Merge pull request #6054 from thinkyhead/rc_ubl_renewal

UBL for RCBugFix — cleanup, rebase, patch
This commit is contained in:
Scott Lahteine 2017-03-18 12:07:57 -05:00 committed by GitHub
commit 2c630a1b5c
53 changed files with 13156 additions and 846 deletions

2
.gitignore vendored
View file

@ -42,7 +42,7 @@ applet/
*.i
*.ii
*.swp
tags
#
# C++

View file

@ -117,6 +117,12 @@ script:
- opt_set ABL_GRID_POINTS_Y 16
- build_marlin
#
# Test a simple build of AUTO_BED_LEVELING_UBL
#
- restore_configs
- opt_enable AUTO_BED_LEVELING_UBL FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
- build_marlin
#
# Test a Sled Z Probe
#
- restore_configs

View file

@ -667,7 +667,7 @@
*/
#define ABL_PLANAR (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT))
#define ABL_GRID (ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR))
#define HAS_ABL (ABL_PLANAR || ABL_GRID)
#define HAS_ABL (ABL_PLANAR || ABL_GRID || ENABLED(AUTO_BED_LEVELING_UBL))
#define PLANNER_LEVELING (HAS_ABL || ENABLED(MESH_BED_LEVELING))
#define HAS_PROBING_PROCEDURE (HAS_ABL || ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST))

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -603,8 +604,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -742,34 +742,7 @@
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -793,10 +766,23 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -805,6 +791,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -825,11 +818,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -853,7 +841,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -631,6 +631,13 @@
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_MESH_MIN_X (X_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_X (X_MAX_POS - (UBL_MESH_INSET))
#define UBL_MESH_MIN_Y (Y_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_Y (Y_MAX_POS - (UBL_MESH_INSET))
#endif
// @section extras
// Arc interpretation settings:
@ -1036,7 +1043,7 @@
#define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave
/**
* Add M43 command for pins info and testing
* Add M43, M44 and M45 commands for pins info and testing
*/
//#define PINS_DEBUGGING

View file

@ -0,0 +1,1001 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
#define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
#define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
#define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
#define BED_TEMP 60.0
#define HOTEND_TEMP 205.0
#define OOOOZE_AMOUNT 0.3
#include "Marlin.h"
#include "Configuration.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "UBL.h"
#include "ultralcd.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define SIZE_OF_INTERSECTION_CIRCLES 5
#define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
// less than SIZE_OR_INTERSECTION_CIRCLES
/**
* Roxy's G26 Mesh Validation Tool
*
* G26 Is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
* In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
* be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
* first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
* the intersections of those lines (respectively).
*
* This action allows the user to immediately see where the Mesh is properly defined and where it needs to
* be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
* the user can specify the X and Y position of interest with command parameters. This allows the user to
* focus on a particular area of the Mesh where attention is needed.
*
* B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
*
* C Current When searching for Mesh Intersection points to draw, use the current nozzle location
* as the base for any distance comparison.
*
* D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
* command to see how well a Mesh as been adjusted to match a print surface. In order to do
* this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
* alters the command's normal behaviour and disables the Unified Bed Leveling System even if
* it is on.
*
* H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
*
* F # Filament Used to specify the diameter of the filament being used. If not specified
* 1.75mm filament is assumed. If you are not getting acceptable results by using the
* 'correct' numbers, you can scale this number up or down a little bit to change the amount
* of filament that is being extruded during the printing of the various lines on the bed.
*
* K Keep-On Keep the heaters turned on at the end of the command.
*
* L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
*
* Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
* un-retraction is at 1.2mm These numbers will be scaled by the specified amount
*
* N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
*
* O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
* is over kill, but using this parameter will let you get the very first 'cicle' perfect
* so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
* Mesh calibrated. If not specified, a filament length of .3mm is assumed.
*
* P # Prime Prime the nozzle with specified length of filament. If this parameter is not
* given, no prime action will take place. If the parameter specifies an amount, that much
* will be purged before continuing. If no amount is specified the command will start
* purging filament until the user provides an LCD Click and then it will continue with
* printing the Mesh. You can carefully remove the spent filament with a needle nose
* pliers while holding the LCD Click wheel in a depressed state.
*
* R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
* undrawn cicle is still done. But the distance to the location for each circle has a
* random number of the size specified added to it. Specifying R50 will give an interesting
* deviation from the normal behaviour on a 10 x 10 Mesh.
*
* X # X coordinate Specify the starting location of the drawing activity.
*
* Y # Y coordinate Specify the starting location of the drawing activity.
*/
extern int UBL_has_control_of_LCD_Panel;
extern float feedrate;
//extern bool relative_mode;
extern Planner planner;
//#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
//#endif
extern float destination[];
extern void set_destination_to_current();
extern void set_current_to_destination();
extern float code_value_float();
extern bool code_value_bool();
extern bool code_has_value();
extern void lcd_init();
#define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
bool prepare_move_to_destination_cartesian();
void line_to_destination();
void line_to_destination(float );
void gcode_G28();
void sync_plan_position_e();
void un_retract_filament();
void retract_filament();
void look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
bool turn_on_heaters();
bool prime_nozzle();
void chirp_at_user();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], Continue_with_closest = 0;
float G26_E_AXIS_feedrate = 0.020,
Random_Deviation = 0.0,
Layer_Height = LAYER_HEIGHT;
bool retracted = false; // We keep track of the state of the nozzle to know if it
// is currently retracted or not. This allows us to be
// less careful because mis-matched retractions and un-retractions
// won't leave us in a bad state.
#if ENABLED(ULTRA_LCD)
void lcd_setstatus(const char* message, bool persist);
#endif
float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(float, float);
void debug_current_and_destination(char *title);
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
static float E_Pos_Delta,
Extrusion_Multiplier = EXTRUSION_MULTIPLIER,
Retraction_Multiplier = RETRACTION_MULTIPLIER,
Nozzle = NOZZLE,
Filament = FILAMENT,
Prime_Length = PRIME_LENGTH,
X_Pos, Y_Pos,
bed_temp = BED_TEMP,
hotend_temp = HOTEND_TEMP,
Ooooze_Amount = OOOOZE_AMOUNT;
int8_t Prime_Flag = 0;
bool Keep_Heaters_On = false,
G26_Debug_flag = false;
/**
* These support functions allow the use of large bit arrays of flags that take very
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
* in the future.
*/
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void gcode_G26() {
float circle_x, circle_y, x, y, xe, ye, tmp,
start_angle, end_angle;
int i, xi, yi, lcd_init_counter = 0;
mesh_index_pair location;
if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
gcode_G28();
if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
stepper.synchronize();
set_current_to_destination();
}
if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
goto LEAVE; // has gone wrong.
axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
//relative_mode = false; // planner and stepper motors!
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
if (Prime_Flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
goto LEAVE;
/**
* Bed is preheated
*
* Nozzle is at temperature
*
* Filament is primed!
*
* It's "Show Time" !!!
*/
// Clear all of the flags we need
ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags);
//
// Move nozzle to the specified height for the first layer
//
set_destination_to_current();
destination[Z_AXIS] = Layer_Height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], Ooooze_Amount);
UBL_has_control_of_LCD_Panel = 1; // Take control of the LCD Panel!
debug_current_and_destination((char *)"Starting G26 Mesh Validation Pattern.");
do {
if (G29_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
strcpy(lcd_status_message, "Mesh Validation Stopped."); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch click
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Mesh Validation Stopped.", true);
lcd_quick_feedback();
#endif
goto LEAVE;
}
if (Continue_with_closest)
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
else
location = find_closest_circle_to_print(X_Pos, Y_Pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
circle_x = blm.map_x_index_to_bed_location(location.x_index);
circle_y = blm.map_y_index_to_bed_location(location.y_index);
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA
if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
goto LEAVE;
}
#endif
if (circle_x < X_MIN_POS || circle_x > X_MAX_POS || circle_y < Y_MIN_POS || circle_y > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to print off the bed.");
goto LEAVE;
}
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index;
if (G26_Debug_flag) {
SERIAL_ECHOPGM(" Doing circle at: (xi=");
SERIAL_ECHO(xi);
SERIAL_ECHOPGM(", yi=");
SERIAL_ECHO(yi);
SERIAL_ECHOLNPGM(")");
}
start_angle = 0.0; // assume it is going to be a full circle
end_angle = 360.0;
if (xi == 0) { // Check for bottom edge
start_angle = -90.0;
end_angle = 90.0;
if (yi == 0) // it is an edge, check for the two left corners
start_angle = 0.0;
else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
end_angle = 0.0;
}
else if (xi == UBL_MESH_NUM_X_POINTS - 1) { // Check for top edge
start_angle = 90.0;
end_angle = 270.0;
if (yi == 0) // it is an edge, check for the two right corners
end_angle = 180.0;
else if (yi == UBL_MESH_NUM_Y_POINTS - 1)
start_angle = 180.0;
}
else if (yi == 0) {
start_angle = 0.0; // only do the top side of the cirlce
end_angle = 180.0;
}
else if (yi == UBL_MESH_NUM_Y_POINTS - 1) {
start_angle = 180.0; // only do the bottom side of the cirlce
end_angle = 360.0;
}
/**
* Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
* the CPU load and make the arc drawing faster and more smooth
*/
float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
int tmp_div_30;
for (i = 0; i <= 360 / 30; i++) {
cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
}
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30];
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
ye = circle_y + sin_table[tmp_div_30 + 1];
#ifdef DELTA
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
continue; // the 'circle' is on the bed. If
#else // not, we need to skip
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
if (G26_Debug_flag) {
char ccc, *cptr, seg_msg[50], seg_num[10];
strcpy(seg_msg, " segment: ");
strcpy(seg_num, " \n");
cptr = (char *) "01234567890ABCDEF????????";
ccc = cptr[tmp_div_30];
seg_num[1] = ccc;
strcat(seg_msg, seg_num);
debug_current_and_destination(seg_msg);
}
print_line_from_here_to_there(x, y, Layer_Height, xe, ye, Layer_Height);
}
lcd_init_counter++;
if (lcd_init_counter > 10) {
lcd_init_counter = 0;
lcd_init(); // Some people's LCD Displays are locking up. This might help them
}
debug_current_and_destination((char *)"Looking for lines to connect.");
look_for_lines_to_connect();
debug_current_and_destination((char *)"Done with line connect.");
}
debug_current_and_destination((char *)"Done with current circle.");
}
while (location.x_index >= 0 && location.y_index >= 0) ;
LEAVE:
retract_filament();
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Raise the nozzle
debug_current_and_destination((char *)"ready to do Z-Raise.");
move_to( destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
debug_current_and_destination((char *)"done doing Z-Raise.");
destination[X_AXIS] = X_Pos; // Move back to the starting position
destination[Y_AXIS] = Y_Pos;
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
debug_current_and_destination((char *)"done doing X/Y move.");
UBL_has_control_of_LCD_Panel = 0; // Give back control of the LCD Panel!
if (!Keep_Heaters_On) {
#if HAS_TEMP_BED
thermalManager.setTargetBed(0.0);
#endif
thermalManager.setTargetHotend(0.0, 0);
}
lcd_init(); // Some people's LCD Displays are locking up. This might help them
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair find_closest_circle_to_print( float X, float Y) {
float f, mx, my, dx, dy, closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!is_bit_set(circle_flags, i, j)) {
mx = blm.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
my = blm.map_y_index_to_bed_location(j);
dx = X - mx; // Get the distance to this intersection
dy = Y - my;
f = HYPOT(dx, dy);
dx = X_Pos - mx; // It is possible that we are being called with the values
dy = Y_Pos - my; // to let us find the closest circle to the start position.
f += HYPOT(dx, dy) / 15.0; // But if this is not the case,
// we are going to add in a small
// weighting to the distance calculation to help it choose
// a better place to continue.
if (Random_Deviation > 1.0)
f += random(0.0, Random_Deviation); // Add in the specified amount of Random Noise to our search
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance= closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
void look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (i < UBL_MESH_NUM_X_POINTS) { // We can't connect to anything to the right than UBL_MESH_NUM_X_POINTS.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = blm.map_x_index_to_bed_location(i);
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
sy = blm.map_y_index_to_bed_location(j);
ex = blm.map_x_index_to_bed_location(i + 1);
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
ey = sy;
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (G26_Debug_flag) {
SERIAL_ECHOPGM(" Connecting with horizontal line (sx=");
SERIAL_ECHO(sx);
SERIAL_ECHOPGM(", sy=");
SERIAL_ECHO(sy);
SERIAL_ECHOPGM(") -> (ex=");
SERIAL_ECHO(ex);
SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char *)"Connecting horizontal line.");
}
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
if (j < UBL_MESH_NUM_Y_POINTS) { // We can't connect to anything further back than UBL_MESH_NUM_Y_POINTS.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sx = blm.map_x_index_to_bed_location(i);
sy = blm.map_y_index_to_bed_location(j);
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
ex = sx;
ey = blm.map_y_index_to_bed_location(j + 1);
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (G26_Debug_flag) {
SERIAL_ECHOPGM(" Connecting with vertical line (sx=");
SERIAL_ECHO(sx);
SERIAL_ECHOPGM(", sy=");
SERIAL_ECHO(sy);
SERIAL_ECHOPGM(") -> (ex=");
SERIAL_ECHO(ex);
SERIAL_ECHOPGM(", ey=");
SERIAL_ECHO(ey);
SERIAL_ECHOLNPGM(")");
debug_current_and_destination((char *)"Connecting vertical line.");
}
print_line_from_here_to_there(sx, sy, Layer_Height, ex, ey, Layer_Height);
bit_set( vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
}
}
}
}
}
void debug_current_and_destination(char *title) {
float dx, dy, de, xy_dist, fpmm;
// if the title message starts with a '!' it is so important, we are going to
// ignore the status of the G26_Debug_Flag
if (*title != '!' && !G26_Debug_flag) return;
dx = current_position[X_AXIS] - destination[X_AXIS];
dy = current_position[Y_AXIS] - destination[Y_AXIS];
de = destination[E_AXIS] - current_position[E_AXIS];
if (de == 0.0) return;
xy_dist = HYPOT(dx, dy);
if (xy_dist == 0.0) {
return;
//SERIAL_ECHOPGM(" FPMM=");
//fpmm = de;
//SERIAL_PROTOCOL_F(fpmm, 6);
}
else {
SERIAL_ECHOPGM(" fpmm=");
fpmm = de / xy_dist;
SERIAL_PROTOCOL_F(fpmm, 6);
}
SERIAL_ECHOPGM(" current=( ");
SERIAL_PROTOCOL_F(current_position[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
SERIAL_PROTOCOL_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( ");
if (current_position[X_AXIS] == destination[X_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[X_AXIS], 6);
SERIAL_ECHOPGM(", ");
if (current_position[Y_AXIS] == destination[Y_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[Y_AXIS], 6);
SERIAL_ECHOPGM(", ");
if (current_position[Z_AXIS] == destination[Z_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[Z_AXIS], 6);
SERIAL_ECHOPGM(", ");
if (current_position[E_AXIS] == destination[E_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_PROTOCOL_F(destination[E_AXIS], 6);
SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title);
SERIAL_EOL;
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
//if (been_to_2_6) {
//while ((digitalRead(66) & 0x01) != 0)
// idle();
//}
}
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_XY_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (G26_Debug_flag) {
SERIAL_ECHOPAIR("in move_to() has_XY_component:", (int)has_XY_component);
SERIAL_EOL;
}
if (z != last_z) {
if (G26_Debug_flag) {
SERIAL_ECHOPAIR("in move_to() changing Z to ", (int)z);
SERIAL_EOL;
}
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
stepper.synchronize();
set_destination_to_current();
if (G26_Debug_flag)
debug_current_and_destination((char *)" in move_to() done with Z move");
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_XY_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (G26_Debug_flag) {
SERIAL_ECHOPAIR("in move_to() feed_value for XY:", feed_value);
SERIAL_EOL;
}
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta;
if (G26_Debug_flag)
debug_current_and_destination((char *)" in move_to() doing last move");
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
if (G26_Debug_flag)
debug_current_and_destination((char *)" in move_to() after last move");
stepper.synchronize();
set_destination_to_current();
}
void retract_filament() {
if (!retracted) { // Only retract if we are not already retracted!
retracted = true;
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * Retraction_Multiplier);
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
}
}
void un_retract_filament() {
if (retracted) { // Only un-retract if we are retracted.
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * Retraction_Multiplier);
retracted = false;
if (G26_Debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
float dx, dy, dx_s, dy_s, dx_e, dy_e, dist_start, dist_end, Line_Length;
dx_s = current_position[X_AXIS] - sx; // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy;
dist_start = HYPOT2(dx_s, dy_s); // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex; // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey;
dist_end = HYPOT2(dx_e, dy_e);
dx = ex - sx;
dy = ey - sy;
Line_Length = HYPOT(dx, dy);
// If the end point of the line is closer to the nozzle, we are going to
// flip the direction of this line. We will print it from the end to the start.
// On very small lines we don't do the optimization because it just isn't worth it.
//
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(Line_Length)) {
if (G26_Debug_flag)
SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
return;
}
// Now decide if we should retract.
if (dist_start > 2.0) {
retract_filament();
if (G26_Debug_flag)
SERIAL_ECHOLNPGM(" filament retracted.");
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
E_Pos_Delta = Line_Length * G26_E_AXIS_feedrate * Extrusion_Multiplier;
un_retract_filament();
if (G26_Debug_flag) {
SERIAL_ECHOLNPGM(" doing printing move.");
debug_current_and_destination((char *)"doing final move_to() inside print_line_from_here_to_there()");
}
move_to(ex, ey, ez, E_Pos_Delta); // Get to the ending point with an appropriate amount of extrusion
}
/**
* This function used to be inline code in G26. But there are so many
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool parse_G26_parameters() {
Extrusion_Multiplier = EXTRUSION_MULTIPLIER;
Retraction_Multiplier = RETRACTION_MULTIPLIER;
Nozzle = NOZZLE;
Filament = FILAMENT;
Layer_Height = LAYER_HEIGHT;
Prime_Length = PRIME_LENGTH;
bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP;
Ooooze_Amount = OOOOZE_AMOUNT;
Prime_Flag = 0;
Keep_Heaters_On = false;
if (code_seen('B')) {
bed_temp = code_value_float();
if (bed_temp < 15.0 || bed_temp > 140.0) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('C')) Continue_with_closest++;
if (code_seen('L')) {
Layer_Height = code_value_float();
if (Layer_Height<0.0 || Layer_Height>2.0) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
}
if (code_seen('Q')) {
if (code_has_value()) {
Retraction_Multiplier = code_value_float();
if (Retraction_Multiplier<.05 || Retraction_Multiplier>15.0) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return UBL_ERR;
}
}
if (code_seen('N')) {
Nozzle = code_value_float();
if (Nozzle < 0.1 || Nozzle > 1.0) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
}
if (code_seen('K')) Keep_Heaters_On++;
if (code_seen('O') && code_has_value())
Ooooze_Amount = code_value_float();
if (code_seen('P')) {
if (!code_has_value())
Prime_Flag = -1;
else {
Prime_Flag++;
Prime_Length = code_value_float();
if (Prime_Length < 0.0 || Prime_Length > 25.0) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
}
}
if (code_seen('F')) {
Filament = code_value_float();
if (Filament < 1.0 || Filament > 4.0) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
Extrusion_Multiplier *= sq(1.75) / sq(Filament); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
Extrusion_Multiplier *= Filament * sq(Nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) {
hotend_temp = code_value_float();
if (hotend_temp < 165.0 || hotend_temp > 280.0) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('R')) {
randomSeed(millis());
Random_Deviation = code_has_value() ? code_value_float() : 50.0;
}
X_Pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS];
if (code_seen('X')) {
X_Pos = code_value_float();
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
return UBL_ERR;
}
}
else
if (code_seen('Y')) {
Y_Pos = code_value_float();
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
return UBL_ERR;
}
}
/**
* We save the question of what to do with the Unified Bed Leveling System's Activation until the very
* end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
* alter the system's status. We wait until we know everything is correct before altering the state
* of the system.
*/
blm.state.active = !code_seen('D');
return UBL_OK;
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (bed_temp > 25) {
lcd_setstatus("G26 Heating Bed.", true);
lcd_quick_feedback();
#endif
UBL_has_control_of_LCD_Panel++;
thermalManager.setTargetBed(bed_temp);
while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (G29_lcd_clicked()) {
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch
lcd_setstatus("Leaving G26", true); // Now we do it right.
return UBL_ERR;
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatus("G26 Heating Nozzle.", true);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
if (G29_lcd_clicked()) {
strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
while (G29_lcd_clicked()) idle(); // Debounce the switch
lcd_setstatus("Leaving G26", true); // Now we do it right.
return UBL_ERR;
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_setstatus("", true);
lcd_quick_feedback();
#endif
return UBL_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
float Total_Prime = 0.0;
if (Prime_Flag == -1) { // The user wants to control how much filament gets purged
lcd_setstatus("User Controled Prime", true);
chirp_at_user();
set_destination_to_current();
un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
// retracted(). We are here because we want to prime the nozzle.
// So let's just unretract just to be sure.
UBL_has_control_of_LCD_Panel++;
while (!G29_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
UBL_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_to_current();
idle();
}
strcpy(lcd_status_message, "Done Priming"); // We can't do lcd_setstatus() without having it continue;
// So... We cheat to get a message up.
while (G29_lcd_clicked()) idle(); // Debounce the switch
#if ENABLED(ULTRA_LCD)
UBL_has_control_of_LCD_Panel = 0;
lcd_setstatus("Done Priming", true); // Now we do it right.
lcd_quick_feedback();
#endif
}
else {
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Fixed Length Prime.", true);
lcd_quick_feedback();
#endif
set_destination_to_current();
destination[E_AXIS] += Prime_Length;
UBL_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
//planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0, 0xFFFF, 0xFFFF);
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
);
stepper.synchronize();
set_destination_to_current();
retract_filament();
}
return UBL_OK;
}
#endif // AUTO_BED_LEVELING_UBL

View file

@ -35,7 +35,7 @@
* M100 C x Corrupts x locations within the free memory block. This is useful to check the
* correctness of the M100 F and M100 D commands.
*
* Initial version by Roxy-3DPrintBoard
* Initial version by Roxy-3D
*/
#define M100_FREE_MEMORY_DUMPER // Comment out to remove Dump sub-command
#define M100_FREE_MEMORY_CORRUPTOR // Comment out to remove Corrupt sub-command
@ -51,10 +51,9 @@ extern char __bss_end;
// Utility functions used by M100 to get its work done.
//
#include "hex_print_routines.h"
char* top_of_stack();
void prt_hex_nibble(unsigned int);
void prt_hex_byte(unsigned int);
void prt_hex_word(unsigned int);
int how_many_E5s_are_here(char*);
void gcode_M100() {
@ -211,27 +210,6 @@ char* top_of_stack() {
return &x + 1; // x is pulled on return;
}
//
// 3 support routines to print hex numbers. We can print a nibble, byte and word
//
void prt_hex_nibble(unsigned int n) {
if (n <= 9)
SERIAL_ECHO(n);
else
SERIAL_ECHO((char)('A' + n - 10));
}
void prt_hex_byte(unsigned int b) {
prt_hex_nibble((b & 0xf0) >> 4);
prt_hex_nibble(b & 0x0f);
}
void prt_hex_word(unsigned int w) {
prt_hex_byte((w & 0xff00) >> 8);
prt_hex_byte(w & 0x0ff);
}
// how_many_E5s_are_here() is a utility function to easily find out how many 0xE5's are
// at the specified location. Having this logic as a function simplifies the search code.
//

View file

@ -40,6 +40,7 @@
#include "fastio.h"
#include "utility.h"
#ifdef USBCON
#include "HardwareSerial.h"
#if ENABLED(BLUETOOTH)
@ -82,6 +83,7 @@ extern const char errormagic[] PROGMEM;
#define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x)
#define SERIAL_ECHOPAIR(name,value) SERIAL_PROTOCOLPAIR(name, value)
#define SERIAL_ECHOLNPAIR(name, value) SERIAL_PROTOCOLLNPAIR(name, value)
#define SERIAL_ECHO_F(x,y) SERIAL_PROTOCOL_F(x,y)
#define SERIAL_ERROR_START (serialprintPGM(errormagic))
#define SERIAL_ERROR(x) SERIAL_PROTOCOL(x)
@ -95,6 +97,7 @@ void serial_echopair_P(const char* s_P, int v);
void serial_echopair_P(const char* s_P, long v);
void serial_echopair_P(const char* s_P, float v);
void serial_echopair_P(const char* s_P, double v);
void serial_echopair_P(const char* s_P, unsigned int v);
void serial_echopair_P(const char* s_P, unsigned long v);
FORCE_INLINE void serial_echopair_P(const char* s_P, uint8_t v) { serial_echopair_P(s_P, (int)v); }
FORCE_INLINE void serial_echopair_P(const char* s_P, uint16_t v) { serial_echopair_P(s_P, (int)v); }

View file

@ -1,6 +1,6 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
@ -234,6 +234,10 @@
#include "duration_t.h"
#include "types.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#endif
#if HAS_ABL
#include "vector_3.h"
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
@ -297,6 +301,10 @@
G38_endstop_hit = false;
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
bed_leveling blm;
#endif
bool Running = true;
uint8_t marlin_debug_flags = DEBUG_NONE;
@ -315,7 +323,7 @@ float current_position[XYZE] = { 0.0 };
* Set with 'gcode_get_destination' or 'set_destination_to_current'.
* 'line_to_destination' sets 'current_position' to 'destination'.
*/
static float destination[XYZE] = { 0.0 };
float destination[XYZE] = { 0.0 };
/**
* axis_homed
@ -706,7 +714,7 @@ static void report_current_position();
SERIAL_ECHOPAIR("(", x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", z);
SERIAL_ECHOPGM(")");
SERIAL_CHAR(')');
if (suffix) serialprintPGM(suffix);
else SERIAL_EOL;
@ -1760,7 +1768,7 @@ static void clean_up_after_endstop_or_probe_move() {
#endif //HAS_BED_PROBE
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
bool axis_unhomed_error(const bool x, const bool y, const bool z) {
const bool xx = x && !axis_homed[X_AXIS],
yy = y && !axis_homed[Y_AXIS],
zz = z && !axis_homed[Z_AXIS];
@ -2009,7 +2017,7 @@ static void clean_up_after_endstop_or_probe_move() {
#endif
// returns false for ok and true for failure
static bool set_probe_deployed(bool deploy) {
bool set_probe_deployed(bool deploy) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
@ -2196,7 +2204,8 @@ static void clean_up_after_endstop_or_probe_move() {
// - Raise to the BETWEEN height
// - Return the probed Z position
//
static float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
//float probe_pt(const float &x, const float &y, const bool stow = true, const int verbose_level = 1) {
float probe_pt(const float x, const float y, const bool stow, const int verbose_level) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> probe_pt(", x);
@ -3291,10 +3300,12 @@ inline void gcode_G4() {
SERIAL_ECHOPGM("BILINEAR");
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
SERIAL_ECHOPGM("3POINT");
#elif ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOPGM("UBL");
#endif
if (planner.abl_enabled) {
SERIAL_ECHOLNPGM(" (enabled)");
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT) || ENABLED(AUTO_BED_LEVELING_UBL)
float diff[XYZ] = {
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
@ -3842,7 +3853,7 @@ inline void gcode_G28() {
report_current_position();
}
#elif HAS_ABL
#elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
@ -4395,7 +4406,7 @@ inline void gcode_G28() {
SYNC_PLAN_POSITION_KINEMATIC();
}
#endif // HAS_ABL
#endif // HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
#if HAS_BED_PROBE
@ -7005,6 +7016,8 @@ void quickstop_stepper() {
bed_level_virt_print();
#endif
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
blm.display_map(0); // Right now, we only support one type of map
#elif ENABLED(MESH_BED_LEVELING)
if (mbl.has_mesh()) {
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
@ -8315,6 +8328,12 @@ void process_next_command() {
break;
#endif // INCH_MODE_SUPPORT
#if ENABLED(AUTO_BED_LEVELING_UBL)
case 26: // G26: Mesh Validation Pattern generation
gcode_G26();
break;
#endif // AUTO_BED_LEVELING_UBL
#if ENABLED(NOZZLE_PARK_FEATURE)
case 27: // G27: Nozzle Park
gcode_G27();
@ -8326,7 +8345,8 @@ void process_next_command() {
break;
#if PLANNER_LEVELING
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
// or provides access to the UBL System if enabled.
gcode_G29();
break;
#endif // PLANNER_LEVELING
@ -8433,12 +8453,24 @@ void process_next_command() {
gcode_M43(); break;
#endif
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
case 48: // M48: Z probe repeatability test
gcode_M48();
break;
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL)
case 49: // M49: Turn on or off G26_Debug_flag for verbose output
if (G26_Debug_flag) {
SERIAL_PROTOCOLPGM("UBL Debug Flag turned off.\n");
G26_Debug_flag = 0; }
else {
SERIAL_PROTOCOLPGM("UBL Debug Flag turned on.\n");
G26_Debug_flag++; }
break;
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
case 75: // M75: Start print timer
gcode_M75(); break;
case 76: // M76: Pause print timer
@ -9078,7 +9110,7 @@ void ok_to_send() {
SERIAL_ECHOLNPAIR(" offset=", offset);
}
last_offset = offset;
//*/
*/
return offset;
}
@ -9564,6 +9596,18 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
return false;
}
else
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (blm.state.active) {
// UBL_line_to_destination(MMS_SCALED(feedrate_mm_s));
UBL_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
MMS_SCALED(feedrate_mm_s), active_extruder);
return false;
}
else
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (planner.abl_enabled) {
bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
@ -10565,9 +10609,9 @@ void setup() {
#endif
#if ENABLED(RGB_LED)
pinMode(RGB_LED_R_PIN, OUTPUT);
pinMode(RGB_LED_G_PIN, OUTPUT);
pinMode(RGB_LED_B_PIN, OUTPUT);
SET_OUTPUT(RGB_LED_R_PIN);
SET_OUTPUT(RGB_LED_G_PIN);
SET_OUTPUT(RGB_LED_B_PIN);
#endif
lcd_init();

View file

@ -388,10 +388,13 @@ static_assert(1 >= 0
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
+ 1
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
+ 1
#endif
#if ENABLED(MESH_BED_LEVELING)
+ 1
#endif
, "Select only one of: MESH_BED_LEVELING, AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT, or AUTO_BED_LEVELING_BILINEAR."
, "Select only one of: MESH_BED_LEVELING, AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT, AUTO_BED_LEVELING_BILINEAR or AUTO_BED_LEVELING_UBL."
);
/**
@ -403,6 +406,21 @@ static_assert(1 >= 0
#elif MESH_NUM_X_POINTS > 9 || MESH_NUM_Y_POINTS > 9
#error "MESH_NUM_X_POINTS and MESH_NUM_Y_POINTS must be less than 10."
#endif
#elif ENABLED(MANUAL_BED_LEVELING)
#error "MANUAL_BED_LEVELING only applies to MESH_BED_LEVELING."
#endif
/**
* Unified Bed Leveling
*/
#if ENABLED(AUTO_BED_LEVELING_UBL)
#if ENABLED(DELTA)
#error "AUTO_BED_LEVELING_UBL does not yet support DELTA printers."
#elif DISABLED(NEWPANEL)
#error "AUTO_BED_LEVELING_UBL requires an LCD controller."
#elif UBL_MESH_NUM_X_POINTS > 15 || UBL_MESH_NUM_Y_POINTS > 15
#error "UBL_MESH_NUM_X_POINTS and UBL_MESH_NUM_Y_POINTS must be less than 16."
#endif
#endif
/**
@ -434,6 +452,7 @@ static_assert(1 >= 0
, "Please enable only one probe: PROBE_MANUALLY, FIX_MOUNTED_PROBE, Z Servo, BLTOUCH, Z_PROBE_ALLEN_KEY, or Z_PROBE_SLED."
);
#if PROBE_SELECTED
/**
@ -577,21 +596,26 @@ static_assert(1 >= 0
#endif
#endif
#else // !ABL_GRID
// Check the triangulation points
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe."
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#ifndef EEPROM_SETTINGS
#error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration."
#endif
#else // !UBL
// Check the triangulation points
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
#error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
#error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe."
#endif
#endif // !AUTO_BED_LEVEING_UBL
#endif // !ABL_GRID

331
Marlin/UBL.h Normal file
View file

@ -0,0 +1,331 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_OK false
#define UBL_ERR true
typedef struct {
int x_index, y_index;
float distance; // Not always used. But when populated, it is the distance
// from the search location
} mesh_index_pair;
struct vector { double dx, dy, dz; };
enum Mesh_Point_Type { INVALID, REAL, SET_IN_BITMAP };
bool axis_unhomed_error(bool, bool, bool);
void dump(char *str, float f);
bool G29_lcd_clicked();
void probe_entire_mesh(float, float, bool, bool);
void UBL_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
void manually_probe_remaining_mesh(float, float, float, float, bool);
struct vector tilt_mesh_based_on_3pts(float, float, float);
void new_set_bed_level_equation_3pts(float, float, float);
float measure_business_card_thickness(float);
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type, float, float, bool, unsigned int[16]);
void Find_Mean_Mesh_Height();
void Shift_Mesh_Height();
bool G29_Parameter_Parsing();
void G29_What_Command();
void G29_EEPROM_Dump();
void G29_Kompare_Current_Mesh_to_Stored_Mesh();
void fine_tune_mesh(float, float, float, bool);
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
char *ftostr43sign(const float&, char);
void gcode_G26();
void gcode_G28();
void gcode_G29();
extern char conv[9];
void save_UBL_active_state_and_disable();
void restore_UBL_active_state_and_leave();
///////////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
void lcd_quick_feedback();
#endif
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
extern bool G26_Debug_flag;
extern float last_specified_z;
extern float fade_scaling_factor_for_current_height;
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
extern float mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
extern float mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
class bed_leveling {
public:
struct ubl_state {
bool active = false;
float z_offset = 0.0;
int EEPROM_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X,
mesh_y_min = UBL_MESH_MIN_Y,
mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST,
G29_Correction_Fade_Height = 10.0,
G29_Fade_Height_Multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
// point divide. So, we keep this number in both forms. The first
// is for the user. The second one is the one that is actually used
// again and again and again during the correction calculations.
unsigned char padding[24]; // This is just to allow room to add state variables without
// changing the location of data structures in the EEPROM.
// This is for compatability with future versions to keep
// people from having to regenerate thier mesh data.
//
// If you change the contents of this struct, please adjust
// the padding[] to keep the size the same!
} state, pre_initialized;
bed_leveling();
// ~bed_leveling(); // No destructor because this object never goes away!
void display_map(int);
void reset();
void invalidate();
void store_state();
void load_state();
void store_mesh(int);
void load_mesh(int);
bool sanity_check();
FORCE_INLINE float map_x_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
FORCE_INLINE float map_y_index_to_bed_location(int8_t i){ return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
void set_z(const int8_t px, const int8_t py, const float z) { z_values[px][py] = z; }
int8_t get_cell_index_x(float x) {
int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
int8_t get_cell_index_y(float y) {
int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
int8_t find_closest_x_index(float x) {
int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
}
int8_t find_closest_y_index(float y) {
int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
}
/**
* z2 --|
* z0 | |
* | | + (z2-z1)
* z1 | | |
* ---+-------------+--------+-- --|
* a1 a0 a2
* |<---delta_a---------->|
*
* calc_z0 is the basis for all the Mesh Based correction. It is used to
* find the expected Z Height at a position between two known Z-Height locations
*
* It is farly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
inline float calc_z0(float a0, float a1, float z1, float a2, float z2) {
float delta_z = (z2 - z1);
float delta_a = (a0 - a1) / (a2 - a1);
return z1 + delta_a * delta_z;
}
/**
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
* the X index of the x0 intersection available and we don't want to perform any extra floating
* point operations.
*/
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(float x0, int x1_i, int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float a0ma1diva2ma1 = (x0 - mesh_index_to_X_location[x1_i]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi],
z2 = z_values[x1_i + 1][yi],
dz = (z2 - z1);
return z1 + a0ma1diva2ma1 * dz;
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
//
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(float y0, int xi, int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float a0ma1diva2ma1 = (y0 - mesh_index_to_Y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i],
z2 = z_values[xi][y1_i + 1],
dz = (z2 - z1);
return z1 + a0ma1diva2ma1 * dz;
}
/**
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
float get_z_correction(float x0, float y0) {
int8_t cx = get_cell_index_x(x0),
cy = get_cell_index_y(y0);
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
}
float z1 = calc_z0(x0,
map_x_index_to_bed_location(cx), z_values[cx][cy],
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]);
float z2 = calc_z0(x0,
map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
float z0 = calc_z0(y0,
map_y_index_to_bed_location(cy), z1,
map_y_index_to_bed_location(cy + 1), z2);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
SERIAL_ECHOPAIR(",", y0);
SERIAL_ECHOPGM(")=");
SERIAL_PROTOCOL_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_PROTOCOL_F(z0, 6);
SERIAL_EOL;
}
#endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in blm.z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
SERIAL_ECHO(x0);
SERIAL_ECHOPGM(", ");
SERIAL_ECHO(y0);
SERIAL_ECHOLNPGM(" )");
}
#endif
}
return z0; // there used to be a +state.z_offset on this line
}
/**
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
* optimized for speed. It avoids floating point operations by checking if the requested scaling
* factor is going to be the same as the last time the function calculated a value. If so, it just
* returns it.
*
* If it must do a calcuation, it will return a scaling factor of 0.0 if the UBL System is not active
* or if the current Z Height is past the specified 'Fade Height'
*/
FORCE_INLINE float fade_scaling_factor_for_Z(float current_z) {
if (last_specified_z == current_z)
return fade_scaling_factor_for_current_height;
last_specified_z = current_z;
fade_scaling_factor_for_current_height =
state.active && current_z < state.G29_Correction_Fade_Height
? 1.0 - (current_z * state.G29_Fade_Height_Multiplier)
: 0.0;
return fade_scaling_factor_for_current_height;
}
};
extern bed_leveling blm;
extern int Unified_Bed_Leveling_EEPROM_start;
#endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H

296
Marlin/UBL_Bed_Leveling.cpp Normal file
View file

@ -0,0 +1,296 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#include "hex_print_routines.h"
/**
* These variables used to be declared inside the bed_leveling class. We are going to still declare
* them within the .cpp file for bed leveling. But there is only one instance of the bed leveling
* object and we can get rid of a level of inderection by not making them 'member data'. So, in the
* interest of speed, we do it this way. When we move to a 32-Bit processor, they can be moved
* back inside the bed leveling class.
*/
float last_specified_z,
fade_scaling_factor_for_current_height,
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
mesh_index_to_X_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
mesh_index_to_Y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
bed_leveling::bed_leveling() {
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
mesh_index_to_X_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
mesh_index_to_Y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
reset();
}
void bed_leveling::store_state() {
int k = E2END - sizeof(blm.state);
eeprom_write_block((void *)&blm.state, (void *)k, sizeof(blm.state));
}
void bed_leveling::load_state() {
int k = E2END - sizeof(blm.state);
eeprom_read_block((void *)&blm.state, (void *)k, sizeof(blm.state));
if (sanity_check())
SERIAL_PROTOCOLLNPGM("?In load_state() sanity_check() failed.\n");
// These lines can go away in a few weeks. They are just
// to make sure people updating thier firmware won't be using
if (blm.state.G29_Fade_Height_Multiplier != 1.0 / blm.state.G29_Correction_Fade_Height) { // an incomplete Bed_Leveling.state structure. For speed
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height; // we now multiply by the inverse of the Fade Height instead of
store_state(); // dividing by it. Soon... all of the old structures will be
} // updated, but until then, we try to ease the transition
// for our Beta testers.
}
void bed_leveling::load_mesh(int m) {
int k = E2END - sizeof(blm.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (m == -1) {
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
reset();
return;
}
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
return;
}
j = k - (m + 1) * sizeof(z_values);
eeprom_read_block((void *)&z_values , (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPGM("Mesh loaded from slot ");
SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLPGM(" at offset 0x");
prt_hex_word(j);
SERIAL_EOL;
}
void bed_leveling:: store_mesh(int m) {
int k = E2END - sizeof(state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (m < 0 || m >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
SERIAL_PROTOCOLLNPAIR("E2END : ", E2END);
SERIAL_PROTOCOLLNPAIR("k : ", k);
SERIAL_PROTOCOLLNPAIR("j : ", j);
SERIAL_PROTOCOLLNPAIR("m : ", m);
SERIAL_EOL;
return;
}
j = k - (m + 1) * sizeof(z_values);
eeprom_write_block((const void *)&z_values, (void *)j, sizeof(z_values));
SERIAL_PROTOCOLPGM("Mesh saved in slot ");
SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLPGM(" at offset 0x");
prt_hex_word(j);
SERIAL_EOL;
}
void bed_leveling::reset() {
state.active = false;
state.z_offset = 0;
state.EEPROM_storage_slot = -1;
ZERO(z_values);
last_specified_z = -999.9; // We can't pre-initialize these values in the declaration
fade_scaling_factor_for_current_height = 0.0; // due to C++11 constraints
}
void bed_leveling::invalidate() {
prt_hex_word((unsigned int)this);
SERIAL_EOL;
state.active = false;
state.z_offset = 0;
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (int y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
z_values[x][y] = NAN;
}
void bed_leveling::display_map(int map_type) {
float f, current_xi, current_yi;
int8_t i, j;
UNUSED(map_type);
SERIAL_PROTOCOLLNPGM("\nBed Topography Report:\n");
SERIAL_ECHOPAIR("(", 0);
SERIAL_ECHOPAIR(", ", UBL_MESH_NUM_Y_POINTS - 1);
SERIAL_ECHOPGM(") ");
current_xi = blm.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0);
current_yi = blm.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
SERIAL_ECHOPGM(" ");
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS - 1);
SERIAL_ECHOPAIR(",", UBL_MESH_NUM_Y_POINTS - 1);
SERIAL_ECHOLNPGM(")");
// if (map_type || 1) {
SERIAL_ECHOPAIR("(", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
SERIAL_CHAR(')');
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
SERIAL_ECHOPGM(" ");
SERIAL_ECHOPAIR("(", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR(",", UBL_MESH_MAX_Y);
SERIAL_ECHOLNPGM(")");
// }
for (j = UBL_MESH_NUM_Y_POINTS - 1; j >= 0; j--) {
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
f = z_values[i][j];
// is the nozzle here? if so, mark the number
SERIAL_CHAR(i == current_xi && j == current_yi ? '[' : ' ');
if (isnan(f))
SERIAL_PROTOCOLPGM(" . ");
else {
// if we don't do this, the columns won't line up nicely
if (f >= 0.0) SERIAL_CHAR(' ');
SERIAL_PROTOCOL_F(f, 5);
idle();
}
if (i == current_xi && j == current_yi) // is the nozzle here? if so, finish marking the number
SERIAL_CHAR(']');
else
SERIAL_PROTOCOL(" ");
SERIAL_CHAR(' ');
}
SERIAL_EOL;
if (j) { // we want the (0,0) up tight against the block of numbers
SERIAL_CHAR(' ');
SERIAL_EOL;
}
}
// if (map_type) {
SERIAL_ECHOPAIR("(", int(UBL_MESH_MIN_X));
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
SERIAL_ECHOPGM(") ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
SERIAL_ECHOPGM(" ");
SERIAL_ECHOPAIR("(", int(UBL_MESH_MAX_X));
SERIAL_ECHOPAIR(",", int(UBL_MESH_MIN_Y));
SERIAL_CHAR(')');
// }
SERIAL_ECHOPAIR("(", 0);
SERIAL_ECHOPAIR(",", 0);
SERIAL_ECHOPGM(") ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS - 1; i++)
SERIAL_ECHOPGM(" ");
SERIAL_ECHOPAIR("(", UBL_MESH_NUM_X_POINTS-1);
SERIAL_ECHOPAIR(",", 0);
SERIAL_CHAR(')');
SERIAL_CHAR(' ');
SERIAL_EOL;
}
bool bed_leveling::sanity_check() {
uint8_t error_flag = 0;
if (state.n_x != UBL_MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
error_flag++;
}
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
error_flag++;
}
if (state.mesh_x_min != UBL_MESH_MIN_X) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
error_flag++;
}
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
error_flag++;
}
if (state.mesh_x_max != UBL_MESH_MAX_X) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
error_flag++;
}
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
error_flag++;
}
if (state.mesh_x_dist != MESH_X_DIST) {
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
error_flag++;
}
if (state.mesh_y_dist != MESH_Y_DIST) {
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
error_flag++;
}
int k = E2END - sizeof(blm.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (j < 1) {
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
error_flag++;
}
// SERIAL_PROTOCOLPGM("?sanity_check() return value: ");
// SERIAL_PROTOCOL(error_flag);
// SERIAL_EOL;
return !!error_flag;
}
#endif // AUTO_BED_LEVELING_UBL

1455
Marlin/UBL_G29.cpp Normal file
View file

@ -0,0 +1,1455 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
//#include "vector_3.h"
//#include "qr_solve.h"
#include "UBL.h"
#include "hex_print_routines.h"
#include "configuration_store.h"
#include "planner.h"
#include "ultralcd.h"
#include <avr/io.h>
void lcd_babystep_z();
void lcd_return_to_status();
bool lcd_clicked();
void lcd_implementation_clear();
void lcd_mesh_edit_setup(float inital);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
extern float meshedit_done;
extern long babysteps_done;
extern float code_value_float();
extern bool code_value_bool();
extern bool code_has_value();
extern float probe_pt(float x, float y, bool, int);
extern float zprobe_zoffset;
extern bool set_probe_deployed(bool);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
bool ProbeStay = true;
float ubl_3_point_1_X = UBL_PROBE_PT_1_X;
float ubl_3_point_1_Y = UBL_PROBE_PT_1_Y;
float ubl_3_point_2_X = UBL_PROBE_PT_2_X;
float ubl_3_point_2_Y = UBL_PROBE_PT_2_Y;
float ubl_3_point_3_X = UBL_PROBE_PT_3_X;
float ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
#define SIZE_OF_LITTLE_RAISE 0
#define BIG_RAISE_NOT_NEEDED 0
extern void lcd_quick_feedback();
/**
* G29: Unified Bed Leveling by Roxy
*/
// Transform required to compensate for bed level
//extern matrix_3x3 plan_bed_level_matrix;
/**
* Get the position applying the bed level matrix
*/
//vector_3 plan_get_position();
// static void set_bed_level_equation_lsq(double* plane_equation_coefficients);
// static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3);
/**
* G29: Mesh Based Compensation System
*
* Parameters understood by this leveling system:
*
* A Activate Activate the Unified Bed Leveling system.
*
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
* G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
* as a shim that the nozzle will pinch as it is lowered. The idea is that you
* can easily feel the nozzle getting to the same height by the amount of resistance
* the business card exhibits to movement. You should try to achieve the same amount
* of resistance on each probed point to facilitate accurate and repeatable measurements.
* You should be very careful not to drive the nozzle into the bussiness card with a
* lot of force as it is very possible to cause damage to your printer if your are
* careless. If you use the B option with G29 P2 B you can leave the number parameter off
* on its first use to enable measurement of the business card thickness. Subsequent usage
* of the B parameter can have the number previously measured supplied to the command.
* Incidently, you are much better off using something like a Spark Gap feeler gauge than
* something that compresses like a Business Card.
*
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
* further refine the behaviour of several other commands. Issuing a G29 P1 C will
* continue the generation of a partially constructed Mesh without invalidating what has
* been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
* location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
* it indicates to use the current location instead of defaulting to the center of the print bed.
*
* D Disable Disable the Unified Bed Leveling system.
*
* E Stow_probe Stow the probe after each sampled point.
*
* F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the specified height,
* no correction is applied and natural printer kenimatics take over. If no number is specified
* for the command, 10mm is assummed to be reasonable.
*
* G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on
* a side.
*
* H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
* default is 5mm.
*
* I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
* the X and Y parameter are used. If no number is specified, only the closest Mesh
* point to the location is invalidated. The M parameter is available as well to produce
* a map after the operation. This command is useful to invalidate a portion of the
* Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
* attempting to invalidate an isolated bad point in the mesh, the M option will indicate
* where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
* the bed and use this feature to select the center of the area (or cell) you want to
* invalidate.
*
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
* command litterly performs a difference between two Mesh.
*
* L Load * Load Mesh from the previously activated location in the EEPROM.
*
* L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations.
*
* O Map * Display the Mesh Map Topology.
* The parameter can be specified alone (ie. G29 O) or in combination with many of the
* other commands. The Mesh Map option works with all of the Phase
* commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)
*
* N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
* N option. In general, you should not do this. This can only be done safely with
* commands that do not move the nozzle.
*
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
* each additional Phase that processes it.
*
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatability.
*
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
* DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
* generated. This will be handled in Phase 2. If the Phase 1 command is given the
* C (Continue) parameter it does not invalidate the Mesh prior to automatically
* probing needed locations. This allows you to invalidate portions of the Mesh but still
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
* parameter can be given to prioritize where the command should be trying to measure points.
* If the X and Y parameters are not specified the current probe position is used. Phase 1
* allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
* Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
* It will suspend generation of the Mesh if it sees the user request that. (This check is
* only done between probe points. You will need to press and hold the switch until the
* Phase 1 command can detect it.)
*
* P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement
* between Mesh points is 5mm. A smaller number can be used to make this part of the
* calibration less time consuming. You will be running the nozzle down until it just barely
* touches the glass. You should have the nozzle clean with no plastic obstructing your view.
* Use caution and move slowly. It is possible to damage your printer if you are careless.
* Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
* nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
*
* The H parameter can be set negative if your Mesh dips in a large area. You can press
* and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
* can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
* area you are manually probing. Note that the command tries to start you in a corner
* of the bed where movement will be predictable. You can force the location to be used in
* the distance calculations by using the X and Y parameters. You may find it is helpful to
* print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
* the nozzle will need to move in order to complete the command. The C parameter is
* available on the Phase 2 command also and indicates the search for points to measure should
* be done based on the current location of the nozzle.
*
* A B parameter is also available for this command and described up above. It places the
* manual probe subsystem into Business Card mode where the thickness of a business care is
* measured and then used to accurately set the nozzle height in all manual probing for the
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
* better results if you use a flexible Shim that does not compress very much. That makes it
* easier for you to get the nozzle to press with similar amounts of force against the shim so you
* can get accurate measurements. As you are starting to touch the nozzle against the shim try
* to get it to grasp the shim with the same force as when you measured the thickness of the
* shim at the start of the command.
*
* Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
* of the Mesh being built.
*
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is used to
* specify the Constant value to fill all invalid areas of the Mesh. If no C parameter is
* specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
* of points to set. If the R parameter is specified the current nozzle position is used to
* find the closest points to alter unless the X and Y parameter are used to specify the fill
* location.
*
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
* (More work and details on doing this later!)
* The System will search for the closest Mesh Point to the nozzle. It will move the
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
* so it is just barely touching the bed. When the user clicks the control, the System
* will lock in that height for that point in the Mesh Compensation System.
*
* Phase 4 has several additional parameters that the user may find helpful. Phase 4
* can be started at a specific location by specifying an X and Y parameter. Phase 4
* can be requested to continue the adjustment of Mesh Points by using the R(epeat)
* parameter. If the Repetition count is not specified, it is assumed the user wishes
* to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
* The command can be terminated early (or after the area of interest has been edited) by
* pressing and holding the encoder wheel until the system recognizes the exit request.
* Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
*
* Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
* information left on the printer's bed from the G26 command it is very straight forward
* and easy to fine tune the Mesh. One concept that is important to remember and that
* will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
* If you have too little clearance and not much plastic was extruded in an area, you want to
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
* RAISE the Mesh Point at that location.
*
*
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
* execute a G29 P6 C <mean height>.
*
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location.
*
* Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System.
*
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
* current state of the Unified Bed Leveling system in the EEPROM.
*
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
* for subsequent Load and Store operations. It will also store the current state of
* the Unified Bed Leveling system in the EEPROM.
*
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
* the system at a later date. The text generated can be saved and later sent by PronterFace or
* Repetier Host to reconstruct the current mesh on another machine.
*
* T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
*
* W What? Display valuable data the Unified Bed Leveling System knows.
*
* X # * * Specify X Location for this line of commands
*
* Y # * * Specify Y Location for this line of commands
*
* Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
* by just doing a G29 Z
*
* Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
* zprobe_zoffset is added to the calculation.
*
*
* Release Notes:
* You MUST do a M502 & M500 pair of commands to initialize the storage. Failure to do this
* will cause all kinds of problems. Enabling EEPROM Storage is highly recommended. With
* EEPROM Storage of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and
* G29 P0 G respectively.)
*
* Z-Probe Sleds are not currently fully supported. There were too many complications caused
* by them to support them in the Unified Bed Leveling code. Support for them will be handled
* better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That
* is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it
* should slip in under the Unified Bed Leveling code without major trauma.
*
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
* the Unified Bed Leveling probes points further and further away from the starting location. (The
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
* perform a small print and check out your settings quicker. You do not need to populate the
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
*
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but
* this is going to be helpful to the users!)
*
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
* we now have the functionality and features of all three systems combined.
*/
int Unified_Bed_Leveling_EEPROM_start = -1;
int UBL_has_control_of_LCD_Panel = 0;
volatile int G29_encoderDiff = 0; // This is volatile because it is getting changed at interrupt time.
// We keep the simple parameter flags and values as 'static' because we break out the
// parameter parsing into a support routine.
static int G29_Verbose_Level = 0, Test_Value = 0,
Phase_Value = -1, Repetition_Cnt = 1;
static bool Repeat_Flag = UBL_OK, C_Flag = false, X_Flag = UBL_OK, Y_Flag = UBL_OK, Statistics_Flag = UBL_OK, Business_Card_Mode = false;
static float X_Pos = 0.0, Y_Pos = 0.0, Height_Value = 5.0, measured_z, card_thickness = 0.0, Constant = 0.0;
static int Storage_Slot = 0, Test_Pattern = 0;
#if ENABLED(ULTRA_LCD)
void lcd_setstatus(const char* message, bool persist);
#endif
void gcode_G29() {
mesh_index_pair location;
int i, j, k;
float Z1, Z2, Z3;
G29_Verbose_Level = 0; // These may change, but let's get some reasonable values into them.
Repeat_Flag = UBL_OK;
Repetition_Cnt = 1;
C_Flag = false;
SERIAL_PROTOCOLPGM("Unified_Bed_Leveling_EEPROM_start=");
SERIAL_PROTOCOLLN(Unified_Bed_Leveling_EEPROM_start);
if (Unified_Bed_Leveling_EEPROM_start < 0) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it ");
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
return;
}
if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
gcode_G28();
if (G29_Parameter_Parsing()) return; // abort if parsing the simple parameters causes a problem,
// Invalidate Mesh Points. This command is a little bit asymetrical because
// it directly specifies the repetition count and does not use the 'R' parameter.
if (code_seen('I')) {
Repetition_Cnt = code_has_value() ? code_value_int() : 1;
while (Repetition_Cnt--) {
location = find_closest_mesh_point_of_type(REAL, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate
}
z_values[location.x_index][location.y_index] = NAN;
}
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
}
if (code_seen('Q')) {
if (code_has_value()) Test_Pattern = code_value_int();
if (Test_Pattern < 0 || Test_Pattern > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Test_Pattern value. (0-4)\n");
return;
}
SERIAL_PROTOCOLLNPGM("Loading Test_Pattern values.\n");
switch (Test_Pattern) {
case 0:
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a bowl shape. This is
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { // similar to what a user would see with
Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - i; // a poorly calibrated Delta.
Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - j;
z_values[i][j] += 2.0 * HYPOT(Z1, Z2);
}
}
break;
case 1:
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a diagonal line several Mesh
z_values[i][i] += 9.999; // cells thick that is raised
if (i < UBL_MESH_NUM_Y_POINTS - 1)
z_values[i][i + 1] += 9.999; // We want the altered line several mesh points thick
if (i > 0)
z_values[i][i - 1] += 9.999; // We want the altered line several mesh points thick
}
break;
case 2:
// Allow the user to specify the height because 10mm is
// a little bit extreme in some cases.
for (i = (UBL_MESH_NUM_X_POINTS) / 3.0; i < 2 * ((UBL_MESH_NUM_X_POINTS) / 3.0); i++) // Create a rectangular raised area in
for (j = (UBL_MESH_NUM_Y_POINTS) / 3.0; j < 2 * ((UBL_MESH_NUM_Y_POINTS) / 3.0); j++) // the center of the bed
z_values[i][j] += code_seen('C') ? Constant : 9.99;
break;
case 3:
break;
}
}
if (code_seen('P')) {
Phase_Value = code_value_int();
if (Phase_Value < 0 || Phase_Value > 7) {
SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
return;
}
switch (Phase_Value) {
//
// Zero Mesh Data
//
case 0:
blm.reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
break;
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
case 1:
if (!code_seen('C') ) {
blm.invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
}
if (G29_Verbose_Level > 1) {
SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
SERIAL_ECHO(X_Pos);
SERIAL_ECHOPAIR(",", Y_Pos);
SERIAL_PROTOCOLLNPGM(")\n");
}
probe_entire_mesh( X_Pos+X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER,
code_seen('O') || code_seen('M'), code_seen('E'));
break;
//
// Manually Probe Mesh in areas that can not be reached by the probe
//
case 2:
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!X_Flag && !Y_Flag) { // use a good default location for the path
X_Pos = X_MIN_POS;
Y_Pos = Y_MIN_POS;
if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
X_Pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
Y_Pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
} // For now, until that is decided, it can be forced with the X
// and Y parameters.
if (code_seen('C')) {
X_Pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS];
}
Height_Value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
if ((Business_Card_Mode = code_seen('B'))) {
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(Height_Value);
if (fabs(card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
return;
}
}
manually_probe_remaining_mesh( X_Pos, Y_Pos, Height_Value, card_thickness, code_seen('O') || code_seen('M'));
break;
//
// Populate invalid Mesh areas with a constant
//
case 3:
Height_Value = 0.0; // Assume 0.0 until proven otherwise
if (code_seen('C')) Height_Value = Constant;
// If no repetition is specified, do the whole Mesh
if (!Repeat_Flag) Repetition_Cnt = 9999;
while (Repetition_Cnt--) {
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
z_values[location.x_index][location.y_index] = Height_Value;
}
break;
//
// Fine Tune (Or Edit) the Mesh
//
case 4:
fine_tune_mesh(X_Pos, Y_Pos, Height_Value, code_seen('O') || code_seen('M'));
break;
case 5:
Find_Mean_Mesh_Height();
break;
case 6:
Shift_Mesh_Height();
break;
case 10:
UBL_has_control_of_LCD_Panel++; // Debug code... Pan no attention to this stuff
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Checking G29 has control of LCD Panel:\n");
while(!G29_lcd_clicked()) {
idle();
delay(250);
SERIAL_PROTOCOL(G29_encoderDiff);
G29_encoderDiff = 0;
SERIAL_EOL;
}
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;;
SERIAL_ECHOPGM("G29 giving back control of LCD Panel.\n");
break;
}
}
if (code_seen('T')) {
Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
// We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
Z1 -= blm.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
Z2 -= blm.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
Z3 -= blm.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
tilt_mesh_based_on_3pts(Z1, Z2, Z3);
}
//
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items
//
if (code_seen('W')) G29_What_Command();
//
// When we are fully debugged, the EEPROM dump command will get deleted also. But
// right now, it is good to have the extra information. Soon... we prune this.
//
if (code_seen('J')) G29_EEPROM_Dump(); // EEPROM Dump
//
// When we are fully debugged, this may go away. But there are some valid
// use cases for the users. So we can wait and see what to do with it.
//
if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
G29_Kompare_Current_Mesh_to_Stored_Mesh();
//
// Load a Mesh from the EEPROM
//
if (code_seen('L')) { // Load Current Mesh Data
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
k = E2END - sizeof(blm.state);
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
blm.load_mesh(Storage_Slot);
blm.state.EEPROM_storage_slot = Storage_Slot;
if (Storage_Slot != blm.state.EEPROM_storage_slot)
blm.store_state();
SERIAL_PROTOCOLLNPGM("Done.\n");
}
//
// Store a Mesh in the EEPROM
//
if (code_seen('S')) { // Store (or Save) Current Mesh Data
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
if (Storage_Slot == -1) { // Special case, we are going to 'Export' the mesh to the
SERIAL_ECHOPGM("G29 I 999\n"); // host in a form it can be reconstructed on a different machine
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!isnan(z_values[i][j])) {
SERIAL_ECHOPAIR("M421 I ", i);
SERIAL_ECHOPAIR(" J ", j);
SERIAL_ECHOPGM(" Z ");
SERIAL_PROTOCOL_F(z_values[i][j], 6);
SERIAL_EOL;
}
}
}
return;
}
int k = E2END - sizeof(blm.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
goto LEAVE;
}
blm.store_mesh(Storage_Slot);
blm.state.EEPROM_storage_slot = Storage_Slot;
//
// if (Storage_Slot != blm.state.EEPROM_storage_slot)
blm.store_state(); // Always save an updated copy of the UBL State info
SERIAL_PROTOCOLLNPGM("Done.\n");
}
if (code_seen('O') || code_seen('M')) {
i = code_has_value() ? code_value_int() : 0;
blm.display_map(i);
}
if (code_seen('Z')) {
if (code_has_value()) {
blm.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
}
else {
save_UBL_active_state_and_disable();
//measured_z = probe_pt(X_Pos + X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, G29_Verbose_Level);
measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
// The user is not going to be locking in a new Z-Offset very often so
// it won't be that painful to spin the Encoder Wheel for 1.5mm
lcd_implementation_clear();
lcd_z_offset_edit_setup(measured_z);
do {
measured_z = lcd_z_offset_edit();
idle();
do_blocking_move_to_z(measured_z);
} while (!G29_lcd_clicked());
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
// or here. So, until we are done looking for a long Encoder Wheel Press,
// we need to take control of the panel
millis_t nxt = millis() + 1500UL;
lcd_return_to_status();
while (G29_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Z-Offset Stopped", true);
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
restore_UBL_active_state_and_leave();
goto LEAVE;
}
}
UBL_has_control_of_LCD_Panel = 0;
delay(20); // We don't want any switch noise.
blm.state.z_offset = measured_z;
lcd_implementation_clear();
restore_UBL_active_state_and_leave();
}
}
LEAVE:
#if ENABLED(ULTRA_LCD)
lcd_setstatus(" ", true);
lcd_quick_feedback();
#endif
UBL_has_control_of_LCD_Panel = 0;
}
void Find_Mean_Mesh_Height() {
int i, j, n;
float sum, sum_of_diff_squared, sigma, difference, mean;
sum = sum_of_diff_squared = 0.0;
n = 0;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!isnan(z_values[i][j])) {
sum += z_values[i][j];
n++;
}
}
}
mean = sum / n;
//
// Now do the sumation of the squares of difference from mean
//
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!isnan(z_values[i][j])) {
difference = (z_values[i][j] - mean);
sum_of_diff_squared += difference * difference;
}
}
}
SERIAL_ECHOLNPAIR("# of samples: ", n);
SERIAL_ECHOPGM("Mean Mesh Height: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_EOL;
sigma = sqrt( sum_of_diff_squared / (n + 1));
SERIAL_ECHOPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL;
if (C_Flag)
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
if (!isnan(z_values[i][j]))
z_values[i][j] -= mean + Constant;
}
void Shift_Mesh_Height( ) {
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
if (!isnan(z_values[i][j]))
z_values[i][j] += Constant;
}
// probe_entire_mesh(X_Pos, Y_Pos) probes all invalidated locations of the mesh that can be reached
// by the probe. It attempts to fill in locations closest to the nozzle's start location first.
void probe_entire_mesh(float X_Pos, float Y_Pos, bool do_UBL_MESH_Map, bool stow_probe) {
mesh_index_pair location;
float xProbe, yProbe, measured_z;
UBL_has_control_of_LCD_Panel++;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE();
do {
if (G29_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
lcd_quick_feedback();
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
STOW_PROBE();
restore_UBL_active_state_and_leave();
return;
}
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 1, NULL); // the '1' says we want the location to be relative to the probe
if (location.x_index>=0 && location.y_index>=0) {
xProbe = blm.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index);
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
UBL_has_control_of_LCD_Panel = 0;
goto LEAVE;
}
measured_z = probe_pt(xProbe, yProbe, stow_probe, G29_Verbose_Level);
z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER;
}
if (do_UBL_MESH_Map) blm.display_map(1);
} while (location.x_index >= 0 && location.y_index >= 0);
LEAVE:
STOW_PROBE();
restore_UBL_active_state_and_leave();
X_Pos = constrain( X_Pos-X_PROBE_OFFSET_FROM_EXTRUDER, X_MIN_POS, X_MAX_POS);
Y_Pos = constrain( Y_Pos-Y_PROBE_OFFSET_FROM_EXTRUDER, Y_MIN_POS, Y_MAX_POS);
do_blocking_move_to_xy(X_Pos, Y_Pos);
}
struct vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) {
struct vector v1, v2, normal;
float c, d, t;
int i, j;
v1.dx = (ubl_3_point_1_X - ubl_3_point_2_X);
v1.dy = (ubl_3_point_1_Y - ubl_3_point_2_Y);
v1.dz = (pt1 - pt2);
v2.dx = (ubl_3_point_3_X - ubl_3_point_2_X);
v2.dy = (ubl_3_point_3_Y - ubl_3_point_2_Y);
v2.dz = (pt3 - pt2);
// do cross product
normal.dx = v1.dy * v2.dz - v1.dz * v2.dy;
normal.dy = v1.dz * v2.dx - v1.dx * v2.dz;
normal.dz = v1.dx * v2.dy - v1.dy * v2.dx;
// printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz);
normal.dx /= normal.dz; // This code does two things. This vector is normal to the tilted plane.
normal.dy /= normal.dz; // However, we don't know its direction. We need it to point up. So if
normal.dz /= normal.dz; // Z is negative, we need to invert the sign of all components of the vector
// We also need Z to be unity because we are going to be treating this triangle
// as the sin() and cos() of the bed's tilt
//
// All of 3 of these points should give us the same d constant
//
t = normal.dx * ubl_3_point_1_X + normal.dy * ubl_3_point_1_Y;
d = t + normal.dz * pt1;
c = d - t;
SERIAL_ECHOPGM("d from 1st point: ");
SERIAL_PROTOCOL_F(d, 6);
SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6);
SERIAL_EOL;
t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y;
d = t + normal.dz * pt2;
c = d - t;
SERIAL_ECHOPGM("d from 2nd point: ");
SERIAL_PROTOCOL_F(d, 6);
SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6);
SERIAL_EOL;
t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y;
d = t + normal.dz * pt3;
c = d - t;
SERIAL_ECHOPGM("d from 3rd point: ");
SERIAL_PROTOCOL_F(d, 6);
SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6);
SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
c = -((normal.dx * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.dy * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
z_values[i][j] += c;
}
}
return normal;
}
float use_encoder_wheel_to_measure_point() {
UBL_has_control_of_LCD_Panel++;
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (G29_encoderDiff != 0) {
float new_z;
// We define a new variable so we can know ahead of time where we are trying to go.
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
// is complete. (So the dial feels responsive to user)
new_z = current_position[Z_AXIS] + 0.01 * float(G29_encoderDiff);
G29_encoderDiff = 0;
do_blocking_move_to_z(new_z);
}
}
while (G29_lcd_clicked()) idle(); // debounce and wait
UBL_has_control_of_LCD_Panel--;
return current_position[Z_AXIS];
}
float measure_business_card_thickness(float Height_Value) {
float Z1, Z2;
UBL_has_control_of_LCD_Panel++;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
do_blocking_move_to_z(Height_Value);
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
Z1 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
UBL_has_control_of_LCD_Panel = 0;
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
Z2 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
if (G29_Verbose_Level > 1) {
SERIAL_ECHOPGM("Business Card is: ");
SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
SERIAL_PROTOCOLLNPGM("mm thick.");
}
restore_UBL_active_state_and_leave();
return abs(Z1 - Z2);
}
void manually_probe_remaining_mesh(float X_Pos, float Y_Pos, float z_clearance, float card_thickness, bool do_UBL_MESH_Map) {
mesh_index_pair location;
float last_x, last_y, dx, dy,
xProbe, yProbe;
unsigned long cnt;
UBL_has_control_of_LCD_Panel++;
last_x = last_y = -9999.99;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(z_clearance);
do_blocking_move_to_xy(X_Pos, Y_Pos);
do {
if (do_UBL_MESH_Map) blm.display_map(1);
location = find_closest_mesh_point_of_type(INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach the
// NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
xProbe = blm.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index);
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
UBL_has_control_of_LCD_Panel = 0;
goto LEAVE;
}
dx = xProbe - last_x;
dy = yProbe - last_y;
if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
else
do_blocking_move_to_z(z_clearance);
last_x = xProbe;
last_y = yProbe;
do_blocking_move_to_xy(xProbe, yProbe);
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (G29_encoderDiff) {
float new_z;
// We define a new variable so we can know ahead of time where we are trying to go.
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
// is complete. (So the dial feels responsive to user)
new_z = current_position[Z_AXIS] + float(G29_encoderDiff) / 100.0;
G29_encoderDiff = 0;
do_blocking_move_to_z(new_z);
}
}
cnt = millis();
while (G29_lcd_clicked()) { // debounce and watch for abort
idle();
if (millis() - cnt > 1500L) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_quick_feedback();
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
restore_UBL_active_state_and_leave();
return;
}
}
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
if (G29_Verbose_Level > 2) {
SERIAL_PROTOCOL("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL;
}
} while (location.x_index >= 0 && location.y_index >= 0);
if (do_UBL_MESH_Map) blm.display_map(1);
LEAVE:
restore_UBL_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos);
}
bool G29_Parameter_Parsing() {
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Doing G29 UBL !", true);
lcd_quick_feedback();
#endif
X_Pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS];
X_Flag = Y_Flag = Repeat_Flag = UBL_OK;
Constant = 0.0;
Repetition_Cnt = 1;
if ((X_Flag = code_seen('X'))) {
X_Pos = code_value_float();
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
return UBL_ERR;
}
}
if ((Y_Flag = code_seen('Y'))) {
Y_Pos = code_value_float();
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
return UBL_ERR;
}
}
if (X_Flag != Y_Flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
return UBL_ERR;
}
G29_Verbose_Level = 0;
if (code_seen('V')) {
G29_Verbose_Level = code_value_int();
if (G29_Verbose_Level < 0 || G29_Verbose_Level > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
return UBL_ERR;
}
}
if (code_seen('A')) { // Activate the Unified Bed Leveling System
blm.state.active = 1;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
blm.store_state();
}
if ((C_Flag = code_seen('C')) && code_has_value())
Constant = code_value_float();
if (code_seen('D')) { // Disable the Unified Bed Leveling System
blm.state.active = 0;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
blm.store_state();
}
if (code_seen('F')) {
blm.state.G29_Correction_Fade_Height = 10.00;
if (code_has_value()) {
blm.state.G29_Correction_Fade_Height = code_value_float();
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
}
if (blm.state.G29_Correction_Fade_Height<0.0 || blm.state.G29_Correction_Fade_Height>100.0) {
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausable.\n");
blm.state.G29_Correction_Fade_Height = 10.00;
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
return UBL_ERR;
}
}
if ((Repeat_Flag = code_seen('R'))) {
Repetition_Cnt = code_has_value() ? code_value_int() : 9999;
if (Repetition_Cnt < 1) {
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
return UBL_ERR;
}
}
return UBL_OK;
}
/**
* This function goes away after G29 debug is complete. But for right now, it is a handy
* routine to dump binary data structures.
*/
void dump(char *str, float f) {
char *ptr;
SERIAL_PROTOCOL(str);
SERIAL_PROTOCOL_F(f, 8);
SERIAL_PROTOCOL(" ");
ptr = (char *)&f;
for (uint8_t i = 0; i < 4; i++) {
SERIAL_PROTOCOL(" ");
prt_hex_byte(*ptr++);
}
SERIAL_PROTOCOL(" isnan()=");
SERIAL_PROTOCOL(isnan(f));
SERIAL_PROTOCOL(" isinf()=");
SERIAL_PROTOCOL(isinf(f));
constexpr float g = INFINITY;
if (f == -g)
SERIAL_PROTOCOL(" Minus Infinity detected.");
SERIAL_EOL;
}
static int UBL_state_at_invokation = 0,
UBL_state_recursion_chk = 0;
void save_UBL_active_state_and_disable() {
UBL_state_recursion_chk++;
if (UBL_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_UBL_active_state_and_disabled() called multiple times in a row.");
lcd_setstatus("save_UBL_active() error", true);
lcd_quick_feedback();
return;
}
UBL_state_at_invokation = blm.state.active;
blm.state.active = 0;
return;
}
void restore_UBL_active_state_and_leave() {
if (--UBL_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_UBL_active_state_and_leave() called too many times.");
lcd_setstatus("restore_UBL_active() error", true);
lcd_quick_feedback();
return;
}
blm.state.active = UBL_state_at_invokation;
}
/**
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
* good to have the extra information. Soon... we prune this to just a few items
*/
void G29_What_Command() {
int k, i;
k = E2END - Unified_Bed_Leveling_EEPROM_start;
Statistics_Flag++;
SERIAL_PROTOCOLPGM("Version #4: 10/30/2016 branch \n");
SERIAL_PROTOCOLPGM("Unified Bed Leveling System ");
if (blm.state.active)
SERIAL_PROTOCOLPGM("Active.");
else
SERIAL_PROTOCOLPGM("Inactive.");
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
if (blm.state.EEPROM_storage_slot == 0xFFFF) {
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
// find this info buried in the clutter
}
else {
SERIAL_PROTOCOLPGM("Mesh: ");
prt_hex_word(blm.state.EEPROM_storage_slot);
SERIAL_PROTOCOLPGM(" Loaded. ");
SERIAL_PROTOCOLLNPGM(" -------------------------------------------------------- <----<<<"); // These arrows are just to help me
// find this info buried in the clutter
}
SERIAL_ECHOPAIR("\nG29_Correction_Fade_Height : ", blm.state.G29_Correction_Fade_Height );
SERIAL_PROTOCOLPGM(" ------------------------------------- <----<<< \n"); // These arrows are just to help me
// find this info buried in the clutter
idle();
SERIAL_ECHOPGM("z_offset: ");
SERIAL_PROTOCOL_F(blm.state.z_offset, 6);
SERIAL_PROTOCOLLNPGM(" ------------------------------------------------------------ <----<<<");
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
SERIAL_PROTOCOL_F( blm.map_x_index_to_bed_location(i), 1);
SERIAL_PROTOCOLPGM(" ");
}
SERIAL_EOL;
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
SERIAL_PROTOCOL_F( blm.map_y_index_to_bed_location(i), 1);
SERIAL_PROTOCOLPGM(" ");
}
SERIAL_EOL;
#if HAS_KILL
SERIAL_ECHOPAIR("Kill pin on :", KILL_PIN);
SERIAL_ECHOLNPAIR(" state:", READ(KILL_PIN));
#endif
SERIAL_ECHOLNPAIR("UBL_state_at_invokation :", UBL_state_at_invokation);
SERIAL_ECHOLNPAIR("UBL_state_recursion_chk :", UBL_state_recursion_chk);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
prt_hex_word(Unified_Bed_Leveling_EEPROM_start);
SERIAL_EOL;
idle();
SERIAL_PROTOCOLPGM("end of EEPROM : ");
prt_hex_word(E2END);
SERIAL_EOL;
idle();
SERIAL_PROTOCOLLNPAIR("sizeof(blm) : ", (int)sizeof(blm));
SERIAL_EOL;
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
SERIAL_EOL;
SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
prt_hex_word(k);
SERIAL_EOL;
idle();
SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
prt_hex_word(k / sizeof(z_values));
SERIAL_PROTOCOLPGM(" meshes. \n");
SERIAL_PROTOCOLPGM("sizeof(stat) :");
prt_hex_word(sizeof(blm.state));
SERIAL_EOL;
idle();
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
SERIAL_ECHOPGM("\nMESH_X_DIST ");
SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
SERIAL_ECHOPGM("\nMESH_Y_DIST ");
SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
SERIAL_EOL;
idle();
SERIAL_ECHOPAIR("\nsizeof(block_t): ", (int)sizeof(block_t));
SERIAL_ECHOPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer));
SERIAL_ECHOPAIR("\nsizeof(char): ", (int)sizeof(char));
SERIAL_ECHOPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char));
SERIAL_ECHOPAIR("\nsizeof(int): ", (int)sizeof(int));
SERIAL_ECHOPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int));
SERIAL_ECHOPAIR("\nsizeof(long): ", (int)sizeof(long));
SERIAL_ECHOPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int));
SERIAL_ECHOPAIR("\nsizeof(float): ", (int)sizeof(float));
SERIAL_ECHOPAIR(" sizeof(double): ", (int)sizeof(double));
SERIAL_ECHOPAIR("\nsizeof(void *): ", (int)sizeof(void *));
struct pf { void *p_f(); } ptr_func;
SERIAL_ECHOPAIR(" sizeof(struct pf): ", (int)sizeof(pf));
SERIAL_ECHOPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func));
SERIAL_EOL;
idle();
if (!blm.sanity_check())
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
}
/**
* When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this.
*/
void G29_EEPROM_Dump() {
unsigned char cccc;
int i, j, kkkk;
SERIAL_ECHO_START;
SERIAL_ECHOPGM("EEPROM Dump:\n");
for (i = 0; i < E2END + 1; i += 16) {
if (i & 0x3 == 0) idle();
prt_hex_word(i);
SERIAL_ECHOPGM(": ");
for (j = 0; j < 16; j++) {
kkkk = i + j;
eeprom_read_block(&cccc, (void *)kkkk, 1);
prt_hex_byte(cccc);
SERIAL_ECHO(' ');
}
SERIAL_EOL;
}
SERIAL_EOL;
return;
}
/**
* When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it.
*/
void G29_Kompare_Current_Mesh_to_Stored_Mesh() {
float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
int i, j, k;
if (!code_has_value()) {
SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
return;
}
Storage_Slot = code_value_int();
k = E2END - sizeof(blm.state);
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(tmp_z_values);
if (Storage_Slot < 0 || Storage_Slot > j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
j = k - (Storage_Slot + 1) * sizeof(tmp_z_values);
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", Storage_Slot);
SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
z_values[i][j] = z_values[i][j] - tmp_z_values[i][j];
}
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) {
int i, j;
float f, px, py, mx, my, dx, dy, closest = 99999.99;
float current_x, current_y, distance;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
current_x = current_position[X_AXIS];
current_y = current_position[Y_AXIS];
px = X; // Get our reference position. Either the nozzle or
py = Y; // the probe location.
if (probe_as_reference) {
px -= X_PROBE_OFFSET_FROM_EXTRUDER;
py -= Y_PROBE_OFFSET_FROM_EXTRUDER;
}
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j]))
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
) {
// We only get here if we found a Mesh Point of the specified type
mx = blm.map_x_index_to_bed_location(i); // Check if we can probe this mesh location
my = blm.map_y_index_to_bed_location(j);
// If we are using the probe as the reference
// there are some locations we can't get to.
// We prune these out of the list and ignore
// them until the next Phase where we do the
// manual nozzle probing.
if (probe_as_reference
&& (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X))
&& (my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y))
) continue;
dx = px - mx; // We can get to it. Let's see if it is the
dy = py - my; // closest location to the nozzle.
distance = HYPOT(dx, dy);
dx = current_x - mx; // We are going to add in a weighting factor that considers
dy = current_y - my; // the current location of the nozzle. If two locations are equal
distance += HYPOT(dx, dy) * 0.01; // distance from the measurement location, we are going to give
if (distance < closest) {
closest = distance; // We found a closer location with
return_val.x_index = i; // the specified type of mesh value.
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
return return_val;
}
void fine_tune_mesh(float X_Pos, float Y_Pos, float Height_Value, bool do_UBL_MESH_Map) {
mesh_index_pair location;
float xProbe, yProbe, new_z;
uint16_t i, not_done[16];
long round_off;
save_UBL_active_state_and_disable();
memset(not_done, 0xFF, sizeof(not_done));
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Fine Tuning Mesh.", true);
#endif
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos);
do {
if (do_UBL_MESH_Map) blm.display_map(1);
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, X_Pos, Y_Pos, 0, not_done); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach this
// location. This is a manual edit of the Mesh Point.
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop
xProbe = blm.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index);
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
UBL_has_control_of_LCD_Panel = 0; // Let's do the check.
goto FINE_TUNE_EXIT;
}
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(xProbe, yProbe);
new_z = z_values[location.x_index][location.y_index] + 0.001;
round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the
round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place.
new_z = ((float)(round_off)) / 1000.0;
//SERIAL_ECHOPGM("Mesh Point Currently At: ");
//SERIAL_PROTOCOL_F(new_z, 6);
//SERIAL_EOL;
lcd_implementation_clear();
lcd_mesh_edit_setup(new_z);
UBL_has_control_of_LCD_Panel++;
do {
new_z = lcd_mesh_edit();
idle();
} while (!G29_lcd_clicked());
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
// or here.
millis_t nxt = millis() + 1500UL;
lcd_return_to_status();
while (G29_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
lcd_return_to_status();
SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Mesh Editing Stopped", true);
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
goto FINE_TUNE_EXIT;
}
}
//UBL_has_control_of_LCD_Panel = 0;
delay(20); // We don't want any switch noise.
z_values[location.x_index][location.y_index] = new_z;
lcd_implementation_clear();
} while (location.x_index >= 0 && location.y_index >= 0 && --Repetition_Cnt);
FINE_TUNE_EXIT:
if (do_UBL_MESH_Map) blm.display_map(1);
restore_UBL_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos);
UBL_has_control_of_LCD_Panel = 0;
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Done Editing Mesh", true);
#endif
SERIAL_ECHOLNPGM("Done Editing Mesh.");
}
#endif // AUTO_BED_LEVELING_UBL

View file

@ -0,0 +1,553 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#include "planner.h"
#include <avr/io.h>
#include <math.h>
extern void set_current_to_destination();
extern bool G26_Debug_flag;
void debug_current_and_destination(char *title);
void wait_for_button_press();
void UBL_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
int cell_start_xi, cell_start_yi, cell_dest_xi, cell_dest_yi;
int left_flag, down_flag;
int current_xi, current_yi;
int dxi, dyi, xi_cnt, yi_cnt;
bool use_X_dist, inf_normalized_flag, inf_m_flag;
float x_start, y_start;
float x, y, z1, z2, z0 /*, z_optimized */;
float next_mesh_line_x, next_mesh_line_y, a0ma1diva2ma1;
float on_axis_distance, e_normalized_dist, e_position, e_start, z_normalized_dist, z_position, z_start;
float dx, dy, adx, ady, m, c;
//
// Much of the nozzle movement will be within the same cell. So we will do as little computation
// as possible to determine if this is the case. If this move is within the same cell, we will
// just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
//
x_start = current_position[X_AXIS];
y_start = current_position[Y_AXIS];
z_start = current_position[Z_AXIS];
e_start = current_position[E_AXIS];
cell_start_xi = blm.get_cell_index_x(x_start);
cell_start_yi = blm.get_cell_index_y(y_start);
cell_dest_xi = blm.get_cell_index_x(x_end);
cell_dest_yi = blm.get_cell_index_y(y_end);
if (G26_Debug_flag!=0) {
SERIAL_ECHOPGM(" UBL_line_to_destination(xe=");
SERIAL_ECHO(x_end);
SERIAL_ECHOPGM(",ye=");
SERIAL_ECHO(y_end);
SERIAL_ECHOPGM(",ze=");
SERIAL_ECHO(z_end);
SERIAL_ECHOPGM(",ee=");
SERIAL_ECHO(e_end);
SERIAL_ECHOPGM(")\n");
debug_current_and_destination( (char *) "Start of UBL_line_to_destination()");
}
if ((cell_start_xi == cell_dest_xi) && (cell_start_yi == cell_dest_yi)) { // if the whole move is within the same cell,
// we don't need to break up the move
//
// If we are moving off the print bed, we are going to allow the move at this level.
// But we detect it and isolate it. For now, we just pass along the request.
//
if (cell_dest_xi<0 || cell_dest_yi<0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
// Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be.
planner.buffer_line(x_end, y_end, z_end + blm.state.z_offset, e_end, feed_rate, extruder);
set_current_to_destination();
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "out of bounds in UBL_line_to_destination()");
}
return;
}
// we can optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
// generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
// We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
// We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
// instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
// to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
FINAL_MOVE:
a0ma1diva2ma1 = (x_end - mesh_index_to_X_location[cell_dest_xi]) * (float) (1.0 / MESH_X_DIST);
z1 = z_values[cell_dest_xi][cell_dest_yi] +
(z_values[cell_dest_xi + 1][cell_dest_yi] - z_values[cell_dest_xi][cell_dest_yi]) * a0ma1diva2ma1;
z2 = z_values[cell_dest_xi][cell_dest_yi+1] +
(z_values[cell_dest_xi+1][cell_dest_yi+1] - z_values[cell_dest_xi][cell_dest_yi+1]) * a0ma1diva2ma1;
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
a0ma1diva2ma1 = (y_end - mesh_index_to_Y_location[cell_dest_yi]) * (float) (1.0 / MESH_Y_DIST);
z0 = z1 + (z2 - z1) * a0ma1diva2ma1;
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( x_end, y_end);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "FINAL_MOVE: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x_end=", x_end);
SERIAL_ECHOPAIR(" y_end=", y_end);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
SERIAL_EOL;
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
planner.buffer_line(x_end, y_end, z_end + z0 + blm.state.z_offset, e_end, feed_rate, extruder);
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "FINAL_MOVE in UBL_line_to_destination()");
}
set_current_to_destination();
return;
}
//
// If we get here, we are processing a move that crosses at least one Mesh Line. We will check
// for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
// of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
// computation and in fact most lines are of this nature. We will check for that in the following
// blocks of code:
left_flag = 0;
down_flag = 0;
inf_m_flag = false;
inf_normalized_flag = false;
dx = x_end - x_start;
dy = y_end - y_start;
if (dx<0.0) { // figure out which way we need to move to get to the next cell
dxi = -1;
adx = -dx; // absolute value of dx. We already need to check if dx and dy are negative.
}
else { // We may as well generate the appropriate values for adx and ady right now
dxi = 1; // to save setting up the abs() function call and actually doing the call.
adx = dx;
}
if (dy<0.0) {
dyi = -1;
ady = -dy; // absolute value of dy
}
else {
dyi = 1;
ady = dy;
}
if (dx<0.0) left_flag = 1;
if (dy<0.0) down_flag = 1;
if (cell_start_xi == cell_dest_xi) dxi = 0;
if (cell_start_yi == cell_dest_yi) dyi = 0;
//
// Compute the scaling factor for the extruder for each partial move.
// We need to watch out for zero length moves because it will cause us to
// have an infinate scaling factor. We are stuck doing a floating point
// divide to get our scaling factor, but after that, we just multiply by this
// number. We also pick our scaling factor based on whether the X or Y
// component is larger. We use the biggest of the two to preserve precision.
//
if ( adx > ady ) {
use_X_dist = true;
on_axis_distance = x_end-x_start;
}
else {
use_X_dist = false;
on_axis_distance = y_end-y_start;
}
e_position = e_end - e_start;
e_normalized_dist = e_position / on_axis_distance;
z_position = z_end - z_start;
z_normalized_dist = z_position / on_axis_distance;
if (e_normalized_dist==INFINITY || e_normalized_dist==-INFINITY) {
inf_normalized_flag = true;
}
current_xi = cell_start_xi;
current_yi = cell_start_yi;
m = dy / dx;
c = y_start - m*x_start;
if (m == INFINITY || m == -INFINITY) {
inf_m_flag = true;
}
//
// This block handles vertical lines. These are lines that stay within the same
// X Cell column. They do not need to be perfectly vertical. They just can
// not cross into another X Cell column.
//
if (dxi == 0) { // Check for a vertical line
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi;
next_mesh_line_y = mesh_index_to_Y_location[current_yi];
if (inf_m_flag) {
x = x_start; // if the slope of the line is infinite, we won't do the calculations
}
// we know the next X is the same so we can recover and continue!
else {
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
}
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( x, next_mesh_line_y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "VERTICAL z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x=", x);
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
y = mesh_index_to_Y_location[current_yi];
// Without this check, it is possible for the algorythm to generate a zero length move in the case
// where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
// happens, it might be best to remove the check and always 'schedule' the move because
// the planner.buffer_line() routine will filter it if that happens.
if ( y!=y_start) {
if ( inf_normalized_flag == false ) {
on_axis_distance = y - y_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
//
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
//
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "vertical move done in UBL_line_to_destination()");
}
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
goto FINAL_MOVE;
}
set_current_to_destination();
return;
}
//
// This block handles horizontal lines. These are lines that stay within the same
// Y Cell row. They do not need to be perfectly horizontal. They just can
// not cross into another Y Cell row.
//
if (dyi == 0) { // Check for a horiziontal line
current_xi += left_flag; // Line is heading left, we just want to go to the left
// edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi;
next_mesh_line_x = mesh_index_to_X_location[current_xi];
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( next_mesh_line_x, y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "HORIZONTAL z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
x = mesh_index_to_X_location[current_xi];
// Without this check, it is possible for the algorythm to generate a zero length move in the case
// where the line is heading left and it is starting right on a Mesh Line boundary. For how often
// that happens, it might be best to remove the check and always 'schedule' the move because
// the planner.buffer_line() routine will filter it if that happens.
if ( x!=x_start) {
if ( inf_normalized_flag == false ) {
on_axis_distance = x - x_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (G26_Debug_flag!=0) {
debug_current_and_destination( (char *) "horizontal move done in UBL_line_to_destination()");
}
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) {
goto FINAL_MOVE;
}
set_current_to_destination();
return;
}
//
//
//
//
// This block handles the generic case of a line crossing both X and Y
// Mesh lines.
//
//
//
//
xi_cnt = cell_start_xi - cell_dest_xi;
if ( xi_cnt < 0 ) {
xi_cnt = -xi_cnt;
}
yi_cnt = cell_start_yi - cell_dest_yi;
if ( yi_cnt < 0 ) {
yi_cnt = -yi_cnt;
}
current_xi += left_flag;
current_yi += down_flag;
while ( xi_cnt>0 || yi_cnt>0 ) {
next_mesh_line_x = mesh_index_to_X_location[current_xi + dxi];
next_mesh_line_y = mesh_index_to_Y_location[current_yi + dyi];
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
x = (next_mesh_line_y-c) / m; // Calculate X at the next Y mesh line (we don't have to worry
// about m being equal to 0.0 If this was the case, we would have
// detected this as a vertical line move up above and we wouldn't
// be down here doing a generic type of move.
if ((left_flag && (x>next_mesh_line_x)) || (!left_flag && (x<next_mesh_line_x))) { // Check if we hit the Y line first
//
// Yes! Crossing a Y Mesh Line next
//
z0 = blm.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi-left_flag, current_yi+dyi);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( x, next_mesh_line_y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "General_1: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN "); {
SERIAL_ECHOPAIR(" x=", x);
}
SERIAL_ECHOPAIR(" next_mesh_line_y=", next_mesh_line_y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
if ( inf_normalized_flag == false ) {
if ( use_X_dist ) {
on_axis_distance = x - x_start;
}
else {
on_axis_distance = next_mesh_line_y - y_start;
}
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi;
yi_cnt--;
}
else {
//
// Yes! Crossing a X Mesh Line next
//
z0 = blm.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi+dxi, current_yi-down_flag);
//
// debug code to use non-optimized get_z_correction() and to do a sanity check
// that the correct value is being passed to planner.buffer_line()
//
/*
z_optimized = z0;
z0 = blm.get_z_correction( next_mesh_line_x, y);
if ( fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized) ) {
debug_current_and_destination( (char *) "General_2: z_correction()");
if ( isnan(z0) ) SERIAL_ECHO(" z0==NAN ");
if ( isnan(z_optimized) ) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" next_mesh_line_x=", next_mesh_line_x);
SERIAL_ECHOPAIR(" y=", y);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized-z0));
SERIAL_ECHO("\n");
}
*/
z0 = z0 * blm.fade_scaling_factor_for_Z( z_end );
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
}
if ( inf_normalized_flag == false ) {
if ( use_X_dist ) {
on_axis_distance = next_mesh_line_x - x_start;
}
else {
on_axis_distance = y - y_start;
}
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
}
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + blm.state.z_offset, e_position, feed_rate, extruder);
current_xi += dxi;
xi_cnt--;
}
}
if (G26_Debug_flag) {
debug_current_and_destination( (char *) "generic move done in UBL_line_to_destination()");
}
if (current_position[0] != x_end || current_position[1] != y_end) {
goto FINAL_MOVE;
}
set_current_to_destination();
return;
}
void wait_for_button_press() {
// if ( !been_to_2_6 )
//return; // bob - I think this should be commented out
SET_INPUT_PULLUP(66); // Roxy's Left Switch is on pin 66. Right Switch is on pin 65
SET_OUTPUT(64);
while (READ(66) & 0x01) idle();
delay(50);
while (!(READ(66) & 0x01)) idle();
delay(50);
}
#endif

View file

@ -164,6 +164,10 @@
#include "stepper_indirection.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h"
#endif
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
extern void bed_level_virt_interpolate();
#endif
@ -534,6 +538,11 @@ void Config_Postprocess() {
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
SERIAL_ECHOLNPGM(" bytes)");
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
blm.store_state();
if (blm.state.EEPROM_storage_slot >= 0)
blm.store_mesh(blm.state.EEPROM_storage_slot);
#endif
}
/**
@ -832,8 +841,45 @@ void Config_Postprocess() {
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
Config_ResetDefault();
}
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
Unified_Bed_Leveling_EEPROM_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
// can float up or down a little bit without
// disrupting the Unified Bed Leveling data
blm.load_state();
SERIAL_ECHOPGM(" UBL ");
if (!blm.state.active) SERIAL_ECHO("not ");
SERIAL_ECHOLNPGM("active!");
if (!blm.sanity_check()) {
int tmp_mesh; // We want to preserve whether the UBL System is Active
bool tmp_active; // If it is, we want to preserve the Mesh that is being used.
tmp_mesh = blm.state.EEPROM_storage_slot;
tmp_active = blm.state.active;
SERIAL_ECHOLNPGM("\nInitializing Bed Leveling State to current firmware settings.\n");
blm.state = blm.pre_initialized; // Initialize with the pre_initialized data structure
blm.state.EEPROM_storage_slot = tmp_mesh; // But then restore some data we don't want mangled
blm.state.active = tmp_active;
}
else {
SERIAL_PROTOCOLPGM("?Unable to enable Unified Bed Leveling.\n");
blm.state = blm.pre_initialized;
blm.reset();
blm.store_state();
}
if (blm.state.EEPROM_storage_slot >= 0) {
blm.load_mesh(blm.state.EEPROM_storage_slot);
SERIAL_ECHOPAIR("Mesh ", blm.state.EEPROM_storage_slot);
SERIAL_ECHOLNPGM(" loaded from storage.");
}
else {
blm.reset();
SERIAL_ECHOPGM("UBL System reset() \n");
}
#endif
}
#if ENABLED(EEPROM_CHITCHAT)
Config_PrintSettings();
#endif
@ -1126,6 +1172,42 @@ void Config_ResetDefault() {
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
SERIAL_ECHOLNPGM("Unified Bed Leveling:");
CONFIG_ECHO_START;
SERIAL_ECHOPGM("System is: ");
if (blm.state.active)
SERIAL_ECHOLNPGM("Active\n");
else
SERIAL_ECHOLNPGM("Deactive\n");
SERIAL_ECHOPAIR("Active Mesh Slot: ", blm.state.EEPROM_storage_slot);
SERIAL_EOL;
SERIAL_ECHOPGM("z_offset: ");
SERIAL_ECHO_F(blm.state.z_offset, 6);
SERIAL_EOL;
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((E2END - sizeof(blm.state) - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values)));
SERIAL_ECHOLNPGM(" meshes. \n");
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
SERIAL_ECHOPGM("\nMESH_X_DIST ");
SERIAL_ECHO_F(MESH_X_DIST, 6);
SERIAL_ECHOPGM("\nMESH_Y_DIST ");
SERIAL_ECHO_F(MESH_Y_DIST, 6);
SERIAL_EOL;
SERIAL_EOL;
#endif
#if HOTENDS > 1
CONFIG_ECHO_START;

View file

@ -232,6 +232,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -603,8 +604,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -741,35 +741,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -793,10 +767,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -805,6 +791,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -825,11 +818,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -853,7 +841,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -586,8 +587,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -724,35 +724,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -776,10 +750,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -788,6 +774,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -808,11 +801,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -586,8 +587,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -724,35 +724,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -776,10 +750,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -788,6 +774,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -808,11 +801,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -836,7 +824,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -234,6 +234,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -595,8 +596,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -733,35 +733,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -785,10 +759,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -797,6 +783,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -817,11 +810,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -845,7 +833,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -597,8 +598,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -735,35 +735,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -787,10 +761,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -799,6 +785,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -819,11 +812,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -847,7 +835,42 @@
#define ABL_PROBE_PT_3_X ((X_MIN_POS + X_MAX_POS) / 2)
#define ABL_PROBE_PT_3_Y Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -251,6 +251,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -632,8 +633,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -770,35 +770,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -822,10 +796,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -834,6 +820,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -854,11 +847,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -882,7 +870,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -603,8 +604,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -741,35 +741,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -793,10 +767,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -805,6 +791,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -825,11 +818,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -853,7 +841,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -603,8 +604,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -741,35 +741,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -793,10 +767,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -805,6 +791,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -825,11 +818,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -853,7 +841,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -603,8 +604,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -741,35 +741,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -793,10 +767,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -805,6 +791,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -825,11 +818,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -853,7 +841,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -234,6 +234,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -602,8 +603,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -740,35 +740,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -792,10 +766,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -804,6 +790,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -824,11 +817,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -852,7 +840,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.
@ -1434,7 +1457,7 @@
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
#define NUM_SERVOS 0 // DGlass3D - Servo index starts with 0 for M280 command
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.

View file

@ -0,0 +1,1503 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Configuration.h
*
* Basic settings such as:
*
* - Type of electronics
* - Type of temperature sensor
* - Printer geometry
* - Endstop configuration
* - LCD controller
* - Extra features
*
* Advanced settings can be found in Configuration_adv.h
*
*/
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
/**
*
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
*
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
* Note: Update also Version.h !
*/
#define CONFIGURATION_H_VERSION 010100
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
/**
* Here are some standard links for getting your machine calibrated:
*
* http://reprap.org/wiki/Calibration
* http://youtu.be/wAL9d7FgInk
* http://calculator.josefprusa.cz
* http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
* http://www.thingiverse.com/thing:5573
* https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
* http://www.thingiverse.com/thing:298812
*/
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// @section info
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define CUSTOM_MACHINE_NAME "UBL5.0 FT2020"
#define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2
//
// *** VENDORS PLEASE READ *****************************************************
//
// Marlin now allow you to have a vendor boot image to be displayed on machine
// start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your
// custom boot image and then the default Marlin boot image is shown.
//
// We suggest for you to take advantage of this new feature and keep the Marlin
// boot image unmodified. For an example have a look at the bq Hephestos 2
// example configuration folder.
//
//#define SHOW_CUSTOM_BOOTSCREEN
// @section machine
/**
* Select which serial port on the board will be used for communication with the host.
* This allows the connection of wireless adapters (for instance) to non-default port pins.
* Serial port 0 is always used by the Arduino bootloader regardless of this setting.
*
* :[0, 1, 2, 3, 4, 5, 6, 7]
*/
#define SERIAL_PORT 0
/**
* This setting determines the communication speed of the printer.
*
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
*
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000]
*/
#define BAUDRATE 250000
// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH
// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_RAMPS_14_EFB
#endif
// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
//#define CUSTOM_MACHINE_NAME "3D Printer"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
// :[1, 2, 3, 4]
#define EXTRUDERS 1
// Enable if your E steppers or extruder gear ratios are not identical
//#define DISTINCT_E_FACTORS
// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE
// A dual extruder that uses a single stepper motor
// Don't forget to set SSDE_SERVO_ANGLES and HOTEND_OFFSET_X/Y/Z
//#define SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_EXTRUDER)
#define SWITCHING_EXTRUDER_SERVO_NR 0
#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1
//#define HOTEND_OFFSET_Z {0.0, 0.0}
#endif
/**
* "Mixing Extruder"
* - Adds a new code, M165, to set the current mix factors.
* - Extends the stepping routines to move multiple steppers in proportion to the mix.
* - Optional support for Repetier Host M163, M164, and virtual extruder.
* - This implementation supports only a single extruder.
* - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation
*/
//#define MIXING_EXTRUDER
#if ENABLED(MIXING_EXTRUDER)
#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder
#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164
//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands
#endif
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
/**
* Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN
*
* 0 = No Power Switch
* 1 = ATX
* 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
*
* :{ 0:'No power switch', 1:'ATX', 2:'X-Box 360' }
*/
#define POWER_SUPPLY 0
#if POWER_SUPPLY > 0
// Enable this option to leave the PSU off at startup.
// Power to steppers and heaters will need to be turned on with M80.
//#define PS_DEFAULT_OFF
#endif
// @section temperature
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
/**
* --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
*
* Temperature sensors available:
*
* -3 : thermocouple with MAX31855 (only for sensor 0)
* -2 : thermocouple with MAX6675 (only for sensor 0)
* -1 : thermocouple with AD595
* 0 : not used
* 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
* 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
* 3 : Mendel-parts thermistor (4.7k pullup)
* 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
* 5 : 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
* 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
* 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
* 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
* 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
* 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
* 10 : 100k RS thermistor 198-961 (4.7k pullup)
* 11 : 100k beta 3950 1% thermistor (4.7k pullup)
* 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
* 13 : 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
* 20 : the PT100 circuit found in the Ultimainboard V2.x
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
* 51 : 100k thermistor - EPCOS (1k pullup)
* 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
* 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
*
* 1047 : Pt1000 with 4k7 pullup
* 1010 : Pt1000 with 1k pullup (non standard)
* 147 : Pt100 with 4k7 pullup
* 110 : Pt100 with 1k pullup (non standard)
*
* Use these for Testing or Development purposes. NEVER for production machine.
* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
*
* :{ '0': "Not used", '1':"100k / 4.7k - EPCOS", '2':"200k / 4.7k - ATC Semitec 204GT-2", '3':"Mendel-parts / 4.7k", '4':"10k !! do not use for a hotend. Bad resolution at high temp. !!", '5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '6':"100k / 4.7k EPCOS - Not as accurate as Table 1", '7':"100k / 4.7k Honeywell 135-104LAG-J01", '8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10':"100k / 4.7k RS 198-961", '11':"100k / 4.7k beta 3950 1%", '12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '20':"PT100 (Ultimainboard V2.x)", '51':"100k / 1k - EPCOS", '52':"200k / 1k - ATC Semitec 204GT-2", '55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '66':"Dyze Design 4.7M High Temperature thermistor", '70':"the 100K thermistor found in the bq Hephestos 2", '71':"100k / 4.7k Honeywell 135-104LAF-J01", '147':"Pt100 / 4.7k", '1047':"Pt1000 / 4.7k", '110':"Pt100 / 1k (non-standard)", '1010':"Pt1000 / 1k (non standard)", '-3':"Thermocouple + MAX31855 (only for sensor 0)", '-2':"Thermocouple + MAX6675 (only for sensor 0)", '-1':"Thermocouple + AD595",'998':"Dummy 1", '999':"Dummy 2" }
*/
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 1
// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE 25
#define DUMMY_THERMISTOR_999_VALUE 100
// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Extruder temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// Bed temperature must be close to target for this long before M190 returns success
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds)
#define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 245
#define HEATER_1_MAXTEMP 245
#define HEATER_2_MAXTEMP 245
#define HEATER_3_MAXTEMP 245
#define BED_MAXTEMP 115
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#if ENABLED(PIDTEMP)
//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define K1 0.95 //smoothing factor within the PID
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 11.50
#define DEFAULT_Ki 0.50
#define DEFAULT_Kd 60.00
// MakerGear
//#define DEFAULT_Kp 7.0
//#define DEFAULT_Ki 0.1
//#define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
//#define DEFAULT_Kp 63.0
//#define DEFAULT_Ki 2.25
//#define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
#define PIDTEMPBED
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#if ENABLED(PIDTEMPBED)
//#define PID_BED_DEBUG // Sends debug data to the serial port.
//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 250.0
#define DEFAULT_bedKi 18.0
#define DEFAULT_bedKd 950.0
//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//#define DEFAULT_bedKp 97.1
//#define DEFAULT_bedKi 1.41
//#define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
// @section extruder
// This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP.
// It also enables the M302 command to set the minimum extrusion temperature
// or to allow moving the extruder regardless of the hotend temperature.
// *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***
#define PREVENT_COLD_EXTRUSION
#define EXTRUDE_MINTEMP 170
// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.
// Note that for Bowden Extruders a too-small value here may prevent loading.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH 200
//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================
/**
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* If you get "Thermal Runaway" or "Heating failed" errors the
* details can be tuned in Configuration_adv.h
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================
// @section machine
// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY
// Enable this option for Toshiba steppers
//#define CONFIG_STEPPERS_TOSHIBA
//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================
// @section homing
// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
#define USE_XMIN_PLUG
#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#if DISABLED(ENDSTOPPULLUPS)
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
//#define ENDSTOPPULLUP_XMAX
//#define ENDSTOPPULLUP_YMAX
//#define ENDSTOPPULLUP_ZMAX
//#define ENDSTOPPULLUP_XMIN
//#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
//#define ENDSTOPPULLUP_ZMIN_PROBE
#endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING true // set to true to invert the logic of the probe.
// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.
//#define ENDSTOP_INTERRUPTS_FEATURE
//=============================================================================
//============================== Movement Settings ============================
//=============================================================================
// @section motion
/**
* Default Settings
*
* These settings can be reset by M502
*
* You can set distinct factors for each E stepper, if needed.
* If fewer factors are given, the last will apply to the rest.
*
* Note that if EEPROM is enabled, saved values will override these.
*/
/**
* Default Axis Steps Per Unit (steps/mm)
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 4000, 52.2 }
/**
* Default Max Feed Rate (mm/s)
* Override with M203
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_MAX_FEEDRATE { 250, 250, 2, 17 }
/**
* Default Max Acceleration (change/s) change = mm/s
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_MAX_ACCELERATION { 1000, 1000, 4, 750 }
/**
* Default Acceleration (change/s) change = mm/s
* Override with M204
*
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
*/
#define DEFAULT_ACCELERATION 500 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 400 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 400 // X, Y, Z acceleration for travel (non printing) moves
/**
* Default Jerk (mm/s)
* Override with M205 X Y Z E
*
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
*/
#define DEFAULT_XJERK 17.0
#define DEFAULT_YJERK 17.0
#define DEFAULT_ZJERK 0.4
#define DEFAULT_EJERK 4.0
//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================
// @section probes
//
// Probe Type
// Probes are sensors/switches that are activated / deactivated before/after use.
//
// Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
// You must activate one of these to use Auto Bed Leveling below.
//
// Use M851 to set the Z probe vertical offset from the nozzle. Store with M500.
//
// A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
// For example an inductive probe, or a setup that uses the nozzle to probe.
// An inductive probe must be deactivated to go below
// its trigger-point if hardware endstops are active.
//#define FIX_MOUNTED_PROBE
// The BLTouch probe emulates a servo probe.
// The default connector is SERVO 0. Set Z_ENDSTOP_SERVO_NR below to override.
//#define BLTOUCH
// Z Servo Probe, such as an endstop switch on a rotating arm.
#define Z_ENDSTOP_SERVO_NR 0
#define Z_SERVO_ANGLES {40,85} // Z Servo Deploy and Stow angles
// Enable if you have a Z probe mounted on a sled like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
// Z Probe to nozzle (X,Y) offset, relative to (0, 0).
// X and Y offsets must be integers.
//
// In the following example the X and Y offsets are both positive:
// #define X_PROBE_OFFSET_FROM_EXTRUDER 10
// #define Y_PROBE_OFFSET_FROM_EXTRUDER 10
//
// +-- BACK ---+
// | |
// L | (+) P | R <-- probe (20,20)
// E | | I
// F | (-) N (+) | G <-- nozzle (10,10)
// T | | H
// | (-) | T
// | |
// O-- FRONT --+
// (0,0)
#define X_PROBE_OFFSET_FROM_EXTRUDER 38 // X offset: -left +right [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER -7 // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER -9.65 // Z offset: -below +above [the nozzle]
// X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 7500
// Speed for the first approach when double-probing (with PROBE_DOUBLE_TOUCH)
#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z
// Speed for the "accurate" probe of each point
#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)
// Use double touch for probing
//#define PROBE_DOUBLE_TOUCH
//
// Allen Key Probe is defined in the Delta example configurations.
//
// *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! ***
//
// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.
// Example: To park the head outside the bed area when homing with G28.
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
// - Otherwise connect:
// - normally-closed switches to GND and D32.
// - normally-open switches to 5V and D32.
//
// Normally-closed switches are advised and are the default.
//
//
// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)
// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the
// default pin for all RAMPS-based boards. Most boards use the X_MAX_PIN by default.
// To use a different pin you can override it here.
//
// WARNING:
// Setting the wrong pin may have unexpected and potentially disastrous consequences.
// Use with caution and do your homework.
//
//#define Z_MIN_PROBE_PIN X_MAX_PIN
//
// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.
// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.
//
//#define Z_MIN_PROBE_ENDSTOP
// Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE.
// The Z_MIN_PIN will then be used for both Z-homing and probing.
#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN
// To use a probe you must enable one of the two options above!
// Enable Z Probe Repeatability test to see how accurate your probe is
#define Z_MIN_PROBE_REPEATABILITY_TEST
/**
* Z probes require clearance when deploying, stowing, and moving between
* probe points to avoid hitting the bed and other hardware.
* Servo-mounted probes require extra space for the arm to rotate.
* Inductive probes need space to keep from triggering early.
*
* Use these settings to specify the distance (mm) to raise the probe (or
* lower the bed). The values set here apply over and above any (negative)
* probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.
* Only integer values >= 1 are valid here.
*
* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.
*/
#define Z_CLEARANCE_DEPLOY_PROBE 3 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 3 // Z Clearance between probe points
//
// For M851 give a range for adjusting the Z probe offset
//
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis stepper immediately when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
// Warn on display about possibly reduced accuracy
//#define DISABLE_REDUCED_ACCURACY_WARNING
// @section extruder
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
// @section machine
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false
#define INVERT_Y_DIR true
#define INVERT_Z_DIR true
// @section extruder
// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR true
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
// @section homing
#define Z_HOMING_HEIGHT 2 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...
// Be sure you have this distance over your Z_MAX_POS in case.
// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
// @section machine
// Travel limits after homing (units are in mm)
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS 203
#define Y_MAX_POS 180
#define Z_MAX_POS 175
// If enabled, axes won't move below MIN_POS in response to movement commands.
//#define MIN_SOFTWARE_ENDSTOPS
// If enabled, axes won't move above MAX_POS in response to movement commands.
#define MAX_SOFTWARE_ENDSTOPS
/**
* Filament Runout Sensor
* A mechanical or opto endstop is used to check for the presence of filament.
*
* RAMPS-based boards use SERVO3_PIN.
* For other boards you may need to define FIL_RUNOUT_PIN.
* By default the firmware assumes HIGH = has filament, LOW = ran out
*/
//#define FILAMENT_RUNOUT_SENSOR
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
/**
* Select one form of Auto Bed Leveling below.
*
* If you're also using the Probe for Z Homing, it's
* highly recommended to enable Z_SAFE_HOMING also!
*
* - 3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed.
*
* - LINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed.
*
* - BILINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
* NOTE: Requires a lot of PROGMEM!
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
#define ABL_GRID_MAX_POINTS_X 3
#define ABL_GRID_MAX_POINTS_Y ABL_GRID_MAX_POINTS_X
// Set the boundaries for probing (where the probe can reach).
#define LEFT_PROBE_BED_POSITION 39
#define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 10
#define BACK_PROBE_BED_POSITION 170
// The Z probe minimum outer margin (to validate G29 parameters).
#define MIN_PROBE_EDGE 10
// Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
//
//#define ABL_BILINEAR_SUBDIVISION
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
// Number of subdivisions between probe points
#define BILINEAR_SUBDIVISIONS 3
#endif
#endif
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// 3 arbitrary points to probe.
// A simple cross-product is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 39
#define ABL_PROBE_PT_1_Y 170
#define ABL_PROBE_PT_2_X 39
#define ABL_PROBE_PT_2_Y 10
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 10
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.
* Useful to retract or move the Z probe out of the way.
*/
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"
// @section homing
// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0
// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
#define MANUAL_X_HOME_POS 100
#define MANUAL_Y_HOME_POS 100
#define MANUAL_Z_HOME_POS 20
// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
//
// With this feature enabled:
//
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).
// - Prevent Z homing when the Z probe is outside bed area.
#define Z_SAFE_HOMING
#if ENABLED(Z_SAFE_HOMING)
#define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2) // X point for Z homing when homing all axis (G28).
#define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2) // Y point for Z homing when homing all axis (G28).
#endif
// Homing speeds (mm/m)
#define HOMING_FEEDRATE_XY (40*60)
#define HOMING_FEEDRATE_Z (55)
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// @section extras
//
// EEPROM
//
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
#define EEPROM_SETTINGS
#if ENABLED(EEPROM_SETTINGS)
// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // Please keep turned on if you can.
#endif
//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
//#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
//
// M100 Free Memory Watcher
//
#define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose
//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT
//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT
// @section temperature
// Preheat Constants
#define PREHEAT_1_TEMP_HOTEND 180
#define PREHEAT_1_TEMP_BED 70
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255
#define PREHEAT_2_TEMP_HOTEND 240
#define PREHEAT_2_TEMP_BED 110
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255
//
// Nozzle Park -- EXPERIMENTAL
//
// When enabled allows the user to define a special XYZ position, inside the
// machine's topology, to park the nozzle when idle or when receiving the G27
// command.
//
// The "P" paramenter controls what is the action applied to the Z axis:
// P0: (Default) If current Z-pos is lower than Z-park then the nozzle will
// be raised to reach Z-park height.
//
// P1: No matter the current Z-pos, the nozzle will be raised/lowered to
// reach Z-park height.
//
// P2: The nozzle height will be raised by Z-park amount but never going over
// the machine's limit of Z_MAX_POS.
//
//#define NOZZLE_PARK_FEATURE
#if ENABLED(NOZZLE_PARK_FEATURE)
// Specify a park position as { X, Y, Z }
#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
#endif
//
// Clean Nozzle Feature -- EXPERIMENTAL
//
// When enabled allows the user to send G12 to start the nozzle cleaning
// process, the G-Code accepts two parameters:
// "P" for pattern selection
// "S" for defining the number of strokes/repetitions
//
// Available list of patterns:
// P0: This is the default pattern, this process requires a sponge type
// material at a fixed bed location. S defines "strokes" i.e.
// back-and-forth movements between the starting and end points.
//
// P1: This starts a zig-zag pattern between (X0, Y0) and (X1, Y1), "T"
// defines the number of zig-zag triangles to be done. "S" defines the
// number of strokes aka one back-and-forth movement. Zig-zags will
// be performed in whichever dimension is smallest. As an example,
// sending "G12 P1 S1 T3" will execute:
//
// --
// | (X0, Y1) | /\ /\ /\ | (X1, Y1)
// | | / \ / \ / \ |
// A | | / \ / \ / \ |
// | | / \ / \ / \ |
// | (X0, Y0) | / \/ \/ \ | (X1, Y0)
// -- +--------------------------------+
// |________|_________|_________|
// T1 T2 T3
//
// P2: This starts a circular pattern with circle with middle in
// NOZZLE_CLEAN_CIRCLE_MIDDLE radius of R and stroke count of S.
// Before starting the circle nozzle goes to NOZZLE_CLEAN_START_POINT.
//
// Caveats: End point Z should use the same value as Start point Z.
//
// Attention: This is an EXPERIMENTAL feature, in the future the G-code arguments
// may change to add new functionality like different wipe patterns.
//
//#define NOZZLE_CLEAN_FEATURE
#if ENABLED(NOZZLE_CLEAN_FEATURE)
// Default number of pattern repetitions
#define NOZZLE_CLEAN_STROKES 12
// Default number of triangles
#define NOZZLE_CLEAN_TRIANGLES 3
// Specify positions as { X, Y, Z }
#define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}
#define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)}
// Circular pattern radius
#define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5
// Circular pattern circle fragments number
#define NOZZLE_CLEAN_CIRCLE_FN 10
// Middle point of circle
#define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT
// Moves the nozzle to the initial position
#define NOZZLE_CLEAN_GOBACK
#endif
//
// Print job timer
//
// Enable this option to automatically start and stop the
// print job timer when M104/M109/M190 commands are received.
// M104 (extruder without wait) - high temp = none, low temp = stop timer
// M109 (extruder with wait) - high temp = start timer, low temp = stop timer
// M190 (bed with wait) - high temp = start timer, low temp = none
//
// In all cases the timer can be started and stopped using
// the following commands:
//
// - M75 - Start the print job timer
// - M76 - Pause the print job timer
// - M77 - Stop the print job timer
#define PRINTJOB_TIMER_AUTOSTART
//
// Print Counter
//
// When enabled Marlin will keep track of some print statistical data such as:
// - Total print jobs
// - Total successful print jobs
// - Total failed print jobs
// - Total time printing
//
// This information can be viewed by the M78 command.
//#define PRINTCOUNTER
//=============================================================================
//============================= LCD and SD support ============================
//=============================================================================
// @section lcd
//
// LCD LANGUAGE
//
// Here you may choose the language used by Marlin on the LCD menus, the following
// list of languages are available:
// en, an, bg, ca, cn, cz, de, el, el-gr, es, eu, fi, fr, gl, hr, it,
// kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, tr, uk, test
//
// :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'tr':'Turkish', 'uk':'Ukrainian', 'test':'TEST' }
//
#define LCD_LANGUAGE en
//
// LCD Character Set
//
// Note: This option is NOT applicable to Graphical Displays.
//
// All character-based LCD's provide ASCII plus one of these
// language extensions:
//
// - JAPANESE ... the most common
// - WESTERN ... with more accented characters
// - CYRILLIC ... for the Russian language
//
// To determine the language extension installed on your controller:
//
// - Compile and upload with LCD_LANGUAGE set to 'test'
// - Click the controller to view the LCD menu
// - The LCD will display Japanese, Western, or Cyrillic text
//
// See https://github.com/MarlinFirmware/Marlin/wiki/LCD-Language
//
// :['JAPANESE', 'WESTERN', 'CYRILLIC']
//
#define DISPLAY_CHARSET_HD44780 JAPANESE
//
// LCD TYPE
//
// You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2,
// 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels
// (ST7565R family). (This option will be set automatically for certain displays.)
//
// IMPORTANT NOTE: The U8glib library is required for Full Graphic Display!
// https://github.com/olikraus/U8glib_Arduino
//
//#define ULTRA_LCD // Character based
//#define DOGLCD // Full graphics display
//
// SD CARD
//
// SD Card support is disabled by default. If your controller has an SD slot,
// you must uncomment the following option or it won't work.
//
//#define SDSUPPORT
//
// SD CARD: SPI SPEED
//
// Uncomment ONE of the following items to use a slower SPI transfer
// speed. This is usually required if you're getting volume init errors.
//
//#define SPI_SPEED SPI_HALF_SPEED
//#define SPI_SPEED SPI_QUARTER_SPEED
//#define SPI_SPEED SPI_EIGHTH_SPEED
//
// SD CARD: ENABLE CRC
//
// Use CRC checks and retries on the SD communication.
//
//#define SD_CHECK_AND_RETRY
//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 1
//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 5
/**
* Encoder Direction Options
*
* Test your encoder's behavior first with both options disabled.
*
* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.
* Reversed Value Editing only? Enable BOTH options.
*/
//
// This option reverses the encoder direction everywhere
//
// Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION
//
// This option reverses the encoder direction for navigating LCD menus.
//
// If CLOCKWISE normally moves DOWN this makes it go UP.
// If CLOCKWISE normally moves UP this makes it go DOWN.
//
#define REVERSE_MENU_DIRECTION
//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
//#define INDIVIDUAL_AXIS_HOMING_MENU
//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
//#define SPEAKER
//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
// M300 S<frequency Hz> P<duration ms>
//
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000
//
// CONTROLLER TYPE: Standard
//
// Marlin supports a wide variety of controllers.
// Enable one of the following options to specify your controller.
//
//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER
//
// ULTIPANEL as seen on Thingiverse.
//
//#define ULTIPANEL
//
// Cartesio UI
// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI
//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//
//#define PANEL_ONE
//
// MaKr3d Makr-Panel with graphic controller and SD support.
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//
//#define MAKRPANEL
//
// ReprapWorld Graphical LCD
// https://reprapworld.com/?products_details&products_id/1218
//
//#define REPRAPWORLD_GRAPHICAL_LCD
//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// http://panucatt.com
//
//#define VIKI2
//#define miniVIKI
//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER
//
// RepRapDiscount Smart Controller.
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
#define REPRAP_DISCOUNT_SMART_CONTROLLER
//
// GADGETS3D G3D LCD/SD Controller
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL
//
// RepRapDiscount FULL GRAPHIC Smart Controller
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
//
// MakerLab Mini Panel with graphic
// controller and SD support - http://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL
//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//
// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key
// is pressed, a value of 10.0 means 10mm per click.
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 1.0
//
// RigidBot Panel V1.0
// http://www.inventapart.com/
//
//#define RIGIDBOT_PANEL
//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER
//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//
//
// Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL
//
// Sainsmart YW Robot (LCM1602) LCD Display
//
//#define LCD_I2C_SAINSMART_YWROBOT
//
// Generic LCM1602 LCD adapter
//
//#define LCM1602
//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2
//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI
//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306
//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
//#define U8GLIB_SSD1306
#define U8GLIB_SH1106
#endif
//
// CONTROLLER TYPE: Shift register panels
//
// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH
// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD
//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================
// @section extras
// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
//#define PHOTOGRAPH_PIN 23
// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
// Support for an RGB LED using 3 separate pins with optional PWM
//#define RGB_LED
#if ENABLED(RGB_LED)
#define RGB_LED_R_PIN 34
#define RGB_LED_G_PIN 43
#define RGB_LED_B_PIN 35
#endif
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
#define NUM_SERVOS 2 // Servo index starts with 0 for M280 command
// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY 500
// Servo deactivation
//
// With this option servos are powered only during movement, then turned off to prevent jitter.
#define DEACTIVATE_SERVOS_AFTER_MOVE
/**********************************************************************\
* Support for a filament diameter sensor
* Also allows adjustment of diameter at print time (vs at slicing)
* Single extruder only at this point (extruder 0)
*
* Motherboards
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
* 301 - Rambo - uses Analog input 3
* Note may require analog pins to be defined for different motherboards
**********************************************************************/
// Uncomment below to enable
//#define FILAMENT_WIDTH_SENSOR
#define DEFAULT_NOMINAL_FILAMENT_DIA 1.75 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#endif
#endif // CONFIGURATION_H

View file

@ -0,0 +1,1091 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Configuration_adv.h
*
* Advanced settings.
* Only change these if you know exactly what you're doing.
* Some of these settings can damage your printer if improperly set!
*
* Basic settings can be found in Configuration.h
*
*/
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
/**
*
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
*
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
* Note: Update also Version.h !
*/
#define CONFIGURATION_ADV_H_VERSION 010100
// @section temperature
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
#if DISABLED(PIDTEMPBED)
#define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control
#if ENABLED(BED_LIMIT_SWITCHING)
#define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#endif
/**
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long (period),
* the firmware will halt the machine as a safety precaution.
*
* If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD
*/
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_HYSTERESIS 2 // Degrees Celsius
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*
* If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE
* WATCH_TEMP_INCREASE should not be below 2.
*/
#define WATCH_TEMP_PERIOD 40 // Seconds
#define WATCH_TEMP_INCREASE 2 // Degrees Celsius
#endif
/**
* Thermal Protection parameters for the bed are just as above for hotends.
*/
#if ENABLED(THERMAL_PROTECTION_BED)
#define THERMAL_PROTECTION_BED_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
/**
* Whenever an M140 or M190 increases the target temperature the firmware will wait for the
* WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190,
* but only if the current temperature is far enough below the target for a reliable test.
*
* If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease
* WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.)
*/
#define WATCH_BED_TEMP_PERIOD 60 // Seconds
#define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius
#endif
#if ENABLED(PIDTEMP)
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
//#define PID_EXTRUSION_SCALING
#if ENABLED(PID_EXTRUSION_SCALING)
#define DEFAULT_Kc (100) //heating power=Kc*(e_speed)
#define LPQ_MAX_LEN 50
#endif
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by executing M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#define AUTOTEMP
#if ENABLED(AUTOTEMP)
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
/**
* High Temperature Thermistor Support
*
* Thermistors able to support high temperature tend to have a hard time getting
* good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
* will probably be caught when the heating element first turns on during the
* preheating process, which will trigger a min_temp_error as a safety measure
* and force stop everything.
* To circumvent this limitation, we allow for a preheat time (during which,
* min_temp_error won't be triggered) and add a min_temp buffer to handle
* aberrant readings.
*
* If you want to enable this feature for your hotend thermistor(s)
* uncomment and set values > 0 in the constants below
*/
// The number of consecutive low temperature errors that can occur
// before a min_temp_error is triggered. (Shouldn't be more than 10.)
//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0
// The number of milliseconds a hotend will preheat before starting to check
// the temperature. This value should NOT be set to the time it takes the
// hot end to reach the target temperature, but the time it takes to reach
// the minimum temperature your thermistor can read. The lower the better/safer.
// This shouldn't need to be more than 30 seconds (30000)
//#define MILLISECONDS_PREHEAT_TIME 0
// @section extruder
// Extruder runout prevention.
// If the machine is idle and the temperature over MINTEMP
// then extrude some filament every couple of SECONDS.
//#define EXTRUDER_RUNOUT_PREVENT
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30
#define EXTRUDER_RUNOUT_SPEED 1500 // mm/m
#define EXTRUDER_RUNOUT_EXTRUDE 5 // mm
#endif
// @section temperature
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// This defines the minimal speed for the main fan, run in PWM mode
// to enable uncomment and set minimal PWM speed for reliable running (1-255)
// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM
//#define FAN_MIN_PWM 50
// @section extruder
/**
* Extruder cooling fans
*
* Extruder auto fans automatically turn on when their extruders'
* temperatures go above EXTRUDER_AUTO_FAN_TEMPERATURE.
*
* Your board's pins file specifies the recommended pins. Override those here
* or set to -1 to disable completely.
*
* Multiple extruders can be assigned to the same pin in which case
* the fan will turn on when any selected extruder is above the threshold.
*/
#define E0_AUTO_FAN_PIN -1
#define E1_AUTO_FAN_PIN -1
#define E2_AUTO_FAN_PIN -1
#define E3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
// Define a pin to turn case light on/off
//#define CASE_LIGHT_PIN 4
#if PIN_EXISTS(CASE_LIGHT)
#define INVERT_CASE_LIGHT false // Set to true if HIGH is the OFF state (active low)
//#define CASE_LIGHT_DEFAULT_ON // Uncomment to set default state to on
//#define MENU_ITEM_CASE_LIGHT // Uncomment to have a Case Light On / Off entry in main menu
#endif
//===========================================================================
//============================ Mechanical Settings ==========================
//===========================================================================
// @section homing
// If you want endstops to stay on (by default) even when not homing
// enable this option. Override at any time with M120, M121.
//#define ENDSTOPS_ALWAYS_ON_DEFAULT
// @section extras
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// Dual X Steppers
// Uncomment this option to drive two X axis motors.
// The next unused E driver will be assigned to the second X stepper.
//#define X_DUAL_STEPPER_DRIVERS
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
// Set true if the two X motors need to rotate in opposite directions
#define INVERT_X2_VS_X_DIR true
#endif
// Dual Y Steppers
// Uncomment this option to drive two Y axis motors.
// The next unused E driver will be assigned to the second Y stepper.
//#define Y_DUAL_STEPPER_DRIVERS
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
// Set true if the two Y motors need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#endif
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this option to use a separate stepper driver for each Z axis motor.
// The next unused E driver will be assigned to the second Z stepper.
//#define Z_DUAL_STEPPER_DRIVERS
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// Play a little bit with small adjustments (0.5mm) and check the behaviour.
// The M119 (endstops report) will start reporting the Z2 Endstop as well.
//#define Z_DUAL_ENDSTOPS
#if ENABLED(Z_DUAL_ENDSTOPS)
#define Z2_USE_ENDSTOP _XMAX_
#endif
#endif // Z_DUAL_STEPPER_DRIVERS
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.
//#define DUAL_X_CARRIAGE
#if ENABLED(DUAL_X_CARRIAGE)
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0 (DXC_FULL_CONTROL_MODE): Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1 (DXC_AUTO_PARK_MODE) : Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2 (DXC_DUPLICATION_MODE) : Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE DXC_FULL_CONTROL_MODE
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
// @section homing
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5
#define Z_HOME_BUMP_MM 2
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
// When G28 is called, this option will make Y home before X
//#define HOME_Y_BEFORE_X
// @section machine
#define AXIS_RELATIVE_MODES {false, false, false, false}
// Allow duplication mode with a basic dual-nozzle extruder
//#define DUAL_NOZZLE_DUPLICATION_MODE
// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
// Default stepper release if idle. Set to 0 to deactivate.
// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.
// Time can be set by M18 and M84.
#define DEFAULT_STEPPER_DEACTIVE_TIME 120
#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.
#define DISABLE_INACTIVE_E true
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// @section lcd
#if ENABLED(ULTIPANEL)
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#endif
// @section extras
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)
//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
// @section lcd
// Include a page of printer information in the LCD Main Menu
//#define LCD_INFO_MENU
// On the Info Screen, display XY with one decimal place when possible
//#define LCD_DECIMAL_SMALL_XY
// The timeout (in ms) to return to the status screen from sub-menus
//#define LCD_TIMEOUT_TO_STATUS 15000
#if ENABLED(SDSUPPORT)
// Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// around this by connecting a push button or single throw switch to the pin defined
// as SD_DETECT_PIN in your board's pins definitions.
// This setting should be disabled unless you are using a push button, pulling the pin to ground.
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
#define SD_DETECT_INVERTED
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
/**
* Sort SD file listings in alphabetical order.
*
* With this option enabled, items on SD cards will be sorted
* by name for easier navigation.
*
* By default...
*
* - Use the slowest -but safest- method for sorting.
* - Folders are sorted to the top.
* - The sort key is statically allocated.
* - No added G-code (M34) support.
* - 40 item sorting limit. (Items after the first 40 are unsorted.)
*
* SD sorting uses static allocation (as set by SDSORT_LIMIT), allowing the
* compiler to calculate the worst-case usage and throw an error if the SRAM
* limit is exceeded.
*
* - SDSORT_USES_RAM provides faster sorting via a static directory buffer.
* - SDSORT_USES_STACK does the same, but uses a local stack-based buffer.
* - SDSORT_CACHE_NAMES will retain the sorted file listing in RAM. (Expensive!)
* - SDSORT_DYNAMIC_RAM only uses RAM when the SD menu is visible. (Use with caution!)
*/
//#define SDCARD_SORT_ALPHA
// SD Card Sorting options
#if ENABLED(SDCARD_SORT_ALPHA)
#define SDSORT_LIMIT 40 // Maximum number of sorted items (10-256).
#define FOLDER_SORTING -1 // -1=above 0=none 1=below
#define SDSORT_GCODE false // Allow turning sorting on/off with LCD and M34 g-code.
#define SDSORT_USES_RAM false // Pre-allocate a static array for faster pre-sorting.
#define SDSORT_USES_STACK false // Prefer the stack for pre-sorting to give back some SRAM. (Negated by next 2 options.)
#define SDSORT_CACHE_NAMES false // Keep sorted items in RAM longer for speedy performance. Most expensive option.
#define SDSORT_DYNAMIC_RAM false // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use!
#endif
// Show a progress bar on HD44780 LCDs for SD printing
//#define LCD_PROGRESS_BAR
#if ENABLED(LCD_PROGRESS_BAR)
// Amount of time (ms) to show the bar
#define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message
#define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever)
#define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE
// Add a menu item to test the progress bar:
//#define LCD_PROGRESS_BAR_TEST
#endif
// This allows hosts to request long names for files and folders with M33
//#define LONG_FILENAME_HOST_SUPPORT
// This option allows you to abort SD printing when any endstop is triggered.
// This feature must be enabled with "M540 S1" or from the LCD menu.
// To have any effect, endstops must be enabled during SD printing.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#endif // SDSUPPORT
/**
* Additional options for Graphical Displays
*
* Use the optimizations here to improve printing performance,
* which can be adversely affected by graphical display drawing,
* especially when doing several short moves, and when printing
* on DELTA and SCARA machines.
*
* Some of these options may result in the display lagging behind
* controller events, as there is a trade-off between reliable
* printing performance versus fast display updates.
*/
#if ENABLED(DOGLCD)
// Enable to save many cycles by drawing a hollow frame on the Info Screen
#define XYZ_HOLLOW_FRAME
// Enable to save many cycles by drawing a hollow frame on Menu Screens
#define MENU_HOLLOW_FRAME
// A bigger font is available for edit items. Costs 3120 bytes of PROGMEM.
// Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
//#define USE_BIG_EDIT_FONT
// A smaller font may be used on the Info Screen. Costs 2300 bytes of PROGMEM.
// Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
//#define USE_SMALL_INFOFONT
// Enable this option and reduce the value to optimize screen updates.
// The normal delay is 10µs. Use the lowest value that still gives a reliable display.
//#define DOGM_SPI_DELAY_US 5
#endif // DOGLCD
// @section safety
// The hardware watchdog should reset the microcontroller disabling all outputs,
// in case the firmware gets stuck and doesn't do temperature regulation.
#define USE_WATCHDOG
#if ENABLED(USE_WATCHDOG)
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// @section lcd
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!
//#define BABYSTEPPING
#if ENABLED(Roxy_work)
#define BABYSTEPPING
#endif
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_MULTIPLICATOR 2 //faster movements
#endif
// @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* See Marlin documentation for calibration instructions.
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75
/**
* Some Slicers produce Gcode with randomly jumping extrusion widths occasionally.
* For example within a 0.4mm perimeter it may produce a single segment of 0.05mm width.
* While this is harmless for normal printing (the fluid nature of the filament will
* close this very, very tiny gap), it throws off the LIN_ADVANCE pressure adaption.
*
* For this case LIN_ADVANCE_E_D_RATIO can be used to set the extrusion:distance ratio
* to a fixed value. Note that using a fixed ratio will lead to wrong nozzle pressures
* if the slicer is using variable widths or layer heights within one print!
*
* This option sets the default E:D ratio at startup. Use `M905` to override this value.
*
* Example: `M905 W0.4 H0.2 D1.75`, where:
* - W is the extrusion width in mm
* - H is the layer height in mm
* - D is the filament diameter in mm
*
* Set to 0 to auto-detect the ratio based on given Gcode G1 print moves.
*
* Slic3r (including Prusa Slic3r) produces Gcode compatible with the automatic mode.
* Cura (as of this writing) may produce Gcode incompatible with the automatic mode.
*/
#define LIN_ADVANCE_E_D_RATIO 0 // The calculated ratio (or 0) according to the formula W * H / ((D / 2) ^ 2 * PI)
// Example: 0.4 * 0.2 / ((1.75 / 2) ^ 2 * PI) = 0.033260135
#endif
// @section leveling
// Default mesh area is an area with an inset margin on the print area.
// Below are the macros that are used to define the borders for the mesh area,
// made available here for specialized needs, ie dual extruder setup.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_MIN_X (X_MIN_POS + MESH_INSET)
#define MESH_MAX_X (X_MAX_POS - (MESH_INSET))
#define MESH_MIN_Y (Y_MIN_POS + MESH_INSET)
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_MESH_MIN_X (X_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_X (X_MAX_POS - (UBL_MESH_INSET))
#define UBL_MESH_MIN_Y (Y_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_Y (Y_MAX_POS - (UBL_MESH_INSET))
#endif
// @section extras
// Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2738 bytes
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
//#define BEZIER_CURVE_SUPPORT
// G38.2 and G38.3 Probe Target
//#define G38_PROBE_TARGET
#if ENABLED(G38_PROBE_TARGET)
#define G38_MINIMUM_MOVE 0.0275 // minimum distance in mm that will produce a move (determined using the print statement in check_move)
#endif
// Moves (or segments) with fewer steps than this will be joined with the next move
#define MIN_STEPS_PER_SEGMENT 6
// The minimum pulse width (in µs) for stepping a stepper.
// Set this if you find stepping unreliable, or if using a very fast CPU.
#define MINIMUM_STEPPER_PULSE 0 // (µs) The smallest stepper pulse allowed
// @section temperature
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//===========================================================================
//================================= Buffers =================================
//===========================================================================
// @section hidden
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#if ENABLED(SDSUPPORT)
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
// @section serial
// The ASCII buffer for serial input
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Transfer Buffer Size
// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes.
// For debug-echo: 128 bytes for the optimal speed.
// Other output doesn't need to be that speedy.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256]
#define TX_BUFFER_SIZE 0
// Enable an emergency-command parser to intercept certain commands as they
// enter the serial receive buffer, so they cannot be blocked.
// Currently handles M108, M112, M410
// Does not work on boards using AT90USB (USBCON) processors!
//#define EMERGENCY_PARSER
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract
// Firmware based and LCD controlled retract
// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.
//#define FWRETRACT //ONLY PARTIALLY TESTED
#if ENABLED(FWRETRACT)
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 3 //default retract length (positive mm)
#define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change
#define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s)
#define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change)
#define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s)
#endif
/**
* Filament Change
* Experimental filament change support.
* Adds the GCode M600 for initiating filament change.
*
* Requires an LCD display.
* This feature is required for the default FILAMENT_RUNOUT_SCRIPT.
*/
//#define FILAMENT_CHANGE_FEATURE
#if ENABLED(Roxy_work)
#define FILAMENT_CHANGE_FEATURE
#endif
#if ENABLED(FILAMENT_CHANGE_FEATURE)
#define FILAMENT_CHANGE_X_POS 3 // X position of hotend
#define FILAMENT_CHANGE_Y_POS 3 // Y position of hotend
#define FILAMENT_CHANGE_Z_ADD 10 // Z addition of hotend (lift)
#define FILAMENT_CHANGE_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis)
#define FILAMENT_CHANGE_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers)
#define FILAMENT_CHANGE_RETRACT_FEEDRATE 60 // Initial retract feedrate in mm/s
#define FILAMENT_CHANGE_RETRACT_LENGTH 2 // Initial retract in mm
// It is a short retract used immediately after print interrupt before move to filament exchange position
#define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // Unload filament feedrate in mm/s - filament unloading can be fast
#define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // Unload filament length from hotend in mm
// Longer length for bowden printers to unload filament from whole bowden tube,
// shorter length for printers without bowden to unload filament from extruder only,
// 0 to disable unloading for manual unloading
#define FILAMENT_CHANGE_LOAD_FEEDRATE 6 // Load filament feedrate in mm/s - filament loading into the bowden tube can be fast
#define FILAMENT_CHANGE_LOAD_LENGTH 0 // Load filament length over hotend in mm
// Longer length for bowden printers to fast load filament into whole bowden tube over the hotend,
// Short or zero length for printers without bowden where loading is not used
#define FILAMENT_CHANGE_EXTRUDE_FEEDRATE 3 // Extrude filament feedrate in mm/s - must be slower than load feedrate
#define FILAMENT_CHANGE_EXTRUDE_LENGTH 50 // Extrude filament length in mm after filament is loaded over the hotend,
// 0 to disable for manual extrusion
// Filament can be extruded repeatedly from the filament exchange menu to fill the hotend,
// or until outcoming filament color is not clear for filament color change
#define FILAMENT_CHANGE_NOZZLE_TIMEOUT 45L // Turn off nozzle if user doesn't change filament within this time limit in seconds
#define FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS 5L // Number of alert beeps before printer goes quiet
#define FILAMENT_CHANGE_NO_STEPPER_TIMEOUT // Enable to have stepper motors hold position during filament change
// even if it takes longer than DEFAULT_STEPPER_DEACTIVE_TIME.
#endif
// @section tmc
/**
* Enable this section if you have TMC26X motor drivers.
* You will need to import the TMC26XStepper library into the Arduino IDE for this
* (https://github.com/trinamic/TMC26XStepper.git)
*/
//#define HAVE_TMCDRIVER
#if ENABLED(HAVE_TMCDRIVER)
//#define X_IS_TMC
//#define X2_IS_TMC
//#define Y_IS_TMC
//#define Y2_IS_TMC
//#define Z_IS_TMC
//#define Z2_IS_TMC
//#define E0_IS_TMC
//#define E1_IS_TMC
//#define E2_IS_TMC
//#define E3_IS_TMC
#define X_MAX_CURRENT 1000 // in mA
#define X_SENSE_RESISTOR 91 // in mOhms
#define X_MICROSTEPS 16 // number of microsteps
#define X2_MAX_CURRENT 1000
#define X2_SENSE_RESISTOR 91
#define X2_MICROSTEPS 16
#define Y_MAX_CURRENT 1000
#define Y_SENSE_RESISTOR 91
#define Y_MICROSTEPS 16
#define Y2_MAX_CURRENT 1000
#define Y2_SENSE_RESISTOR 91
#define Y2_MICROSTEPS 16
#define Z_MAX_CURRENT 1000
#define Z_SENSE_RESISTOR 91
#define Z_MICROSTEPS 16
#define Z2_MAX_CURRENT 1000
#define Z2_SENSE_RESISTOR 91
#define Z2_MICROSTEPS 16
#define E0_MAX_CURRENT 1000
#define E0_SENSE_RESISTOR 91
#define E0_MICROSTEPS 16
#define E1_MAX_CURRENT 1000
#define E1_SENSE_RESISTOR 91
#define E1_MICROSTEPS 16
#define E2_MAX_CURRENT 1000
#define E2_SENSE_RESISTOR 91
#define E2_MICROSTEPS 16
#define E3_MAX_CURRENT 1000
#define E3_SENSE_RESISTOR 91
#define E3_MICROSTEPS 16
#endif
// @section TMC2130
/**
* Enable this for SilentStepStick Trinamic TMC2130 SPI-configurable stepper drivers.
*
* You'll also need the TMC2130Stepper Arduino library
* (https://github.com/teemuatlut/TMC2130Stepper).
*
* To use TMC2130 stepper drivers in SPI mode connect your SPI2130 pins to
* the hardware SPI interface on your board and define the required CS pins
* in your `pins_MYBOARD.h` file. (e.g., RAMPS 1.4 uses AUX3 pins `X_CS_PIN 53`, `Y_CS_PIN 49`, etc.).
*/
//#define HAVE_TMC2130
#if ENABLED(HAVE_TMC2130)
#define STEALTHCHOP
/**
* Let Marlin automatically control stepper current.
* This is still an experimental feature.
* Increase current every 5s by CURRENT_STEP until stepper temperature prewarn gets triggered,
* then decrease current by CURRENT_STEP until temperature prewarn is cleared.
* Adjusting starts from X/Y/Z/E_MAX_CURRENT but will not increase over AUTO_ADJUST_MAX
*/
//#define AUTOMATIC_CURRENT_CONTROL
#define CURRENT_STEP 50 // [mA]
#define AUTO_ADJUST_MAX 1300 // [mA], 1300mA_rms = 1840mA_peak
// CHOOSE YOUR MOTORS HERE, THIS IS MANDATORY
//#define X_IS_TMC2130
//#define X2_IS_TMC2130
//#define Y_IS_TMC2130
//#define Y2_IS_TMC2130
//#define Z_IS_TMC2130
//#define Z2_IS_TMC2130
//#define E0_IS_TMC2130
//#define E1_IS_TMC2130
//#define E2_IS_TMC2130
//#define E3_IS_TMC2130
/**
* Stepper driver settings
*/
#define R_SENSE 0.11 // R_sense resistor for SilentStepStick2130
#define HOLD_MULTIPLIER 0.5 // Scales down the holding current from run current
#define INTERPOLATE 1 // Interpolate X/Y/Z_MICROSTEPS to 256
#define X_MAX_CURRENT 1000 // rms current in mA
#define X_MICROSTEPS 16 // FULLSTEP..256
#define X_CHIP_SELECT 40 // Pin
#define Y_MAX_CURRENT 1000
#define Y_MICROSTEPS 16
#define Y_CHIP_SELECT 42
#define Z_MAX_CURRENT 1000
#define Z_MICROSTEPS 16
#define Z_CHIP_SELECT 65
//#define X2_MAX_CURRENT 1000
//#define X2_MICROSTEPS 16
//#define X2_CHIP_SELECT -1
//#define Y2_MAX_CURRENT 1000
//#define Y2_MICROSTEPS 16
//#define Y2_CHIP_SELECT -1
//#define Z2_MAX_CURRENT 1000
//#define Z2_MICROSTEPS 16
//#define Z2_CHIP_SELECT -1
//#define E0_MAX_CURRENT 1000
//#define E0_MICROSTEPS 16
//#define E0_CHIP_SELECT -1
//#define E1_MAX_CURRENT 1000
//#define E1_MICROSTEPS 16
//#define E1_CHIP_SELECT -1
//#define E2_MAX_CURRENT 1000
//#define E2_MICROSTEPS 16
//#define E2_CHIP_SELECT -1
//#define E3_MAX_CURRENT 1000
//#define E3_MICROSTEPS 16
//#define E3_CHIP_SELECT -1
/**
* You can set your own advanced settings by filling in predefined functions.
* A list of available functions can be found on the library github page
* https://github.com/teemuatlut/TMC2130Stepper
*
* Example:
* #define TMC2130_ADV() { \
* stepperX.diag0_temp_prewarn(1); \
* stepperX.interpolate(0); \
* }
*/
#define TMC2130_ADV() { }
#endif // ENABLED(HAVE_TMC2130)
/**
* Enable this section if you have L6470 motor drivers.
* You need to import the L6470 library into the Arduino IDE for this.
* (https://github.com/ameyer/Arduino-L6470)
*/
// @section l6470
//#define HAVE_L6470DRIVER
#if ENABLED(HAVE_L6470DRIVER)
//#define X_IS_L6470
//#define X2_IS_L6470
//#define Y_IS_L6470
//#define Y2_IS_L6470
//#define Z_IS_L6470
//#define Z2_IS_L6470
//#define E0_IS_L6470
//#define E1_IS_L6470
//#define E2_IS_L6470
//#define E3_IS_L6470
#define X_MICROSTEPS 16 // number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define X_OVERCURRENT 2000 // maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 // current in mA where the driver will detect a stall
#define X2_MICROSTEPS 16
#define X2_K_VAL 50
#define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500
#define Y_MICROSTEPS 16
#define Y_K_VAL 50
#define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500
#define Y2_MICROSTEPS 16
#define Y2_K_VAL 50
#define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500
#define Z_MICROSTEPS 16
#define Z_K_VAL 50
#define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500
#define Z2_MICROSTEPS 16
#define Z2_K_VAL 50
#define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500
#define E0_MICROSTEPS 16
#define E0_K_VAL 50
#define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500
#define E1_MICROSTEPS 16
#define E1_K_VAL 50
#define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500
#define E2_MICROSTEPS 16
#define E2_K_VAL 50
#define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500
#define E3_MICROSTEPS 16
#define E3_K_VAL 50
#define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500
#endif
/**
* TWI/I2C BUS
*
* This feature is an EXPERIMENTAL feature so it shall not be used on production
* machines. Enabling this will allow you to send and receive I2C data from slave
* devices on the bus.
*
* ; Example #1
* ; This macro send the string "Marlin" to the slave device with address 0x63 (99)
* ; It uses multiple M260 commands with one B<base 10> arg
* M260 A99 ; Target slave address
* M260 B77 ; M
* M260 B97 ; a
* M260 B114 ; r
* M260 B108 ; l
* M260 B105 ; i
* M260 B110 ; n
* M260 S1 ; Send the current buffer
*
* ; Example #2
* ; Request 6 bytes from slave device with address 0x63 (99)
* M261 A99 B5
*
* ; Example #3
* ; Example serial output of a M261 request
* echo:i2c-reply: from:99 bytes:5 data:hello
*/
// @section i2cbus
//#define EXPERIMENTAL_I2CBUS
#define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave
/**
* Add M43, M44 and M45 commands for pins info and testing
*/
#define PINS_DEBUGGING
/**
* Auto-report temperatures with M155 S<seconds>
*/
//#define AUTO_REPORT_TEMPERATURES
/**
* Include capabilities in M115 output
*/
//#define EXTENDED_CAPABILITIES_REPORT
/**
* Double-click the Encoder button on the Status Screen for Z Babystepping.
*/
#define DOUBLECLICK_FOR_Z_BABYSTEPPING
#define DOUBLECLICK_MAX_INTERVAL 1250 // Maximum interval between clicks, in milliseconds.
// Note: You may need to add extra time to mitigate controller latency.
/**
* Volumetric extrusion default state
* Activate to make volumetric extrusion the default method,
* with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
*
* M200 D0 to disable, M200 Dn to set a new diameter.
*/
//#define VOLUMETRIC_DEFAULT_ON
/**
* Enable this option for a leaner build of Marlin that removes all
* workspace offsets, simplifying coordinate transformations, leveling, etc.
*
* - M206 and M428 are disabled.
* - G92 will revert to its behavior from Marlin 1.0.
*/
//#define NO_WORKSPACE_OFFSETS
#endif // CONFIGURATION_ADV_H

View file

@ -0,0 +1,1500 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Configuration.h
*
* Basic settings such as:
*
* - Type of electronics
* - Type of temperature sensor
* - Printer geometry
* - Endstop configuration
* - LCD controller
* - Extra features
*
* Advanced settings can be found in Configuration_adv.h
*
*/
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
/**
*
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
*
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
* Note: Update also Version.h !
*/
#define CONFIGURATION_H_VERSION 010100
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
/**
* Here are some standard links for getting your machine calibrated:
*
* http://reprap.org/wiki/Calibration
* http://youtu.be/wAL9d7FgInk
* http://calculator.josefprusa.cz
* http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
* http://www.thingiverse.com/thing:5573
* https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
* http://www.thingiverse.com/thing:298812
*/
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// @section info
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2
//
// *** VENDORS PLEASE READ *****************************************************
//
// Marlin now allow you to have a vendor boot image to be displayed on machine
// start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your
// custom boot image and then the default Marlin boot image is shown.
//
// We suggest for you to take advantage of this new feature and keep the Marlin
// boot image unmodified. For an example have a look at the bq Hephestos 2
// example configuration folder.
//
//#define SHOW_CUSTOM_BOOTSCREEN
// @section machine
/**
* Select which serial port on the board will be used for communication with the host.
* This allows the connection of wireless adapters (for instance) to non-default port pins.
* Serial port 0 is always used by the Arduino bootloader regardless of this setting.
*
* :[0, 1, 2, 3, 4, 5, 6, 7]
*/
#define SERIAL_PORT 0
/**
* This setting determines the communication speed of the printer.
*
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
*
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000]
*/
#define BAUDRATE 250000
// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH
// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_RAMPS_14_EFB
#endif
// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
//#define CUSTOM_MACHINE_NAME "3D Printer"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
// :[1, 2, 3, 4]
#define EXTRUDERS 1
// Enable if your E steppers or extruder gear ratios are not identical
//#define DISTINCT_E_FACTORS
// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE
// A dual extruder that uses a single stepper motor
// Don't forget to set SSDE_SERVO_ANGLES and HOTEND_OFFSET_X/Y/Z
//#define SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_EXTRUDER)
#define SWITCHING_EXTRUDER_SERVO_NR 0
#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1
//#define HOTEND_OFFSET_Z {0.0, 0.0}
#endif
/**
* "Mixing Extruder"
* - Adds a new code, M165, to set the current mix factors.
* - Extends the stepping routines to move multiple steppers in proportion to the mix.
* - Optional support for Repetier Host M163, M164, and virtual extruder.
* - This implementation supports only a single extruder.
* - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation
*/
//#define MIXING_EXTRUDER
#if ENABLED(MIXING_EXTRUDER)
#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder
#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164
//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands
#endif
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
/**
* Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN
*
* 0 = No Power Switch
* 1 = ATX
* 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
*
* :{ 0:'No power switch', 1:'ATX', 2:'X-Box 360' }
*/
#define POWER_SUPPLY 0
#if POWER_SUPPLY > 0
// Enable this option to leave the PSU off at startup.
// Power to steppers and heaters will need to be turned on with M80.
//#define PS_DEFAULT_OFF
#endif
// @section temperature
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
/**
* --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
*
* Temperature sensors available:
*
* -3 : thermocouple with MAX31855 (only for sensor 0)
* -2 : thermocouple with MAX6675 (only for sensor 0)
* -1 : thermocouple with AD595
* 0 : not used
* 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
* 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
* 3 : Mendel-parts thermistor (4.7k pullup)
* 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
* 5 : 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
* 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
* 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
* 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
* 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
* 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
* 10 : 100k RS thermistor 198-961 (4.7k pullup)
* 11 : 100k beta 3950 1% thermistor (4.7k pullup)
* 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
* 13 : 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
* 20 : the PT100 circuit found in the Ultimainboard V2.x
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
* 51 : 100k thermistor - EPCOS (1k pullup)
* 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
* 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
*
* 1047 : Pt1000 with 4k7 pullup
* 1010 : Pt1000 with 1k pullup (non standard)
* 147 : Pt100 with 4k7 pullup
* 110 : Pt100 with 1k pullup (non standard)
*
* Use these for Testing or Development purposes. NEVER for production machine.
* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
*
* :{ '0': "Not used", '1':"100k / 4.7k - EPCOS", '2':"200k / 4.7k - ATC Semitec 204GT-2", '3':"Mendel-parts / 4.7k", '4':"10k !! do not use for a hotend. Bad resolution at high temp. !!", '5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '6':"100k / 4.7k EPCOS - Not as accurate as Table 1", '7':"100k / 4.7k Honeywell 135-104LAG-J01", '8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10':"100k / 4.7k RS 198-961", '11':"100k / 4.7k beta 3950 1%", '12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '20':"PT100 (Ultimainboard V2.x)", '51':"100k / 1k - EPCOS", '52':"200k / 1k - ATC Semitec 204GT-2", '55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '66':"Dyze Design 4.7M High Temperature thermistor", '70':"the 100K thermistor found in the bq Hephestos 2", '71':"100k / 4.7k Honeywell 135-104LAF-J01", '147':"Pt100 / 4.7k", '1047':"Pt1000 / 4.7k", '110':"Pt100 / 1k (non-standard)", '1010':"Pt1000 / 1k (non standard)", '-3':"Thermocouple + MAX31855 (only for sensor 0)", '-2':"Thermocouple + MAX6675 (only for sensor 0)", '-1':"Thermocouple + AD595",'998':"Dummy 1", '999':"Dummy 2" }
*/
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 0
// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE 25
#define DUMMY_THERMISTOR_999_VALUE 100
// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Extruder temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// Bed temperature must be close to target for this long before M190 returns success
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds)
#define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#if ENABLED(PIDTEMP)
//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define K1 0.95 //smoothing factor within the PID
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// MakerGear
//#define DEFAULT_Kp 7.0
//#define DEFAULT_Ki 0.1
//#define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
//#define DEFAULT_Kp 63.0
//#define DEFAULT_Ki 2.25
//#define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#if ENABLED(PIDTEMPBED)
//#define PID_BED_DEBUG // Sends debug data to the serial port.
//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//#define DEFAULT_bedKp 97.1
//#define DEFAULT_bedKi 1.41
//#define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
// @section extruder
// This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP.
// It also enables the M302 command to set the minimum extrusion temperature
// or to allow moving the extruder regardless of the hotend temperature.
// *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***
#define PREVENT_COLD_EXTRUSION
#define EXTRUDE_MINTEMP 170
// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.
// Note that for Bowden Extruders a too-small value here may prevent loading.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH 200
//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================
/**
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* If you get "Thermal Runaway" or "Heating failed" errors the
* details can be tuned in Configuration_adv.h
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================
// @section machine
// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY
// Enable this option for Toshiba steppers
//#define CONFIG_STEPPERS_TOSHIBA
//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================
// @section homing
// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
#define USE_XMIN_PLUG
#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#if DISABLED(ENDSTOPPULLUPS)
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
//#define ENDSTOPPULLUP_XMAX
//#define ENDSTOPPULLUP_YMAX
//#define ENDSTOPPULLUP_ZMAX
//#define ENDSTOPPULLUP_XMIN
//#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
//#define ENDSTOPPULLUP_ZMIN_PROBE
#endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // set to true to invert the logic of the probe.
// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.
//#define ENDSTOP_INTERRUPTS_FEATURE
//=============================================================================
//============================== Movement Settings ============================
//=============================================================================
// @section motion
/**
* Default Settings
*
* These settings can be reset by M502
*
* You can set distinct factors for each E stepper, if needed.
* If fewer factors are given, the last will apply to the rest.
*
* Note that if EEPROM is enabled, saved values will override these.
*/
/**
* Default Axis Steps Per Unit (steps/mm)
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 4000, 500 }
/**
* Default Max Feed Rate (mm/s)
* Override with M203
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }
/**
* Default Max Acceleration (change/s) change = mm/s
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }
/**
* Default Acceleration (change/s) change = mm/s
* Override with M204
*
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
*/
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves
/**
* Default Jerk (mm/s)
* Override with M205 X Y Z E
*
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
*/
#define DEFAULT_XJERK 20.0
#define DEFAULT_YJERK 20.0
#define DEFAULT_ZJERK 0.4
#define DEFAULT_EJERK 5.0
//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================
// @section probes
//
// Probe Type
// Probes are sensors/switches that are activated / deactivated before/after use.
//
// Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
// You must activate one of these to use Auto Bed Leveling below.
//
// Use M851 to set the Z probe vertical offset from the nozzle. Store with M500.
//
// A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
// For example an inductive probe, or a setup that uses the nozzle to probe.
// An inductive probe must be deactivated to go below
// its trigger-point if hardware endstops are active.
//#define FIX_MOUNTED_PROBE
// The BLTouch probe emulates a servo probe.
// The default connector is SERVO 0. Set Z_ENDSTOP_SERVO_NR below to override.
//#define BLTOUCH
// Z Servo Probe, such as an endstop switch on a rotating arm.
//#define Z_ENDSTOP_SERVO_NR 0
//#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles
// Enable if you have a Z probe mounted on a sled like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
// Z Probe to nozzle (X,Y) offset, relative to (0, 0).
// X and Y offsets must be integers.
//
// In the following example the X and Y offsets are both positive:
// #define X_PROBE_OFFSET_FROM_EXTRUDER 10
// #define Y_PROBE_OFFSET_FROM_EXTRUDER 10
//
// +-- BACK ---+
// | |
// L | (+) P | R <-- probe (20,20)
// E | | I
// F | (-) N (+) | G <-- nozzle (10,10)
// T | | H
// | (-) | T
// | |
// O-- FRONT --+
// (0,0)
#define X_PROBE_OFFSET_FROM_EXTRUDER 10 // X offset: -left +right [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER 10 // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER 0 // Z offset: -below +above [the nozzle]
// X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 8000
// Speed for the first approach when double-probing (with PROBE_DOUBLE_TOUCH)
#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z
// Speed for the "accurate" probe of each point
#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)
// Use double touch for probing
//#define PROBE_DOUBLE_TOUCH
//
// Allen Key Probe is defined in the Delta example configurations.
//
// *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! ***
//
// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.
// Example: To park the head outside the bed area when homing with G28.
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
// - Otherwise connect:
// - normally-closed switches to GND and D32.
// - normally-open switches to 5V and D32.
//
// Normally-closed switches are advised and are the default.
//
//
// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)
// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the
// default pin for all RAMPS-based boards. Most boards use the X_MAX_PIN by default.
// To use a different pin you can override it here.
//
// WARNING:
// Setting the wrong pin may have unexpected and potentially disastrous consequences.
// Use with caution and do your homework.
//
//#define Z_MIN_PROBE_PIN X_MAX_PIN
//
// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.
// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.
//
//#define Z_MIN_PROBE_ENDSTOP
// Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE.
// The Z_MIN_PIN will then be used for both Z-homing and probing.
#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN
// To use a probe you must enable one of the two options above!
// Enable Z Probe Repeatability test to see how accurate your probe is
//#define Z_MIN_PROBE_REPEATABILITY_TEST
/**
* Z probes require clearance when deploying, stowing, and moving between
* probe points to avoid hitting the bed and other hardware.
* Servo-mounted probes require extra space for the arm to rotate.
* Inductive probes need space to keep from triggering early.
*
* Use these settings to specify the distance (mm) to raise the probe (or
* lower the bed). The values set here apply over and above any (negative)
* probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.
* Only integer values >= 1 are valid here.
*
* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.
*/
#define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points
//
// For M851 give a range for adjusting the Z probe offset
//
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis stepper immediately when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
// Warn on display about possibly reduced accuracy
//#define DISABLE_REDUCED_ACCURACY_WARNING
// @section extruder
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
// @section machine
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false
#define INVERT_Y_DIR true
#define INVERT_Z_DIR false
// @section extruder
// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR false
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
// @section homing
//#define Z_HOMING_HEIGHT 4 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...
// Be sure you have this distance over your Z_MAX_POS in case.
// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
// @section machine
// Travel limits after homing (units are in mm)
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS 200
#define Y_MAX_POS 200
#define Z_MAX_POS 200
// If enabled, axes won't move below MIN_POS in response to movement commands.
#define MIN_SOFTWARE_ENDSTOPS
// If enabled, axes won't move above MAX_POS in response to movement commands.
#define MAX_SOFTWARE_ENDSTOPS
/**
* Filament Runout Sensor
* A mechanical or opto endstop is used to check for the presence of filament.
*
* RAMPS-based boards use SERVO3_PIN.
* For other boards you may need to define FIL_RUNOUT_PIN.
* By default the firmware assumes HIGH = has filament, LOW = ran out
*/
//#define FILAMENT_RUNOUT_SENSOR
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
/**
* Select one form of Auto Bed Leveling below.
*
* If you're also using the Probe for Z Homing, it's
* highly recommended to enable Z_SAFE_HOMING also!
*
* - 3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed.
*
* - LINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed.
*
* - BILINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
* NOTE: Requires a lot of PROGMEM!
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
#define ABL_GRID_MAX_POINTS_X 3
#define ABL_GRID_MAX_POINTS_Y ABL_GRID_MAX_POINTS_X
// Set the boundaries for probing (where the probe can reach).
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// The Z probe minimum outer margin (to validate G29 parameters).
#define MIN_PROBE_EDGE 10
// Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
//
//#define ABL_BILINEAR_SUBDIVISION
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
// Number of subdivisions between probe points
#define BILINEAR_SUBDIVISIONS 3
#endif
#endif
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// 3 arbitrary points to probe.
// A simple cross-product is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.
* Useful to retract or move the Z probe out of the way.
*/
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"
// @section homing
// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0
// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0
// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
//
// With this feature enabled:
//
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).
// - Prevent Z homing when the Z probe is outside bed area.
//#define Z_SAFE_HOMING
#if ENABLED(Z_SAFE_HOMING)
#define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2) // X point for Z homing when homing all axis (G28).
#define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2) // Y point for Z homing when homing all axis (G28).
#endif
// Homing speeds (mm/m)
#define HOMING_FEEDRATE_XY (50*60)
#define HOMING_FEEDRATE_Z (4*60)
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// @section extras
//
// EEPROM
//
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
//#define EEPROM_SETTINGS
#if ENABLED(EEPROM_SETTINGS)
// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // Please keep turned on if you can.
#endif
//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
//
// M100 Free Memory Watcher
//
//#define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose
//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT
//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT
// @section temperature
// Preheat Constants
#define PREHEAT_1_TEMP_HOTEND 180
#define PREHEAT_1_TEMP_BED 70
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255
#define PREHEAT_2_TEMP_HOTEND 240
#define PREHEAT_2_TEMP_BED 110
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255
//
// Nozzle Park -- EXPERIMENTAL
//
// When enabled allows the user to define a special XYZ position, inside the
// machine's topology, to park the nozzle when idle or when receiving the G27
// command.
//
// The "P" paramenter controls what is the action applied to the Z axis:
// P0: (Default) If current Z-pos is lower than Z-park then the nozzle will
// be raised to reach Z-park height.
//
// P1: No matter the current Z-pos, the nozzle will be raised/lowered to
// reach Z-park height.
//
// P2: The nozzle height will be raised by Z-park amount but never going over
// the machine's limit of Z_MAX_POS.
//
//#define NOZZLE_PARK_FEATURE
#if ENABLED(NOZZLE_PARK_FEATURE)
// Specify a park position as { X, Y, Z }
#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
#endif
//
// Clean Nozzle Feature -- EXPERIMENTAL
//
// When enabled allows the user to send G12 to start the nozzle cleaning
// process, the G-Code accepts two parameters:
// "P" for pattern selection
// "S" for defining the number of strokes/repetitions
//
// Available list of patterns:
// P0: This is the default pattern, this process requires a sponge type
// material at a fixed bed location. S defines "strokes" i.e.
// back-and-forth movements between the starting and end points.
//
// P1: This starts a zig-zag pattern between (X0, Y0) and (X1, Y1), "T"
// defines the number of zig-zag triangles to be done. "S" defines the
// number of strokes aka one back-and-forth movement. Zig-zags will
// be performed in whichever dimension is smallest. As an example,
// sending "G12 P1 S1 T3" will execute:
//
// --
// | (X0, Y1) | /\ /\ /\ | (X1, Y1)
// | | / \ / \ / \ |
// A | | / \ / \ / \ |
// | | / \ / \ / \ |
// | (X0, Y0) | / \/ \/ \ | (X1, Y0)
// -- +--------------------------------+
// |________|_________|_________|
// T1 T2 T3
//
// P2: This starts a circular pattern with circle with middle in
// NOZZLE_CLEAN_CIRCLE_MIDDLE radius of R and stroke count of S.
// Before starting the circle nozzle goes to NOZZLE_CLEAN_START_POINT.
//
// Caveats: End point Z should use the same value as Start point Z.
//
// Attention: This is an EXPERIMENTAL feature, in the future the G-code arguments
// may change to add new functionality like different wipe patterns.
//
//#define NOZZLE_CLEAN_FEATURE
#if ENABLED(NOZZLE_CLEAN_FEATURE)
// Default number of pattern repetitions
#define NOZZLE_CLEAN_STROKES 12
// Default number of triangles
#define NOZZLE_CLEAN_TRIANGLES 3
// Specify positions as { X, Y, Z }
#define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}
#define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)}
// Circular pattern radius
#define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5
// Circular pattern circle fragments number
#define NOZZLE_CLEAN_CIRCLE_FN 10
// Middle point of circle
#define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT
// Moves the nozzle to the initial position
#define NOZZLE_CLEAN_GOBACK
#endif
//
// Print job timer
//
// Enable this option to automatically start and stop the
// print job timer when M104/M109/M190 commands are received.
// M104 (extruder without wait) - high temp = none, low temp = stop timer
// M109 (extruder with wait) - high temp = start timer, low temp = stop timer
// M190 (bed with wait) - high temp = start timer, low temp = none
//
// In all cases the timer can be started and stopped using
// the following commands:
//
// - M75 - Start the print job timer
// - M76 - Pause the print job timer
// - M77 - Stop the print job timer
#define PRINTJOB_TIMER_AUTOSTART
//
// Print Counter
//
// When enabled Marlin will keep track of some print statistical data such as:
// - Total print jobs
// - Total successful print jobs
// - Total failed print jobs
// - Total time printing
//
// This information can be viewed by the M78 command.
//#define PRINTCOUNTER
//=============================================================================
//============================= LCD and SD support ============================
//=============================================================================
// @section lcd
//
// LCD LANGUAGE
//
// Here you may choose the language used by Marlin on the LCD menus, the following
// list of languages are available:
// en, an, bg, ca, cn, cz, de, el, el-gr, es, eu, fi, fr, gl, hr, it,
// kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, tr, uk, test
//
// :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'tr':'Turkish', 'uk':'Ukrainian', 'test':'TEST' }
//
#define LCD_LANGUAGE en
//
// LCD Character Set
//
// Note: This option is NOT applicable to Graphical Displays.
//
// All character-based LCD's provide ASCII plus one of these
// language extensions:
//
// - JAPANESE ... the most common
// - WESTERN ... with more accented characters
// - CYRILLIC ... for the Russian language
//
// To determine the language extension installed on your controller:
//
// - Compile and upload with LCD_LANGUAGE set to 'test'
// - Click the controller to view the LCD menu
// - The LCD will display Japanese, Western, or Cyrillic text
//
// See https://github.com/MarlinFirmware/Marlin/wiki/LCD-Language
//
// :['JAPANESE', 'WESTERN', 'CYRILLIC']
//
#define DISPLAY_CHARSET_HD44780 JAPANESE
//
// LCD TYPE
//
// You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2,
// 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels
// (ST7565R family). (This option will be set automatically for certain displays.)
//
// IMPORTANT NOTE: The U8glib library is required for Full Graphic Display!
// https://github.com/olikraus/U8glib_Arduino
//
//#define ULTRA_LCD // Character based
//#define DOGLCD // Full graphics display
//
// SD CARD
//
// SD Card support is disabled by default. If your controller has an SD slot,
// you must uncomment the following option or it won't work.
//
//#define SDSUPPORT
//
// SD CARD: SPI SPEED
//
// Uncomment ONE of the following items to use a slower SPI transfer
// speed. This is usually required if you're getting volume init errors.
//
//#define SPI_SPEED SPI_HALF_SPEED
//#define SPI_SPEED SPI_QUARTER_SPEED
//#define SPI_SPEED SPI_EIGHTH_SPEED
//
// SD CARD: ENABLE CRC
//
// Use CRC checks and retries on the SD communication.
//
//#define SD_CHECK_AND_RETRY
//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 1
//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 5
/**
* Encoder Direction Options
*
* Test your encoder's behavior first with both options disabled.
*
* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.
* Reversed Value Editing only? Enable BOTH options.
*/
//
// This option reverses the encoder direction everywhere
//
// Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION
//
// This option reverses the encoder direction for navigating LCD menus.
//
// If CLOCKWISE normally moves DOWN this makes it go UP.
// If CLOCKWISE normally moves UP this makes it go DOWN.
//
//#define REVERSE_MENU_DIRECTION
//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
//#define INDIVIDUAL_AXIS_HOMING_MENU
//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
//#define SPEAKER
//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
// M300 S<frequency Hz> P<duration ms>
//
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000
//
// CONTROLLER TYPE: Standard
//
// Marlin supports a wide variety of controllers.
// Enable one of the following options to specify your controller.
//
//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER
//
// ULTIPANEL as seen on Thingiverse.
//
//#define ULTIPANEL
//
// Cartesio UI
// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI
//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//
//#define PANEL_ONE
//
// MaKr3d Makr-Panel with graphic controller and SD support.
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//
//#define MAKRPANEL
//
// ReprapWorld Graphical LCD
// https://reprapworld.com/?products_details&products_id/1218
//
//#define REPRAPWORLD_GRAPHICAL_LCD
//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// http://panucatt.com
//
//#define VIKI2
//#define miniVIKI
//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER
//
// RepRapDiscount Smart Controller.
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
//
// GADGETS3D G3D LCD/SD Controller
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL
//
// RepRapDiscount FULL GRAPHIC Smart Controller
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
//
// MakerLab Mini Panel with graphic
// controller and SD support - http://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL
//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//
// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key
// is pressed, a value of 10.0 means 10mm per click.
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 1.0
//
// RigidBot Panel V1.0
// http://www.inventapart.com/
//
//#define RIGIDBOT_PANEL
//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER
//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//
//
// Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL
//
// Sainsmart YW Robot (LCM1602) LCD Display
//
//#define LCD_I2C_SAINSMART_YWROBOT
//
// Generic LCM1602 LCD adapter
//
//#define LCM1602
//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2
//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI
//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306
//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
//#define U8GLIB_SSD1306
#define U8GLIB_SH1106
#endif
//
// CONTROLLER TYPE: Shift register panels
//
// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH
// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD
//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================
// @section extras
// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
//#define PHOTOGRAPH_PIN 23
// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
// Support for an RGB LED using 3 separate pins with optional PWM
//#define RGB_LED
#if ENABLED(RGB_LED)
#define RGB_LED_R_PIN 34
#define RGB_LED_G_PIN 43
#define RGB_LED_B_PIN 35
#endif
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY 300
// Servo deactivation
//
// With this option servos are powered only during movement, then turned off to prevent jitter.
//#define DEACTIVATE_SERVOS_AFTER_MOVE
/**********************************************************************\
* Support for a filament diameter sensor
* Also allows adjustment of diameter at print time (vs at slicing)
* Single extruder only at this point (extruder 0)
*
* Motherboards
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
* 301 - Rambo - uses Analog input 3
* Note may require analog pins to be defined for different motherboards
**********************************************************************/
// Uncomment below to enable
//#define FILAMENT_WIDTH_SENSOR
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.00 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#endif
#endif // CONFIGURATION_H

View file

@ -0,0 +1,1085 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Configuration_adv.h
*
* Advanced settings.
* Only change these if you know exactly what you're doing.
* Some of these settings can damage your printer if improperly set!
*
* Basic settings can be found in Configuration.h
*
*/
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
/**
*
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
*
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
* Note: Update also Version.h !
*/
#define CONFIGURATION_ADV_H_VERSION 010100
// @section temperature
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
#if DISABLED(PIDTEMPBED)
#define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control
#if ENABLED(BED_LIMIT_SWITCHING)
#define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#endif
/**
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long (period),
* the firmware will halt the machine as a safety precaution.
*
* If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD
*/
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*
* If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE
* WATCH_TEMP_INCREASE should not be below 2.
*/
#define WATCH_TEMP_PERIOD 20 // Seconds
#define WATCH_TEMP_INCREASE 2 // Degrees Celsius
#endif
/**
* Thermal Protection parameters for the bed are just as above for hotends.
*/
#if ENABLED(THERMAL_PROTECTION_BED)
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
/**
* Whenever an M140 or M190 increases the target temperature the firmware will wait for the
* WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190,
* but only if the current temperature is far enough below the target for a reliable test.
*
* If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease
* WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.)
*/
#define WATCH_BED_TEMP_PERIOD 60 // Seconds
#define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius
#endif
#if ENABLED(PIDTEMP)
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
//#define PID_EXTRUSION_SCALING
#if ENABLED(PID_EXTRUSION_SCALING)
#define DEFAULT_Kc (100) //heating power=Kc*(e_speed)
#define LPQ_MAX_LEN 50
#endif
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by executing M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#define AUTOTEMP
#if ENABLED(AUTOTEMP)
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
/**
* High Temperature Thermistor Support
*
* Thermistors able to support high temperature tend to have a hard time getting
* good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
* will probably be caught when the heating element first turns on during the
* preheating process, which will trigger a min_temp_error as a safety measure
* and force stop everything.
* To circumvent this limitation, we allow for a preheat time (during which,
* min_temp_error won't be triggered) and add a min_temp buffer to handle
* aberrant readings.
*
* If you want to enable this feature for your hotend thermistor(s)
* uncomment and set values > 0 in the constants below
*/
// The number of consecutive low temperature errors that can occur
// before a min_temp_error is triggered. (Shouldn't be more than 10.)
//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0
// The number of milliseconds a hotend will preheat before starting to check
// the temperature. This value should NOT be set to the time it takes the
// hot end to reach the target temperature, but the time it takes to reach
// the minimum temperature your thermistor can read. The lower the better/safer.
// This shouldn't need to be more than 30 seconds (30000)
//#define MILLISECONDS_PREHEAT_TIME 0
// @section extruder
// Extruder runout prevention.
// If the machine is idle and the temperature over MINTEMP
// then extrude some filament every couple of SECONDS.
//#define EXTRUDER_RUNOUT_PREVENT
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30
#define EXTRUDER_RUNOUT_SPEED 1500 // mm/m
#define EXTRUDER_RUNOUT_EXTRUDE 5 // mm
#endif
// @section temperature
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// This defines the minimal speed for the main fan, run in PWM mode
// to enable uncomment and set minimal PWM speed for reliable running (1-255)
// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM
//#define FAN_MIN_PWM 50
// @section extruder
/**
* Extruder cooling fans
*
* Extruder auto fans automatically turn on when their extruders'
* temperatures go above EXTRUDER_AUTO_FAN_TEMPERATURE.
*
* Your board's pins file specifies the recommended pins. Override those here
* or set to -1 to disable completely.
*
* Multiple extruders can be assigned to the same pin in which case
* the fan will turn on when any selected extruder is above the threshold.
*/
#define E0_AUTO_FAN_PIN -1
#define E1_AUTO_FAN_PIN -1
#define E2_AUTO_FAN_PIN -1
#define E3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
// Define a pin to turn case light on/off
//#define CASE_LIGHT_PIN 4
#if PIN_EXISTS(CASE_LIGHT)
#define INVERT_CASE_LIGHT false // Set to true if HIGH is the OFF state (active low)
//#define CASE_LIGHT_DEFAULT_ON // Uncomment to set default state to on
//#define MENU_ITEM_CASE_LIGHT // Uncomment to have a Case Light On / Off entry in main menu
#endif
//===========================================================================
//============================ Mechanical Settings ==========================
//===========================================================================
// @section homing
// If you want endstops to stay on (by default) even when not homing
// enable this option. Override at any time with M120, M121.
//#define ENDSTOPS_ALWAYS_ON_DEFAULT
// @section extras
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// Dual X Steppers
// Uncomment this option to drive two X axis motors.
// The next unused E driver will be assigned to the second X stepper.
//#define X_DUAL_STEPPER_DRIVERS
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
// Set true if the two X motors need to rotate in opposite directions
#define INVERT_X2_VS_X_DIR true
#endif
// Dual Y Steppers
// Uncomment this option to drive two Y axis motors.
// The next unused E driver will be assigned to the second Y stepper.
//#define Y_DUAL_STEPPER_DRIVERS
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
// Set true if the two Y motors need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#endif
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this option to use a separate stepper driver for each Z axis motor.
// The next unused E driver will be assigned to the second Z stepper.
//#define Z_DUAL_STEPPER_DRIVERS
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// Play a little bit with small adjustments (0.5mm) and check the behaviour.
// The M119 (endstops report) will start reporting the Z2 Endstop as well.
//#define Z_DUAL_ENDSTOPS
#if ENABLED(Z_DUAL_ENDSTOPS)
#define Z2_USE_ENDSTOP _XMAX_
#endif
#endif // Z_DUAL_STEPPER_DRIVERS
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.
//#define DUAL_X_CARRIAGE
#if ENABLED(DUAL_X_CARRIAGE)
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0 (DXC_FULL_CONTROL_MODE): Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1 (DXC_AUTO_PARK_MODE) : Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2 (DXC_DUPLICATION_MODE) : Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE DXC_FULL_CONTROL_MODE
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
// @section homing
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5
#define Z_HOME_BUMP_MM 2
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
// When G28 is called, this option will make Y home before X
//#define HOME_Y_BEFORE_X
// @section machine
#define AXIS_RELATIVE_MODES {false, false, false, false}
// Allow duplication mode with a basic dual-nozzle extruder
//#define DUAL_NOZZLE_DUPLICATION_MODE
// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
// Default stepper release if idle. Set to 0 to deactivate.
// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.
// Time can be set by M18 and M84.
#define DEFAULT_STEPPER_DEACTIVE_TIME 120
#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.
#define DISABLE_INACTIVE_E true
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// @section lcd
#if ENABLED(ULTIPANEL)
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#endif
// @section extras
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)
//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
// @section lcd
// Include a page of printer information in the LCD Main Menu
//#define LCD_INFO_MENU
// On the Info Screen, display XY with one decimal place when possible
//#define LCD_DECIMAL_SMALL_XY
// The timeout (in ms) to return to the status screen from sub-menus
//#define LCD_TIMEOUT_TO_STATUS 15000
#if ENABLED(SDSUPPORT)
// Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// around this by connecting a push button or single throw switch to the pin defined
// as SD_DETECT_PIN in your board's pins definitions.
// This setting should be disabled unless you are using a push button, pulling the pin to ground.
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
#define SD_DETECT_INVERTED
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
/**
* Sort SD file listings in alphabetical order.
*
* With this option enabled, items on SD cards will be sorted
* by name for easier navigation.
*
* By default...
*
* - Use the slowest -but safest- method for sorting.
* - Folders are sorted to the top.
* - The sort key is statically allocated.
* - No added G-code (M34) support.
* - 40 item sorting limit. (Items after the first 40 are unsorted.)
*
* SD sorting uses static allocation (as set by SDSORT_LIMIT), allowing the
* compiler to calculate the worst-case usage and throw an error if the SRAM
* limit is exceeded.
*
* - SDSORT_USES_RAM provides faster sorting via a static directory buffer.
* - SDSORT_USES_STACK does the same, but uses a local stack-based buffer.
* - SDSORT_CACHE_NAMES will retain the sorted file listing in RAM. (Expensive!)
* - SDSORT_DYNAMIC_RAM only uses RAM when the SD menu is visible. (Use with caution!)
*/
//#define SDCARD_SORT_ALPHA
// SD Card Sorting options
#if ENABLED(SDCARD_SORT_ALPHA)
#define SDSORT_LIMIT 40 // Maximum number of sorted items (10-256).
#define FOLDER_SORTING -1 // -1=above 0=none 1=below
#define SDSORT_GCODE false // Allow turning sorting on/off with LCD and M34 g-code.
#define SDSORT_USES_RAM false // Pre-allocate a static array for faster pre-sorting.
#define SDSORT_USES_STACK false // Prefer the stack for pre-sorting to give back some SRAM. (Negated by next 2 options.)
#define SDSORT_CACHE_NAMES false // Keep sorted items in RAM longer for speedy performance. Most expensive option.
#define SDSORT_DYNAMIC_RAM false // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use!
#endif
// Show a progress bar on HD44780 LCDs for SD printing
//#define LCD_PROGRESS_BAR
#if ENABLED(LCD_PROGRESS_BAR)
// Amount of time (ms) to show the bar
#define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message
#define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever)
#define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE
// Add a menu item to test the progress bar:
//#define LCD_PROGRESS_BAR_TEST
#endif
// This allows hosts to request long names for files and folders with M33
//#define LONG_FILENAME_HOST_SUPPORT
// This option allows you to abort SD printing when any endstop is triggered.
// This feature must be enabled with "M540 S1" or from the LCD menu.
// To have any effect, endstops must be enabled during SD printing.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#endif // SDSUPPORT
/**
* Additional options for Graphical Displays
*
* Use the optimizations here to improve printing performance,
* which can be adversely affected by graphical display drawing,
* especially when doing several short moves, and when printing
* on DELTA and SCARA machines.
*
* Some of these options may result in the display lagging behind
* controller events, as there is a trade-off between reliable
* printing performance versus fast display updates.
*/
#if ENABLED(DOGLCD)
// Enable to save many cycles by drawing a hollow frame on the Info Screen
#define XYZ_HOLLOW_FRAME
// Enable to save many cycles by drawing a hollow frame on Menu Screens
#define MENU_HOLLOW_FRAME
// A bigger font is available for edit items. Costs 3120 bytes of PROGMEM.
// Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
//#define USE_BIG_EDIT_FONT
// A smaller font may be used on the Info Screen. Costs 2300 bytes of PROGMEM.
// Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
//#define USE_SMALL_INFOFONT
// Enable this option and reduce the value to optimize screen updates.
// The normal delay is 10µs. Use the lowest value that still gives a reliable display.
//#define DOGM_SPI_DELAY_US 5
#endif // DOGLCD
// @section safety
// The hardware watchdog should reset the microcontroller disabling all outputs,
// in case the firmware gets stuck and doesn't do temperature regulation.
#define USE_WATCHDOG
#if ENABLED(USE_WATCHDOG)
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// @section lcd
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!
//#define BABYSTEPPING
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* See Marlin documentation for calibration instructions.
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75
/**
* Some Slicers produce Gcode with randomly jumping extrusion widths occasionally.
* For example within a 0.4mm perimeter it may produce a single segment of 0.05mm width.
* While this is harmless for normal printing (the fluid nature of the filament will
* close this very, very tiny gap), it throws off the LIN_ADVANCE pressure adaption.
*
* For this case LIN_ADVANCE_E_D_RATIO can be used to set the extrusion:distance ratio
* to a fixed value. Note that using a fixed ratio will lead to wrong nozzle pressures
* if the slicer is using variable widths or layer heights within one print!
*
* This option sets the default E:D ratio at startup. Use `M905` to override this value.
*
* Example: `M905 W0.4 H0.2 D1.75`, where:
* - W is the extrusion width in mm
* - H is the layer height in mm
* - D is the filament diameter in mm
*
* Set to 0 to auto-detect the ratio based on given Gcode G1 print moves.
*
* Slic3r (including Prusa Slic3r) produces Gcode compatible with the automatic mode.
* Cura (as of this writing) may produce Gcode incompatible with the automatic mode.
*/
#define LIN_ADVANCE_E_D_RATIO 0 // The calculated ratio (or 0) according to the formula W * H / ((D / 2) ^ 2 * PI)
// Example: 0.4 * 0.2 / ((1.75 / 2) ^ 2 * PI) = 0.033260135
#endif
// @section leveling
// Default mesh area is an area with an inset margin on the print area.
// Below are the macros that are used to define the borders for the mesh area,
// made available here for specialized needs, ie dual extruder setup.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_MIN_X (X_MIN_POS + MESH_INSET)
#define MESH_MAX_X (X_MAX_POS - (MESH_INSET))
#define MESH_MIN_Y (Y_MIN_POS + MESH_INSET)
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_MESH_MIN_X (X_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_X (X_MAX_POS - (UBL_MESH_INSET))
#define UBL_MESH_MIN_Y (Y_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_Y (Y_MAX_POS - (UBL_MESH_INSET))
#endif
// @section extras
// Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2738 bytes
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
//#define BEZIER_CURVE_SUPPORT
// G38.2 and G38.3 Probe Target
//#define G38_PROBE_TARGET
#if ENABLED(G38_PROBE_TARGET)
#define G38_MINIMUM_MOVE 0.0275 // minimum distance in mm that will produce a move (determined using the print statement in check_move)
#endif
// Moves (or segments) with fewer steps than this will be joined with the next move
#define MIN_STEPS_PER_SEGMENT 6
// The minimum pulse width (in µs) for stepping a stepper.
// Set this if you find stepping unreliable, or if using a very fast CPU.
#define MINIMUM_STEPPER_PULSE 0 // (µs) The smallest stepper pulse allowed
// @section temperature
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//===========================================================================
//================================= Buffers =================================
//===========================================================================
// @section hidden
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#if ENABLED(SDSUPPORT)
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
// @section serial
// The ASCII buffer for serial input
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Transfer Buffer Size
// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes.
// For debug-echo: 128 bytes for the optimal speed.
// Other output doesn't need to be that speedy.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256]
#define TX_BUFFER_SIZE 0
// Enable an emergency-command parser to intercept certain commands as they
// enter the serial receive buffer, so they cannot be blocked.
// Currently handles M108, M112, M410
// Does not work on boards using AT90USB (USBCON) processors!
//#define EMERGENCY_PARSER
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract
// Firmware based and LCD controlled retract
// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.
//#define FWRETRACT //ONLY PARTIALLY TESTED
#if ENABLED(FWRETRACT)
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 3 //default retract length (positive mm)
#define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change
#define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s)
#define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change)
#define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s)
#endif
/**
* Filament Change
* Experimental filament change support.
* Adds the GCode M600 for initiating filament change.
*
* Requires an LCD display.
* This feature is required for the default FILAMENT_RUNOUT_SCRIPT.
*/
//#define FILAMENT_CHANGE_FEATURE
#if ENABLED(FILAMENT_CHANGE_FEATURE)
#define FILAMENT_CHANGE_X_POS 3 // X position of hotend
#define FILAMENT_CHANGE_Y_POS 3 // Y position of hotend
#define FILAMENT_CHANGE_Z_ADD 10 // Z addition of hotend (lift)
#define FILAMENT_CHANGE_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis)
#define FILAMENT_CHANGE_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers)
#define FILAMENT_CHANGE_RETRACT_FEEDRATE 60 // Initial retract feedrate in mm/s
#define FILAMENT_CHANGE_RETRACT_LENGTH 2 // Initial retract in mm
// It is a short retract used immediately after print interrupt before move to filament exchange position
#define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // Unload filament feedrate in mm/s - filament unloading can be fast
#define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // Unload filament length from hotend in mm
// Longer length for bowden printers to unload filament from whole bowden tube,
// shorter length for printers without bowden to unload filament from extruder only,
// 0 to disable unloading for manual unloading
#define FILAMENT_CHANGE_LOAD_FEEDRATE 6 // Load filament feedrate in mm/s - filament loading into the bowden tube can be fast
#define FILAMENT_CHANGE_LOAD_LENGTH 0 // Load filament length over hotend in mm
// Longer length for bowden printers to fast load filament into whole bowden tube over the hotend,
// Short or zero length for printers without bowden where loading is not used
#define FILAMENT_CHANGE_EXTRUDE_FEEDRATE 3 // Extrude filament feedrate in mm/s - must be slower than load feedrate
#define FILAMENT_CHANGE_EXTRUDE_LENGTH 50 // Extrude filament length in mm after filament is loaded over the hotend,
// 0 to disable for manual extrusion
// Filament can be extruded repeatedly from the filament exchange menu to fill the hotend,
// or until outcoming filament color is not clear for filament color change
#define FILAMENT_CHANGE_NOZZLE_TIMEOUT 45L // Turn off nozzle if user doesn't change filament within this time limit in seconds
#define FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS 5L // Number of alert beeps before printer goes quiet
#define FILAMENT_CHANGE_NO_STEPPER_TIMEOUT // Enable to have stepper motors hold position during filament change
// even if it takes longer than DEFAULT_STEPPER_DEACTIVE_TIME.
#endif
// @section tmc
/**
* Enable this section if you have TMC26X motor drivers.
* You will need to import the TMC26XStepper library into the Arduino IDE for this
* (https://github.com/trinamic/TMC26XStepper.git)
*/
//#define HAVE_TMCDRIVER
#if ENABLED(HAVE_TMCDRIVER)
//#define X_IS_TMC
//#define X2_IS_TMC
//#define Y_IS_TMC
//#define Y2_IS_TMC
//#define Z_IS_TMC
//#define Z2_IS_TMC
//#define E0_IS_TMC
//#define E1_IS_TMC
//#define E2_IS_TMC
//#define E3_IS_TMC
#define X_MAX_CURRENT 1000 // in mA
#define X_SENSE_RESISTOR 91 // in mOhms
#define X_MICROSTEPS 16 // number of microsteps
#define X2_MAX_CURRENT 1000
#define X2_SENSE_RESISTOR 91
#define X2_MICROSTEPS 16
#define Y_MAX_CURRENT 1000
#define Y_SENSE_RESISTOR 91
#define Y_MICROSTEPS 16
#define Y2_MAX_CURRENT 1000
#define Y2_SENSE_RESISTOR 91
#define Y2_MICROSTEPS 16
#define Z_MAX_CURRENT 1000
#define Z_SENSE_RESISTOR 91
#define Z_MICROSTEPS 16
#define Z2_MAX_CURRENT 1000
#define Z2_SENSE_RESISTOR 91
#define Z2_MICROSTEPS 16
#define E0_MAX_CURRENT 1000
#define E0_SENSE_RESISTOR 91
#define E0_MICROSTEPS 16
#define E1_MAX_CURRENT 1000
#define E1_SENSE_RESISTOR 91
#define E1_MICROSTEPS 16
#define E2_MAX_CURRENT 1000
#define E2_SENSE_RESISTOR 91
#define E2_MICROSTEPS 16
#define E3_MAX_CURRENT 1000
#define E3_SENSE_RESISTOR 91
#define E3_MICROSTEPS 16
#endif
// @section TMC2130
/**
* Enable this for SilentStepStick Trinamic TMC2130 SPI-configurable stepper drivers.
*
* You'll also need the TMC2130Stepper Arduino library
* (https://github.com/teemuatlut/TMC2130Stepper).
*
* To use TMC2130 stepper drivers in SPI mode connect your SPI2130 pins to
* the hardware SPI interface on your board and define the required CS pins
* in your `pins_MYBOARD.h` file. (e.g., RAMPS 1.4 uses AUX3 pins `X_CS_PIN 53`, `Y_CS_PIN 49`, etc.).
*/
//#define HAVE_TMC2130
#if ENABLED(HAVE_TMC2130)
#define STEALTHCHOP
/**
* Let Marlin automatically control stepper current.
* This is still an experimental feature.
* Increase current every 5s by CURRENT_STEP until stepper temperature prewarn gets triggered,
* then decrease current by CURRENT_STEP until temperature prewarn is cleared.
* Adjusting starts from X/Y/Z/E_MAX_CURRENT but will not increase over AUTO_ADJUST_MAX
*/
//#define AUTOMATIC_CURRENT_CONTROL
#define CURRENT_STEP 50 // [mA]
#define AUTO_ADJUST_MAX 1300 // [mA], 1300mA_rms = 1840mA_peak
// CHOOSE YOUR MOTORS HERE, THIS IS MANDATORY
//#define X_IS_TMC2130
//#define X2_IS_TMC2130
//#define Y_IS_TMC2130
//#define Y2_IS_TMC2130
//#define Z_IS_TMC2130
//#define Z2_IS_TMC2130
//#define E0_IS_TMC2130
//#define E1_IS_TMC2130
//#define E2_IS_TMC2130
//#define E3_IS_TMC2130
/**
* Stepper driver settings
*/
#define R_SENSE 0.11 // R_sense resistor for SilentStepStick2130
#define HOLD_MULTIPLIER 0.5 // Scales down the holding current from run current
#define INTERPOLATE 1 // Interpolate X/Y/Z_MICROSTEPS to 256
#define X_MAX_CURRENT 1000 // rms current in mA
#define X_MICROSTEPS 16 // FULLSTEP..256
#define X_CHIP_SELECT 40 // Pin
#define Y_MAX_CURRENT 1000
#define Y_MICROSTEPS 16
#define Y_CHIP_SELECT 42
#define Z_MAX_CURRENT 1000
#define Z_MICROSTEPS 16
#define Z_CHIP_SELECT 65
//#define X2_MAX_CURRENT 1000
//#define X2_MICROSTEPS 16
//#define X2_CHIP_SELECT -1
//#define Y2_MAX_CURRENT 1000
//#define Y2_MICROSTEPS 16
//#define Y2_CHIP_SELECT -1
//#define Z2_MAX_CURRENT 1000
//#define Z2_MICROSTEPS 16
//#define Z2_CHIP_SELECT -1
//#define E0_MAX_CURRENT 1000
//#define E0_MICROSTEPS 16
//#define E0_CHIP_SELECT -1
//#define E1_MAX_CURRENT 1000
//#define E1_MICROSTEPS 16
//#define E1_CHIP_SELECT -1
//#define E2_MAX_CURRENT 1000
//#define E2_MICROSTEPS 16
//#define E2_CHIP_SELECT -1
//#define E3_MAX_CURRENT 1000
//#define E3_MICROSTEPS 16
//#define E3_CHIP_SELECT -1
/**
* You can set your own advanced settings by filling in predefined functions.
* A list of available functions can be found on the library github page
* https://github.com/teemuatlut/TMC2130Stepper
*
* Example:
* #define TMC2130_ADV() { \
* stepperX.diag0_temp_prewarn(1); \
* stepperX.interpolate(0); \
* }
*/
#define TMC2130_ADV() { }
#endif // ENABLED(HAVE_TMC2130)
/**
* Enable this section if you have L6470 motor drivers.
* You need to import the L6470 library into the Arduino IDE for this.
* (https://github.com/ameyer/Arduino-L6470)
*/
// @section l6470
//#define HAVE_L6470DRIVER
#if ENABLED(HAVE_L6470DRIVER)
//#define X_IS_L6470
//#define X2_IS_L6470
//#define Y_IS_L6470
//#define Y2_IS_L6470
//#define Z_IS_L6470
//#define Z2_IS_L6470
//#define E0_IS_L6470
//#define E1_IS_L6470
//#define E2_IS_L6470
//#define E3_IS_L6470
#define X_MICROSTEPS 16 // number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define X_OVERCURRENT 2000 // maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 // current in mA where the driver will detect a stall
#define X2_MICROSTEPS 16
#define X2_K_VAL 50
#define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500
#define Y_MICROSTEPS 16
#define Y_K_VAL 50
#define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500
#define Y2_MICROSTEPS 16
#define Y2_K_VAL 50
#define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500
#define Z_MICROSTEPS 16
#define Z_K_VAL 50
#define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500
#define Z2_MICROSTEPS 16
#define Z2_K_VAL 50
#define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500
#define E0_MICROSTEPS 16
#define E0_K_VAL 50
#define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500
#define E1_MICROSTEPS 16
#define E1_K_VAL 50
#define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500
#define E2_MICROSTEPS 16
#define E2_K_VAL 50
#define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500
#define E3_MICROSTEPS 16
#define E3_K_VAL 50
#define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500
#endif
/**
* TWI/I2C BUS
*
* This feature is an EXPERIMENTAL feature so it shall not be used on production
* machines. Enabling this will allow you to send and receive I2C data from slave
* devices on the bus.
*
* ; Example #1
* ; This macro send the string "Marlin" to the slave device with address 0x63 (99)
* ; It uses multiple M260 commands with one B<base 10> arg
* M260 A99 ; Target slave address
* M260 B77 ; M
* M260 B97 ; a
* M260 B114 ; r
* M260 B108 ; l
* M260 B105 ; i
* M260 B110 ; n
* M260 S1 ; Send the current buffer
*
* ; Example #2
* ; Request 6 bytes from slave device with address 0x63 (99)
* M261 A99 B5
*
* ; Example #3
* ; Example serial output of a M261 request
* echo:i2c-reply: from:99 bytes:5 data:hello
*/
// @section i2cbus
//#define EXPERIMENTAL_I2CBUS
#define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave
/**
* Add M43, M44 and M45 commands for pins info and testing
*/
//#define PINS_DEBUGGING
/**
* Auto-report temperatures with M155 S<seconds>
*/
//#define AUTO_REPORT_TEMPERATURES
/**
* Include capabilities in M115 output
*/
//#define EXTENDED_CAPABILITIES_REPORT
/**
* Double-click the Encoder button on the Status Screen for Z Babystepping.
*/
//#define DOUBLECLICK_FOR_Z_BABYSTEPPING
#define DOUBLECLICK_MAX_INTERVAL 1250 // Maximum interval between clicks, in milliseconds.
// Note: You may need to add extra time to mitigate controller latency.
/**
* Volumetric extrusion default state
* Activate to make volumetric extrusion the default method,
* with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
*
* M200 D0 to disable, M200 Dn to set a new diameter.
*/
//#define VOLUMETRIC_DEFAULT_ON
/**
* Enable this option for a leaner build of Marlin that removes all
* workspace offsets, simplifying coordinate transformations, leveling, etc.
*
* - M206 and M428 are disabled.
* - G92 will revert to its behavior from Marlin 1.0.
*/
//#define NO_WORKSPACE_OFFSETS
#endif // CONFIGURATION_ADV_H

View file

@ -0,0 +1,1505 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Configuration.h
*
* Basic settings such as:
*
* - Type of electronics
* - Type of temperature sensor
* - Printer geometry
* - Endstop configuration
* - LCD controller
* - Extra features
*
* Advanced settings can be found in Configuration_adv.h
*
*/
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
/**
*
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
*
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
* Note: Update also Version.h !
*/
#define CONFIGURATION_H_VERSION 010100
//===========================================================================
//============================= Getting Started =============================
//===========================================================================
/**
* Here are some standard links for getting your machine calibrated:
*
* http://reprap.org/wiki/Calibration
* http://youtu.be/wAL9d7FgInk
* http://calculator.josefprusa.cz
* http://reprap.org/wiki/Triffid_Hunter%27s_Calibration_Guide
* http://www.thingiverse.com/thing:5573
* https://sites.google.com/site/repraplogphase/calibration-of-your-reprap
* http://www.thingiverse.com/thing:298812
*/
//===========================================================================
//============================= DELTA Printer ===============================
//===========================================================================
// For a Delta printer replace the configuration files with the files in the
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// @section info
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2
//
// *** VENDORS PLEASE READ *****************************************************
//
// Marlin now allow you to have a vendor boot image to be displayed on machine
// start. When SHOW_CUSTOM_BOOTSCREEN is defined Marlin will first show your
// custom boot image and then the default Marlin boot image is shown.
//
// We suggest for you to take advantage of this new feature and keep the Marlin
// boot image unmodified. For an example have a look at the bq Hephestos 2
// example configuration folder.
//
//#define SHOW_CUSTOM_BOOTSCREEN
// @section machine
/**
* Select which serial port on the board will be used for communication with the host.
* This allows the connection of wireless adapters (for instance) to non-default port pins.
* Serial port 0 is always used by the Arduino bootloader regardless of this setting.
*
* :[0, 1, 2, 3, 4, 5, 6, 7]
*/
#define SERIAL_PORT 0
/**
* This setting determines the communication speed of the printer.
*
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
*
* :[2400, 9600, 19200, 38400, 57600, 115200, 250000]
*/
#define BAUDRATE 250000
// Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH
// The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_RAMPS_14_EFB
#endif
// Optional custom name for your RepStrap or other custom machine
// Displayed in the LCD "Ready" message
//#define CUSTOM_MACHINE_NAME "3D Printer"
// Define this to set a unique identifier for this printer, (Used by some programs to differentiate between machines)
// You can use an online service to generate a random UUID. (eg http://www.uuidgenerator.net/version4)
//#define MACHINE_UUID "00000000-0000-0000-0000-000000000000"
// This defines the number of extruders
// :[1, 2, 3, 4]
#define EXTRUDERS 1
// Enable if your E steppers or extruder gear ratios are not identical
//#define DISTINCT_E_FACTORS
// For Cyclops or any "multi-extruder" that shares a single nozzle.
//#define SINGLENOZZLE
// A dual extruder that uses a single stepper motor
// Don't forget to set SSDE_SERVO_ANGLES and HOTEND_OFFSET_X/Y/Z
//#define SWITCHING_EXTRUDER
#if ENABLED(SWITCHING_EXTRUDER)
#define SWITCHING_EXTRUDER_SERVO_NR 0
#define SWITCHING_EXTRUDER_SERVO_ANGLES { 0, 90 } // Angles for E0, E1
//#define HOTEND_OFFSET_Z {0.0, 0.0}
#endif
/**
* "Mixing Extruder"
* - Adds a new code, M165, to set the current mix factors.
* - Extends the stepping routines to move multiple steppers in proportion to the mix.
* - Optional support for Repetier Host M163, M164, and virtual extruder.
* - This implementation supports only a single extruder.
* - Enable DIRECT_MIXING_IN_G1 for Pia Taubert's reference implementation
*/
//#define MIXING_EXTRUDER
#if ENABLED(MIXING_EXTRUDER)
#define MIXING_STEPPERS 2 // Number of steppers in your mixing extruder
#define MIXING_VIRTUAL_TOOLS 16 // Use the Virtual Tool method with M163 and M164
//#define DIRECT_MIXING_IN_G1 // Allow ABCDHI mix factors in G1 movement commands
#endif
// Offset of the extruders (uncomment if using more than one and relying on firmware to position when changing).
// The offset has to be X=0, Y=0 for the extruder 0 hotend (default extruder).
// For the other hotends it is their distance from the extruder 0 hotend.
//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
/**
* Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN
*
* 0 = No Power Switch
* 1 = ATX
* 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
*
* :{ 0:'No power switch', 1:'ATX', 2:'X-Box 360' }
*/
#define POWER_SUPPLY 0
#if POWER_SUPPLY > 0
// Enable this option to leave the PSU off at startup.
// Power to steppers and heaters will need to be turned on with M80.
//#define PS_DEFAULT_OFF
#endif
// @section temperature
//===========================================================================
//============================= Thermal Settings ============================
//===========================================================================
/**
* --NORMAL IS 4.7kohm PULLUP!-- 1kohm pullup can be used on hotend sensor, using correct resistor and table
*
* Temperature sensors available:
*
* -3 : thermocouple with MAX31855 (only for sensor 0)
* -2 : thermocouple with MAX6675 (only for sensor 0)
* -1 : thermocouple with AD595
* 0 : not used
* 1 : 100k thermistor - best choice for EPCOS 100k (4.7k pullup)
* 2 : 200k thermistor - ATC Semitec 204GT-2 (4.7k pullup)
* 3 : Mendel-parts thermistor (4.7k pullup)
* 4 : 10k thermistor !! do not use it for a hotend. It gives bad resolution at high temp. !!
* 5 : 100K thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (4.7k pullup)
* 6 : 100k EPCOS - Not as accurate as table 1 (created using a fluke thermocouple) (4.7k pullup)
* 7 : 100k Honeywell thermistor 135-104LAG-J01 (4.7k pullup)
* 71 : 100k Honeywell thermistor 135-104LAF-J01 (4.7k pullup)
* 8 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup)
* 9 : 100k GE Sensing AL03006-58.2K-97-G1 (4.7k pullup)
* 10 : 100k RS thermistor 198-961 (4.7k pullup)
* 11 : 100k beta 3950 1% thermistor (4.7k pullup)
* 12 : 100k 0603 SMD Vishay NTCS0603E3104FXT (4.7k pullup) (calibrated for Makibox hot bed)
* 13 : 100k Hisens 3950 1% up to 300°C for hotend "Simple ONE " & "Hotend "All In ONE"
* 20 : the PT100 circuit found in the Ultimainboard V2.x
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
* 51 : 100k thermistor - EPCOS (1k pullup)
* 52 : 200k thermistor - ATC Semitec 204GT-2 (1k pullup)
* 55 : 100k thermistor - ATC Semitec 104GT-2 (Used in ParCan & J-Head) (1k pullup)
*
* 1047 : Pt1000 with 4k7 pullup
* 1010 : Pt1000 with 1k pullup (non standard)
* 147 : Pt100 with 4k7 pullup
* 110 : Pt100 with 1k pullup (non standard)
*
* Use these for Testing or Development purposes. NEVER for production machine.
* 998 : Dummy Table that ALWAYS reads 25°C or the temperature defined below.
* 999 : Dummy Table that ALWAYS reads 100°C or the temperature defined below.
*
* :{ '0': "Not used", '1':"100k / 4.7k - EPCOS", '2':"200k / 4.7k - ATC Semitec 204GT-2", '3':"Mendel-parts / 4.7k", '4':"10k !! do not use for a hotend. Bad resolution at high temp. !!", '5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '6':"100k / 4.7k EPCOS - Not as accurate as Table 1", '7':"100k / 4.7k Honeywell 135-104LAG-J01", '8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT", '9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1", '10':"100k / 4.7k RS 198-961", '11':"100k / 4.7k beta 3950 1%", '12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)", '13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'", '20':"PT100 (Ultimainboard V2.x)", '51':"100k / 1k - EPCOS", '52':"200k / 1k - ATC Semitec 204GT-2", '55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)", '60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950", '66':"Dyze Design 4.7M High Temperature thermistor", '70':"the 100K thermistor found in the bq Hephestos 2", '71':"100k / 4.7k Honeywell 135-104LAF-J01", '147':"Pt100 / 4.7k", '1047':"Pt1000 / 4.7k", '110':"Pt100 / 1k (non-standard)", '1010':"Pt1000 / 1k (non standard)", '-3':"Thermocouple + MAX31855 (only for sensor 0)", '-2':"Thermocouple + MAX6675 (only for sensor 0)", '-1':"Thermocouple + AD595",'998':"Dummy 1", '999':"Dummy 2" }
*/
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 0
// Dummy thermistor constant temperature readings, for use with 998 and 999
#define DUMMY_THERMISTOR_998_VALUE 25
#define DUMMY_THERMISTOR_999_VALUE 100
// Use temp sensor 1 as a redundant sensor with sensor 0. If the readings
// from the two sensors differ too much the print will be aborted.
//#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Extruder temperature must be close to target for this long before M109 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// Bed temperature must be close to target for this long before M190 returns success
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds)
#define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time.
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
// You should use MINTEMP for thermistor short/failure protection.
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
//===========================================================================
//============================= PID Settings ================================
//===========================================================================
// PID Tuning Guide here: http://reprap.org/wiki/PID_Tuning
// Comment the following line to disable PID and enable bang-bang.
#define PIDTEMP
#define BANG_MAX 255 // limits current to nozzle while in bang-bang mode; 255=full current
#define PID_MAX BANG_MAX // limits current to nozzle while PID is active (see PID_FUNCTIONAL_RANGE below); 255=full current
#if ENABLED(PIDTEMP)
//#define PID_AUTOTUNE_MENU // Add PID Autotune to the LCD "Temperature" menu to run M303 and apply the result.
//#define PID_DEBUG // Sends debug data to the serial port.
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104/M140 sets the output power from 0 to PID_MAX
//#define SLOW_PWM_HEATERS // PWM with very low frequency (roughly 0.125Hz=8s) and minimum state time of approximately 1s useful for heaters driven by a relay
//#define PID_PARAMS_PER_HOTEND // Uses separate PID parameters for each extruder (useful for mismatched extruders)
// Set/get with gcode: M301 E[extruder number, 0-2]
#define PID_FUNCTIONAL_RANGE 10 // If the temperature difference between the target temperature and the actual temperature
// is more than PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define K1 0.95 //smoothing factor within the PID
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker
#define DEFAULT_Kp 22.2
#define DEFAULT_Ki 1.08
#define DEFAULT_Kd 114
// MakerGear
//#define DEFAULT_Kp 7.0
//#define DEFAULT_Ki 0.1
//#define DEFAULT_Kd 12
// Mendel Parts V9 on 12V
//#define DEFAULT_Kp 63.0
//#define DEFAULT_Ki 2.25
//#define DEFAULT_Kd 440
#endif // PIDTEMP
//===========================================================================
//============================= PID > Bed Temperature Control ===============
//===========================================================================
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
//
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably
// shouldn't use bed PID until someone else verifies your hardware works.
// If this is enabled, find your own PID constants below.
//#define PIDTEMPBED
//#define BED_LIMIT_SWITCHING
// This sets the max power delivered to the bed, and replaces the HEATER_BED_DUTY_CYCLE_DIVIDER option.
// all forms of bed control obey this (PID, bang-bang, bang-bang with hysteresis)
// setting this to anything other than 255 enables a form of PWM to the bed just like HEATER_BED_DUTY_CYCLE_DIVIDER did,
// so you shouldn't use it unless you are OK with PWM on your bed. (see the comment on enabling PIDTEMPBED)
#define MAX_BED_POWER 255 // limits duty cycle to bed; 255=full current
#if ENABLED(PIDTEMPBED)
//#define PID_BED_DEBUG // Sends debug data to the serial port.
//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from FOPDT model - kp=.39 Tp=405 Tdead=66, Tc set to 79.2, aggressive factor of .15 (vs .1, 1, 10)
#define DEFAULT_bedKp 10.00
#define DEFAULT_bedKi .023
#define DEFAULT_bedKd 305.4
//120V 250W silicone heater into 4mm borosilicate (MendelMax 1.5+)
//from pidautotune
//#define DEFAULT_bedKp 97.1
//#define DEFAULT_bedKi 1.41
//#define DEFAULT_bedKd 1675.16
// FIND YOUR OWN: "M303 E-1 C8 S90" to run autotune on the bed at 90 degreesC for 8 cycles.
#endif // PIDTEMPBED
// @section extruder
// This option prevents extrusion if the temperature is below EXTRUDE_MINTEMP.
// It also enables the M302 command to set the minimum extrusion temperature
// or to allow moving the extruder regardless of the hotend temperature.
// *** IT IS HIGHLY RECOMMENDED TO LEAVE THIS OPTION ENABLED! ***
#define PREVENT_COLD_EXTRUSION
#define EXTRUDE_MINTEMP 170
// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.
// Note that for Bowden Extruders a too-small value here may prevent loading.
#define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH 200
//===========================================================================
//======================== Thermal Runaway Protection =======================
//===========================================================================
/**
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* If you get "Thermal Runaway" or "Heating failed" errors the
* details can be tuned in Configuration_adv.h
*/
#define THERMAL_PROTECTION_HOTENDS // Enable thermal protection for all extruders
#define THERMAL_PROTECTION_BED // Enable thermal protection for the heated bed
//===========================================================================
//============================= Mechanical Settings =========================
//===========================================================================
// @section machine
// Uncomment one of these options to enable CoreXY, CoreXZ, or CoreYZ kinematics
// either in the usual order or reversed
//#define COREXY
//#define COREXZ
//#define COREYZ
//#define COREYX
//#define COREZX
//#define COREZY
// Enable this option for Toshiba steppers
//#define CONFIG_STEPPERS_TOSHIBA
//===========================================================================
//============================== Endstop Settings ===========================
//===========================================================================
// @section homing
// Specify here all the endstop connectors that are connected to any endstop or probe.
// Almost all printers will be using one per axis. Probes will use one or more of the
// extra connectors. Leave undefined any used for non-endstop and non-probe purposes.
#define USE_XMIN_PLUG
#define USE_YMIN_PLUG
#define USE_ZMIN_PLUG
//#define USE_XMAX_PLUG
//#define USE_YMAX_PLUG
//#define USE_ZMAX_PLUG
// coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
#if DISABLED(ENDSTOPPULLUPS)
// fine endstop settings: Individual pullups. will be ignored if ENDSTOPPULLUPS is defined
//#define ENDSTOPPULLUP_XMAX
//#define ENDSTOPPULLUP_YMAX
//#define ENDSTOPPULLUP_ZMAX
//#define ENDSTOPPULLUP_XMIN
//#define ENDSTOPPULLUP_YMIN
//#define ENDSTOPPULLUP_ZMIN
//#define ENDSTOPPULLUP_ZMIN_PROBE
#endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING false // set to true to invert the logic of the probe.
// Enable this feature if all enabled endstop pins are interrupt-capable.
// This will remove the need to poll the interrupt pins, saving many CPU cycles.
//#define ENDSTOP_INTERRUPTS_FEATURE
//=============================================================================
//============================== Movement Settings ============================
//=============================================================================
// @section motion
/**
* Default Settings
*
* These settings can be reset by M502
*
* You can set distinct factors for each E stepper, if needed.
* If fewer factors are given, the last will apply to the rest.
*
* Note that if EEPROM is enabled, saved values will override these.
*/
/**
* Default Axis Steps Per Unit (steps/mm)
* Override with M92
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 4000, 500 }
/**
* Default Max Feed Rate (mm/s)
* Override with M203
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }
/**
* Default Max Acceleration (change/s) change = mm/s
* (Maximum start speed for accelerated moves)
* Override with M201
* X, Y, Z, E0 [, E1[, E2[, E3]]]
*/
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }
/**
* Default Acceleration (change/s) change = mm/s
* Override with M204
*
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
*/
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves
/**
* Default Jerk (mm/s)
* Override with M205 X Y Z E
*
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
*/
#define DEFAULT_XJERK 20.0
#define DEFAULT_YJERK 20.0
#define DEFAULT_ZJERK 0.4
#define DEFAULT_EJERK 5.0
//===========================================================================
//============================= Z Probe Options =============================
//===========================================================================
// @section probes
//
// Probe Type
// Probes are sensors/switches that are activated / deactivated before/after use.
//
// Allen Key Probes, Servo Probes, Z-Sled Probes, FIX_MOUNTED_PROBE, etc.
// You must activate one of these to use Auto Bed Leveling below.
//
// Use M851 to set the Z probe vertical offset from the nozzle. Store with M500.
//
// A Fix-Mounted Probe either doesn't deploy or needs manual deployment.
// For example an inductive probe, or a setup that uses the nozzle to probe.
// An inductive probe must be deactivated to go below
// its trigger-point if hardware endstops are active.
//#define FIX_MOUNTED_PROBE
// The BLTouch probe emulates a servo probe.
// The default connector is SERVO 0. Set Z_ENDSTOP_SERVO_NR below to override.
//#define BLTOUCH
// Z Servo Probe, such as an endstop switch on a rotating arm.
//#define Z_ENDSTOP_SERVO_NR 0
//#define Z_SERVO_ANGLES {70,0} // Z Servo Deploy and Stow angles
// Enable if you have a Z probe mounted on a sled like those designed by Charles Bell.
//#define Z_PROBE_SLED
//#define SLED_DOCKING_OFFSET 5 // The extra distance the X axis must travel to pickup the sled. 0 should be fine but you can push it further if you'd like.
// Z Probe to nozzle (X,Y) offset, relative to (0, 0).
// X and Y offsets must be integers.
//
// In the following example the X and Y offsets are both positive:
// #define X_PROBE_OFFSET_FROM_EXTRUDER 10
// #define Y_PROBE_OFFSET_FROM_EXTRUDER 10
//
// +-- BACK ---+
// | |
// L | (+) P | R <-- probe (20,20)
// E | | I
// F | (-) N (+) | G <-- nozzle (10,10)
// T | | H
// | (-) | T
// | |
// O-- FRONT --+
// (0,0)
#define X_PROBE_OFFSET_FROM_EXTRUDER 10 // X offset: -left +right [of the nozzle]
#define Y_PROBE_OFFSET_FROM_EXTRUDER 10 // Y offset: -front +behind [the nozzle]
#define Z_PROBE_OFFSET_FROM_EXTRUDER 0 // Z offset: -below +above [the nozzle]
// X and Y axis travel speed (mm/m) between probes
#define XY_PROBE_SPEED 8000
// Speed for the first approach when double-probing (with PROBE_DOUBLE_TOUCH)
#define Z_PROBE_SPEED_FAST HOMING_FEEDRATE_Z
// Speed for the "accurate" probe of each point
#define Z_PROBE_SPEED_SLOW (Z_PROBE_SPEED_FAST / 2)
// Use double touch for probing
//#define PROBE_DOUBLE_TOUCH
//
// Allen Key Probe is defined in the Delta example configurations.
//
// *** PLEASE READ ALL INSTRUCTIONS BELOW FOR SAFETY! ***
//
// To continue using the Z-min-endstop for homing, be sure to disable Z_SAFE_HOMING.
// Example: To park the head outside the bed area when homing with G28.
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
// - Otherwise connect:
// - normally-closed switches to GND and D32.
// - normally-open switches to 5V and D32.
//
// Normally-closed switches are advised and are the default.
//
//
// The Z_MIN_PROBE_PIN sets the Arduino pin to use. (See your board's pins file.)
// Since the RAMPS Aux4->D32 pin maps directly to the Arduino D32 pin, D32 is the
// default pin for all RAMPS-based boards. Most boards use the X_MAX_PIN by default.
// To use a different pin you can override it here.
//
// WARNING:
// Setting the wrong pin may have unexpected and potentially disastrous consequences.
// Use with caution and do your homework.
//
//#define Z_MIN_PROBE_PIN X_MAX_PIN
//
// Enable Z_MIN_PROBE_ENDSTOP to use _both_ a Z Probe and a Z-min-endstop on the same machine.
// With this option the Z_MIN_PROBE_PIN will only be used for probing, never for homing.
//
//#define Z_MIN_PROBE_ENDSTOP
// Enable Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN to use the Z_MIN_PIN for your Z_MIN_PROBE.
// The Z_MIN_PIN will then be used for both Z-homing and probing.
#define Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN
// To use a probe you must enable one of the two options above!
// Enable Z Probe Repeatability test to see how accurate your probe is
//#define Z_MIN_PROBE_REPEATABILITY_TEST
/**
* Z probes require clearance when deploying, stowing, and moving between
* probe points to avoid hitting the bed and other hardware.
* Servo-mounted probes require extra space for the arm to rotate.
* Inductive probes need space to keep from triggering early.
*
* Use these settings to specify the distance (mm) to raise the probe (or
* lower the bed). The values set here apply over and above any (negative)
* probe Z Offset set with Z_PROBE_OFFSET_FROM_EXTRUDER, M851, or the LCD.
* Only integer values >= 1 are valid here.
*
* Example: `M851 Z-5` with a CLEARANCE of 4 => 9mm from bed to nozzle.
* But: `M851 Z+1` with a CLEARANCE of 2 => 2mm from bed to nozzle.
*/
#define Z_CLEARANCE_DEPLOY_PROBE 10 // Z Clearance for Deploy/Stow
#define Z_CLEARANCE_BETWEEN_PROBES 5 // Z Clearance between probe points
//
// For M851 give a range for adjusting the Z probe offset
//
#define Z_PROBE_OFFSET_RANGE_MIN -20
#define Z_PROBE_OFFSET_RANGE_MAX 20
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
// :{ 0:'Low', 1:'High' }
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
#define Z_ENABLE_ON 0
#define E_ENABLE_ON 0 // For all extruders
// Disables axis stepper immediately when it's not being used.
// WARNING: When motors turn off there is a chance of losing position accuracy!
#define DISABLE_X false
#define DISABLE_Y false
#define DISABLE_Z false
// Warn on display about possibly reduced accuracy
//#define DISABLE_REDUCED_ACCURACY_WARNING
// @section extruder
#define DISABLE_E false // For all extruders
#define DISABLE_INACTIVE_EXTRUDER true //disable only inactive extruders and keep active extruder enabled
// @section machine
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR false
#define INVERT_Y_DIR true
#define INVERT_Z_DIR false
// @section extruder
// For direct drive extruder v9 set to true, for geared extruder set to false.
#define INVERT_E0_DIR false
#define INVERT_E1_DIR false
#define INVERT_E2_DIR false
#define INVERT_E3_DIR false
// @section homing
//#define Z_HOMING_HEIGHT 4 // (in mm) Minimal z height before homing (G28) for Z clearance above the bed, clamps, ...
// Be sure you have this distance over your Z_MAX_POS in case.
// Direction of endstops when homing; 1=MAX, -1=MIN
// :[-1,1]
#define X_HOME_DIR -1
#define Y_HOME_DIR -1
#define Z_HOME_DIR -1
// @section machine
// Travel limits after homing (units are in mm)
#define X_MIN_POS 0
#define Y_MIN_POS 0
#define Z_MIN_POS 0
#define X_MAX_POS 200
#define Y_MAX_POS 200
#define Z_MAX_POS 200
// If enabled, axes won't move below MIN_POS in response to movement commands.
#define MIN_SOFTWARE_ENDSTOPS
// If enabled, axes won't move above MAX_POS in response to movement commands.
#define MAX_SOFTWARE_ENDSTOPS
/**
* Filament Runout Sensor
* A mechanical or opto endstop is used to check for the presence of filament.
*
* RAMPS-based boards use SERVO3_PIN.
* For other boards you may need to define FIL_RUNOUT_PIN.
* By default the firmware assumes HIGH = has filament, LOW = ran out
*/
//#define FILAMENT_RUNOUT_SENSOR
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
#define FIL_RUNOUT_INVERTING false // set to true to invert the logic of the sensor.
#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//=============================== Bed Leveling ==============================
//==========================================================================
// @section bedlevel
/**
* Select one form of Auto Bed Leveling below.
*
* If you're also using the Probe for Z Homing, it's
* highly recommended to enable Z_SAFE_HOMING also!
*
* - 3POINT
* Probe 3 arbitrary points on the bed (that aren't collinear)
* You specify the XY coordinates of all 3 points.
* The result is a single tilted plane. Best for a flat bed.
*
* - LINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a single tilted plane. Best for a flat bed.
*
* - BILINEAR
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
* Turn on with the command 'M111 S32'.
* NOTE: Requires a lot of PROGMEM!
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
#define ABL_GRID_MAX_POINTS_X 3
#define ABL_GRID_MAX_POINTS_Y ABL_GRID_MAX_POINTS_X
// Set the boundaries for probing (where the probe can reach).
#define LEFT_PROBE_BED_POSITION 15
#define RIGHT_PROBE_BED_POSITION 170
#define FRONT_PROBE_BED_POSITION 20
#define BACK_PROBE_BED_POSITION 170
// The Z probe minimum outer margin (to validate G29 parameters).
#define MIN_PROBE_EDGE 10
// Probe along the Y axis, advancing X after each column
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
//
//#define ABL_BILINEAR_SUBDIVISION
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
// Number of subdivisions between probe points
#define BILINEAR_SUBDIVISIONS 3
#endif
#endif
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
// 3 arbitrary points to probe.
// A simple cross-product is used to estimate the plane of the bed.
#define ABL_PROBE_PT_1_X 15
#define ABL_PROBE_PT_1_Y 180
#define ABL_PROBE_PT_2_X 15
#define ABL_PROBE_PT_2_Y 20
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.
* Useful to retract or move the Z probe out of the way.
*/
//#define Z_PROBE_END_SCRIPT "G1 Z10 F12000\nG1 X15 Y330\nG1 Z0.5\nG1 Z10"
// @section homing
// The center of the bed is at (X=0, Y=0)
//#define BED_CENTER_AT_0_0
// Manually set the home position. Leave these undefined for automatic settings.
// For DELTA this is the top-center of the Cartesian print volume.
//#define MANUAL_X_HOME_POS 0
//#define MANUAL_Y_HOME_POS 0
//#define MANUAL_Z_HOME_POS 0
// Use "Z Safe Homing" to avoid homing with a Z probe outside the bed area.
//
// With this feature enabled:
//
// - Allow Z homing only after X and Y homing AND stepper drivers still enabled.
// - If stepper drivers time out, it will need X and Y homing again before Z homing.
// - Move the Z probe (or nozzle) to a defined XY point before Z Homing when homing all axes (G28).
// - Prevent Z homing when the Z probe is outside bed area.
//#define Z_SAFE_HOMING
#if ENABLED(Z_SAFE_HOMING)
#define Z_SAFE_HOMING_X_POINT ((X_MIN_POS + X_MAX_POS) / 2) // X point for Z homing when homing all axis (G28).
#define Z_SAFE_HOMING_Y_POINT ((Y_MIN_POS + Y_MAX_POS) / 2) // Y point for Z homing when homing all axis (G28).
#endif
// Homing speeds (mm/m)
#define HOMING_FEEDRATE_XY (50*60)
#define HOMING_FEEDRATE_Z (4*60)
//=============================================================================
//============================= Additional Features ===========================
//=============================================================================
// @section extras
//
// EEPROM
//
// The microcontroller can store settings in the EEPROM, e.g. max velocity...
// M500 - stores parameters in EEPROM
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
//define this to enable EEPROM support
//#define EEPROM_SETTINGS
#if ENABLED(EEPROM_SETTINGS)
// To disable EEPROM Serial responses and decrease program space by ~1700 byte: comment this out:
#define EEPROM_CHITCHAT // Please keep turned on if you can.
#endif
//
// Host Keepalive
//
// When enabled Marlin will send a busy status message to the host
// every couple of seconds when it can't accept commands.
//
#define HOST_KEEPALIVE_FEATURE // Disable this if your host doesn't like keepalive messages
#define DEFAULT_KEEPALIVE_INTERVAL 2 // Number of seconds between "busy" messages. Set with M113.
//
// M100 Free Memory Watcher
//
//#define M100_FREE_MEMORY_WATCHER // uncomment to add the M100 Free Memory Watcher for debug purpose
//
// G20/G21 Inch mode support
//
//#define INCH_MODE_SUPPORT
//
// M149 Set temperature units support
//
//#define TEMPERATURE_UNITS_SUPPORT
// @section temperature
// Preheat Constants
#define PREHEAT_1_TEMP_HOTEND 180
#define PREHEAT_1_TEMP_BED 70
#define PREHEAT_1_FAN_SPEED 0 // Value from 0 to 255
#define PREHEAT_2_TEMP_HOTEND 240
#define PREHEAT_2_TEMP_BED 110
#define PREHEAT_2_FAN_SPEED 0 // Value from 0 to 255
//
// Nozzle Park -- EXPERIMENTAL
//
// When enabled allows the user to define a special XYZ position, inside the
// machine's topology, to park the nozzle when idle or when receiving the G27
// command.
//
// The "P" paramenter controls what is the action applied to the Z axis:
// P0: (Default) If current Z-pos is lower than Z-park then the nozzle will
// be raised to reach Z-park height.
//
// P1: No matter the current Z-pos, the nozzle will be raised/lowered to
// reach Z-park height.
//
// P2: The nozzle height will be raised by Z-park amount but never going over
// the machine's limit of Z_MAX_POS.
//
//#define NOZZLE_PARK_FEATURE
#if ENABLED(NOZZLE_PARK_FEATURE)
// Specify a park position as { X, Y, Z }
#define NOZZLE_PARK_POINT { (X_MIN_POS + 10), (Y_MAX_POS - 10), 20 }
#endif
//
// Clean Nozzle Feature -- EXPERIMENTAL
//
// When enabled allows the user to send G12 to start the nozzle cleaning
// process, the G-Code accepts two parameters:
// "P" for pattern selection
// "S" for defining the number of strokes/repetitions
//
// Available list of patterns:
// P0: This is the default pattern, this process requires a sponge type
// material at a fixed bed location. S defines "strokes" i.e.
// back-and-forth movements between the starting and end points.
//
// P1: This starts a zig-zag pattern between (X0, Y0) and (X1, Y1), "T"
// defines the number of zig-zag triangles to be done. "S" defines the
// number of strokes aka one back-and-forth movement. Zig-zags will
// be performed in whichever dimension is smallest. As an example,
// sending "G12 P1 S1 T3" will execute:
//
// --
// | (X0, Y1) | /\ /\ /\ | (X1, Y1)
// | | / \ / \ / \ |
// A | | / \ / \ / \ |
// | | / \ / \ / \ |
// | (X0, Y0) | / \/ \/ \ | (X1, Y0)
// -- +--------------------------------+
// |________|_________|_________|
// T1 T2 T3
//
// P2: This starts a circular pattern with circle with middle in
// NOZZLE_CLEAN_CIRCLE_MIDDLE radius of R and stroke count of S.
// Before starting the circle nozzle goes to NOZZLE_CLEAN_START_POINT.
//
// Caveats: End point Z should use the same value as Start point Z.
//
// Attention: This is an EXPERIMENTAL feature, in the future the G-code arguments
// may change to add new functionality like different wipe patterns.
//
//#define NOZZLE_CLEAN_FEATURE
#if ENABLED(NOZZLE_CLEAN_FEATURE)
// Default number of pattern repetitions
#define NOZZLE_CLEAN_STROKES 12
// Default number of triangles
#define NOZZLE_CLEAN_TRIANGLES 3
// Specify positions as { X, Y, Z }
#define NOZZLE_CLEAN_START_POINT { 30, 30, (Z_MIN_POS + 1)}
#define NOZZLE_CLEAN_END_POINT {100, 60, (Z_MIN_POS + 1)}
// Circular pattern radius
#define NOZZLE_CLEAN_CIRCLE_RADIUS 6.5
// Circular pattern circle fragments number
#define NOZZLE_CLEAN_CIRCLE_FN 10
// Middle point of circle
#define NOZZLE_CLEAN_CIRCLE_MIDDLE NOZZLE_CLEAN_START_POINT
// Moves the nozzle to the initial position
#define NOZZLE_CLEAN_GOBACK
#endif
//
// Print job timer
//
// Enable this option to automatically start and stop the
// print job timer when M104/M109/M190 commands are received.
// M104 (extruder without wait) - high temp = none, low temp = stop timer
// M109 (extruder with wait) - high temp = start timer, low temp = stop timer
// M190 (bed with wait) - high temp = start timer, low temp = none
//
// In all cases the timer can be started and stopped using
// the following commands:
//
// - M75 - Start the print job timer
// - M76 - Pause the print job timer
// - M77 - Stop the print job timer
#define PRINTJOB_TIMER_AUTOSTART
//
// Print Counter
//
// When enabled Marlin will keep track of some print statistical data such as:
// - Total print jobs
// - Total successful print jobs
// - Total failed print jobs
// - Total time printing
//
// This information can be viewed by the M78 command.
//#define PRINTCOUNTER
//=============================================================================
//============================= LCD and SD support ============================
//=============================================================================
// @section lcd
//
// LCD LANGUAGE
//
// Here you may choose the language used by Marlin on the LCD menus, the following
// list of languages are available:
// en, an, bg, ca, cn, cz, de, el, el-gr, es, eu, fi, fr, gl, hr, it,
// kana, kana_utf8, nl, pl, pt, pt_utf8, pt-br, pt-br_utf8, ru, tr, uk, test
//
// :{ 'en':'English', 'an':'Aragonese', 'bg':'Bulgarian', 'ca':'Catalan', 'cn':'Chinese', 'cz':'Czech', 'de':'German', 'el':'Greek', 'el-gr':'Greek (Greece)', 'es':'Spanish', 'eu':'Basque-Euskera', 'fi':'Finnish', 'fr':'French', 'gl':'Galician', 'hr':'Croatian', 'it':'Italian', 'kana':'Japanese', 'kana_utf8':'Japanese (UTF8)', 'nl':'Dutch', 'pl':'Polish', 'pt':'Portuguese', 'pt-br':'Portuguese (Brazilian)', 'pt-br_utf8':'Portuguese (Brazilian UTF8)', 'pt_utf8':'Portuguese (UTF8)', 'ru':'Russian', 'tr':'Turkish', 'uk':'Ukrainian', 'test':'TEST' }
//
#define LCD_LANGUAGE en
//
// LCD Character Set
//
// Note: This option is NOT applicable to Graphical Displays.
//
// All character-based LCD's provide ASCII plus one of these
// language extensions:
//
// - JAPANESE ... the most common
// - WESTERN ... with more accented characters
// - CYRILLIC ... for the Russian language
//
// To determine the language extension installed on your controller:
//
// - Compile and upload with LCD_LANGUAGE set to 'test'
// - Click the controller to view the LCD menu
// - The LCD will display Japanese, Western, or Cyrillic text
//
// See https://github.com/MarlinFirmware/Marlin/wiki/LCD-Language
//
// :['JAPANESE', 'WESTERN', 'CYRILLIC']
//
#define DISPLAY_CHARSET_HD44780 JAPANESE
//
// LCD TYPE
//
// You may choose ULTRA_LCD if you have character based LCD with 16x2, 16x4, 20x2,
// 20x4 char/lines or DOGLCD for the full graphics display with 128x64 pixels
// (ST7565R family). (This option will be set automatically for certain displays.)
//
// IMPORTANT NOTE: The U8glib library is required for Full Graphic Display!
// https://github.com/olikraus/U8glib_Arduino
//
//#define ULTRA_LCD // Character based
//#define DOGLCD // Full graphics display
//
// SD CARD
//
// SD Card support is disabled by default. If your controller has an SD slot,
// you must uncomment the following option or it won't work.
//
//#define SDSUPPORT
//
// SD CARD: SPI SPEED
//
// Uncomment ONE of the following items to use a slower SPI transfer
// speed. This is usually required if you're getting volume init errors.
//
//#define SPI_SPEED SPI_HALF_SPEED
//#define SPI_SPEED SPI_QUARTER_SPEED
//#define SPI_SPEED SPI_EIGHTH_SPEED
//
// SD CARD: ENABLE CRC
//
// Use CRC checks and retries on the SD communication.
//
//#define SD_CHECK_AND_RETRY
//
// ENCODER SETTINGS
//
// This option overrides the default number of encoder pulses needed to
// produce one step. Should be increased for high-resolution encoders.
//
//#define ENCODER_PULSES_PER_STEP 1
//
// Use this option to override the number of step signals required to
// move between next/prev menu items.
//
//#define ENCODER_STEPS_PER_MENU_ITEM 5
/**
* Encoder Direction Options
*
* Test your encoder's behavior first with both options disabled.
*
* Reversed Value Edit and Menu Nav? Enable REVERSE_ENCODER_DIRECTION.
* Reversed Menu Navigation only? Enable REVERSE_MENU_DIRECTION.
* Reversed Value Editing only? Enable BOTH options.
*/
//
// This option reverses the encoder direction everywhere
//
// Set this option if CLOCKWISE causes values to DECREASE
//
//#define REVERSE_ENCODER_DIRECTION
//
// This option reverses the encoder direction for navigating LCD menus.
//
// If CLOCKWISE normally moves DOWN this makes it go UP.
// If CLOCKWISE normally moves UP this makes it go DOWN.
//
//#define REVERSE_MENU_DIRECTION
//
// Individual Axis Homing
//
// Add individual axis homing items (Home X, Home Y, and Home Z) to the LCD menu.
//
//#define INDIVIDUAL_AXIS_HOMING_MENU
//
// SPEAKER/BUZZER
//
// If you have a speaker that can produce tones, enable it here.
// By default Marlin assumes you have a buzzer with a fixed frequency.
//
//#define SPEAKER
//
// The duration and frequency for the UI feedback sound.
// Set these to 0 to disable audio feedback in the LCD menus.
//
// Note: Test audio output with the G-Code:
// M300 S<frequency Hz> P<duration ms>
//
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000
//
// CONTROLLER TYPE: Standard
//
// Marlin supports a wide variety of controllers.
// Enable one of the following options to specify your controller.
//
//
// ULTIMAKER Controller.
//
//#define ULTIMAKERCONTROLLER
//
// ULTIPANEL as seen on Thingiverse.
//
//#define ULTIPANEL
//
// Cartesio UI
// http://mauk.cc/webshop/cartesio-shop/electronics/user-interface
//
//#define CARTESIO_UI
//
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//
//#define PANEL_ONE
//
// MaKr3d Makr-Panel with graphic controller and SD support.
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//
//#define MAKRPANEL
//
// ReprapWorld Graphical LCD
// https://reprapworld.com/?products_details&products_id/1218
//
//#define REPRAPWORLD_GRAPHICAL_LCD
//
// Activate one of these if you have a Panucatt Devices
// Viki 2.0 or mini Viki with Graphic LCD
// http://panucatt.com
//
//#define VIKI2
//#define miniVIKI
//
// Adafruit ST7565 Full Graphic Controller.
// https://github.com/eboston/Adafruit-ST7565-Full-Graphic-Controller/
//
//#define ELB_FULL_GRAPHIC_CONTROLLER
//
// RepRapDiscount Smart Controller.
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//
// Note: Usually sold with a white PCB.
//
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
//
// GADGETS3D G3D LCD/SD Controller
// http://reprap.org/wiki/RAMPS_1.3/1.4_GADGETS3D_Shield_with_Panel
//
// Note: Usually sold with a blue PCB.
//
//#define G3D_PANEL
//
// RepRapDiscount FULL GRAPHIC Smart Controller
// http://reprap.org/wiki/RepRapDiscount_Full_Graphic_Smart_Controller
//
//#define REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER
//
// MakerLab Mini Panel with graphic
// controller and SD support - http://reprap.org/wiki/Mini_panel
//
//#define MINIPANEL
//
// RepRapWorld REPRAPWORLD_KEYPAD v1.1
// http://reprapworld.com/?products_details&products_id=202&cPath=1591_1626
//
// REPRAPWORLD_KEYPAD_MOVE_STEP sets how much should the robot move when a key
// is pressed, a value of 10.0 means 10mm per click.
//
//#define REPRAPWORLD_KEYPAD
//#define REPRAPWORLD_KEYPAD_MOVE_STEP 1.0
//
// RigidBot Panel V1.0
// http://www.inventapart.com/
//
//#define RIGIDBOT_PANEL
//
// BQ LCD Smart Controller shipped by
// default with the BQ Hephestos 2 and Witbox 2.
//
//#define BQ_LCD_SMART_CONTROLLER
//
// CONTROLLER TYPE: I2C
//
// Note: These controllers require the installation of Arduino's LiquidCrystal_I2C
// library. For more info: https://github.com/kiyoshigawa/LiquidCrystal_I2C
//
//
// Elefu RA Board Control Panel
// http://www.elefu.com/index.php?route=product/product&product_id=53
//
//#define RA_CONTROL_PANEL
//
// Sainsmart YW Robot (LCM1602) LCD Display
//
//#define LCD_I2C_SAINSMART_YWROBOT
//
// Generic LCM1602 LCD adapter
//
//#define LCM1602
//
// PANELOLU2 LCD with status LEDs,
// separate encoder and click inputs.
//
// Note: This controller requires Arduino's LiquidTWI2 library v1.2.3 or later.
// For more info: https://github.com/lincomatic/LiquidTWI2
//
// Note: The PANELOLU2 encoder click input can either be directly connected to
// a pin (if BTN_ENC defined to != -1) or read through I2C (when BTN_ENC == -1).
//
//#define LCD_I2C_PANELOLU2
//
// Panucatt VIKI LCD with status LEDs,
// integrated click & L/R/U/D buttons, separate encoder inputs.
//
//#define LCD_I2C_VIKI
//
// SSD1306 OLED full graphics generic display
//
//#define U8GLIB_SSD1306
//
// SAV OLEd LCD module support using either SSD1306 or SH1106 based LCD modules
//
//#define SAV_3DGLCD
#if ENABLED(SAV_3DGLCD)
//#define U8GLIB_SSD1306
#define U8GLIB_SH1106
#endif
//
// CONTROLLER TYPE: Shift register panels
//
// 2 wire Non-latching LCD SR from https://goo.gl/aJJ4sH
// LCD configuration: http://reprap.org/wiki/SAV_3D_LCD
//
//#define SAV_3DLCD
//=============================================================================
//=============================== Extra Features ==============================
//=============================================================================
// @section extras
// Increase the FAN PWM frequency. Removes the PWM noise but increases heating in the FET/Arduino
//#define FAST_PWM_FAN
// Use software PWM to drive the fan, as for the heaters. This uses a very low frequency
// which is not as annoying as with the hardware PWM. On the other hand, if this frequency
// is too low, you should also increment SOFT_PWM_SCALE.
//#define FAN_SOFT_PWM
// Incrementing this by 1 will double the software PWM frequency,
// affecting heaters, and the fan if FAN_SOFT_PWM is enabled.
// However, control resolution will be halved for each increment;
// at zero value, there are 128 effective control positions.
#define SOFT_PWM_SCALE 0
// Temperature status LEDs that display the hotend and bed temperature.
// If all hotends and bed temperature and temperature setpoint are < 54C then the BLUE led is on.
// Otherwise the RED led is on. There is 1C hysteresis.
//#define TEMP_STAT_LEDS
// M240 Triggers a camera by emulating a Canon RC-1 Remote
// Data from: http://www.doc-diy.net/photo/rc-1_hacked/
//#define PHOTOGRAPH_PIN 23
// SkeinForge sends the wrong arc g-codes when using Arc Point as fillet procedure
//#define SF_ARC_FIX
// Support for the BariCUDA Paste Extruder.
//#define BARICUDA
//define BlinkM/CyzRgb Support
//#define BLINKM
// Support for an RGB LED using 3 separate pins with optional PWM
//#define RGB_LED
#if ENABLED(RGB_LED)
#define RGB_LED_R_PIN 34
#define RGB_LED_G_PIN 43
#define RGB_LED_B_PIN 35
#endif
/*********************************************************************\
* R/C SERVO support
* Sponsored by TrinityLabs, Reworked by codexmas
**********************************************************************/
// Number of servos
//
// If you select a configuration below, this will receive a default value and does not need to be set manually
// set it manually if you have more servos than extruders and wish to manually control some
// leaving it undefined or defining as 0 will disable the servo subsystem
// If unsure, leave commented / disabled
//
//#define NUM_SERVOS 3 // Servo index starts with 0 for M280 command
// Delay (in milliseconds) before the next move will start, to give the servo time to reach its target angle.
// 300ms is a good value but you can try less delay.
// If the servo can't reach the requested position, increase it.
#define SERVO_DELAY 300
// Servo deactivation
//
// With this option servos are powered only during movement, then turned off to prevent jitter.
//#define DEACTIVATE_SERVOS_AFTER_MOVE
/**********************************************************************\
* Support for a filament diameter sensor
* Also allows adjustment of diameter at print time (vs at slicing)
* Single extruder only at this point (extruder 0)
*
* Motherboards
* 34 - RAMPS1.4 - uses Analog input 5 on the AUX2 connector
* 81 - Printrboard - Uses Analog input 2 on the Exp1 connector (version B,C,D,E)
* 301 - Rambo - uses Analog input 3
* Note may require analog pins to be defined for different motherboards
**********************************************************************/
// Uncomment below to enable
//#define FILAMENT_WIDTH_SENSOR
#define DEFAULT_NOMINAL_FILAMENT_DIA 3.00 //Enter the diameter (in mm) of the filament generally used (3.0 mm or 1.75 mm) - this is then used in the slicer software. Used for sensor reading validation
#if ENABLED(FILAMENT_WIDTH_SENSOR)
#define FILAMENT_SENSOR_EXTRUDER_NUM 0 //The number of the extruder that has the filament sensor (0,1,2)
#define MEASUREMENT_DELAY_CM 14 //measurement delay in cm. This is the distance from filament sensor to middle of barrel
#define MEASURED_UPPER_LIMIT 3.30 //upper limit factor used for sensor reading validation in mm
#define MEASURED_LOWER_LIMIT 1.90 //lower limit factor for sensor reading validation in mm
#define MAX_MEASUREMENT_DELAY 20 //delay buffer size in bytes (1 byte = 1cm)- limits maximum measurement delay allowable (must be larger than MEASUREMENT_DELAY_CM and lower number saves RAM)
#define DEFAULT_MEASURED_FILAMENT_DIA DEFAULT_NOMINAL_FILAMENT_DIA //set measured to nominal initially
//When using an LCD, uncomment the line below to display the Filament sensor data on the last line instead of status. Status will appear for 5 sec.
//#define FILAMENT_LCD_DISPLAY
#endif
#endif // CONFIGURATION_H

View file

@ -0,0 +1,1085 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Configuration_adv.h
*
* Advanced settings.
* Only change these if you know exactly what you're doing.
* Some of these settings can damage your printer if improperly set!
*
* Basic settings can be found in Configuration.h
*
*/
#ifndef CONFIGURATION_ADV_H
#define CONFIGURATION_ADV_H
/**
*
* ***********************************
* ** ATTENTION TO ALL DEVELOPERS **
* ***********************************
*
* You must increment this version number for every significant change such as,
* but not limited to: ADD, DELETE RENAME OR REPURPOSE any directive/option.
*
* Note: Update also Version.h !
*/
#define CONFIGURATION_ADV_H_VERSION 010100
// @section temperature
//===========================================================================
//=============================Thermal Settings ============================
//===========================================================================
#if DISABLED(PIDTEMPBED)
#define BED_CHECK_INTERVAL 5000 // ms between checks in bang-bang control
#if ENABLED(BED_LIMIT_SWITCHING)
#define BED_HYSTERESIS 2 // Only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
#endif
#endif
/**
* Thermal Protection protects your printer from damage and fire if a
* thermistor falls out or temperature sensors fail in any way.
*
* The issue: If a thermistor falls out or a temperature sensor fails,
* Marlin can no longer sense the actual temperature. Since a disconnected
* thermistor reads as a low temperature, the firmware will keep the heater on.
*
* The solution: Once the temperature reaches the target, start observing.
* If the temperature stays too far below the target (hysteresis) for too long (period),
* the firmware will halt the machine as a safety precaution.
*
* If you get false positives for "Thermal Runaway" increase THERMAL_PROTECTION_HYSTERESIS and/or THERMAL_PROTECTION_PERIOD
*/
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
#define THERMAL_PROTECTION_PERIOD 40 // Seconds
#define THERMAL_PROTECTION_HYSTERESIS 4 // Degrees Celsius
/**
* Whenever an M104 or M109 increases the target temperature the firmware will wait for the
* WATCH_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M104/M109,
* but only if the current temperature is far enough below the target for a reliable test.
*
* If you get false positives for "Heating failed" increase WATCH_TEMP_PERIOD and/or decrease WATCH_TEMP_INCREASE
* WATCH_TEMP_INCREASE should not be below 2.
*/
#define WATCH_TEMP_PERIOD 20 // Seconds
#define WATCH_TEMP_INCREASE 2 // Degrees Celsius
#endif
/**
* Thermal Protection parameters for the bed are just as above for hotends.
*/
#if ENABLED(THERMAL_PROTECTION_BED)
#define THERMAL_PROTECTION_BED_PERIOD 20 // Seconds
#define THERMAL_PROTECTION_BED_HYSTERESIS 2 // Degrees Celsius
/**
* Whenever an M140 or M190 increases the target temperature the firmware will wait for the
* WATCH_BED_TEMP_PERIOD to expire, and if the temperature hasn't increased by WATCH_BED_TEMP_INCREASE
* degrees, the machine is halted, requiring a hard reset. This test restarts with any M140/M190,
* but only if the current temperature is far enough below the target for a reliable test.
*
* If you get too many "Heating failed" errors, increase WATCH_BED_TEMP_PERIOD and/or decrease
* WATCH_BED_TEMP_INCREASE. (WATCH_BED_TEMP_INCREASE should not be below 2.)
*/
#define WATCH_BED_TEMP_PERIOD 60 // Seconds
#define WATCH_BED_TEMP_INCREASE 2 // Degrees Celsius
#endif
#if ENABLED(PIDTEMP)
// this adds an experimental additional term to the heating power, proportional to the extrusion speed.
// if Kc is chosen well, the additional required power due to increased melting should be compensated.
//#define PID_EXTRUSION_SCALING
#if ENABLED(PID_EXTRUSION_SCALING)
#define DEFAULT_Kc (100) //heating power=Kc*(e_speed)
#define LPQ_MAX_LEN 50
#endif
#endif
/**
* Automatic Temperature:
* The hotend target temperature is calculated by all the buffered lines of gcode.
* The maximum buffered steps/sec of the extruder motor is called "se".
* Start autotemp mode with M109 S<mintemp> B<maxtemp> F<factor>
* The target temperature is set to mintemp+factor*se[steps/sec] and is limited by
* mintemp and maxtemp. Turn this off by executing M109 without F*
* Also, if the temperature is set to a value below mintemp, it will not be changed by autotemp.
* On an Ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
*/
#define AUTOTEMP
#if ENABLED(AUTOTEMP)
#define AUTOTEMP_OLDWEIGHT 0.98
#endif
//Show Temperature ADC value
//The M105 command return, besides traditional information, the ADC value read from temperature sensors.
//#define SHOW_TEMP_ADC_VALUES
/**
* High Temperature Thermistor Support
*
* Thermistors able to support high temperature tend to have a hard time getting
* good readings at room and lower temperatures. This means HEATER_X_RAW_LO_TEMP
* will probably be caught when the heating element first turns on during the
* preheating process, which will trigger a min_temp_error as a safety measure
* and force stop everything.
* To circumvent this limitation, we allow for a preheat time (during which,
* min_temp_error won't be triggered) and add a min_temp buffer to handle
* aberrant readings.
*
* If you want to enable this feature for your hotend thermistor(s)
* uncomment and set values > 0 in the constants below
*/
// The number of consecutive low temperature errors that can occur
// before a min_temp_error is triggered. (Shouldn't be more than 10.)
//#define MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED 0
// The number of milliseconds a hotend will preheat before starting to check
// the temperature. This value should NOT be set to the time it takes the
// hot end to reach the target temperature, but the time it takes to reach
// the minimum temperature your thermistor can read. The lower the better/safer.
// This shouldn't need to be more than 30 seconds (30000)
//#define MILLISECONDS_PREHEAT_TIME 0
// @section extruder
// Extruder runout prevention.
// If the machine is idle and the temperature over MINTEMP
// then extrude some filament every couple of SECONDS.
//#define EXTRUDER_RUNOUT_PREVENT
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
#define EXTRUDER_RUNOUT_MINTEMP 190
#define EXTRUDER_RUNOUT_SECONDS 30
#define EXTRUDER_RUNOUT_SPEED 1500 // mm/m
#define EXTRUDER_RUNOUT_EXTRUDE 5 // mm
#endif
// @section temperature
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
#define TEMP_SENSOR_AD595_OFFSET 0.0
#define TEMP_SENSOR_AD595_GAIN 1.0
//This is for controlling a fan to cool down the stepper drivers
//it will turn on when any driver is enabled
//and turn off after the set amount of seconds from last driver being disabled again
#define CONTROLLERFAN_PIN -1 //Pin used for the fan to cool controller (-1 to disable)
#define CONTROLLERFAN_SECS 60 //How many seconds, after all motors were disabled, the fan should run
#define CONTROLLERFAN_SPEED 255 // == full speed
// When first starting the main fan, run it at full speed for the
// given number of milliseconds. This gets the fan spinning reliably
// before setting a PWM value. (Does not work with software PWM for fan on Sanguinololu)
//#define FAN_KICKSTART_TIME 100
// This defines the minimal speed for the main fan, run in PWM mode
// to enable uncomment and set minimal PWM speed for reliable running (1-255)
// if fan speed is [1 - (FAN_MIN_PWM-1)] it is set to FAN_MIN_PWM
//#define FAN_MIN_PWM 50
// @section extruder
/**
* Extruder cooling fans
*
* Extruder auto fans automatically turn on when their extruders'
* temperatures go above EXTRUDER_AUTO_FAN_TEMPERATURE.
*
* Your board's pins file specifies the recommended pins. Override those here
* or set to -1 to disable completely.
*
* Multiple extruders can be assigned to the same pin in which case
* the fan will turn on when any selected extruder is above the threshold.
*/
#define E0_AUTO_FAN_PIN -1
#define E1_AUTO_FAN_PIN -1
#define E2_AUTO_FAN_PIN -1
#define E3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
// Define a pin to turn case light on/off
//#define CASE_LIGHT_PIN 4
#if PIN_EXISTS(CASE_LIGHT)
#define INVERT_CASE_LIGHT false // Set to true if HIGH is the OFF state (active low)
//#define CASE_LIGHT_DEFAULT_ON // Uncomment to set default state to on
//#define MENU_ITEM_CASE_LIGHT // Uncomment to have a Case Light On / Off entry in main menu
#endif
//===========================================================================
//============================ Mechanical Settings ==========================
//===========================================================================
// @section homing
// If you want endstops to stay on (by default) even when not homing
// enable this option. Override at any time with M120, M121.
//#define ENDSTOPS_ALWAYS_ON_DEFAULT
// @section extras
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
// Dual X Steppers
// Uncomment this option to drive two X axis motors.
// The next unused E driver will be assigned to the second X stepper.
//#define X_DUAL_STEPPER_DRIVERS
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
// Set true if the two X motors need to rotate in opposite directions
#define INVERT_X2_VS_X_DIR true
#endif
// Dual Y Steppers
// Uncomment this option to drive two Y axis motors.
// The next unused E driver will be assigned to the second Y stepper.
//#define Y_DUAL_STEPPER_DRIVERS
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
// Set true if the two Y motors need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR true
#endif
// A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this option to use a separate stepper driver for each Z axis motor.
// The next unused E driver will be assigned to the second Z stepper.
//#define Z_DUAL_STEPPER_DRIVERS
#if ENABLED(Z_DUAL_STEPPER_DRIVERS)
// Z_DUAL_ENDSTOPS is a feature to enable the use of 2 endstops for both Z steppers - Let's call them Z stepper and Z2 stepper.
// That way the machine is capable to align the bed during home, since both Z steppers are homed.
// There is also an implementation of M666 (software endstops adjustment) to this feature.
// After Z homing, this adjustment is applied to just one of the steppers in order to align the bed.
// One just need to home the Z axis and measure the distance difference between both Z axis and apply the math: Z adjust = Z - Z2.
// If the Z stepper axis is closer to the bed, the measure Z > Z2 (yes, it is.. think about it) and the Z adjust would be positive.
// Play a little bit with small adjustments (0.5mm) and check the behaviour.
// The M119 (endstops report) will start reporting the Z2 Endstop as well.
//#define Z_DUAL_ENDSTOPS
#if ENABLED(Z_DUAL_ENDSTOPS)
#define Z2_USE_ENDSTOP _XMAX_
#endif
#endif // Z_DUAL_STEPPER_DRIVERS
// Enable this for dual x-carriage printers.
// A dual x-carriage design has the advantage that the inactive extruder can be parked which
// prevents hot-end ooze contaminating the print. It also reduces the weight of each x-carriage
// allowing faster printing speeds. Connect your X2 stepper to the first unused E plug.
//#define DUAL_X_CARRIAGE
#if ENABLED(DUAL_X_CARRIAGE)
// Configuration for second X-carriage
// Note: the first x-carriage is defined as the x-carriage which homes to the minimum endstop;
// the second x-carriage always homes to the maximum endstop.
#define X2_MIN_POS 80 // set minimum to ensure second x-carriage doesn't hit the parked first X-carriage
#define X2_MAX_POS 353 // set maximum to the distance between toolheads when both heads are homed
#define X2_HOME_DIR 1 // the second X-carriage always homes to the maximum endstop position
#define X2_HOME_POS X2_MAX_POS // default home position is the maximum carriage position
// However: In this mode the HOTEND_OFFSET_X value for the second extruder provides a software
// override for X2_HOME_POS. This also allow recalibration of the distance between the two endstops
// without modifying the firmware (through the "M218 T1 X???" command).
// Remember: you should set the second extruder x-offset to 0 in your slicer.
// There are a few selectable movement modes for dual x-carriages using M605 S<mode>
// Mode 0 (DXC_FULL_CONTROL_MODE): Full control. The slicer has full control over both x-carriages and can achieve optimal travel results
// as long as it supports dual x-carriages. (M605 S0)
// Mode 1 (DXC_AUTO_PARK_MODE) : Auto-park mode. The firmware will automatically park and unpark the x-carriages on tool changes so
// that additional slicer support is not required. (M605 S1)
// Mode 2 (DXC_DUPLICATION_MODE) : Duplication mode. The firmware will transparently make the second x-carriage and extruder copy all
// actions of the first x-carriage. This allows the printer to print 2 arbitrary items at
// once. (2nd extruder x offset and temp offset are set using: M605 S2 [Xnnn] [Rmmm])
// This is the default power-up mode which can be later using M605.
#define DEFAULT_DUAL_X_CARRIAGE_MODE DXC_FULL_CONTROL_MODE
// Default settings in "Auto-park Mode"
#define TOOLCHANGE_PARK_ZLIFT 0.2 // the distance to raise Z axis when parking an extruder
#define TOOLCHANGE_UNPARK_ZLIFT 1 // the distance to raise Z axis when unparking an extruder
// Default x offset in duplication mode (typically set to half print bed width)
#define DEFAULT_DUPLICATION_X_OFFSET 100
#endif //DUAL_X_CARRIAGE
// @section homing
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
#define X_HOME_BUMP_MM 5
#define Y_HOME_BUMP_MM 5
#define Z_HOME_BUMP_MM 2
#define HOMING_BUMP_DIVISOR {2, 2, 4} // Re-Bump Speed Divisor (Divides the Homing Feedrate)
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
// When G28 is called, this option will make Y home before X
//#define HOME_Y_BEFORE_X
// @section machine
#define AXIS_RELATIVE_MODES {false, false, false, false}
// Allow duplication mode with a basic dual-nozzle extruder
//#define DUAL_NOZZLE_DUPLICATION_MODE
// By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
#define INVERT_X_STEP_PIN false
#define INVERT_Y_STEP_PIN false
#define INVERT_Z_STEP_PIN false
#define INVERT_E_STEP_PIN false
// Default stepper release if idle. Set to 0 to deactivate.
// Steppers will shut down DEFAULT_STEPPER_DEACTIVE_TIME seconds after the last move when DISABLE_INACTIVE_? is true.
// Time can be set by M18 and M84.
#define DEFAULT_STEPPER_DEACTIVE_TIME 120
#define DISABLE_INACTIVE_X true
#define DISABLE_INACTIVE_Y true
#define DISABLE_INACTIVE_Z true // set to false if the nozzle will fall down on your printed part when print has finished.
#define DISABLE_INACTIVE_E true
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
#define DEFAULT_MINTRAVELFEEDRATE 0.0
// @section lcd
#if ENABLED(ULTIPANEL)
#define MANUAL_FEEDRATE {50*60, 50*60, 4*60, 60} // Feedrates for manual moves along X, Y, Z, E from panel
#define ULTIPANEL_FEEDMULTIPLY // Comment to disable setting feedrate multiplier via encoder
#endif
// @section extras
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
#define DEFAULT_MINSEGMENTTIME 20000
// If defined the movements slow down when the look ahead buffer is only half full
#define SLOWDOWN
// Frequency limit
// See nophead's blog for more info
// Not working O
//#define XY_FREQUENCY_LIMIT 15
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
// of the buffer and all stops. This should not be much greater than zero and should only be changed
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
// Microstep setting (Only functional when stepper driver microstep pins are connected to MCU.
#define MICROSTEP_MODES {16,16,16,16,16} // [1,2,4,8,16]
// Motor Current setting (Only functional when motor driver current ref pins are connected to a digital trimpot on supported boards)
#define DIGIPOT_MOTOR_CURRENT {135,135,135,135,135} // Values 0-255 (RAMBO 135 = ~0.75A, 185 = ~1A)
// Motor Current controlled via PWM (Overridable on supported boards with PWM-driven motor driver current)
//#define PWM_MOTOR_CURRENT {1300, 1300, 1250} // Values in milliamps
// uncomment to enable an I2C based DIGIPOT like on the Azteeg X3 Pro
//#define DIGIPOT_I2C
// Number of channels available for I2C digipot, For Azteeg X3 Pro we have 8
#define DIGIPOT_I2C_NUM_CHANNELS 8
// actual motor currents in Amps, need as many here as DIGIPOT_I2C_NUM_CHANNELS
#define DIGIPOT_I2C_MOTOR_CURRENTS {1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0}
//===========================================================================
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceeds this value, multiply steps moved x10 to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceeds this value, multiply steps moved x100 to really quickly advance the value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
// @section lcd
// Include a page of printer information in the LCD Main Menu
//#define LCD_INFO_MENU
// On the Info Screen, display XY with one decimal place when possible
//#define LCD_DECIMAL_SMALL_XY
// The timeout (in ms) to return to the status screen from sub-menus
//#define LCD_TIMEOUT_TO_STATUS 15000
#if ENABLED(SDSUPPORT)
// Some RAMPS and other boards don't detect when an SD card is inserted. You can work
// around this by connecting a push button or single throw switch to the pin defined
// as SD_DETECT_PIN in your board's pins definitions.
// This setting should be disabled unless you are using a push button, pulling the pin to ground.
// Note: This is always disabled for ULTIPANEL (except ELB_FULL_GRAPHIC_CONTROLLER).
#define SD_DETECT_INVERTED
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // You might want to keep the z enabled so your bed stays in place.
#define SDCARD_RATHERRECENTFIRST //reverse file order of sd card menu display. Its sorted practically after the file system block order.
// if a file is deleted, it frees a block. hence, the order is not purely chronological. To still have auto0.g accessible, there is again the option to do that.
// using:
//#define MENU_ADDAUTOSTART
/**
* Sort SD file listings in alphabetical order.
*
* With this option enabled, items on SD cards will be sorted
* by name for easier navigation.
*
* By default...
*
* - Use the slowest -but safest- method for sorting.
* - Folders are sorted to the top.
* - The sort key is statically allocated.
* - No added G-code (M34) support.
* - 40 item sorting limit. (Items after the first 40 are unsorted.)
*
* SD sorting uses static allocation (as set by SDSORT_LIMIT), allowing the
* compiler to calculate the worst-case usage and throw an error if the SRAM
* limit is exceeded.
*
* - SDSORT_USES_RAM provides faster sorting via a static directory buffer.
* - SDSORT_USES_STACK does the same, but uses a local stack-based buffer.
* - SDSORT_CACHE_NAMES will retain the sorted file listing in RAM. (Expensive!)
* - SDSORT_DYNAMIC_RAM only uses RAM when the SD menu is visible. (Use with caution!)
*/
//#define SDCARD_SORT_ALPHA
// SD Card Sorting options
#if ENABLED(SDCARD_SORT_ALPHA)
#define SDSORT_LIMIT 40 // Maximum number of sorted items (10-256).
#define FOLDER_SORTING -1 // -1=above 0=none 1=below
#define SDSORT_GCODE false // Allow turning sorting on/off with LCD and M34 g-code.
#define SDSORT_USES_RAM false // Pre-allocate a static array for faster pre-sorting.
#define SDSORT_USES_STACK false // Prefer the stack for pre-sorting to give back some SRAM. (Negated by next 2 options.)
#define SDSORT_CACHE_NAMES false // Keep sorted items in RAM longer for speedy performance. Most expensive option.
#define SDSORT_DYNAMIC_RAM false // Use dynamic allocation (within SD menus). Least expensive option. Set SDSORT_LIMIT before use!
#endif
// Show a progress bar on HD44780 LCDs for SD printing
//#define LCD_PROGRESS_BAR
#if ENABLED(LCD_PROGRESS_BAR)
// Amount of time (ms) to show the bar
#define PROGRESS_BAR_BAR_TIME 2000
// Amount of time (ms) to show the status message
#define PROGRESS_BAR_MSG_TIME 3000
// Amount of time (ms) to retain the status message (0=forever)
#define PROGRESS_MSG_EXPIRE 0
// Enable this to show messages for MSG_TIME then hide them
//#define PROGRESS_MSG_ONCE
// Add a menu item to test the progress bar:
//#define LCD_PROGRESS_BAR_TEST
#endif
// This allows hosts to request long names for files and folders with M33
//#define LONG_FILENAME_HOST_SUPPORT
// This option allows you to abort SD printing when any endstop is triggered.
// This feature must be enabled with "M540 S1" or from the LCD menu.
// To have any effect, endstops must be enabled during SD printing.
//#define ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#endif // SDSUPPORT
/**
* Additional options for Graphical Displays
*
* Use the optimizations here to improve printing performance,
* which can be adversely affected by graphical display drawing,
* especially when doing several short moves, and when printing
* on DELTA and SCARA machines.
*
* Some of these options may result in the display lagging behind
* controller events, as there is a trade-off between reliable
* printing performance versus fast display updates.
*/
#if ENABLED(DOGLCD)
// Enable to save many cycles by drawing a hollow frame on the Info Screen
#define XYZ_HOLLOW_FRAME
// Enable to save many cycles by drawing a hollow frame on Menu Screens
#define MENU_HOLLOW_FRAME
// A bigger font is available for edit items. Costs 3120 bytes of PROGMEM.
// Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
//#define USE_BIG_EDIT_FONT
// A smaller font may be used on the Info Screen. Costs 2300 bytes of PROGMEM.
// Western only. Not available for Cyrillic, Kana, Turkish, Greek, or Chinese.
//#define USE_SMALL_INFOFONT
// Enable this option and reduce the value to optimize screen updates.
// The normal delay is 10µs. Use the lowest value that still gives a reliable display.
//#define DOGM_SPI_DELAY_US 5
#endif // DOGLCD
// @section safety
// The hardware watchdog should reset the microcontroller disabling all outputs,
// in case the firmware gets stuck and doesn't do temperature regulation.
#define USE_WATCHDOG
#if ENABLED(USE_WATCHDOG)
// If you have a watchdog reboot in an ArduinoMega2560 then the device will hang forever, as a watchdog reset will leave the watchdog on.
// The "WATCHDOG_RESET_MANUAL" goes around this by not using the hardware reset.
// However, THIS FEATURE IS UNSAFE!, as it will only work if interrupts are disabled. And the code could hang in an interrupt routine with interrupts disabled.
//#define WATCHDOG_RESET_MANUAL
#endif
// @section lcd
// Babystepping enables the user to control the axis in tiny amounts, independently from the normal printing process
// it can e.g. be used to change z-positions in the print startup phase in real-time
// does not respect endstops!
//#define BABYSTEPPING
#if ENABLED(BABYSTEPPING)
#define BABYSTEP_XY //not only z, but also XY in the menu. more clutter, more functions
//not implemented for deltabots!
#define BABYSTEP_INVERT_Z false //true for inverse movements in Z
#define BABYSTEP_MULTIPLICATOR 1 //faster movements
#endif
// @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/**
* Implementation of linear pressure control
*
* Assumption: advance = k * (delta velocity)
* K=0 means advance disabled.
* See Marlin documentation for calibration instructions.
*/
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75
/**
* Some Slicers produce Gcode with randomly jumping extrusion widths occasionally.
* For example within a 0.4mm perimeter it may produce a single segment of 0.05mm width.
* While this is harmless for normal printing (the fluid nature of the filament will
* close this very, very tiny gap), it throws off the LIN_ADVANCE pressure adaption.
*
* For this case LIN_ADVANCE_E_D_RATIO can be used to set the extrusion:distance ratio
* to a fixed value. Note that using a fixed ratio will lead to wrong nozzle pressures
* if the slicer is using variable widths or layer heights within one print!
*
* This option sets the default E:D ratio at startup. Use `M905` to override this value.
*
* Example: `M905 W0.4 H0.2 D1.75`, where:
* - W is the extrusion width in mm
* - H is the layer height in mm
* - D is the filament diameter in mm
*
* Set to 0 to auto-detect the ratio based on given Gcode G1 print moves.
*
* Slic3r (including Prusa Slic3r) produces Gcode compatible with the automatic mode.
* Cura (as of this writing) may produce Gcode incompatible with the automatic mode.
*/
#define LIN_ADVANCE_E_D_RATIO 0 // The calculated ratio (or 0) according to the formula W * H / ((D / 2) ^ 2 * PI)
// Example: 0.4 * 0.2 / ((1.75 / 2) ^ 2 * PI) = 0.033260135
#endif
// @section leveling
// Default mesh area is an area with an inset margin on the print area.
// Below are the macros that are used to define the borders for the mesh area,
// made available here for specialized needs, ie dual extruder setup.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_MIN_X (X_MIN_POS + MESH_INSET)
#define MESH_MAX_X (X_MAX_POS - (MESH_INSET))
#define MESH_MIN_Y (Y_MIN_POS + MESH_INSET)
#define MESH_MAX_Y (Y_MAX_POS - (MESH_INSET))
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_MESH_MIN_X (X_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_X (X_MAX_POS - (UBL_MESH_INSET))
#define UBL_MESH_MIN_Y (Y_MIN_POS + UBL_MESH_INSET)
#define UBL_MESH_MAX_Y (Y_MAX_POS - (UBL_MESH_INSET))
#endif
// @section extras
// Arc interpretation settings:
#define ARC_SUPPORT // Disabling this saves ~2738 bytes
#define MM_PER_ARC_SEGMENT 1
#define N_ARC_CORRECTION 25
// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
//#define BEZIER_CURVE_SUPPORT
// G38.2 and G38.3 Probe Target
//#define G38_PROBE_TARGET
#if ENABLED(G38_PROBE_TARGET)
#define G38_MINIMUM_MOVE 0.0275 // minimum distance in mm that will produce a move (determined using the print statement in check_move)
#endif
// Moves (or segments) with fewer steps than this will be joined with the next move
#define MIN_STEPS_PER_SEGMENT 6
// The minimum pulse width (in µs) for stepping a stepper.
// Set this if you find stepping unreliable, or if using a very fast CPU.
#define MINIMUM_STEPPER_PULSE 0 // (µs) The smallest stepper pulse allowed
// @section temperature
// Control heater 0 and heater 1 in parallel.
//#define HEATERS_PARALLEL
//===========================================================================
//================================= Buffers =================================
//===========================================================================
// @section hidden
// The number of linear motions that can be in the plan at any give time.
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ring-buffering.
#if ENABLED(SDSUPPORT)
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
#else
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
#endif
// @section serial
// The ASCII buffer for serial input
#define MAX_CMD_SIZE 96
#define BUFSIZE 4
// Transfer Buffer Size
// To save 386 bytes of PROGMEM (and TX_BUFFER_SIZE+3 bytes of RAM) set to 0.
// To buffer a simple "ok" you need 4 bytes.
// For ADVANCED_OK (M105) you need 32 bytes.
// For debug-echo: 128 bytes for the optimal speed.
// Other output doesn't need to be that speedy.
// :[0, 2, 4, 8, 16, 32, 64, 128, 256]
#define TX_BUFFER_SIZE 0
// Enable an emergency-command parser to intercept certain commands as they
// enter the serial receive buffer, so they cannot be blocked.
// Currently handles M108, M112, M410
// Does not work on boards using AT90USB (USBCON) processors!
//#define EMERGENCY_PARSER
// Bad Serial-connections can miss a received command by sending an 'ok'
// Therefore some clients abort after 30 seconds in a timeout.
// Some other clients start sending commands while receiving a 'wait'.
// This "wait" is only sent when the buffer is empty. 1 second is a good value here.
//#define NO_TIMEOUTS 1000 // Milliseconds
// Some clients will have this feature soon. This could make the NO_TIMEOUTS unnecessary.
//#define ADVANCED_OK
// @section fwretract
// Firmware based and LCD controlled retract
// M207 and M208 can be used to define parameters for the retraction.
// The retraction can be called by the slicer using G10 and G11
// until then, intended retractions can be detected by moves that only extrude and the direction.
// the moves are than replaced by the firmware controlled ones.
//#define FWRETRACT //ONLY PARTIALLY TESTED
#if ENABLED(FWRETRACT)
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
#define RETRACT_LENGTH 3 //default retract length (positive mm)
#define RETRACT_LENGTH_SWAP 13 //default swap retract length (positive mm), for extruder change
#define RETRACT_FEEDRATE 45 //default feedrate for retracting (mm/s)
#define RETRACT_ZLIFT 0 //default retract Z-lift
#define RETRACT_RECOVER_LENGTH 0 //default additional recover length (mm, added to retract length when recovering)
#define RETRACT_RECOVER_LENGTH_SWAP 0 //default additional swap recover length (mm, added to retract length when recovering from extruder change)
#define RETRACT_RECOVER_FEEDRATE 8 //default feedrate for recovering from retraction (mm/s)
#endif
/**
* Filament Change
* Experimental filament change support.
* Adds the GCode M600 for initiating filament change.
*
* Requires an LCD display.
* This feature is required for the default FILAMENT_RUNOUT_SCRIPT.
*/
//#define FILAMENT_CHANGE_FEATURE
#if ENABLED(FILAMENT_CHANGE_FEATURE)
#define FILAMENT_CHANGE_X_POS 3 // X position of hotend
#define FILAMENT_CHANGE_Y_POS 3 // Y position of hotend
#define FILAMENT_CHANGE_Z_ADD 10 // Z addition of hotend (lift)
#define FILAMENT_CHANGE_XY_FEEDRATE 100 // X and Y axes feedrate in mm/s (also used for delta printers Z axis)
#define FILAMENT_CHANGE_Z_FEEDRATE 5 // Z axis feedrate in mm/s (not used for delta printers)
#define FILAMENT_CHANGE_RETRACT_FEEDRATE 60 // Initial retract feedrate in mm/s
#define FILAMENT_CHANGE_RETRACT_LENGTH 2 // Initial retract in mm
// It is a short retract used immediately after print interrupt before move to filament exchange position
#define FILAMENT_CHANGE_UNLOAD_FEEDRATE 10 // Unload filament feedrate in mm/s - filament unloading can be fast
#define FILAMENT_CHANGE_UNLOAD_LENGTH 100 // Unload filament length from hotend in mm
// Longer length for bowden printers to unload filament from whole bowden tube,
// shorter length for printers without bowden to unload filament from extruder only,
// 0 to disable unloading for manual unloading
#define FILAMENT_CHANGE_LOAD_FEEDRATE 6 // Load filament feedrate in mm/s - filament loading into the bowden tube can be fast
#define FILAMENT_CHANGE_LOAD_LENGTH 0 // Load filament length over hotend in mm
// Longer length for bowden printers to fast load filament into whole bowden tube over the hotend,
// Short or zero length for printers without bowden where loading is not used
#define FILAMENT_CHANGE_EXTRUDE_FEEDRATE 3 // Extrude filament feedrate in mm/s - must be slower than load feedrate
#define FILAMENT_CHANGE_EXTRUDE_LENGTH 50 // Extrude filament length in mm after filament is loaded over the hotend,
// 0 to disable for manual extrusion
// Filament can be extruded repeatedly from the filament exchange menu to fill the hotend,
// or until outcoming filament color is not clear for filament color change
#define FILAMENT_CHANGE_NOZZLE_TIMEOUT 45L // Turn off nozzle if user doesn't change filament within this time limit in seconds
#define FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS 5L // Number of alert beeps before printer goes quiet
#define FILAMENT_CHANGE_NO_STEPPER_TIMEOUT // Enable to have stepper motors hold position during filament change
// even if it takes longer than DEFAULT_STEPPER_DEACTIVE_TIME.
#endif
// @section tmc
/**
* Enable this section if you have TMC26X motor drivers.
* You will need to import the TMC26XStepper library into the Arduino IDE for this
* (https://github.com/trinamic/TMC26XStepper.git)
*/
//#define HAVE_TMCDRIVER
#if ENABLED(HAVE_TMCDRIVER)
//#define X_IS_TMC
//#define X2_IS_TMC
//#define Y_IS_TMC
//#define Y2_IS_TMC
//#define Z_IS_TMC
//#define Z2_IS_TMC
//#define E0_IS_TMC
//#define E1_IS_TMC
//#define E2_IS_TMC
//#define E3_IS_TMC
#define X_MAX_CURRENT 1000 // in mA
#define X_SENSE_RESISTOR 91 // in mOhms
#define X_MICROSTEPS 16 // number of microsteps
#define X2_MAX_CURRENT 1000
#define X2_SENSE_RESISTOR 91
#define X2_MICROSTEPS 16
#define Y_MAX_CURRENT 1000
#define Y_SENSE_RESISTOR 91
#define Y_MICROSTEPS 16
#define Y2_MAX_CURRENT 1000
#define Y2_SENSE_RESISTOR 91
#define Y2_MICROSTEPS 16
#define Z_MAX_CURRENT 1000
#define Z_SENSE_RESISTOR 91
#define Z_MICROSTEPS 16
#define Z2_MAX_CURRENT 1000
#define Z2_SENSE_RESISTOR 91
#define Z2_MICROSTEPS 16
#define E0_MAX_CURRENT 1000
#define E0_SENSE_RESISTOR 91
#define E0_MICROSTEPS 16
#define E1_MAX_CURRENT 1000
#define E1_SENSE_RESISTOR 91
#define E1_MICROSTEPS 16
#define E2_MAX_CURRENT 1000
#define E2_SENSE_RESISTOR 91
#define E2_MICROSTEPS 16
#define E3_MAX_CURRENT 1000
#define E3_SENSE_RESISTOR 91
#define E3_MICROSTEPS 16
#endif
// @section TMC2130
/**
* Enable this for SilentStepStick Trinamic TMC2130 SPI-configurable stepper drivers.
*
* You'll also need the TMC2130Stepper Arduino library
* (https://github.com/teemuatlut/TMC2130Stepper).
*
* To use TMC2130 stepper drivers in SPI mode connect your SPI2130 pins to
* the hardware SPI interface on your board and define the required CS pins
* in your `pins_MYBOARD.h` file. (e.g., RAMPS 1.4 uses AUX3 pins `X_CS_PIN 53`, `Y_CS_PIN 49`, etc.).
*/
//#define HAVE_TMC2130
#if ENABLED(HAVE_TMC2130)
#define STEALTHCHOP
/**
* Let Marlin automatically control stepper current.
* This is still an experimental feature.
* Increase current every 5s by CURRENT_STEP until stepper temperature prewarn gets triggered,
* then decrease current by CURRENT_STEP until temperature prewarn is cleared.
* Adjusting starts from X/Y/Z/E_MAX_CURRENT but will not increase over AUTO_ADJUST_MAX
*/
//#define AUTOMATIC_CURRENT_CONTROL
#define CURRENT_STEP 50 // [mA]
#define AUTO_ADJUST_MAX 1300 // [mA], 1300mA_rms = 1840mA_peak
// CHOOSE YOUR MOTORS HERE, THIS IS MANDATORY
//#define X_IS_TMC2130
//#define X2_IS_TMC2130
//#define Y_IS_TMC2130
//#define Y2_IS_TMC2130
//#define Z_IS_TMC2130
//#define Z2_IS_TMC2130
//#define E0_IS_TMC2130
//#define E1_IS_TMC2130
//#define E2_IS_TMC2130
//#define E3_IS_TMC2130
/**
* Stepper driver settings
*/
#define R_SENSE 0.11 // R_sense resistor for SilentStepStick2130
#define HOLD_MULTIPLIER 0.5 // Scales down the holding current from run current
#define INTERPOLATE 1 // Interpolate X/Y/Z_MICROSTEPS to 256
#define X_MAX_CURRENT 1000 // rms current in mA
#define X_MICROSTEPS 16 // FULLSTEP..256
#define X_CHIP_SELECT 40 // Pin
#define Y_MAX_CURRENT 1000
#define Y_MICROSTEPS 16
#define Y_CHIP_SELECT 42
#define Z_MAX_CURRENT 1000
#define Z_MICROSTEPS 16
#define Z_CHIP_SELECT 65
//#define X2_MAX_CURRENT 1000
//#define X2_MICROSTEPS 16
//#define X2_CHIP_SELECT -1
//#define Y2_MAX_CURRENT 1000
//#define Y2_MICROSTEPS 16
//#define Y2_CHIP_SELECT -1
//#define Z2_MAX_CURRENT 1000
//#define Z2_MICROSTEPS 16
//#define Z2_CHIP_SELECT -1
//#define E0_MAX_CURRENT 1000
//#define E0_MICROSTEPS 16
//#define E0_CHIP_SELECT -1
//#define E1_MAX_CURRENT 1000
//#define E1_MICROSTEPS 16
//#define E1_CHIP_SELECT -1
//#define E2_MAX_CURRENT 1000
//#define E2_MICROSTEPS 16
//#define E2_CHIP_SELECT -1
//#define E3_MAX_CURRENT 1000
//#define E3_MICROSTEPS 16
//#define E3_CHIP_SELECT -1
/**
* You can set your own advanced settings by filling in predefined functions.
* A list of available functions can be found on the library github page
* https://github.com/teemuatlut/TMC2130Stepper
*
* Example:
* #define TMC2130_ADV() { \
* stepperX.diag0_temp_prewarn(1); \
* stepperX.interpolate(0); \
* }
*/
#define TMC2130_ADV() { }
#endif // ENABLED(HAVE_TMC2130)
/**
* Enable this section if you have L6470 motor drivers.
* You need to import the L6470 library into the Arduino IDE for this.
* (https://github.com/ameyer/Arduino-L6470)
*/
// @section l6470
//#define HAVE_L6470DRIVER
#if ENABLED(HAVE_L6470DRIVER)
//#define X_IS_L6470
//#define X2_IS_L6470
//#define Y_IS_L6470
//#define Y2_IS_L6470
//#define Z_IS_L6470
//#define Z2_IS_L6470
//#define E0_IS_L6470
//#define E1_IS_L6470
//#define E2_IS_L6470
//#define E3_IS_L6470
#define X_MICROSTEPS 16 // number of microsteps
#define X_K_VAL 50 // 0 - 255, Higher values, are higher power. Be careful not to go too high
#define X_OVERCURRENT 2000 // maxc current in mA. If the current goes over this value, the driver will switch off
#define X_STALLCURRENT 1500 // current in mA where the driver will detect a stall
#define X2_MICROSTEPS 16
#define X2_K_VAL 50
#define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500
#define Y_MICROSTEPS 16
#define Y_K_VAL 50
#define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500
#define Y2_MICROSTEPS 16
#define Y2_K_VAL 50
#define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500
#define Z_MICROSTEPS 16
#define Z_K_VAL 50
#define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500
#define Z2_MICROSTEPS 16
#define Z2_K_VAL 50
#define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500
#define E0_MICROSTEPS 16
#define E0_K_VAL 50
#define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500
#define E1_MICROSTEPS 16
#define E1_K_VAL 50
#define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500
#define E2_MICROSTEPS 16
#define E2_K_VAL 50
#define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500
#define E3_MICROSTEPS 16
#define E3_K_VAL 50
#define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500
#endif
/**
* TWI/I2C BUS
*
* This feature is an EXPERIMENTAL feature so it shall not be used on production
* machines. Enabling this will allow you to send and receive I2C data from slave
* devices on the bus.
*
* ; Example #1
* ; This macro send the string "Marlin" to the slave device with address 0x63 (99)
* ; It uses multiple M260 commands with one B<base 10> arg
* M260 A99 ; Target slave address
* M260 B77 ; M
* M260 B97 ; a
* M260 B114 ; r
* M260 B108 ; l
* M260 B105 ; i
* M260 B110 ; n
* M260 S1 ; Send the current buffer
*
* ; Example #2
* ; Request 6 bytes from slave device with address 0x63 (99)
* M261 A99 B5
*
* ; Example #3
* ; Example serial output of a M261 request
* echo:i2c-reply: from:99 bytes:5 data:hello
*/
// @section i2cbus
//#define EXPERIMENTAL_I2CBUS
#define I2C_SLAVE_ADDRESS 0 // Set a value from 8 to 127 to act as a slave
/**
* Add M43, M44 and M45 commands for pins info and testing
*/
//#define PINS_DEBUGGING
/**
* Auto-report temperatures with M155 S<seconds>
*/
//#define AUTO_REPORT_TEMPERATURES
/**
* Include capabilities in M115 output
*/
//#define EXTENDED_CAPABILITIES_REPORT
/**
* Double-click the Encoder button on the Status Screen for Z Babystepping.
*/
//#define DOUBLECLICK_FOR_Z_BABYSTEPPING
#define DOUBLECLICK_MAX_INTERVAL 1250 // Maximum interval between clicks, in milliseconds.
// Note: You may need to add extra time to mitigate controller latency.
/**
* Volumetric extrusion default state
* Activate to make volumetric extrusion the default method,
* with DEFAULT_NOMINAL_FILAMENT_DIA as the default diameter.
*
* M200 D0 to disable, M200 Dn to set a new diameter.
*/
//#define VOLUMETRIC_DEFAULT_ON
/**
* Enable this option for a leaner build of Marlin that removes all
* workspace offsets, simplifying coordinate transformations, leveling, etc.
*
* - M206 and M428 are disabled.
* - G92 will revert to its behavior from Marlin 1.0.
*/
//#define NO_WORKSPACE_OFFSETS
#endif // CONFIGURATION_ADV_H

View file

@ -263,6 +263,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -618,8 +619,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -756,35 +756,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -808,10 +782,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -820,6 +806,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -840,11 +833,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -868,7 +856,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -624,8 +625,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -762,35 +762,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -814,10 +788,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -826,6 +812,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -846,11 +839,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -874,7 +862,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -234,6 +234,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -595,8 +596,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -733,35 +733,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -785,10 +759,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -797,6 +783,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -817,11 +810,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -845,7 +833,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -603,8 +604,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -741,35 +741,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -793,10 +767,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -805,6 +791,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -825,11 +818,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -853,7 +841,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -705,8 +706,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -844,35 +844,7 @@
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//
// MESH_BED_LEVELING does not yet support DELTA printers.
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -896,10 +868,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
//#define AUTO_BED_LEVELING_LINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
#define AUTO_BED_LEVELING_BILINEAR // Only AUTO_BED_LEVELING_BILINEAR is supported for DELTA bed leveling.
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -908,6 +892,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -928,12 +919,6 @@
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -957,7 +942,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -689,8 +690,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -827,35 +827,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -879,10 +853,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -891,6 +877,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -912,12 +905,6 @@
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -941,7 +928,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -692,8 +693,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -830,35 +830,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -882,10 +856,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -894,6 +880,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -916,11 +909,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -944,7 +932,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -235,6 +235,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -691,8 +692,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -829,35 +829,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -881,10 +855,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
#define AUTO_BED_LEVELING_BILINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -893,6 +879,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -915,11 +908,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -943,7 +931,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -74,6 +74,13 @@
// example_configurations/delta directory.
//
//===========================================================================
//============================= SCARA Printer ===============================
//===========================================================================
// For a Scara printer replace the configuration files with the files in the
// example_configurations/SCARA directory.
//
// @section info
// User-specified version info of this build to display in [Pronterface, etc] terminal window during
@ -224,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -695,8 +703,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -833,35 +840,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -885,10 +866,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
#define AUTO_BED_LEVELING_BILINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -897,6 +890,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -918,12 +918,6 @@
//#define PROBE_Y_FIRST
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
//#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -947,7 +941,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -606,8 +607,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -744,35 +744,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -796,10 +770,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -808,6 +794,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -828,11 +821,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -856,7 +844,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -231,6 +231,7 @@
* 60 : 100k Maker's Tool Works Kapton Bed Thermistor beta=3950
* 66 : 4.7M High Temperature thermistor from Dyze Design
* 70 : the 100K thermistor found in the bq Hephestos 2
* 75 : 100k Generic Silicon Heat Pad typically a NTC 100K MGB18-104F39050L32 thermistor
*
* 1k ohm pullup tables - This is atypical, and requires changing out the 4.7k pullup for 1k.
* (but gives greater accuracy and more stable PID)
@ -599,8 +600,7 @@
//
// To use a separate Z probe, your board must define a Z_MIN_PROBE_PIN.
//
// For a servo-based Z probe, you must set up servo support below, including
// NUM_SERVOS, Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES.
// For a servo-based Z probe, just set Z_ENDSTOP_SERVO_NR and Z_SERVO_ANGLES above.
//
// - RAMPS 1.3/1.4 boards may be able to use the 5V, GND, and Aux4->D32 pin.
// - Use 5V for powered (usu. inductive) sensors.
@ -737,35 +737,9 @@
#define FILAMENT_RUNOUT_SCRIPT "M600"
#endif
//===========================================================================
//============================ Mesh Bed Leveling ============================
//===========================================================================
//#define MESH_BED_LEVELING // Enable mesh bed leveling.
#if ENABLED(MESH_BED_LEVELING)
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
#define MANUAL_PROBE_Z_RANGE 4 // Z Range centered on Z_MIN_POS for LCD Z adjustment
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest Z at Z_MIN_POS
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif // MESH_BED_LEVELING
//===========================================================================
//============================ Auto Bed Leveling ============================
//=============================== Bed Leveling ==============================
//===========================================================================
// @section bedlevel
@ -789,10 +763,22 @@
* Probe several points in a grid.
* You specify the rectangle and the density of sample points.
* The result is a mesh, best for large or uneven beds.
*
* - UBL Unified Bed Leveling
* A comprehensive bed leveling system that combines features and benefits from previous
* bed leveling system. The UBL Bed Leveling System also includes an integrated and easy to use
* Mesh Generation, Mesh Validation and Mesh Editing system.
* - Currently, the UBL Bed Leveling System is only checked out for Cartesian Printers. But with
* that said, it was primarily designed to handle poor quality Delta Printers. If you feel
* adventurous and have a Delta, please post an issue if something doesn't work correctly.
* Initially, you will need to reduce your declared bed size so you have a rectangular area to
* test on.
*/
//#define AUTO_BED_LEVELING_3POINT
//#define AUTO_BED_LEVELING_LINEAR
//#define AUTO_BED_LEVELING_BILINEAR
//#define MESH_BED_LEVELING
//#define AUTO_BED_LEVELING_UBL
/**
* Enable detailed logging of G28, G29, M48, etc.
@ -801,6 +787,13 @@
*/
//#define DEBUG_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
#endif
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Set the number of grid points per dimension.
@ -821,11 +814,6 @@
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Gradually reduce leveling correction until a set height is reached,
// at which point movement will be level to the machine's XY plane.
// The height can be set with M420 Z<height>
#define ENABLE_LEVELING_FADE_HEIGHT
//
// Experimental Subdivision of the grid by Catmull-Rom method.
// Synthesizes intermediate points to produce a more detailed mesh.
@ -849,7 +837,42 @@
#define ABL_PROBE_PT_3_X 170
#define ABL_PROBE_PT_3_Y 20
#endif
#elif ENABLED(MESH_BED_LEVELING)
//===========================================================================
//=================================== Mesh ==================================
//===========================================================================
#define MANUAL_PROBE_Z_RANGE 4 // Z after Home, bed somewhere below but above 0.0.
#define MESH_INSET 10 // Mesh inset margin on print area
#define MESH_NUM_X_POINTS 3 // Don't use more than 7 points per axis, implementation limited.
#define MESH_NUM_Y_POINTS 3
//#define MESH_G28_REST_ORIGIN // After homing all axes ('G28' or 'G28 XYZ') rest at origin [0,0,0]
//#define MANUAL_BED_LEVELING // Add display menu option for bed leveling.
#if ENABLED(MANUAL_BED_LEVELING)
#define MBL_Z_STEP 0.025 // Step size while manually probing Z axis.
#endif // MANUAL_BED_LEVELING
#elif ENABLED(AUTO_BED_LEVELING_UBL)
//===========================================================================
//========================= Unified Bed Leveling ============================
//===========================================================================
#define UBL_MESH_INSET 1 // Mesh inset margin on print area
#define UBL_MESH_NUM_X_POINTS 10 // Don't use more than 15 points per axis, implementation limited.
#define UBL_MESH_NUM_Y_POINTS 10
#define UBL_PROBE_PT_1_X 39 // These set the probe locations for when UBL does a 3-Point leveling
#define UBL_PROBE_PT_1_Y 180 // of the mesh.
#define UBL_PROBE_PT_2_X 39
#define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20
#endif // BED_LEVELING
/**
* Commands to execute at the end of G29 probing.

View file

@ -0,0 +1,47 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(M100_FREE_MEMORY_WATCHER)
#include "hex_print_routines.h"
void prt_hex_nibble(uint8_t n) {
if (n <= 9)
SERIAL_ECHO(n);
else
SERIAL_ECHO((char)('A' + n - 10));
delay(3);
}
void prt_hex_byte(uint8_t b) {
prt_hex_nibble((b & 0xF0) >> 4);
prt_hex_nibble(b & 0x0F);
}
void prt_hex_word(uint16_t w) {
prt_hex_byte((w & 0xFF00) >> 8);
prt_hex_byte(w & 0x0FF);
}
#endif // AUTO_BED_LEVELING_UBL || M100_FREE_MEMORY_WATCHER

View file

@ -0,0 +1,33 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef HEX_PRINT_ROUTINES_H
#define HEX_PRINT_ROUTINES_H
//
// 3 support routines to print hex numbers. We can print a nibble, byte and word
//
void prt_hex_nibble(uint8_t n);
void prt_hex_byte(uint8_t b);
void prt_hex_word(uint16_t w);
#endif // HEX_PRINT_ROUTINES_H

View file

@ -120,7 +120,7 @@ void PrintCounter::showStats() {
#if ENABLED(DEBUG_PRINTCOUNTER)
SERIAL_ECHOPGM(" (");
SERIAL_ECHO(this->data.printTime);
SERIAL_ECHOPGM(")");
SERIAL_CHAR(')');
#endif
elapsed = this->data.longestPrint;
@ -132,7 +132,7 @@ void PrintCounter::showStats() {
#if ENABLED(DEBUG_PRINTCOUNTER)
SERIAL_ECHOPGM(" (");
SERIAL_ECHO(this->data.longestPrint);
SERIAL_ECHOPGM(")");
SERIAL_CHAR(')');
#endif
SERIAL_EOL;

View file

@ -24,6 +24,8 @@
* temperature.cpp - temperature control
*/
#include "Marlin.h"
#include "ultralcd.h"
#include "temperature.h"
@ -666,6 +668,17 @@ float Temperature::get_pid_output(int e) {
* - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value
*/
/**
* The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
* compile error.
* thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
*
* This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
*
* The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
*/
//void Temperature::manage_heater() __attribute__((__optimize__("O2")));
void Temperature::manage_heater() {
if (!temp_meas_ready) return;

View file

@ -241,7 +241,8 @@ class Temperature {
/**
* Call periodically to manage heaters
*/
static void manage_heater();
//static void manage_heater(); // changed to address compiler error
static void manage_heater() __attribute__((__optimize__("O2")));
/**
* Preheating hotends

View file

@ -65,6 +65,8 @@
#define THERMISTOR_NAME "Makers Tool"
#elif THERMISTOR_ID == 70
#define THERMISTOR_NAME "Hephestos 2"
#elif THERMISTOR_ID == 75
#define THERMISTOR_NAME "MGB18"
// Modified thermistors
#elif THERMISTOR_ID == 51

View file

@ -0,0 +1,69 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
// Generic Silicon Heat Pad with NTC 100K thermistor ( Beta 25/50 3950K)
//
// Many of the generic silicon heat pads use the MGB18-104F39050L32 Thermistor It is used for various
// wattage and voltage heat pads. This table is correct if this part is used. It has been
// optimized to provide good granularity around the 60 C. and 110 C. which corrisponds to bed temperatures
// for PLA and ABS. If you are printing higher temperature filament such as nylon you can uncomment
// the higher earlier entries in the table to give better accuracy. But for speed reasons, if these
// temperatures are not going to be used, it is better to leave them commented out.
const short temptable_75[][2] PROGMEM = { // Generic Silicon Heat Pad with NTC 100K MGB18-104F39050L32 thermistor
{ (short) ( 111.06 * OVERSAMPLENR ), 200 }, // v=0.542 r=571.747 res=0.501 degC/count
// { (short) ( 174.87 * OVERSAMPLENR ), 175 }, // v=0.854 r=967.950 res=0.311 degC/count These values are valid. But they serve no
// { (short) ( 191.64 * OVERSAMPLENR ), 170 }, // v=0.936 r=1082.139 res=0.284 degC/count purpose. It is better to delete them so
// { (short) ( 209.99 * OVERSAMPLENR ), 165 }, // v=1.025 r=1212.472 res=0.260 degC/count the search is quicker and get to the meaningful
// { (short) ( 230.02 * OVERSAMPLENR ), 160 }, // v=1.123 r=1361.590 res=0.239 degC/count part of the table sooner.
// { (short) ( 251.80 * OVERSAMPLENR ), 155 }, // v=1.230 r=1532.621 res=0.220 degC/count
{ (short) ( 275.43 * OVERSAMPLENR ), 150 }, // v=1.345 r=1729.283 res=0.203 degC/count
// { (short) ( 300.92 * OVERSAMPLENR ), 145 }, // v=1.469 r=1956.004 res=0.189 degC/coun
{ (short) ( 328.32 * OVERSAMPLENR ), 140 }, // v=1.603 r=2218.081 res=0.176 degC/count
{ (short) ( 388.65 * OVERSAMPLENR ), 130 }, // v=1.898 r=2874.980 res=0.156 degC/count
{ (short) ( 421.39 * OVERSAMPLENR ), 125 }, // v=2.058 r=3286.644 res=0.149 degC/count
{ (short) ( 455.65 * OVERSAMPLENR ), 120 }, // v=2.225 r=3768.002 res=0.143 degC/count
{ (short) ( 491.17 * OVERSAMPLENR ), 115 }, // v=2.398 r=4332.590 res=0.139 degC/count
{ (short) ( 527.68 * OVERSAMPLENR ), 110 }, // v=2.577 r=4996.905 res=0.136 degC/count
{ (short) ( 564.81 * OVERSAMPLENR ), 105 }, // v=2.758 r=5781.120 res=0.134 degC/count
{ (short) ( 602.19 * OVERSAMPLENR ), 100 }, // v=2.940 r=6710.000 res=0.134 degC/count
{ (short) ( 676.03 * OVERSAMPLENR ), 90 }, // v=3.301 r=9131.018 res=0.138 degC/count
{ (short) ( 745.85 * OVERSAMPLENR ), 80 }, // v=3.642 r=12602.693 res=0.150 degC/count
{ (short) ( 778.31 * OVERSAMPLENR ), 75 }, // v=3.800 r=14889.001 res=0.159 degC/count
{ (short) ( 808.75 * OVERSAMPLENR ), 70 }, // v=3.949 r=17658.700 res=0.171 degC/count
{ (short) ( 836.94 * OVERSAMPLENR ), 65 }, // v=4.087 r=21028.040 res=0.185 degC/count
{ (short) ( 862.74 * OVERSAMPLENR ), 60 }, // v=4.213 r=25144.568 res=0.204 degC/count
{ (short) ( 886.08 * OVERSAMPLENR ), 55 }, // v=4.327 r=30196.449 res=0.227 degC/count
{ (short) ( 906.97 * OVERSAMPLENR ), 50 }, // v=4.429 r=36424.838 res=0.255 degC/count
{ (short) ( 941.65 * OVERSAMPLENR ), 40 }, // v=4.598 r=53745.337 res=0.333 degC/count
{ (short) ( 967.76 * OVERSAMPLENR ), 30 }, // v=4.725 r=80880.630 res=0.452 degC/count
{ (short) ( 978.03 * OVERSAMPLENR ), 25 }, // v=4.776 r=100000.000 res=0.535 degC/count
{ (short) ( 981.68 * OVERSAMPLENR ), 23 }, // v=4.793 r=109024.395 res=0.573 degC/count
{ (short) ( 983.41 * OVERSAMPLENR ), 22 }, // v=4.802 r=113875.430 res=0.594 degC/count
{ (short) ( 985.08 * OVERSAMPLENR ), 21 }, // v=4.810 r=118968.955 res=0.616 degC/count
{ (short) ( 986.70 * OVERSAMPLENR ), 20 }, // v=4.818 r=124318.354 res=0.638 degC/count
{ (short) ( 993.94 * OVERSAMPLENR ), 15 }, // v=4.853 r=155431.302 res=0.768 degC/count
{ (short) ( 999.96 * OVERSAMPLENR ), 10 }, // v=4.883 r=195480.023 res=0.934 degC/count
{ (short) (1008.95 * OVERSAMPLENR ), 0 } // v=4.926 r=314997.575 res=1.418 degC/count
};

View file

@ -103,6 +103,9 @@
#if ANY_THERMISTOR_IS(70) // bqh2 stock thermistor
#include "thermistortable_70.h"
#endif
#if ANY_THERMISTOR_IS(75) // Many of the generic silicon heat pads use the MGB18-104F39050L32 Thermistor
#include "thermistortable_75.h"
#endif
#if ANY_THERMISTOR_IS(110) // Pt100 with 1k0 pullup
#include "thermistortable_110.h"
#endif

View file

@ -30,6 +30,8 @@
#include "configuration_store.h"
#include "utility.h"
extern float zprobe_zoffset;
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
#include "buzzer.h"
#endif
@ -121,6 +123,11 @@ uint16_t max_display_update_time = 0;
bool encoderRateMultiplierEnabled;
int32_t lastEncoderMovementMillis;
#if ENABLED(AUTO_BED_LEVELING_UBL)
extern int UBL_has_control_of_LCD_Panel;
extern int G29_encoderDiff;
#endif
#if HAS_POWER_SWITCH
extern bool powersupply;
#endif
@ -801,6 +808,89 @@ void kill_screen(const char* lcd_msg) {
#endif //BABYSTEPPING
#if ENABLED(AUTO_BED_LEVELING_UBL)
float Mesh_Edit_Value, Mesh_Edit_Accumulator; // We round Mesh_Edit_Value to 2.5 decimal places. So we keep a
// seperate value that doesn't lose precision.
static int loop_cnt=0, last_seen_bits;
static void _lcd_mesh_fine_tune( const char* msg) {
static unsigned long last_click=0;
int last_digit, movement;
long int rounded;
defer_return_to_status = true;
if (encoderPosition) { // If moving the Encoder wheel very slowly, we just go
if ( (millis() - last_click) > 500L) { // up or down by 1 position
if ( ((int32_t)encoderPosition) > 0 ) {
encoderPosition = 1;
}
else {
encoderPosition = (uint32_t) -1;
}
}
last_click = millis();
Mesh_Edit_Accumulator += ( (float) ((int32_t)encoderPosition)) * .005 / 2.0 ;
Mesh_Edit_Value = Mesh_Edit_Accumulator;
encoderPosition = 0;
lcdDrawUpdate = LCDVIEW_REDRAW_NOW;
rounded = (long int) (Mesh_Edit_Value * 1000.0);
last_digit = rounded % 5L; //10L;
rounded = rounded - last_digit;
last_digit = rounded % 5L; //10L;
Mesh_Edit_Value = ((float) rounded) / 1000.0;
}
if (lcdDrawUpdate) {
lcd_implementation_drawedit(msg, ftostr43sign( (float) Mesh_Edit_Value ));
}
if ( !UBL_has_control_of_LCD_Panel && LCD_CLICKED ) {
UBL_has_control_of_LCD_Panel=1; // We need to lock the normal LCD Panel System outbecause G29 (and G26) are looking for
lcd_return_to_status(); // long presses of the Encoder Wheel and the LCD System goes spastic when that happens.
// We will give back control from those routines when the switch is debounced.
}
}
void _lcd_mesh_edit() {
_lcd_mesh_fine_tune( PSTR("Mesh Editor: "));
}
float lcd_mesh_edit() {
lcd_goto_screen(_lcd_mesh_edit);
return Mesh_Edit_Value;
}
void lcd_mesh_edit_setup(float inital) {
Mesh_Edit_Value = inital;
Mesh_Edit_Accumulator = inital;
lcd_goto_screen(_lcd_mesh_edit);
return ;
}
void _lcd_z_offset_edit() {
_lcd_mesh_fine_tune( PSTR("Z-Offset: "));
}
float lcd_z_offset_edit() {
lcd_goto_screen(_lcd_z_offset_edit);
return Mesh_Edit_Value;
}
void lcd_z_offset_edit_setup(float inital) {
Mesh_Edit_Value = inital;
Mesh_Edit_Accumulator = inital;
lcd_goto_screen(_lcd_z_offset_edit);
return ;
}
#endif // AUTO_BED_LEVELING_UBL
/**
* Watch temperature callbacks
*/
@ -1307,7 +1397,11 @@ KeepDrawing:
void _lcd_level_bed_moving() {
if (lcdDrawUpdate) {
char msg[10];
sprintf_P(msg, PSTR("%i / %u"), (int)(manual_probe_index + 1), (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS));
#if ENABLED(MESH_BED_LEVELING)
sprintf_P(msg, PSTR("%i / %u"), (int)(manual_probe_index + 1), (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS));
#elif ENABLED(AUTO_BED_LEVELING_UBL)
sprintf_P(msg, PSTR("%i / %u"), (int)(manual_probe_index + 1), (UBL_MESH_NUM_X_POINTS) * (UBL_MESH_NUM_Y_POINTS));
#endif
lcd_implementation_drawedit(PSTR(MSG_LEVEL_BED_NEXT_POINT), msg);
}
@ -3110,8 +3204,14 @@ void lcd_update() {
lcd_buttons_update();
#if ENABLED(AUTO_BED_LEVELING_UBL)
const bool UBL_CONDITION = !UBL_has_control_of_LCD_Panel;
#else
constexpr bool UBL_CONDITION = true;
#endif
// If the action button is pressed...
if (LCD_CLICKED) {
if (UBL_CONDITION && LCD_CLICKED) {
if (!wait_for_unclick) { // If not waiting for a debounce release:
wait_for_unclick = true; // Set debounce flag to ignore continous clicks
lcd_clicked = !wait_for_user; // Keep the click if not waiting for a user-click
@ -3520,8 +3620,15 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
case encrot2: ENCODER_SPIN(encrot1, encrot3); break;
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (UBL_has_control_of_LCD_Panel) {
G29_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// wheel has not turned.
}
#endif
lastEncoderBits = enc;
}
lastEncoderBits = enc;
}
#if (ENABLED(LCD_I2C_TYPE_MCP23017) || ENABLED(LCD_I2C_TYPE_MCP23008)) && ENABLED(DETECT_DEVICE)
@ -3530,6 +3637,19 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
bool lcd_detected() { return true; }
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
void chirp_at_user() {
#if ENABLED(LCD_USE_I2C_BUZZER)
lcd.buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#elif PIN_EXISTS(BEEPER)
buzzer.tone(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#endif
}
bool G29_lcd_clicked() { return LCD_CLICKED; }
#endif
#endif // ULTIPANEL
#endif // ULTRA_LCD

View file

@ -320,7 +320,7 @@ void lcd_kill_screen() {
lcd_printPGM(PSTR(MSG_PLEASE_RESET));
}
static void lcd_implementation_clear() { } // Automatically cleared by Picture Loop
void lcd_implementation_clear() { } // Automatically cleared by Picture Loop
//
// Status Screen

View file

@ -378,7 +378,7 @@ static void lcd_implementation_init(
lcd.clear();
}
static void lcd_implementation_clear() { lcd.clear(); }
void lcd_implementation_clear() { lcd.clear(); }
/* Arduino < 1.0.0 is missing a function to print PROGMEM strings, so we need to implement our own */
void lcd_printPGM(const char *str) {