTRUDERS; i++) for (int i=0; i<EXTRUDERS; i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
} }
} else { }
else {
//reserved for setting filament diameter via UFID or filament measuring device //reserved for setting filament diameter via UFID or filament measuring device
break; return;
} }
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
} }
break;
case 201: // M201 /**
for(int8_t i=0; i < NUM_AXIS; i++) * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
{ */
if(code_seen(axis_codes[i])) inline void gcode_M201() {
{ for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_acceleration_units_per_sq_second[i] = code_value(); max_acceleration_units_per_sq_second[i] = code_value();
} }
} }
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates(); reset_acceleration_rates();
break; }
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202 #if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() {
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
} }
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
} }
break; #endif
case 204: // M204 acclereration S normal moves T filmanent only moves
{
if(code_seen('S')) acceleration = code_value() ; /**
if(code_seen('T')) retract_acceleration = code_value() ; * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
*/
inline void gcode_M203() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_feedrate[i] = code_value();
} }
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
if(code_seen('S')) minimumfeedrate = code_value();
if(code_seen('T')) mintravelfeedrate = code_value();
if(code_seen('B')) minsegmenttime = code_value() ;
if(code_seen('X')) max_xy_jerk = code_value() ;
if(code_seen('Z')) max_z_jerk = code_value() ;
if(code_seen('E')) max_e_jerk = code_value() ;
} }
break; }
case 206: // M206 additional homing offset
for(int8_t i=0; i < 3; i++) /**
{ * M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
if(code_seen(axis_codes[i])) add_homing[i] = code_value(); *
* S = normal moves
* T = filament only moves
*
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
*/
inline void gcode_M204() {
if (code_seen('S')) acceleration = code_value();
if (code_seen('T')) retract_acceleration = code_value();
}
/**
* M205: Set Advanced Settings
*
* S = Min Feed Rate (mm/s)
* T = Min Travel Feed Rate (mm/s)
* B = Min Segment Time (µs)
* X = Max XY Jerk (mm/s/s)
* Z = Max Z Jerk (mm/s/s)
* E = Max E Jerk (mm/s/s)
*/
inline void gcode_M205() {
if (code_seen('S')) minimumfeedrate = code_value();
if (code_seen('T')) mintravelfeedrate = code_value();
if (code_seen('B')) minsegmenttime = code_value();
if (code_seen('X')) max_xy_jerk = code_value();
if (code_seen('Z')) max_z_jerk = code_value();
if (code_seen('E')) max_e_jerk = code_value();
}
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/
inline void gcode_M206() {
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
add_homing[i] = code_value();
}
} }
#ifdef SCARA #ifdef SCARA
if(code_seen('T')) // Theta if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
{ if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
add_homing[X_AXIS] = code_value() ;
}
if(code_seen('P')) // Psi
{
add_homing[Y_AXIS] = code_value() ;
}
#endif #endif
break; }
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec> #ifdef DELTA
if(code_seen('L')) { /**
delta_diagonal_rod= code_value(); * M665: Set delta configurations
*
* L = diagonal rod
* R = delta radius
* S = segments per second
*/
inline void gcode_M665() {
if (code_seen('L')) delta_diagonal_rod = code_value();
if (code_seen('R')) delta_radius = code_value();
if (code_seen('S')) delta_segments_per_second = code_value();
recalc_delta_settings(delta_radius, delta_diagonal_rod);
} }
if(code_seen('R')) { /**
delta_radius= code_value(); * M666: Set delta endstop adjustment
*/
inline void gcode_M666() {
for (int8_t i = 0; i < 3; i++) {
if (code_seen(axis_codes[i])) {
endstop_adj[i] = code_value();
} }
if(code_seen('S')) { }
delta_segments_per_second= code_value(); }
#endif // DELTA
#ifdef FWRETRACT
/**
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
*/
inline void gcode_M207() {
if (code_seen('S')) retract_length = code_value();
if (code_seen('F')) retract_feedrate = code_value() / 60;
if (code_seen('Z')) retract_zlift = code_value();
} }
recalc_delta_settings(delta_radius, delta_diagonal_rod); /**
break; * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
case 666: // M666 set delta endstop adjustemnt */
for(int8_t i=0; i < 3; i++) inline void gcode_M208() {
{ if (code_seen('S')) retract_recover_length = code_value();
if(code_seen(axis_codes[i])) endstop_adj[i] = code_value(); if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
} }
break;
#endif /**
#ifdef FWRETRACT * M209: Enable automatic retract (M209 S1)
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{ */
if(code_seen('S')) inline void gcode_M209() {
{ if (code_seen('S')) {
retract_length = code_value() ; int t = code_value();
} switch(t) {
if(code_seen('F'))
{
retract_feedrate = code_value()/60 ;
}
if(code_seen('Z'))
{
retract_zlift = code_value() ;
}
}break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if(code_seen('S'))
{
retract_recover_length = code_value() ;
}
if(code_seen('F'))
{
retract_recover_feedrate = code_value()/60 ;
}
}break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if(code_seen('S'))
{
int t= code_value() ;
switch(t)
{
case 0: case 0:
autoretract_enabled = false;
break;
case 1: case 1:
{ autoretract_enabled = true;
autoretract_enabled = (t == 1); break;
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
}break;
default: default:
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]); SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\""); SERIAL_ECHOLNPGM("\"");
return;
}
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
} }
} }
}break; #endif // FWRETRACT
#endif // FWRETRACT
#if EXTRUDERS > 1 #if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
{ /**
if(setTargetedHotend(218)){ * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
break; */
} inline void gcode_M218() {
if(code_seen('X')) if (setTargetedHotend(218)) return;
{
extruder_offset[X_AXIS][tmp_extruder] = code_value(); if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
} if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
if(code_seen('Y'))
{
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
}
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if(code_seen('Z')) if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
{
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
}
#endif #endif
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
{
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]); SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
SERIAL_ECHO(","); SERIAL_ECHO(",");
@ -3259,57 +3346,52 @@ Sigma_Exit:
#endif #endif
} }
SERIAL_EOL; SERIAL_EOL;
}break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
} }
}
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
{
if(code_seen('S'))
{
int tmp_code = code_value();
if (code_seen('T'))
{
if(setTargetedHotend(221)){
break;
}
extruder_multiply[tmp_extruder] = tmp_code;
}
else
{
extrudemultiply = tmp_code ;
}
}
}
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required #endif // EXTRUDERS > 1
{
if(code_seen('P')){
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
if(code_seen('S')) pin_state = code_value(); // required pin state /**
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
if (code_seen('S')) feedmultiply = code_value();
}
if(pin_state >= -1 && pin_state <= 1){ /**
* M221: Set extrusion percentage (M221 T0 S95)
*/
inline void gcode_M221() {
if (code_seen('S')) {
int sval = code_value();
if (code_seen('T')) {
if (setTargetedHotend(221)) return;
extruder_multiply[tmp_extruder] = sval;
}
else {
extrudemultiply = sval;
}
}
}
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++) /**
{ * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
if (sensitive_pins[i] == pin_number) */
{ inline void gcode_M226() {
if (code_seen('P')) {
int pin_number = code_value();
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
if (pin_state >= -1 && pin_state <= 1) {
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1; pin_number = -1;
break; break;
} }
} }
if (pin_number > -1) if (pin_number > -1) {
{
int target = LOW; int target = LOW;
st_synchronize(); st_synchronize();
@ -3330,35 +3412,36 @@ Sigma_Exit:
break; break;
} }
while(digitalRead(pin_number) != target){ while(digitalRead(pin_number) != target) {
manage_heater(); manage_heater();
manage_inactivity(); manage_inactivity();
lcd_update(); lcd_update();
} }
}
}
}
}
break;
#if NUM_SERVOS > 0 } // pin_number > -1
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds } // pin_state -1 0 1
{ } // code_seen('P')
int servo_index = -1; }
#if NUM_SERVOS > 0
/**
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
*/
inline void gcode_M280() {
int servo_index = code_seen('P') ? code_value() : -1;
int servo_position = 0; int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) { if (code_seen('S')) {
servo_position = code_value(); servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) { if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) #if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
servos[servo_index].attach(0); servos[servo_index].attach(0);
#endif #endif
servos[servo_index].write(servo_position); servos[servo_index].write(servo_position);
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0) #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
delay(PROBE_SERVO_DEACTIVATION_DELAY); delay(PROBE_SERVO_DEACTIVATION_DELAY);
servos[servo_index].detach(); servos[servo_index].detach();
#endif #endif
} }
else { else {
SERIAL_ECHO_START; SERIAL_ECHO_START;
@ -3376,16 +3459,18 @@ Sigma_Exit:
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
} }
break;
#endif // NUM_SERVOS > 0
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))) #endif // NUM_SERVOS > 0
case 300: // M300
{ #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
/**
* M300: Play beep sound S<frequency Hz> P<duration ms>
*/
inline void gcode_M300() {
int beepS = code_seen('S') ? code_value() : 110; int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000; int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0) if (beepS > 0) {
{
#if BEEPER > 0 #if BEEPER > 0
tone(BEEPER, beepS); tone(BEEPER, beepS);
delay(beepP); delay(beepP);
@ -3396,33 +3481,30 @@ Sigma_Exit:
lcd_buzz(beepP, beepS); lcd_buzz(beepP, beepS);
#endif #endif
} }
else else {
{
delay(beepP); delay(beepP);
} }
} }
break;
#endif // M300
#ifdef PIDTEMP #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
case 301: // M301
{ #ifdef PIDTEMP
/**
* M301: Set PID parameters P I D (and optionally C)
*/
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only // default behaviour (omitting E parameter) is to update for extruder 0 only
int e = 0; // extruder being updated int e = code_seen('E') ? code_value() : 0; // extruder being updated
if (code_seen('E'))
{
e = (int)code_value();
}
if (e < EXTRUDERS) // catch bad input value
{
if (code_seen('P')) PID_PARAM(Kp,e) = code_value(); if (e < EXTRUDERS) { // catch bad input value
if (code_seen('I')) PID_PARAM(Ki,e) = scalePID_i(code_value()); if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
if (code_seen('D')) PID_PARAM(Kd,e) = scalePID_d(code_value()); if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
if (code_seen('C')) PID_PARAM(Kc,e) = code_value(); if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
#endif #endif
updatePID(); updatePID();
@ -3432,34 +3514,32 @@ Sigma_Exit:
SERIAL_PROTOCOL(e); SERIAL_PROTOCOL(e);
#endif // PID_PARAMS_PER_EXTRUDER #endif // PID_PARAMS_PER_EXTRUDER
SERIAL_PROTOCOL(" p:"); SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(PID_PARAM(Kp,e)); SERIAL_PROTOCOL(PID_PARAM(Kp, e));
SERIAL_PROTOCOL(" i:"); SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki,e))); SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_PROTOCOL(" d:"); SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd,e))); SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
SERIAL_PROTOCOL(" c:"); SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults //Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(PID_PARAM(Kc,e)); SERIAL_PROTOCOL(PID_PARAM(Kc, e));
#endif #endif
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
else else {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
} }
} }
break;
#endif //PIDTEMP #endif // PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304 #ifdef PIDTEMPBED
{
if(code_seen('P')) bedKp = code_value(); inline void gcode_M304() {
if(code_seen('I')) bedKi = scalePID_i(code_value()); if (code_seen('P')) bedKp = code_value();
if(code_seen('D')) bedKd = scalePID_d(code_value()); if (code_seen('I')) bedKi = scalePID_i(code_value());
if (code_seen('D')) bedKd = scalePID_d(code_value());
updatePID(); updatePID();
SERIAL_PROTOCOL(MSG_OK); SERIAL_PROTOCOL(MSG_OK);
@ -3471,308 +3551,379 @@ Sigma_Exit:
SERIAL_PROTOCOL(unscalePID_d(bedKd)); SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
break;
#endif //PIDTEMP #endif // PIDTEMPBED
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{ #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
/**
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240() {
#ifdef CHDK #ifdef CHDK
OUT_WRITE(CHDK, HIGH); OUT_WRITE(CHDK, HIGH);
chdkHigh = millis(); chdkHigh = millis();
chdkActive = true; chdkActive = true;
#else #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1 const uint8_t NUM_PULSES = 16;
const uint8_t NUM_PULSES=16; const float PULSE_LENGTH = 0.01524;
const float PULSE_LENGTH=0.01524; for (int i = 0; i < NUM_PULSES; i++) {
for(int i=0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH); WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH); _delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW); WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH); _delay_ms(PULSE_LENGTH);
} }
delay(7.33); delay(7.33);
for(int i=0; i < NUM_PULSES; i++) { for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH); WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH); _delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW); WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH); _delay_ms(PULSE_LENGTH);
} }
#endif
#endif //chdk end if #endif // !CHDK && PHOTOGRAPH_PIN > -1
} }
break;
#endif // CHDK || PHOTOGRAPH_PIN
#ifdef DOGLCD #ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
{ /**
if (code_seen('C')) { * M250: Read and optionally set the LCD contrast
lcd_setcontrast( ((int)code_value())&63 ); */
} inline void gcode_M250() {
if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast); SERIAL_PROTOCOL(lcd_contrast);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
break;
#endif #endif // DOGLCD
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature #ifdef PREVENT_DANGEROUS_EXTRUDE
{
float temp = .0; /**
if (code_seen('S')) temp=code_value(); * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
set_extrude_min_temp(temp); */
inline void gcode_M302() {
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
} }
break;
#endif #endif // PREVENT_DANGEROUS_EXTRUDE
case 303: // M303 PID autotune
{ /**
float temp = 150.0; * M303: PID relay autotune
int e=0; * S<temperature> sets the target temperature. (default target temperature = 150C)
int c=5; * E<extruder> (-1 for the bed)
if (code_seen('E')) e=code_value(); * C<cycles>
if (e<0) */
temp=70; inline void gcode_M303() {
if (code_seen('S')) temp=code_value(); int e = code_seen('E') ? code_value_long() : 0;
if (code_seen('C')) c=code_value(); int c = code_seen('C') ? code_value_long() : 5;
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
PID_autotune(temp, e, c); PID_autotune(temp, e, c);
} }
break;
#ifdef SCARA #ifdef SCARA
case 360: // M360 SCARA Theta pos1
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLN(" Cal: Theta 0 "); SERIAL_ECHOLN(" Cal: Theta 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration //SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled "); //SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) { if (! Stopped) {
//get_coordinates(); // For X Y Z E F //get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 0; delta[X_AXIS] = 0;
delta[Y_AXIS] = 120; delta[Y_AXIS] = 120;
calculate_SCARA_forward_Transform(delta); calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
return; return true;
}
return false;
} }
break;
case 361: // SCARA Theta pos2 /**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/
inline bool gcode_M361() {
SERIAL_ECHOLN(" Cal: Theta 90 "); SERIAL_ECHOLN(" Cal: Theta 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration //SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled "); //SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) { if (! Stopped) {
//get_coordinates(); // For X Y Z E F //get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 90; delta[X_AXIS] = 90;
delta[Y_AXIS] = 130; delta[Y_AXIS] = 130;
calculate_SCARA_forward_Transform(delta); calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
return; return true;
} }
break; return false;
case 362: // SCARA Psi pos1 }
/**
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
*/
inline bool gcode_M362() {
SERIAL_ECHOLN(" Cal: Psi 0 "); SERIAL_ECHOLN(" Cal: Psi 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration //SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled "); //SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) { if (! Stopped) {
//get_coordinates(); // For X Y Z E F //get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 60; delta[X_AXIS] = 60;
delta[Y_AXIS] = 180; delta[Y_AXIS] = 180;
calculate_SCARA_forward_Transform(delta); calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
return; return true;
} }
break; return false;
case 363: // SCARA Psi pos2 }
/**
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
*/
inline bool gcode_M363() {
SERIAL_ECHOLN(" Cal: Psi 90 "); SERIAL_ECHOLN(" Cal: Psi 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration //SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled "); //SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) { if (! Stopped) {
//get_coordinates(); // For X Y Z E F //get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 50; delta[X_AXIS] = 50;
delta[Y_AXIS] = 90; delta[Y_AXIS] = 90;
calculate_SCARA_forward_Transform(delta); calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
return; return true;
} }
break; return false;
case 364: // SCARA Psi pos3 (90 deg to Theta) }
/**
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
*/
inline bool gcode_M364() {
SERIAL_ECHOLN(" Cal: Theta-Psi 90 "); SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
// SoftEndsEnabled = false; // Ignore soft endstops during calibration // SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled "); //SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) { if (! Stopped) {
//get_coordinates(); // For X Y Z E F //get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 45; delta[X_AXIS] = 45;
delta[Y_AXIS] = 135; delta[Y_AXIS] = 135;
calculate_SCARA_forward_Transform(delta); calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS]; destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS]; destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
prepare_move(); prepare_move();
//ClearToSend(); //ClearToSend();
return; return true;
}
return false;
} }
break;
case 365: // M364 Set SCARA scaling for X Y Z
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i]))
{
/**
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
*/
inline void gcode_M365() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
axis_scaling[i] = code_value(); axis_scaling[i] = code_value();
}
}
}
} #endif // SCARA
}
break;
#endif
#ifdef EXT_SOLENOID #ifdef EXT_SOLENOID
case 380:
enable_solenoid_on_active_extruder();
break;
case 381: void enable_solenoid(uint8_t num) {
disable_all_solenoids(); switch(num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if defined(SOL1_PIN) && SOL1_PIN > -1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if defined(SOL2_PIN) && SOL2_PIN > -1
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if defined(SOL3_PIN) && SOL3_PIN > -1
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break; break;
#endif //EXT_SOLENOID
case 400: // M400 finish all moves
{
st_synchronize();
} }
break; }
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
/**
* M380: Enable solenoid on the active extruder
*/
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
/**
* M381: Disable all solenoids
*/
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
* M400: Finish all moves
*/
inline void gcode_M400() { st_synchronize(); }
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED) #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
case 401:
{
engage_z_probe(); // Engage Z Servo endstop if available
}
break;
case 402: /**
{ * M401: Engage Z Servo endstop if available
retract_z_probe(); // Retract Z Servo endstop if enabled */
} inline void gcode_M401() { engage_z_probe(); }
break; /**
* M402: Retract Z Servo endstop if enabled
*/
inline void gcode_M402() { retract_z_probe(); }
#endif #endif
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
{ /**
#if (FILWIDTH_PIN > -1) * M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
if(code_seen('N')) filament_width_nominal=code_value(); */
else{ inline void gcode_M404() {
#if FILWIDTH_PIN > -1
if (code_seen('N')) {
filament_width_nominal = code_value();
}
else {
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal); SERIAL_PROTOCOLLN(filament_width_nominal);
} }
#endif #endif
} }
break;
case 405: //M405 Turn on filament sensor for control /**
{ * M405: Turn on filament sensor for control
*/
inline void gcode_M405() {
if (code_seen('D')) meas_delay_cm = code_value();
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
if(code_seen('D')) meas_delay_cm=code_value();
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
meas_delay_cm = MAX_MEASUREMENT_DELAY;
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
{
int temp_ratio = widthFil_to_size_ratio(); int temp_ratio = widthFil_to_size_ratio();
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){ for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
}
delay_index1=0; delay_index1 = delay_index2 = 0;
delay_index2=0;
} }
filament_sensor = true ; filament_sensor = true;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrudemultiply); //SERIAL_PROTOCOL(extrudemultiply);
} }
break;
case 406: //M406 Turn off filament sensor for control
{
filament_sensor = false ;
}
break;
case 407: //M407 Display measured filament diameter
{
/**
* M406: Turn off filament sensor for control
*/
inline void gcode_M406() { filament_sensor = false; }
/**
* M407: Get measured filament diameter on serial output
*/
inline void gcode_M407() {
SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas); SERIAL_PROTOCOLLN(filament_width_meas);
} }
break;
#endif
#endif // FILAMENT_SENSOR
/**
* M500: Store settings in EEPROM
*/
case 500: // M500 Store settings in EEPROM inline void gcode_M500() {
{
Config_StoreSettings(); Config_StoreSettings();
} }
break;
case 501: // M501 Read settings from EEPROM
{
Config_RetrieveSettings();
}
break;
case 502: // M502 Revert to default settings
{
Config_ResetDefault();
}
break;
case 503: // M503 print settings currently in memory
{
Config_PrintSettings(code_seen('S') && code_value == 0);
}
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
{
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
}
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET /**
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: * M501: Read settings from EEPROM
{ */
inline void gcode_M501() {
Config_RetrieveSettings();
}
/**
* M502: Revert to default settings
*/
inline void gcode_M502() {
Config_ResetDefault();
}
/**
* M503: print settings currently in memory
*/
inline void gcode_M503() {
Config_PrintSettings(code_seen('S') && code_value == 0);
}
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
inline void gcode_M540() {
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
}
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
inline void gcode_SET_Z_PROBE_OFFSET() {
float value; float value;
if (code_seen('Z')) if (code_seen('Z')) {
{
value = code_value(); value = code_value();
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX)) if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
{
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK); SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
else else {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET); SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHOPGM(MSG_Z_MIN); SERIAL_ECHOPGM(MSG_Z_MIN);
@ -3782,21 +3933,23 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
} }
else else {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : "); SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
SERIAL_ECHO(-zprobe_zoffset); SERIAL_ECHO(-zprobe_zoffset);
SERIAL_PROTOCOLLN(""); SERIAL_PROTOCOLLN("");
} }
break;
} }
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{ #ifdef FILAMENTCHANGEENABLE
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate/60;
/**
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
*/
inline void gcode_M600() {
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
for (int i=0; i<NUM_AXIS; i++) for (int i=0; i<NUM_AXIS; i++)
target[i] = lastpos[i] = current_position[i]; target[i] = lastpos[i] = current_position[i];
@ -3808,65 +3961,38 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
#endif #endif
//retract by E //retract by E
if(code_seen('E')) if (code_seen('E')) target[E_AXIS] += code_value();
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FIRSTRETRACT #ifdef FILAMENTCHANGE_FIRSTRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ; else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
#endif #endif
}
RUNPLAN; RUNPLAN;
//lift Z //lift Z
if(code_seen('Z')) if (code_seen('Z')) target[Z_AXIS] += code_value();
{
target[Z_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_ZADD #ifdef FILAMENTCHANGE_ZADD
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ; else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
#endif #endif
}
RUNPLAN; RUNPLAN;
//move xy //move xy
if(code_seen('X')) if (code_seen('X')) target[X_AXIS] = code_value();
{
target[X_AXIS]= code_value();
}
else
{
#ifdef FILAMENTCHANGE_XPOS #ifdef FILAMENTCHANGE_XPOS
target[X_AXIS]= FILAMENTCHANGE_XPOS ; else target[X_AXIS] = FILAMENTCHANGE_XPOS;
#endif #endif
}
if(code_seen('Y')) if (code_seen('Y')) target[Y_AXIS] = code_value();
{
target[Y_AXIS]= code_value();
}
else
{
#ifdef FILAMENTCHANGE_YPOS #ifdef FILAMENTCHANGE_YPOS
target[Y_AXIS]= FILAMENTCHANGE_YPOS ; else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
#endif #endif
}
RUNPLAN; RUNPLAN;
if(code_seen('L')) if (code_seen('L')) target[E_AXIS] += code_value();
{
target[E_AXIS]+= code_value();
}
else
{
#ifdef FILAMENTCHANGE_FINALRETRACT #ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ; else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
#endif #endif
}
RUNPLAN; RUNPLAN;
@ -3879,14 +4005,13 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
disable_e3(); disable_e3();
delay(100); delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt=0; uint8_t cnt = 0;
while(!lcd_clicked()){ while (!lcd_clicked()) {
cnt++; cnt++;
manage_heater(); manage_heater();
manage_inactivity(true); manage_inactivity(true);
lcd_update(); lcd_update();
if(cnt==0) if (cnt == 0) {
{
#if BEEPER > 0 #if BEEPER > 0
OUT_WRITE(BEEPER,HIGH); OUT_WRITE(BEEPER,HIGH);
delay(3); delay(3);
@ -3894,31 +4019,25 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
delay(3); delay(3);
#else #else
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100); lcd_buzz(1000/6, 100);
#else #else
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ); lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif #endif
#endif #endif
} }
} } // while(!lcd_clicked)
//return to normal //return to normal
if(code_seen('L')) if (code_seen('L')) target[E_AXIS] -= code_value();
{
target[E_AXIS]+= -code_value();
}
else
{
#ifdef FILAMENTCHANGE_FINALRETRACT #ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ; else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
#endif #endif
}
current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
RUNPLAN; //should do nothing RUNPLAN; //should do nothing
//reset LCD alert message
lcd_reset_alert_level(); lcd_reset_alert_level();
#ifdef DELTA #ifdef DELTA
@ -3931,32 +4050,30 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
#endif #endif
} }
break;
#endif //FILAMENTCHANGEENABLE #endif // FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605: // Set dual x-carriage movement mode: #ifdef DUAL_X_CARRIAGE
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement /**
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn * M605: Set dual x-carriage movement mode
// millimeters x-offset and an optional differential hotend temperature of *
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate * M605 S0: Full control mode. The slicer has full control over x-carriage movement
// the first with a spacing of 100mm in the x direction and 2 degrees hotter. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
// * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
// Note: the X axis should be homed after changing dual x-carriage mode. * millimeters x-offset and an optional differential hotend temperature of
{ * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
*
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
st_synchronize(); st_synchronize();
if (code_seen('S')) dual_x_carriage_mode = code_value();
if (code_seen('S')) switch(dual_x_carriage_mode) {
dual_x_carriage_mode = code_value(); case DXC_DUPLICATION_MODE:
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
{
if (code_seen('X'))
duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
if (code_seen('R'))
duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" "); SERIAL_ECHO(" ");
@ -3967,94 +4084,105 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHO(","); SERIAL_ECHO(",");
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]); SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
} break;
else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE) case DXC_FULL_CONTROL_MODE:
{ case DXC_AUTO_PARK_MODE:
break;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
} }
active_extruder_parked = false; active_extruder_parked = false;
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
delayed_move_time = 0; delayed_move_time = 0;
} }
break;
#endif //DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes. #endif // DUAL_X_CARRIAGE
{
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
inline void gcode_M907() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value()); for (int i=0;i<NUM_AXIS;i++)
if(code_seen('B')) digipot_current(4,code_value()); if (code_seen(axis_codes[i])) digipot_current(i, code_value());
if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value()); if (code_seen('B')) digipot_current(4, code_value());
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
#endif #endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN #ifdef MOTOR_CURRENT_PWM_XY_PIN
if(code_seen('X')) digipot_current(0, code_value()); if (code_seen('X')) digipot_current(0, code_value());
#endif #endif
#ifdef MOTOR_CURRENT_PWM_Z_PIN #ifdef MOTOR_CURRENT_PWM_Z_PIN
if(code_seen('Z')) digipot_current(1, code_value()); if (code_seen('Z')) digipot_current(1, code_value());
#endif #endif
#ifdef MOTOR_CURRENT_PWM_E_PIN #ifdef MOTOR_CURRENT_PWM_E_PIN
if(code_seen('E')) digipot_current(2, code_value()); if (code_seen('E')) digipot_current(2, code_value());
#endif #endif
#ifdef DIGIPOT_I2C #ifdef DIGIPOT_I2C
// this one uses actual amps in floating point // this one uses actual amps in floating point
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value()); for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...) // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value()); for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
#endif #endif
}
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
inline void gcode_M908() {
digitalPotWrite(
code_seen('P') ? code_value() : 0,
code_seen('S') ? code_value() : 0
);
} }
break;
case 908: // M908 Control digital trimpot directly. #endif // DIGIPOTSS_PIN
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1 // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
uint8_t channel,current; inline void gcode_M350() {
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
digitalPotWrite(channel, current);
#endif
}
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#if defined(X_MS1_PIN) && X_MS1_PIN > -1 #if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value()); if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value()); for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value()); if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings(); microstep_readings();
#endif #endif
} }
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. /**
{ * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
*/
inline void gcode_M351() {
#if defined(X_MS1_PIN) && X_MS1_PIN > -1 #if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) switch((int)code_value()) if (code_seen('S')) switch((int)code_value()) {
{
case 1: case 1:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1); for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
if(code_seen('B')) microstep_ms(4,code_value(),-1); if (code_seen('B')) microstep_ms(4, code_value(), -1);
break; break;
case 2: case 2:
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value()); for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
if(code_seen('B')) microstep_ms(4,-1,code_value()); if (code_seen('B')) microstep_ms(4, -1, code_value());
break; break;
} }
microstep_readings(); microstep_readings();
#endif #endif
} }
break;
case 999: // M999: Restart after being stopped /**
* M999: Restart after being stopped
*/
inline void gcode_M999() {
Stopped = false; Stopped = false;
lcd_reset_alert_level(); lcd_reset_alert_level();
gcode_LastN = Stopped_gcode_LastN; gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend(); FlushSerialRequestResend();
break; }
}
}
else if(code_seen('T')) inline void gcode_T() {
{
tmp_extruder = code_value(); tmp_extruder = code_value();
if(tmp_extruder >= EXTRUDERS) { if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHO("T"); SERIAL_ECHO("T");
SERIAL_ECHO(tmp_extruder); SERIAL_ECHO(tmp_extruder);
@ -4062,21 +4190,18 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
} }
else { else {
boolean make_move = false; boolean make_move = false;
if(code_seen('F')) { if (code_seen('F')) {
make_move = true; make_move = true;
next_feedrate = code_value(); next_feedrate = code_value();
if(next_feedrate > 0.0) { if (next_feedrate > 0.0) feedrate = next_feedrate;
feedrate = next_feedrate;
}
} }
#if EXTRUDERS > 1 #if EXTRUDERS > 1
if(tmp_extruder != active_extruder) { if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset // Save current position to return to after applying extruder offset
memcpy(destination, current_position, sizeof(destination)); memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false && if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
{
// Park old head: 1) raise 2) move to park position 3) lower // Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
@ -4100,13 +4225,11 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
// This function resets the max/min values - the current position may be overwritten below. // This function resets the max/min values - the current position may be overwritten below.
axis_is_at_home(X_AXIS); axis_is_at_home(X_AXIS);
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
{
current_position[X_AXIS] = inactive_extruder_x_pos; current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS]; inactive_extruder_x_pos = destination[X_AXIS];
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
{
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked) if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos; current_position[X_AXIS] = inactive_extruder_x_pos;
@ -4115,56 +4238,518 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
inactive_extruder_x_pos = destination[X_AXIS]; inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false; extruder_duplication_enabled = false;
} }
else else {
{
// record raised toolhead position for use by unpark // record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT; raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true; active_extruder_parked = true;
delayed_move_time = 0; delayed_move_time = 0;
} }
#else #else // !DUAL_X_CARRIAGE
// Offset extruder (only by XY) // Offset extruder (only by XY)
int i; for (int i=X_AXIS; i<=Y_AXIS; i++)
for(i = 0; i < 2; i++) { current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
current_position[i] = current_position[i] -
extruder_offset[i][active_extruder] +
extruder_offset[i][tmp_extruder];
}
// Set the new active extruder and position // Set the new active extruder and position
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
#endif //else DUAL_X_CARRIAGE #endif // !DUAL_X_CARRIAGE
#ifdef DELTA #ifdef DELTA
calculate_delta(current_position); // change cartesian kinematic to delta kinematic; calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
//sent position to plan_set_position(); //sent position to plan_set_position();
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
#else
#else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
#endif
// Move to the old position if 'F' was in the parameters // Move to the old position if 'F' was in the parameters
if(make_move && Stopped == false) { if (make_move && !Stopped) prepare_move();
prepare_move();
}
} }
#ifdef EXT_SOLENOID #ifdef EXT_SOLENOID
st_synchronize(); st_synchronize();
disable_all_solenoids(); disable_all_solenoids();
enable_solenoid_on_active_extruder(); enable_solenoid_on_active_extruder();
#endif //EXT_SOLENOID #endif // EXT_SOLENOID
#endif #endif // EXTRUDERS > 1
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER); SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder); SERIAL_PROTOCOLLN((int)active_extruder);
} }
}
/**
* Process Commands and dispatch them to handlers
*/
void process_commands() {
if (code_seen('G')) {
int gCode = code_value_long();
switch(gCode) {
// G0, G1
case 0:
case 1:
gcode_G0_G1();
break;
// G2, G3
#ifndef SCARA
case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC
gcode_G2_G3(gCode == 2);
break;
#endif
// G4 Dwell
case 4:
gcode_G4();
break;
#ifdef FWRETRACT
case 10: // G10: retract
case 11: // G11: retract_recover
gcode_G10_G11(gCode == 10);
break;
#endif //FWRETRACT
case 28: // G28: Home all axes, one at a time
gcode_G28();
break;
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29();
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
gcode_G30();
break;
#else // Z_PROBE_SLED
case 31: // G31: dock the sled
case 32: // G32: undock the sled
dock_sled(gCode == 31);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
gcode_G92();
break;
}
} }
else else if (code_seen('M')) {
{ switch( (int)code_value() ) {
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
gcode_M0_M1();
break;
#endif // ULTIPANEL
case 17:
gcode_M17();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
gcode_M20(); break;
case 21: // M21 - init SD card
gcode_M21(); break;
case 22: //M22 - release SD card
gcode_M22(); break;
case 23: //M23 - Select file
gcode_M23(); break;
case 24: //M24 - Start SD print
gcode_M24(); break;
case 25: //M25 - Pause SD print
gcode_M25(); break;
case 26: //M26 - Set SD index
gcode_M26(); break;
case 27: //M27 - Get SD status
gcode_M27(); break;
case 28: //M28 - Start SD write
gcode_M28(); break;
case 29: //M29 - Stop SD write
gcode_M29(); break;
case 30: //M30 <filename> Delete File
gcode_M30(); break;
case 32: //M32 - Select file and start SD print
gcode_M32(); break;
case 928: //M928 - Start SD write
gcode_M928(); break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
gcode_M31();
break;
case 42: //M42 -Change pin status via gcode
gcode_M42();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
case 48: // M48 Z-Probe repeatability
gcode_M48();
break;
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
case 104: // M104
gcode_M104();
break;
case 112: // M112 Emergency Stop
gcode_M112();
break;
case 140: // M140 Set bed temp
gcode_M140();
break;
case 105: // M105 Read current temperature
gcode_M105();
return;
break;
case 109: // M109 Wait for temperature
gcode_M109();
break;
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
case 190: // M190 - Wait for bed heater to reach target.
gcode_M190();
break;
#endif //TEMP_BED_PIN
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
gcode_M106();
break;
case 107: //M107 Fan Off
gcode_M107();
break;
#endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
case 126: // M126 valve open
gcode_M126();
break;
case 127: // M127 valve closed
gcode_M127();
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
case 128: // M128 valve open
gcode_M128();
break;
case 129: // M129 valve closed
gcode_M129();
break;
#endif //HEATER_2_PIN
#endif //BARICUDA
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
gcode_M80();
break;
#endif // PS_ON_PIN
case 81: // M81 - Turn off Power Supply
gcode_M81();
break;
case 82:
gcode_M82();
break;
case 83:
gcode_M83();
break;
case 18: //compatibility
case 84: // M84
gcode_M18_M84();
break;
case 85: // M85
gcode_M85();
break;
case 92: // M92
gcode_M92();
break;
case 115: // M115
gcode_M115();
break;
case 117: // M117 display message
gcode_M117();
break;
case 114: // M114
gcode_M114();
break;
case 120: // M120
gcode_M120();
break;
case 121: // M121
gcode_M121();
break;
case 119: // M119
gcode_M119();
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
gcode_M150();
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
gcode_M200();
break;
case 201: // M201
gcode_M201();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
gcode_M202();
break;
#endif
case 203: // M203 max feedrate mm/sec
gcode_M203();
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
gcode_M204();
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
gcode_M205();
break;
case 206: // M206 additional homing offset
gcode_M206();
break;
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665();
break;
case 666: // M666 set delta endstop adjustment
gcode_M666();
break;
#endif // DELTA
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
gcode_M207();
break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
gcode_M208();
break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
gcode_M209();
break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
gcode_M218();
break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
gcode_M220();
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
gcode_M221();
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
gcode_M226();
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
gcode_M280();
break;
#endif // NUM_SERVOS > 0
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
case 300: // M300 - Play beep tone
gcode_M300();
break;
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
#ifdef PIDTEMP
case 301: // M301
gcode_M301();
break;
#endif // PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
gcode_M304();
break;
#endif // PIDTEMPBED
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240();
break;
#endif // CHDK || PHOTOGRAPH_PIN
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
gcode_M250();
break;
#endif // DOGLCD
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
gcode_M302();
break;
#endif // PREVENT_DANGEROUS_EXTRUDE
case 303: // M303 PID autotune
gcode_M303();
break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
if (gcode_M360()) return;
break;
case 361: // M361 SCARA Theta pos2
if (gcode_M361()) return;
break;
case 362: // M362 SCARA Psi pos1
if (gcode_M362()) return;
break;
case 363: // M363 SCARA Psi pos2
if (gcode_M363()) return;
break;
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
if (gcode_M364()) return;
break;
case 365: // M365 Set SCARA scaling for X Y Z
gcode_M365();
break;
#endif // SCARA
case 400: // M400 finish all moves
gcode_M400();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
case 401:
gcode_M401();
break;
case 402:
gcode_M402();
break;
#endif
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404();
break;
case 405: //M405 Turn on filament sensor for control
gcode_M405();
break;
case 406: //M406 Turn off filament sensor for control
gcode_M406();
break;
case 407: //M407 Display measured filament diameter
gcode_M407();
break;
#endif // FILAMENT_SENSOR
case 500: // M500 Store settings in EEPROM
gcode_M500();
break;
case 501: // M501 Read settings from EEPROM
gcode_M501();
break;
case 502: // M502 Revert to default settings
gcode_M502();
break;
case 503: // M503 print settings currently in memory
gcode_M503();
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
gcode_M540();
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
gcode_SET_Z_PROBE_OFFSET();
break;
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
gcode_M600();
break;
#endif // FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605:
gcode_M605();
break;
#endif // DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
gcode_M907();
break;
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
case 908: // M908 Control digital trimpot directly.
gcode_M908();
break;
#endif // DIGIPOTSS_PIN
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350();
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351();
break;
case 999: // M999: Restart after being Stopped
gcode_M999();
break;
}
}
else if (code_seen('T')) {
gcode_T();
}
else {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]); SERIAL_ECHO(cmdbuffer[bufindr]);
@ -4875,43 +5460,3 @@ void calculate_volumetric_multipliers() {
for (int i=0; i<EXTRUDERS; i++) for (int i=0; i<EXTRUDERS; i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
} }
#ifdef EXT_SOLENOID
void enable_solenoid(uint8_t num) {
switch(num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if defined(SOL1_PIN) && SOL1_PIN > -1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if defined(SOL2_PIN) && SOL2_PIN > -1
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if defined(SOL3_PIN) && SOL3_PIN > -1
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
#endif //EXT_SOLENOID