Corrected temp variables.
This commit is contained in:
parent
04d3b5537f
commit
2e8e8878e5
5 changed files with 2052 additions and 2050 deletions
|
@ -1,245 +1,245 @@
|
||||||
#ifndef CONFIGURATION_H
|
#ifndef CONFIGURATION_H
|
||||||
#define CONFIGURATION_H
|
#define CONFIGURATION_H
|
||||||
|
|
||||||
//#define DEBUG_STEPS
|
//#define DEBUG_STEPS
|
||||||
|
|
||||||
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
|
// BASIC SETTINGS: select your board type, thermistor type, axis scaling, and endstop configuration
|
||||||
|
|
||||||
//// The following define selects which electronics board you have. Please choose the one that matches your setup
|
//// The following define selects which electronics board you have. Please choose the one that matches your setup
|
||||||
// MEGA/RAMPS up to 1.2 = 3,
|
// MEGA/RAMPS up to 1.2 = 3,
|
||||||
// RAMPS 1.3 = 33
|
// RAMPS 1.3 = 33
|
||||||
// Gen6 = 5,
|
// Gen6 = 5,
|
||||||
// Sanguinololu 1.2 and above = 62
|
// Sanguinololu 1.2 and above = 62
|
||||||
// Ultimaker = 7,
|
// Ultimaker = 7,
|
||||||
#define MOTHERBOARD 7
|
#define MOTHERBOARD 7
|
||||||
//#define MOTHERBOARD 5
|
//#define MOTHERBOARD 5
|
||||||
|
|
||||||
|
|
||||||
//// Thermistor settings:
|
//// Thermistor settings:
|
||||||
// 1 is 100k thermistor
|
// 1 is 100k thermistor
|
||||||
// 2 is 200k thermistor
|
// 2 is 200k thermistor
|
||||||
// 3 is mendel-parts thermistor
|
// 3 is mendel-parts thermistor
|
||||||
// 4 is 10k thermistor
|
// 4 is 10k thermistor
|
||||||
// 5 is ParCan supplied 104GT-2 100K
|
// 5 is ParCan supplied 104GT-2 100K
|
||||||
// 6 is EPCOS 100k
|
// 6 is EPCOS 100k
|
||||||
// 7 is 100k Honeywell thermistor 135-104LAG-J01
|
// 7 is 100k Honeywell thermistor 135-104LAG-J01
|
||||||
#define THERMISTORHEATER_1 3
|
#define THERMISTORHEATER_1 3
|
||||||
#define THERMISTORHEATER_2 3
|
#define THERMISTORHEATER_2 3
|
||||||
#define THERMISTORBED 3
|
#define THERMISTORBED 3
|
||||||
|
|
||||||
//#define HEATER_0_USES_THERMISTOR
|
//#define HEATER_0_USES_THERMISTOR
|
||||||
//#define HEATER_1_USES_THERMISTOR
|
//#define HEATER_1_USES_THERMISTOR
|
||||||
#define HEATER_0_USES_AD595
|
#define HEATER_0_USES_AD595
|
||||||
//#define HEATER_1_USES_AD595
|
//#define HEATER_1_USES_AD595
|
||||||
|
|
||||||
// Select one of these only to define how the bed temp is read.
|
// Select one of these only to define how the bed temp is read.
|
||||||
//#define BED_USES_THERMISTOR
|
//#define BED_USES_THERMISTOR
|
||||||
//#define BED_USES_AD595
|
//#define BED_USES_AD595
|
||||||
|
|
||||||
#define HEATER_CHECK_INTERVAL 50
|
#define HEATER_CHECK_INTERVAL 50
|
||||||
#define BED_CHECK_INTERVAL 5000
|
#define BED_CHECK_INTERVAL 5000
|
||||||
|
|
||||||
|
|
||||||
//// Endstop Settings
|
//// Endstop Settings
|
||||||
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
|
||||||
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
|
// The pullups are needed if you directly connect a mechanical endswitch between the signal and ground pins.
|
||||||
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
const bool ENDSTOPS_INVERTING = true; // set to true to invert the logic of the endstops.
|
||||||
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
// For optos H21LOB set to true, for Mendel-Parts newer optos TCST2103 set to false
|
||||||
|
|
||||||
// This determines the communication speed of the printer
|
// This determines the communication speed of the printer
|
||||||
#define BAUDRATE 250000
|
#define BAUDRATE 250000
|
||||||
//#define BAUDRATE 115200
|
//#define BAUDRATE 115200
|
||||||
//#define BAUDRATE 230400
|
//#define BAUDRATE 230400
|
||||||
|
|
||||||
// Comment out (using // at the start of the line) to disable SD support:
|
// Comment out (using // at the start of the line) to disable SD support:
|
||||||
|
|
||||||
// #define ULTRA_LCD //any lcd
|
// #define ULTRA_LCD //any lcd
|
||||||
|
|
||||||
#define ULTIPANEL
|
#define ULTIPANEL
|
||||||
#define ULTIPANEL
|
#define ULTIPANEL
|
||||||
#ifdef ULTIPANEL
|
#ifdef ULTIPANEL
|
||||||
//#define NEWPANEL //enable this if you have a click-encoder panel
|
//#define NEWPANEL //enable this if you have a click-encoder panel
|
||||||
#define SDSUPPORT
|
#define SDSUPPORT
|
||||||
#define ULTRA_LCD
|
#define ULTRA_LCD
|
||||||
#define LCD_WIDTH 20
|
#define LCD_WIDTH 20
|
||||||
#define LCD_HEIGHT 4
|
#define LCD_HEIGHT 4
|
||||||
#else //no panel but just lcd
|
#else //no panel but just lcd
|
||||||
#ifdef ULTRA_LCD
|
#ifdef ULTRA_LCD
|
||||||
#define LCD_WIDTH 16
|
#define LCD_WIDTH 16
|
||||||
#define LCD_HEIGHT 2
|
#define LCD_HEIGHT 2
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
|
//#define SDSUPPORT // Enable SD Card Support in Hardware Console
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
const int dropsegments=5; //everything with this number of steps will be ignored as move
|
const int dropsegments=5; //everything with this number of steps will be ignored as move
|
||||||
|
|
||||||
//// ADVANCED SETTINGS - to tweak parameters
|
//// ADVANCED SETTINGS - to tweak parameters
|
||||||
|
|
||||||
#include "thermistortables.h"
|
#include "thermistortables.h"
|
||||||
|
|
||||||
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
|
||||||
#define X_ENABLE_ON 0
|
#define X_ENABLE_ON 0
|
||||||
#define Y_ENABLE_ON 0
|
#define Y_ENABLE_ON 0
|
||||||
#define Z_ENABLE_ON 0
|
#define Z_ENABLE_ON 0
|
||||||
#define E_ENABLE_ON 0
|
#define E_ENABLE_ON 0
|
||||||
|
|
||||||
// Disables axis when it's not being used.
|
// Disables axis when it's not being used.
|
||||||
#define DISABLE_X false
|
#define DISABLE_X false
|
||||||
#define DISABLE_Y false
|
#define DISABLE_Y false
|
||||||
#define DISABLE_Z false
|
#define DISABLE_Z false
|
||||||
#define DISABLE_E false
|
#define DISABLE_E false
|
||||||
|
|
||||||
// Inverting axis direction
|
// Inverting axis direction
|
||||||
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
|
||||||
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false
|
||||||
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
|
||||||
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
#define INVERT_E_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
|
||||||
|
|
||||||
//// ENDSTOP SETTINGS:
|
//// ENDSTOP SETTINGS:
|
||||||
// Sets direction of endstops when homing; 1=MAX, -1=MIN
|
// Sets direction of endstops when homing; 1=MAX, -1=MIN
|
||||||
#define X_HOME_DIR -1
|
#define X_HOME_DIR -1
|
||||||
#define Y_HOME_DIR -1
|
#define Y_HOME_DIR -1
|
||||||
#define Z_HOME_DIR -1
|
#define Z_HOME_DIR -1
|
||||||
|
|
||||||
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
|
#define min_software_endstops false //If true, axis won't move to coordinates less than zero.
|
||||||
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
|
#define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
|
||||||
#define X_MAX_LENGTH 210
|
#define X_MAX_LENGTH 210
|
||||||
#define Y_MAX_LENGTH 210
|
#define Y_MAX_LENGTH 210
|
||||||
#define Z_MAX_LENGTH 210
|
#define Z_MAX_LENGTH 210
|
||||||
|
|
||||||
//// MOVEMENT SETTINGS
|
//// MOVEMENT SETTINGS
|
||||||
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
#define NUM_AXIS 4 // The axis order in all axis related arrays is X, Y, Z, E
|
||||||
//note: on bernhards ultimaker 200 200 12 are working well.
|
//note: on bernhards ultimaker 200 200 12 are working well.
|
||||||
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
|
#define HOMING_FEEDRATE {50*60, 50*60, 12*60, 0} // set the homing speeds
|
||||||
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
|
//the followint checks if an extrusion is existent in the move. if _not_, the speed of the move is set to the maximum speed.
|
||||||
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
|
//!!!!!!Use only if you know that your printer works at the maximum declared speeds.
|
||||||
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
|
// works around the skeinforge cool-bug. There all moves are slowed to have a minimum layer time. However slow travel moves= ooze
|
||||||
#define TRAVELING_AT_MAXSPEED
|
#define TRAVELING_AT_MAXSPEED
|
||||||
#define AXIS_RELATIVE_MODES {false, false, false, false}
|
#define AXIS_RELATIVE_MODES {false, false, false, false}
|
||||||
|
|
||||||
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
|
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
|
||||||
|
|
||||||
// default settings
|
// default settings
|
||||||
|
|
||||||
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
|
#define DEFAULT_AXIS_STEPS_PER_UNIT {79.87220447,79.87220447,200*8/3,14} // default steps per unit for ultimaker
|
||||||
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
|
#define DEFAULT_MAX_FEEDRATE {160*60, 160*60, 10*60, 500000}
|
||||||
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
#define DEFAULT_MAX_ACCELERATION {9000,9000,150,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for skeinforge 40+, for older versions raise them a lot.
|
||||||
|
|
||||||
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E max acceleration in mm/s^2 for printing moves
|
||||||
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
|
#define DEFAULT_RETRACT_ACCELERATION 7000 // X, Y, Z and E max acceleration in mm/s^2 for r retracts
|
||||||
|
|
||||||
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
|
#define DEFAULT_MINIMUMFEEDRATE 10 // minimum feedrate
|
||||||
#define DEFAULT_MINTRAVELFEEDRATE 10
|
#define DEFAULT_MINTRAVELFEEDRATE 10
|
||||||
|
|
||||||
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
// minimum time in microseconds that a movement needs to take if the buffer is emptied. Increase this number if you see blobs while printing high speed & high detail. It will slowdown on the detailed stuff.
|
||||||
#define DEFAULT_MINSEGMENTTIME 20000
|
#define DEFAULT_MINSEGMENTTIME 20000
|
||||||
#define DEFAULT_XYJERK 30.0*60
|
#define DEFAULT_XYJERK 30.0*60
|
||||||
#define DEFAULT_ZJERK 10.0*60
|
#define DEFAULT_ZJERK 10.0*60
|
||||||
|
|
||||||
|
|
||||||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
||||||
//this enables the watchdog interrupt.
|
//this enables the watchdog interrupt.
|
||||||
#define USE_WATCHDOG
|
#define USE_WATCHDOG
|
||||||
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
//you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
||||||
#define RESET_MANUAL
|
#define RESET_MANUAL
|
||||||
|
|
||||||
#define WATCHDOG_TIMEOUT 4
|
#define WATCHDOG_TIMEOUT 4
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
//// Experimental watchdog and minimal temp
|
//// Experimental watchdog and minimal temp
|
||||||
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
// The watchdog waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
||||||
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
|
// If the temperature has not increased at the end of that period, the target temperature is set to zero. It can be reset with another M104/M109
|
||||||
//#define WATCHPERIOD 5000 //5 seconds
|
//#define WATCHPERIOD 5000 //5 seconds
|
||||||
|
|
||||||
// Actual temperature must be close to target for this long before M109 returns success
|
// Actual temperature must be close to target for this long before M109 returns success
|
||||||
//#define TEMP_RESIDENCY_TIME 20 // (seconds)
|
//#define TEMP_RESIDENCY_TIME 20 // (seconds)
|
||||||
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
|
//#define TEMP_HYSTERESIS 5 // (C°) range of +/- temperatures considered "close" to the target one
|
||||||
|
|
||||||
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
//// The minimal temperature defines the temperature below which the heater will not be enabled
|
||||||
#define HEATER_0_MINTEMP 5
|
#define HEATER_0_MINTEMP 5
|
||||||
//#define HEATER_1_MINTEMP 5
|
//#define HEATER_1_MINTEMP 5
|
||||||
//#define BED_MINTEMP 5
|
//#define BED_MINTEMP 5
|
||||||
|
|
||||||
|
|
||||||
// When temperature exceeds max temp, your heater will be switched off.
|
// When temperature exceeds max temp, your heater will be switched off.
|
||||||
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
|
// This feature exists to protect your hotend from overheating accidentally, but *NOT* from thermistor short/failure!
|
||||||
// You should use MINTEMP for thermistor short/failure protection.
|
// You should use MINTEMP for thermistor short/failure protection.
|
||||||
#define HEATER_0_MAXTEMP 275
|
#define HEATER_0_MAXTEMP 275
|
||||||
//#define_HEATER_1_MAXTEMP 275
|
//#define_HEATER_1_MAXTEMP 275
|
||||||
//#define BED_MAXTEMP 150
|
//#define BED_MAXTEMP 150
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#define PIDTEMP
|
#define PIDTEMP
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
/// PID settings:
|
/// PID settings:
|
||||||
// Uncomment the following line to enable PID support.
|
// Uncomment the following line to enable PID support.
|
||||||
//#define SMOOTHING
|
//#define SMOOTHING
|
||||||
//#define SMOOTHFACTOR 5.0
|
//#define SMOOTHFACTOR 5.0
|
||||||
//float current_raw_average=0;
|
//float current_raw_average=0;
|
||||||
#define K1 0.95 //smoothing of the PID
|
#define K1 0.95 //smoothing of the PID
|
||||||
//#define PID_DEBUG // Sends debug data to the serial port.
|
//#define PID_DEBUG // Sends debug data to the serial port.
|
||||||
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
//#define PID_OPENLOOP 1 // Puts PID in open loop. M104 sets the output power in %
|
||||||
#define PID_MAX 255 // limits current to nozzle
|
#define PID_MAX 255 // limits current to nozzle
|
||||||
#define PID_INTEGRAL_DRIVE_MAX 255
|
#define PID_INTEGRAL_DRIVE_MAX 255
|
||||||
#define PID_dT 0.1
|
#define PID_dT 0.1
|
||||||
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
|
//machine with red silicon: 1950:45 second ; with fan fully blowin 3000:47
|
||||||
|
|
||||||
#define PID_CRITIAL_GAIN 3000
|
#define PID_CRITIAL_GAIN 3000
|
||||||
#define PID_SWING_AT_CRITIAL 45 //seconds
|
#define PID_SWING_AT_CRITIAL 45 //seconds
|
||||||
#define PIDIADD 5
|
#define PIDIADD 5
|
||||||
/*
|
/*
|
||||||
//PID according to Ziegler-Nichols method
|
//PID according to Ziegler-Nichols method
|
||||||
float Kp = 0.6*PID_CRITIAL_GAIN;
|
float Kp = 0.6*PID_CRITIAL_GAIN;
|
||||||
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
|
float Ki =PIDIADD+2*Kp/PID_SWING_AT_CRITIAL*PID_dT;
|
||||||
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
|
float Kd = Kp*PID_SWING_AT_CRITIAL/8./PID_dT;
|
||||||
*/
|
*/
|
||||||
//PI according to Ziegler-Nichols method
|
//PI according to Ziegler-Nichols method
|
||||||
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
|
#define DEFAULT_Kp (PID_CRITIAL_GAIN/2.2)
|
||||||
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
|
#define DEFAULT_Ki (1.2*Kp/PID_SWING_AT_CRITIAL*PID_dT)
|
||||||
#define DEFAULT_Kd (0)
|
#define DEFAULT_Kd (0)
|
||||||
|
|
||||||
#define PID_ADD_EXTRUSION_RATE
|
#define PID_ADD_EXTRUSION_RATE
|
||||||
#ifdef PID_ADD_EXTRUSION_RATE
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||||||
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
|
#define DEFAULT_Kc (5) //heatingpower=Kc*(e_speed)
|
||||||
#endif
|
#endif
|
||||||
#endif // PIDTEMP
|
#endif // PIDTEMP
|
||||||
|
|
||||||
// extruder advance constant (s2/mm3)
|
// extruder advance constant (s2/mm3)
|
||||||
//
|
//
|
||||||
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
|
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
|
||||||
//
|
//
|
||||||
// hooke's law says: force = k * distance
|
// hooke's law says: force = k * distance
|
||||||
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
|
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
|
||||||
// so: v ^ 2 is proportional to number of steps we advance the extruder
|
// so: v ^ 2 is proportional to number of steps we advance the extruder
|
||||||
//#define ADVANCE
|
//#define ADVANCE
|
||||||
|
|
||||||
#ifdef ADVANCE
|
#ifdef ADVANCE
|
||||||
#define EXTRUDER_ADVANCE_K .3
|
#define EXTRUDER_ADVANCE_K .3
|
||||||
|
|
||||||
#define D_FILAMENT 1.7
|
#define D_FILAMENT 1.7
|
||||||
#define STEPS_MM_E 65
|
#define STEPS_MM_E 65
|
||||||
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
||||||
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
||||||
|
|
||||||
#endif // ADVANCE
|
#endif // ADVANCE
|
||||||
|
|
||||||
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
|
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, e.g. 8,16,32
|
||||||
#if defined SDSUPPORT
|
#if defined SDSUPPORT
|
||||||
// The number of linear motions that can be in the plan at any give time.
|
// The number of linear motions that can be in the plan at any give time.
|
||||||
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
||||||
#else
|
#else
|
||||||
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
2470
Marlin/Marlin.pde
2470
Marlin/Marlin.pde
|
@ -1,1235 +1,1235 @@
|
||||||
/*
|
/*
|
||||||
Reprap firmware based on Sprinter and grbl.
|
Reprap firmware based on Sprinter and grbl.
|
||||||
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
This program is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
This program is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/*
|
||||||
This firmware is a mashup between Sprinter and grbl.
|
This firmware is a mashup between Sprinter and grbl.
|
||||||
(https://github.com/kliment/Sprinter)
|
(https://github.com/kliment/Sprinter)
|
||||||
(https://github.com/simen/grbl/tree)
|
(https://github.com/simen/grbl/tree)
|
||||||
|
|
||||||
It has preliminary support for Matthew Roberts advance algorithm
|
It has preliminary support for Matthew Roberts advance algorithm
|
||||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "EEPROMwrite.h"
|
#include "EEPROMwrite.h"
|
||||||
#include "fastio.h"
|
#include "fastio.h"
|
||||||
#include "Configuration.h"
|
#include "Configuration.h"
|
||||||
#include "pins.h"
|
#include "pins.h"
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
#include "ultralcd.h"
|
#include "ultralcd.h"
|
||||||
#include "streaming.h"
|
#include "streaming.h"
|
||||||
#include "planner.h"
|
#include "planner.h"
|
||||||
#include "stepper.h"
|
#include "stepper.h"
|
||||||
#include "temperature.h"
|
#include "temperature.h"
|
||||||
|
|
||||||
#ifdef SIMPLE_LCD
|
#ifdef SIMPLE_LCD
|
||||||
#include "Simplelcd.h"
|
#include "Simplelcd.h"
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
char version_string[] = "1.0.0 Alpha 1";
|
char version_string[] = "1.0.0 Alpha 1";
|
||||||
|
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
#include "SdFat.h"
|
#include "SdFat.h"
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
|
|
||||||
|
|
||||||
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
|
// look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
|
||||||
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
// http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
||||||
|
|
||||||
//Implemented Codes
|
//Implemented Codes
|
||||||
//-------------------
|
//-------------------
|
||||||
// G0 -> G1
|
// G0 -> G1
|
||||||
// G1 - Coordinated Movement X Y Z E
|
// G1 - Coordinated Movement X Y Z E
|
||||||
// G2 - CW ARC
|
// G2 - CW ARC
|
||||||
// G3 - CCW ARC
|
// G3 - CCW ARC
|
||||||
// G4 - Dwell S<seconds> or P<milliseconds>
|
// G4 - Dwell S<seconds> or P<milliseconds>
|
||||||
// G28 - Home all Axis
|
// G28 - Home all Axis
|
||||||
// G90 - Use Absolute Coordinates
|
// G90 - Use Absolute Coordinates
|
||||||
// G91 - Use Relative Coordinates
|
// G91 - Use Relative Coordinates
|
||||||
// G92 - Set current position to cordinates given
|
// G92 - Set current position to cordinates given
|
||||||
|
|
||||||
//RepRap M Codes
|
//RepRap M Codes
|
||||||
// M104 - Set extruder target temp
|
// M104 - Set extruder target temp
|
||||||
// M105 - Read current temp
|
// M105 - Read current temp
|
||||||
// M106 - Fan on
|
// M106 - Fan on
|
||||||
// M107 - Fan off
|
// M107 - Fan off
|
||||||
// M109 - Wait for extruder current temp to reach target temp.
|
// M109 - Wait for extruder current temp to reach target temp.
|
||||||
// M114 - Display current position
|
// M114 - Display current position
|
||||||
|
|
||||||
//Custom M Codes
|
//Custom M Codes
|
||||||
// M20 - List SD card
|
// M20 - List SD card
|
||||||
// M21 - Init SD card
|
// M21 - Init SD card
|
||||||
// M22 - Release SD card
|
// M22 - Release SD card
|
||||||
// M23 - Select SD file (M23 filename.g)
|
// M23 - Select SD file (M23 filename.g)
|
||||||
// M24 - Start/resume SD print
|
// M24 - Start/resume SD print
|
||||||
// M25 - Pause SD print
|
// M25 - Pause SD print
|
||||||
// M26 - Set SD position in bytes (M26 S12345)
|
// M26 - Set SD position in bytes (M26 S12345)
|
||||||
// M27 - Report SD print status
|
// M27 - Report SD print status
|
||||||
// M28 - Start SD write (M28 filename.g)
|
// M28 - Start SD write (M28 filename.g)
|
||||||
// M29 - Stop SD write
|
// M29 - Stop SD write
|
||||||
// M42 - Change pin status via gcode
|
// M42 - Change pin status via gcode
|
||||||
// M80 - Turn on Power Supply
|
// M80 - Turn on Power Supply
|
||||||
// M81 - Turn off Power Supply
|
// M81 - Turn off Power Supply
|
||||||
// M82 - Set E codes absolute (default)
|
// M82 - Set E codes absolute (default)
|
||||||
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
// M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
||||||
// M84 - Disable steppers until next move,
|
// M84 - Disable steppers until next move,
|
||||||
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
// or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
||||||
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
// M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||||
// M92 - Set axis_steps_per_unit - same syntax as G92
|
// M92 - Set axis_steps_per_unit - same syntax as G92
|
||||||
// M115 - Capabilities string
|
// M115 - Capabilities string
|
||||||
// M140 - Set bed target temp
|
// M140 - Set bed target temp
|
||||||
// M190 - Wait for bed current temp to reach target temp.
|
// M190 - Wait for bed current temp to reach target temp.
|
||||||
// M200 - Set filament diameter
|
// M200 - Set filament diameter
|
||||||
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
// M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||||
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
// M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
||||||
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
||||||
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
|
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
|
||||||
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||||
// M220 - set speed factor override percentage S:factor in percent
|
// M220 - set speed factor override percentage S:factor in percent
|
||||||
// M301 - Set PID parameters P I and D
|
// M301 - Set PID parameters P I and D
|
||||||
// M500 - stores paramters in EEPROM
|
// M500 - stores paramters in EEPROM
|
||||||
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
|
// M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily). D
|
||||||
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
// M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
||||||
|
|
||||||
//Stepper Movement Variables
|
//Stepper Movement Variables
|
||||||
|
|
||||||
char axis_codes[NUM_AXIS] = {
|
char axis_codes[NUM_AXIS] = {
|
||||||
'X', 'Y', 'Z', 'E'};
|
'X', 'Y', 'Z', 'E'};
|
||||||
float destination[NUM_AXIS] = {
|
float destination[NUM_AXIS] = {
|
||||||
0.0, 0.0, 0.0, 0.0};
|
0.0, 0.0, 0.0, 0.0};
|
||||||
float current_position[NUM_AXIS] = {
|
float current_position[NUM_AXIS] = {
|
||||||
0.0, 0.0, 0.0, 0.0};
|
0.0, 0.0, 0.0, 0.0};
|
||||||
bool home_all_axis = true;
|
bool home_all_axis = true;
|
||||||
float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
float feedrate = 1500.0, next_feedrate, saved_feedrate;
|
||||||
long gcode_N, gcode_LastN;
|
long gcode_N, gcode_LastN;
|
||||||
|
|
||||||
float homing_feedrate[] = HOMING_FEEDRATE;
|
float homing_feedrate[] = HOMING_FEEDRATE;
|
||||||
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
||||||
|
|
||||||
bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
bool relative_mode = false; //Determines Absolute or Relative Coordinates
|
||||||
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
|
bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
|
||||||
|
|
||||||
uint8_t fanpwm=0;
|
uint8_t fanpwm=0;
|
||||||
|
|
||||||
volatile int feedmultiply=100; //100->1 200->2
|
volatile int feedmultiply=100; //100->1 200->2
|
||||||
int saved_feedmultiply;
|
int saved_feedmultiply;
|
||||||
volatile bool feedmultiplychanged=false;
|
volatile bool feedmultiplychanged=false;
|
||||||
// comm variables
|
// comm variables
|
||||||
#define MAX_CMD_SIZE 96
|
#define MAX_CMD_SIZE 96
|
||||||
#define BUFSIZE 4
|
#define BUFSIZE 4
|
||||||
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
|
||||||
bool fromsd[BUFSIZE];
|
bool fromsd[BUFSIZE];
|
||||||
int bufindr = 0;
|
int bufindr = 0;
|
||||||
int bufindw = 0;
|
int bufindw = 0;
|
||||||
int buflen = 0;
|
int buflen = 0;
|
||||||
int i = 0;
|
int i = 0;
|
||||||
char serial_char;
|
char serial_char;
|
||||||
int serial_count = 0;
|
int serial_count = 0;
|
||||||
boolean comment_mode = false;
|
boolean comment_mode = false;
|
||||||
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
|
char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
|
||||||
extern float HeaterPower;
|
extern float HeaterPower;
|
||||||
|
|
||||||
#include "EEPROM.h"
|
#include "EEPROM.h"
|
||||||
|
|
||||||
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
|
||||||
|
|
||||||
float tt = 0, bt = 0;
|
float tt = 0, bt = 0;
|
||||||
#ifdef WATCHPERIOD
|
#ifdef WATCHPERIOD
|
||||||
int watch_raw = -1000;
|
int watch_raw = -1000;
|
||||||
unsigned long watchmillis = 0;
|
unsigned long watchmillis = 0;
|
||||||
#endif //WATCHPERIOD
|
#endif //WATCHPERIOD
|
||||||
|
|
||||||
//Inactivity shutdown variables
|
//Inactivity shutdown variables
|
||||||
unsigned long previous_millis_cmd = 0;
|
unsigned long previous_millis_cmd = 0;
|
||||||
unsigned long max_inactive_time = 0;
|
unsigned long max_inactive_time = 0;
|
||||||
unsigned long stepper_inactive_time = 0;
|
unsigned long stepper_inactive_time = 0;
|
||||||
|
|
||||||
unsigned long starttime=0;
|
unsigned long starttime=0;
|
||||||
unsigned long stoptime=0;
|
unsigned long stoptime=0;
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
Sd2Card card;
|
Sd2Card card;
|
||||||
SdVolume volume;
|
SdVolume volume;
|
||||||
SdFile root;
|
SdFile root;
|
||||||
SdFile file;
|
SdFile file;
|
||||||
uint32_t filesize = 0;
|
uint32_t filesize = 0;
|
||||||
uint32_t sdpos = 0;
|
uint32_t sdpos = 0;
|
||||||
bool sdmode = false;
|
bool sdmode = false;
|
||||||
bool sdactive = false;
|
bool sdactive = false;
|
||||||
bool savetosd = false;
|
bool savetosd = false;
|
||||||
int16_t n;
|
int16_t n;
|
||||||
unsigned long autostart_atmillis=0;
|
unsigned long autostart_atmillis=0;
|
||||||
|
|
||||||
void initsd(){
|
void initsd(){
|
||||||
sdactive = false;
|
sdactive = false;
|
||||||
#if SDSS >- 1
|
#if SDSS >- 1
|
||||||
if(root.isOpen())
|
if(root.isOpen())
|
||||||
root.close();
|
root.close();
|
||||||
if (!card.init(SPI_FULL_SPEED,SDSS)){
|
if (!card.init(SPI_FULL_SPEED,SDSS)){
|
||||||
//if (!card.init(SPI_HALF_SPEED,SDSS))
|
//if (!card.init(SPI_HALF_SPEED,SDSS))
|
||||||
Serial.println("SD init fail");
|
Serial.println("SD init fail");
|
||||||
}
|
}
|
||||||
else if (!volume.init(&card))
|
else if (!volume.init(&card))
|
||||||
Serial.println("volume.init failed");
|
Serial.println("volume.init failed");
|
||||||
else if (!root.openRoot(&volume))
|
else if (!root.openRoot(&volume))
|
||||||
Serial.println("openRoot failed");
|
Serial.println("openRoot failed");
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
sdactive = true;
|
sdactive = true;
|
||||||
Serial.println("SD card ok");
|
Serial.println("SD card ok");
|
||||||
}
|
}
|
||||||
#endif //SDSS
|
#endif //SDSS
|
||||||
}
|
}
|
||||||
|
|
||||||
void quickinitsd(){
|
void quickinitsd(){
|
||||||
sdactive=false;
|
sdactive=false;
|
||||||
autostart_atmillis=millis()+5000;
|
autostart_atmillis=millis()+5000;
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void write_command(char *buf){
|
inline void write_command(char *buf){
|
||||||
char* begin = buf;
|
char* begin = buf;
|
||||||
char* npos = 0;
|
char* npos = 0;
|
||||||
char* end = buf + strlen(buf) - 1;
|
char* end = buf + strlen(buf) - 1;
|
||||||
|
|
||||||
file.writeError = false;
|
file.writeError = false;
|
||||||
if((npos = strchr(buf, 'N')) != NULL){
|
if((npos = strchr(buf, 'N')) != NULL){
|
||||||
begin = strchr(npos, ' ') + 1;
|
begin = strchr(npos, ' ') + 1;
|
||||||
end = strchr(npos, '*') - 1;
|
end = strchr(npos, '*') - 1;
|
||||||
}
|
}
|
||||||
end[1] = '\r';
|
end[1] = '\r';
|
||||||
end[2] = '\n';
|
end[2] = '\n';
|
||||||
end[3] = '\0';
|
end[3] = '\0';
|
||||||
//Serial.println(begin);
|
//Serial.println(begin);
|
||||||
file.write(begin);
|
file.write(begin);
|
||||||
if (file.writeError){
|
if (file.writeError){
|
||||||
Serial.println("error writing to file");
|
Serial.println("error writing to file");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
|
|
||||||
|
|
||||||
///adds an command to the main command buffer
|
///adds an command to the main command buffer
|
||||||
void enquecommand(const char *cmd)
|
void enquecommand(const char *cmd)
|
||||||
{
|
{
|
||||||
if(buflen < BUFSIZE)
|
if(buflen < BUFSIZE)
|
||||||
{
|
{
|
||||||
//this is dangerous if a mixing of serial and this happsens
|
//this is dangerous if a mixing of serial and this happsens
|
||||||
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
strcpy(&(cmdbuffer[bufindw][0]),cmd);
|
||||||
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
|
Serial.print("en:");Serial.println(cmdbuffer[bufindw]);
|
||||||
bufindw= (bufindw + 1)%BUFSIZE;
|
bufindw= (bufindw + 1)%BUFSIZE;
|
||||||
buflen += 1;
|
buflen += 1;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void setup()
|
void setup()
|
||||||
{
|
{
|
||||||
|
|
||||||
Serial.begin(BAUDRATE);
|
Serial.begin(BAUDRATE);
|
||||||
ECHOLN("Marlin "<<version_string);
|
ECHOLN("Marlin "<<version_string);
|
||||||
Serial.println("start");
|
Serial.println("start");
|
||||||
#if defined FANCY_LCD || defined SIMPLE_LCD
|
#if defined FANCY_LCD || defined SIMPLE_LCD
|
||||||
lcd_init();
|
lcd_init();
|
||||||
#endif
|
#endif
|
||||||
for(int i = 0; i < BUFSIZE; i++){
|
for(int i = 0; i < BUFSIZE; i++){
|
||||||
fromsd[i] = false;
|
fromsd[i] = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
RetrieveSettings(); // loads data from EEPROM if available
|
RetrieveSettings(); // loads data from EEPROM if available
|
||||||
|
|
||||||
|
|
||||||
for(int i=0; i < NUM_AXIS; i++){
|
for(int i=0; i < NUM_AXIS; i++){
|
||||||
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
//power to SD reader
|
//power to SD reader
|
||||||
#if SDPOWER > -1
|
#if SDPOWER > -1
|
||||||
SET_OUTPUT(SDPOWER);
|
SET_OUTPUT(SDPOWER);
|
||||||
WRITE(SDPOWER,HIGH);
|
WRITE(SDPOWER,HIGH);
|
||||||
#endif //SDPOWER
|
#endif //SDPOWER
|
||||||
quickinitsd();
|
quickinitsd();
|
||||||
|
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
plan_init(); // Initialize planner;
|
plan_init(); // Initialize planner;
|
||||||
st_init(); // Initialize stepper;
|
st_init(); // Initialize stepper;
|
||||||
tp_init(); // Initialize temperature loop
|
tp_init(); // Initialize temperature loop
|
||||||
//checkautostart();
|
//checkautostart();
|
||||||
}
|
}
|
||||||
|
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
bool autostart_stilltocheck=true;
|
bool autostart_stilltocheck=true;
|
||||||
|
|
||||||
|
|
||||||
void checkautostart(bool force)
|
void checkautostart(bool force)
|
||||||
{
|
{
|
||||||
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
|
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
|
||||||
if(!force)
|
if(!force)
|
||||||
{
|
{
|
||||||
if(!autostart_stilltocheck)
|
if(!autostart_stilltocheck)
|
||||||
return;
|
return;
|
||||||
if(autostart_atmillis<millis())
|
if(autostart_atmillis<millis())
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
autostart_stilltocheck=false;
|
autostart_stilltocheck=false;
|
||||||
if(!sdactive)
|
if(!sdactive)
|
||||||
{
|
{
|
||||||
initsd();
|
initsd();
|
||||||
if(!sdactive) //fail
|
if(!sdactive) //fail
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
static int lastnr=0;
|
static int lastnr=0;
|
||||||
char autoname[30];
|
char autoname[30];
|
||||||
sprintf(autoname,"auto%i.g",lastnr);
|
sprintf(autoname,"auto%i.g",lastnr);
|
||||||
for(int i=0;i<(int)strlen(autoname);i++)
|
for(int i=0;i<(int)strlen(autoname);i++)
|
||||||
autoname[i]=tolower(autoname[i]);
|
autoname[i]=tolower(autoname[i]);
|
||||||
dir_t p;
|
dir_t p;
|
||||||
|
|
||||||
root.rewind();
|
root.rewind();
|
||||||
//char filename[11];
|
//char filename[11];
|
||||||
//int cnt=0;
|
//int cnt=0;
|
||||||
|
|
||||||
bool found=false;
|
bool found=false;
|
||||||
while (root.readDir(p) > 0)
|
while (root.readDir(p) > 0)
|
||||||
{
|
{
|
||||||
for(int i=0;i<(int)strlen((char*)p.name);i++)
|
for(int i=0;i<(int)strlen((char*)p.name);i++)
|
||||||
p.name[i]=tolower(p.name[i]);
|
p.name[i]=tolower(p.name[i]);
|
||||||
//Serial.print((char*)p.name);
|
//Serial.print((char*)p.name);
|
||||||
//Serial.print(" ");
|
//Serial.print(" ");
|
||||||
//Serial.println(autoname);
|
//Serial.println(autoname);
|
||||||
if(p.name[9]!='~') //skip safety copies
|
if(p.name[9]!='~') //skip safety copies
|
||||||
if(strncmp((char*)p.name,autoname,5)==0)
|
if(strncmp((char*)p.name,autoname,5)==0)
|
||||||
{
|
{
|
||||||
char cmd[30];
|
char cmd[30];
|
||||||
|
|
||||||
sprintf(cmd,"M23 %s",autoname);
|
sprintf(cmd,"M23 %s",autoname);
|
||||||
//sprintf(cmd,"M115");
|
//sprintf(cmd,"M115");
|
||||||
//enquecommand("G92 Z0");
|
//enquecommand("G92 Z0");
|
||||||
//enquecommand("G1 Z10 F2000");
|
//enquecommand("G1 Z10 F2000");
|
||||||
//enquecommand("G28 X-105 Y-105");
|
//enquecommand("G28 X-105 Y-105");
|
||||||
enquecommand(cmd);
|
enquecommand(cmd);
|
||||||
enquecommand("M24");
|
enquecommand("M24");
|
||||||
found=true;
|
found=true;
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if(!found)
|
if(!found)
|
||||||
lastnr=-1;
|
lastnr=-1;
|
||||||
else
|
else
|
||||||
lastnr++;
|
lastnr++;
|
||||||
|
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
|
|
||||||
inline void checkautostart(bool x)
|
inline void checkautostart(bool x)
|
||||||
{
|
{
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
||||||
void loop()
|
void loop()
|
||||||
{
|
{
|
||||||
if(buflen<3)
|
if(buflen<3)
|
||||||
get_command();
|
get_command();
|
||||||
checkautostart(false);
|
checkautostart(false);
|
||||||
if(buflen)
|
if(buflen)
|
||||||
{
|
{
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
if(savetosd){
|
if(savetosd){
|
||||||
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
|
if(strstr(cmdbuffer[bufindr],"M29") == NULL){
|
||||||
write_command(cmdbuffer[bufindr]);
|
write_command(cmdbuffer[bufindr]);
|
||||||
Serial.println("ok");
|
Serial.println("ok");
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
file.sync();
|
file.sync();
|
||||||
file.close();
|
file.close();
|
||||||
savetosd = false;
|
savetosd = false;
|
||||||
Serial.println("Done saving file.");
|
Serial.println("Done saving file.");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
process_commands();
|
process_commands();
|
||||||
}
|
}
|
||||||
#else
|
#else
|
||||||
process_commands();
|
process_commands();
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
buflen = (buflen-1);
|
buflen = (buflen-1);
|
||||||
bufindr = (bufindr + 1)%BUFSIZE;
|
bufindr = (bufindr + 1)%BUFSIZE;
|
||||||
}
|
}
|
||||||
//check heater every n milliseconds
|
//check heater every n milliseconds
|
||||||
manage_heater();
|
manage_heater();
|
||||||
manage_inactivity(1);
|
manage_inactivity(1);
|
||||||
LCD_STATUS;
|
LCD_STATUS;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
inline void get_command()
|
inline void get_command()
|
||||||
{
|
{
|
||||||
while( Serial.available() > 0 && buflen < BUFSIZE) {
|
while( Serial.available() > 0 && buflen < BUFSIZE) {
|
||||||
serial_char = Serial.read();
|
serial_char = Serial.read();
|
||||||
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
|
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
|
||||||
{
|
{
|
||||||
if(!serial_count) return; //if empty line
|
if(!serial_count) return; //if empty line
|
||||||
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
||||||
if(!comment_mode){
|
if(!comment_mode){
|
||||||
fromsd[bufindw] = false;
|
fromsd[bufindw] = false;
|
||||||
if(strstr(cmdbuffer[bufindw], "N") != NULL)
|
if(strstr(cmdbuffer[bufindw], "N") != NULL)
|
||||||
{
|
{
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
|
||||||
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
|
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
|
||||||
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
|
if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
|
||||||
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
|
Serial.print("Serial Error: Line Number is not Last Line Number+1, Last Line:");
|
||||||
Serial.println(gcode_LastN);
|
Serial.println(gcode_LastN);
|
||||||
//Serial.println(gcode_N);
|
//Serial.println(gcode_N);
|
||||||
FlushSerialRequestResend();
|
FlushSerialRequestResend();
|
||||||
serial_count = 0;
|
serial_count = 0;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(strstr(cmdbuffer[bufindw], "*") != NULL)
|
if(strstr(cmdbuffer[bufindw], "*") != NULL)
|
||||||
{
|
{
|
||||||
byte checksum = 0;
|
byte checksum = 0;
|
||||||
byte count = 0;
|
byte count = 0;
|
||||||
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
|
||||||
|
|
||||||
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
|
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
|
||||||
Serial.print("Error: checksum mismatch, Last Line:");
|
Serial.print("Error: checksum mismatch, Last Line:");
|
||||||
Serial.println(gcode_LastN);
|
Serial.println(gcode_LastN);
|
||||||
FlushSerialRequestResend();
|
FlushSerialRequestResend();
|
||||||
serial_count = 0;
|
serial_count = 0;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
//if no errors, continue parsing
|
//if no errors, continue parsing
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
Serial.print("Error: No Checksum with line number, Last Line:");
|
Serial.print("Error: No Checksum with line number, Last Line:");
|
||||||
Serial.println(gcode_LastN);
|
Serial.println(gcode_LastN);
|
||||||
FlushSerialRequestResend();
|
FlushSerialRequestResend();
|
||||||
serial_count = 0;
|
serial_count = 0;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
gcode_LastN = gcode_N;
|
gcode_LastN = gcode_N;
|
||||||
//if no errors, continue parsing
|
//if no errors, continue parsing
|
||||||
}
|
}
|
||||||
else // if we don't receive 'N' but still see '*'
|
else // if we don't receive 'N' but still see '*'
|
||||||
{
|
{
|
||||||
if((strstr(cmdbuffer[bufindw], "*") != NULL))
|
if((strstr(cmdbuffer[bufindw], "*") != NULL))
|
||||||
{
|
{
|
||||||
Serial.print("Error: No Line Number with checksum, Last Line:");
|
Serial.print("Error: No Line Number with checksum, Last Line:");
|
||||||
Serial.println(gcode_LastN);
|
Serial.println(gcode_LastN);
|
||||||
serial_count = 0;
|
serial_count = 0;
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
|
if((strstr(cmdbuffer[bufindw], "G") != NULL)){
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
|
||||||
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
|
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
|
||||||
case 0:
|
case 0:
|
||||||
case 1:
|
case 1:
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
if(savetosd)
|
if(savetosd)
|
||||||
break;
|
break;
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
Serial.println("ok");
|
Serial.println("ok");
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
bufindw = (bufindw + 1)%BUFSIZE;
|
bufindw = (bufindw + 1)%BUFSIZE;
|
||||||
buflen += 1;
|
buflen += 1;
|
||||||
|
|
||||||
}
|
}
|
||||||
comment_mode = false; //for new command
|
comment_mode = false; //for new command
|
||||||
serial_count = 0; //clear buffer
|
serial_count = 0; //clear buffer
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
if(serial_char == ';') comment_mode = true;
|
if(serial_char == ';') comment_mode = true;
|
||||||
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
if(!sdmode || serial_count!=0){
|
if(!sdmode || serial_count!=0){
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
while( filesize > sdpos && buflen < BUFSIZE) {
|
while( filesize > sdpos && buflen < BUFSIZE) {
|
||||||
n = file.read();
|
n = file.read();
|
||||||
serial_char = (char)n;
|
serial_char = (char)n;
|
||||||
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
|
if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) || n == -1)
|
||||||
{
|
{
|
||||||
sdpos = file.curPosition();
|
sdpos = file.curPosition();
|
||||||
if(sdpos >= filesize){
|
if(sdpos >= filesize){
|
||||||
sdmode = false;
|
sdmode = false;
|
||||||
Serial.println("Done printing file");
|
Serial.println("Done printing file");
|
||||||
stoptime=millis();
|
stoptime=millis();
|
||||||
char time[30];
|
char time[30];
|
||||||
unsigned long t=(stoptime-starttime)/1000;
|
unsigned long t=(stoptime-starttime)/1000;
|
||||||
int sec,min;
|
int sec,min;
|
||||||
min=t/60;
|
min=t/60;
|
||||||
sec=t%60;
|
sec=t%60;
|
||||||
sprintf(time,"%i min, %i sec",min,sec);
|
sprintf(time,"%i min, %i sec",min,sec);
|
||||||
Serial.println(time);
|
Serial.println(time);
|
||||||
LCD_MESSAGE(time);
|
LCD_MESSAGE(time);
|
||||||
checkautostart(true);
|
checkautostart(true);
|
||||||
}
|
}
|
||||||
if(!serial_count) return; //if empty line
|
if(!serial_count) return; //if empty line
|
||||||
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
cmdbuffer[bufindw][serial_count] = 0; //terminate string
|
||||||
if(!comment_mode){
|
if(!comment_mode){
|
||||||
fromsd[bufindw] = true;
|
fromsd[bufindw] = true;
|
||||||
buflen += 1;
|
buflen += 1;
|
||||||
bufindw = (bufindw + 1)%BUFSIZE;
|
bufindw = (bufindw + 1)%BUFSIZE;
|
||||||
}
|
}
|
||||||
comment_mode = false; //for new command
|
comment_mode = false; //for new command
|
||||||
serial_count = 0; //clear buffer
|
serial_count = 0; //clear buffer
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
if(serial_char == ';') comment_mode = true;
|
if(serial_char == ';') comment_mode = true;
|
||||||
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
inline float code_value() {
|
inline float code_value() {
|
||||||
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
|
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
|
||||||
}
|
}
|
||||||
inline long code_value_long() {
|
inline long code_value_long() {
|
||||||
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
|
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
|
||||||
}
|
}
|
||||||
inline bool code_seen(char code_string[]) {
|
inline bool code_seen(char code_string[]) {
|
||||||
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
|
return (strstr(cmdbuffer[bufindr], code_string) != NULL);
|
||||||
} //Return True if the string was found
|
} //Return True if the string was found
|
||||||
|
|
||||||
inline bool code_seen(char code)
|
inline bool code_seen(char code)
|
||||||
{
|
{
|
||||||
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
strchr_pointer = strchr(cmdbuffer[bufindr], code);
|
||||||
return (strchr_pointer != NULL); //Return True if a character was found
|
return (strchr_pointer != NULL); //Return True if a character was found
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void process_commands()
|
inline void process_commands()
|
||||||
{
|
{
|
||||||
unsigned long codenum; //throw away variable
|
unsigned long codenum; //throw away variable
|
||||||
char *starpos = NULL;
|
char *starpos = NULL;
|
||||||
|
|
||||||
if(code_seen('G'))
|
if(code_seen('G'))
|
||||||
{
|
{
|
||||||
switch((int)code_value())
|
switch((int)code_value())
|
||||||
{
|
{
|
||||||
case 0: // G0 -> G1
|
case 0: // G0 -> G1
|
||||||
case 1: // G1
|
case 1: // G1
|
||||||
get_coordinates(); // For X Y Z E F
|
get_coordinates(); // For X Y Z E F
|
||||||
prepare_move();
|
prepare_move();
|
||||||
previous_millis_cmd = millis();
|
previous_millis_cmd = millis();
|
||||||
//ClearToSend();
|
//ClearToSend();
|
||||||
return;
|
return;
|
||||||
//break;
|
//break;
|
||||||
case 4: // G4 dwell
|
case 4: // G4 dwell
|
||||||
codenum = 0;
|
codenum = 0;
|
||||||
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
|
||||||
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
|
||||||
codenum += millis(); // keep track of when we started waiting
|
codenum += millis(); // keep track of when we started waiting
|
||||||
while(millis() < codenum ){
|
while(millis() < codenum ){
|
||||||
manage_heater();
|
manage_heater();
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 28: //G28 Home all Axis one at a time
|
case 28: //G28 Home all Axis one at a time
|
||||||
saved_feedrate = feedrate;
|
saved_feedrate = feedrate;
|
||||||
saved_feedmultiply = feedmultiply;
|
saved_feedmultiply = feedmultiply;
|
||||||
feedmultiply = 100;
|
feedmultiply = 100;
|
||||||
|
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
destination[i] = current_position[i];
|
destination[i] = current_position[i];
|
||||||
}
|
}
|
||||||
feedrate = 0.0;
|
feedrate = 0.0;
|
||||||
|
|
||||||
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
|
||||||
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
|
||||||
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
|
if ((X_MIN_PIN > -1 && X_HOME_DIR==-1) || (X_MAX_PIN > -1 && X_HOME_DIR==1)){
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
current_position[X_AXIS] = 0;
|
current_position[X_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
|
destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;
|
||||||
feedrate = homing_feedrate[X_AXIS];
|
feedrate = homing_feedrate[X_AXIS];
|
||||||
prepare_move();
|
prepare_move();
|
||||||
|
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
current_position[X_AXIS] = 0;
|
current_position[X_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[X_AXIS] = -5 * X_HOME_DIR;
|
destination[X_AXIS] = -5 * X_HOME_DIR;
|
||||||
prepare_move();
|
prepare_move();
|
||||||
|
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
destination[X_AXIS] = 10 * X_HOME_DIR;
|
destination[X_AXIS] = 10 * X_HOME_DIR;
|
||||||
feedrate = homing_feedrate[X_AXIS]/2 ;
|
feedrate = homing_feedrate[X_AXIS]/2 ;
|
||||||
prepare_move();
|
prepare_move();
|
||||||
|
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
|
current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[X_AXIS] = current_position[X_AXIS];
|
destination[X_AXIS] = current_position[X_AXIS];
|
||||||
feedrate = 0.0;
|
feedrate = 0.0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
|
||||||
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
|
if ((Y_MIN_PIN > -1 && Y_HOME_DIR==-1) || (Y_MAX_PIN > -1 && Y_HOME_DIR==1)){
|
||||||
current_position[Y_AXIS] = 0;
|
current_position[Y_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
|
||||||
feedrate = homing_feedrate[Y_AXIS];
|
feedrate = homing_feedrate[Y_AXIS];
|
||||||
prepare_move();
|
prepare_move();
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
|
|
||||||
current_position[Y_AXIS] = 0;
|
current_position[Y_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Y_AXIS] = -5 * Y_HOME_DIR;
|
destination[Y_AXIS] = -5 * Y_HOME_DIR;
|
||||||
prepare_move();
|
prepare_move();
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
|
|
||||||
destination[Y_AXIS] = 10 * Y_HOME_DIR;
|
destination[Y_AXIS] = 10 * Y_HOME_DIR;
|
||||||
feedrate = homing_feedrate[Y_AXIS]/2;
|
feedrate = homing_feedrate[Y_AXIS]/2;
|
||||||
prepare_move();
|
prepare_move();
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
|
|
||||||
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
|
current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Y_AXIS] = current_position[Y_AXIS];
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
||||||
feedrate = 0.0;
|
feedrate = 0.0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
|
||||||
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
|
if ((Z_MIN_PIN > -1 && Z_HOME_DIR==-1) || (Z_MAX_PIN > -1 && Z_HOME_DIR==1)){
|
||||||
current_position[Z_AXIS] = 0;
|
current_position[Z_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
|
destination[Z_AXIS] = 1.5 * Z_MAX_LENGTH * Z_HOME_DIR;
|
||||||
feedrate = homing_feedrate[Z_AXIS];
|
feedrate = homing_feedrate[Z_AXIS];
|
||||||
prepare_move();
|
prepare_move();
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
|
|
||||||
current_position[Z_AXIS] = 0;
|
current_position[Z_AXIS] = 0;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Z_AXIS] = -2 * Z_HOME_DIR;
|
destination[Z_AXIS] = -2 * Z_HOME_DIR;
|
||||||
prepare_move();
|
prepare_move();
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
|
|
||||||
destination[Z_AXIS] = 3 * Z_HOME_DIR;
|
destination[Z_AXIS] = 3 * Z_HOME_DIR;
|
||||||
feedrate = homing_feedrate[Z_AXIS]/2;
|
feedrate = homing_feedrate[Z_AXIS]/2;
|
||||||
prepare_move();
|
prepare_move();
|
||||||
// st_synchronize();
|
// st_synchronize();
|
||||||
|
|
||||||
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
|
current_position[Z_AXIS] = (Z_HOME_DIR == -1) ? 0 : Z_MAX_LENGTH;
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
destination[Z_AXIS] = current_position[Z_AXIS];
|
destination[Z_AXIS] = current_position[Z_AXIS];
|
||||||
feedrate = 0.0;
|
feedrate = 0.0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
feedrate = saved_feedrate;
|
feedrate = saved_feedrate;
|
||||||
feedmultiply = saved_feedmultiply;
|
feedmultiply = saved_feedmultiply;
|
||||||
previous_millis_cmd = millis();
|
previous_millis_cmd = millis();
|
||||||
break;
|
break;
|
||||||
case 90: // G90
|
case 90: // G90
|
||||||
relative_mode = false;
|
relative_mode = false;
|
||||||
break;
|
break;
|
||||||
case 91: // G91
|
case 91: // G91
|
||||||
relative_mode = true;
|
relative_mode = true;
|
||||||
break;
|
break;
|
||||||
case 92: // G92
|
case 92: // G92
|
||||||
if(!code_seen(axis_codes[E_AXIS]))
|
if(!code_seen(axis_codes[E_AXIS]))
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
if(code_seen(axis_codes[i])) current_position[i] = code_value();
|
if(code_seen(axis_codes[i])) current_position[i] = code_value();
|
||||||
}
|
}
|
||||||
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
else if(code_seen('M'))
|
else if(code_seen('M'))
|
||||||
{
|
{
|
||||||
|
|
||||||
switch( (int)code_value() )
|
switch( (int)code_value() )
|
||||||
{
|
{
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
|
|
||||||
case 20: // M20 - list SD card
|
case 20: // M20 - list SD card
|
||||||
Serial.println("Begin file list");
|
Serial.println("Begin file list");
|
||||||
root.ls();
|
root.ls();
|
||||||
Serial.println("End file list");
|
Serial.println("End file list");
|
||||||
break;
|
break;
|
||||||
case 21: // M21 - init SD card
|
case 21: // M21 - init SD card
|
||||||
sdmode = false;
|
sdmode = false;
|
||||||
initsd();
|
initsd();
|
||||||
break;
|
break;
|
||||||
case 22: //M22 - release SD card
|
case 22: //M22 - release SD card
|
||||||
sdmode = false;
|
sdmode = false;
|
||||||
sdactive = false;
|
sdactive = false;
|
||||||
break;
|
break;
|
||||||
case 23: //M23 - Select file
|
case 23: //M23 - Select file
|
||||||
if(sdactive){
|
if(sdactive){
|
||||||
sdmode = false;
|
sdmode = false;
|
||||||
file.close();
|
file.close();
|
||||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
||||||
if(starpos!=NULL)
|
if(starpos!=NULL)
|
||||||
*(starpos-1)='\0';
|
*(starpos-1)='\0';
|
||||||
if (file.open(&root, strchr_pointer + 4, O_READ)) {
|
if (file.open(&root, strchr_pointer + 4, O_READ)) {
|
||||||
Serial.print("File opened:");
|
Serial.print("File opened:");
|
||||||
Serial.print(strchr_pointer + 4);
|
Serial.print(strchr_pointer + 4);
|
||||||
Serial.print(" Size:");
|
Serial.print(" Size:");
|
||||||
Serial.println(file.fileSize());
|
Serial.println(file.fileSize());
|
||||||
sdpos = 0;
|
sdpos = 0;
|
||||||
filesize = file.fileSize();
|
filesize = file.fileSize();
|
||||||
Serial.println("File selected");
|
Serial.println("File selected");
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
Serial.println("file.open failed");
|
Serial.println("file.open failed");
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 24: //M24 - Start SD print
|
case 24: //M24 - Start SD print
|
||||||
if(sdactive){
|
if(sdactive){
|
||||||
sdmode = true;
|
sdmode = true;
|
||||||
starttime=millis();
|
starttime=millis();
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 25: //M25 - Pause SD print
|
case 25: //M25 - Pause SD print
|
||||||
if(sdmode){
|
if(sdmode){
|
||||||
sdmode = false;
|
sdmode = false;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 26: //M26 - Set SD index
|
case 26: //M26 - Set SD index
|
||||||
if(sdactive && code_seen('S')){
|
if(sdactive && code_seen('S')){
|
||||||
sdpos = code_value_long();
|
sdpos = code_value_long();
|
||||||
file.seekSet(sdpos);
|
file.seekSet(sdpos);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 27: //M27 - Get SD status
|
case 27: //M27 - Get SD status
|
||||||
if(sdactive){
|
if(sdactive){
|
||||||
Serial.print("SD printing byte ");
|
Serial.print("SD printing byte ");
|
||||||
Serial.print(sdpos);
|
Serial.print(sdpos);
|
||||||
Serial.print("/");
|
Serial.print("/");
|
||||||
Serial.println(filesize);
|
Serial.println(filesize);
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
Serial.println("Not SD printing");
|
Serial.println("Not SD printing");
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 28: //M28 - Start SD write
|
case 28: //M28 - Start SD write
|
||||||
if(sdactive){
|
if(sdactive){
|
||||||
char* npos = 0;
|
char* npos = 0;
|
||||||
file.close();
|
file.close();
|
||||||
sdmode = false;
|
sdmode = false;
|
||||||
starpos = (strchr(strchr_pointer + 4,'*'));
|
starpos = (strchr(strchr_pointer + 4,'*'));
|
||||||
if(starpos != NULL){
|
if(starpos != NULL){
|
||||||
npos = strchr(cmdbuffer[bufindr], 'N');
|
npos = strchr(cmdbuffer[bufindr], 'N');
|
||||||
strchr_pointer = strchr(npos,' ') + 1;
|
strchr_pointer = strchr(npos,' ') + 1;
|
||||||
*(starpos-1) = '\0';
|
*(starpos-1) = '\0';
|
||||||
}
|
}
|
||||||
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
|
if (!file.open(&root, strchr_pointer+4, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
|
||||||
{
|
{
|
||||||
Serial.print("open failed, File: ");
|
Serial.print("open failed, File: ");
|
||||||
Serial.print(strchr_pointer + 4);
|
Serial.print(strchr_pointer + 4);
|
||||||
Serial.print(".");
|
Serial.print(".");
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
savetosd = true;
|
savetosd = true;
|
||||||
Serial.print("Writing to file: ");
|
Serial.print("Writing to file: ");
|
||||||
Serial.println(strchr_pointer + 4);
|
Serial.println(strchr_pointer + 4);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 29: //M29 - Stop SD write
|
case 29: //M29 - Stop SD write
|
||||||
//processed in write to file routine above
|
//processed in write to file routine above
|
||||||
//savetosd = false;
|
//savetosd = false;
|
||||||
break;
|
break;
|
||||||
case 30:
|
case 30:
|
||||||
{
|
{
|
||||||
stoptime=millis();
|
stoptime=millis();
|
||||||
char time[30];
|
char time[30];
|
||||||
unsigned long t=(stoptime-starttime)/1000;
|
unsigned long t=(stoptime-starttime)/1000;
|
||||||
int sec,min;
|
int sec,min;
|
||||||
min=t/60;
|
min=t/60;
|
||||||
sec=t%60;
|
sec=t%60;
|
||||||
sprintf(time,"%i min, %i sec",min,sec);
|
sprintf(time,"%i min, %i sec",min,sec);
|
||||||
Serial.println(time);
|
Serial.println(time);
|
||||||
LCD_MESSAGE(time);
|
LCD_MESSAGE(time);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
case 42: //M42 -Change pin status via gcode
|
case 42: //M42 -Change pin status via gcode
|
||||||
if (code_seen('S'))
|
if (code_seen('S'))
|
||||||
{
|
{
|
||||||
int pin_status = code_value();
|
int pin_status = code_value();
|
||||||
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
|
||||||
{
|
{
|
||||||
int pin_number = code_value();
|
int pin_number = code_value();
|
||||||
for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
|
for(int i = 0; i < (int)sizeof(sensitive_pins); i++)
|
||||||
{
|
{
|
||||||
if (sensitive_pins[i] == pin_number)
|
if (sensitive_pins[i] == pin_number)
|
||||||
{
|
{
|
||||||
pin_number = -1;
|
pin_number = -1;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
if (pin_number > -1)
|
if (pin_number > -1)
|
||||||
{
|
{
|
||||||
pinMode(pin_number, OUTPUT);
|
pinMode(pin_number, OUTPUT);
|
||||||
digitalWrite(pin_number, pin_status);
|
digitalWrite(pin_number, pin_status);
|
||||||
analogWrite(pin_number, pin_status);
|
analogWrite(pin_number, pin_status);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 104: // M104
|
case 104: // M104
|
||||||
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());
|
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
pid_setpoint = code_value();
|
pid_setpoint = code_value();
|
||||||
#endif //PIDTEM
|
#endif //PIDTEM
|
||||||
#ifdef WATCHPERIOD
|
#ifdef WATCHPERIOD
|
||||||
if(target_raw[TEMPSENSOR_HOTEND] > current_raw[TEMPSENSOR_HOTEND]){
|
if(target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]){
|
||||||
watchmillis = max(1,millis());
|
watchmillis = max(1,millis());
|
||||||
watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];
|
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
||||||
}else{
|
}else{
|
||||||
watchmillis = 0;
|
watchmillis = 0;
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
case 140: // M140 set bed temp
|
case 140: // M140 set bed temp
|
||||||
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
|
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analogBed(code_value());
|
||||||
break;
|
break;
|
||||||
case 105: // M105
|
case 105: // M105
|
||||||
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
||||||
tt = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
|
tt = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
||||||
#endif
|
#endif
|
||||||
#if TEMP_1_PIN > -1
|
#if TEMP_1_PIN > -1
|
||||||
bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
|
bt = analog2tempBed(current_raw[TEMPSENSOR_BED]);
|
||||||
#endif
|
#endif
|
||||||
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
#if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
|
||||||
Serial.print("ok T:");
|
Serial.print("ok T:");
|
||||||
Serial.print(tt);
|
Serial.print(tt);
|
||||||
// Serial.print(", raw:");
|
// Serial.print(", raw:");
|
||||||
// Serial.print(current_raw);
|
// Serial.print(current_raw);
|
||||||
#if TEMP_1_PIN > -1
|
#if TEMP_1_PIN > -1
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
Serial.print(" B:");
|
Serial.print(" B:");
|
||||||
#if TEMP_1_PIN > -1
|
#if TEMP_1_PIN > -1
|
||||||
Serial.println(bt);
|
Serial.println(bt);
|
||||||
#else
|
#else
|
||||||
Serial.println(HeaterPower);
|
Serial.println(HeaterPower);
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
Serial.println();
|
Serial.println();
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
Serial.println();
|
Serial.println();
|
||||||
#endif
|
#endif
|
||||||
#else
|
#else
|
||||||
Serial.println("No thermistors - no temp");
|
Serial.println("No thermistors - no temp");
|
||||||
#endif
|
#endif
|
||||||
return;
|
return;
|
||||||
//break;
|
//break;
|
||||||
case 109: {// M109 - Wait for extruder heater to reach target.
|
case 109: {// M109 - Wait for extruder heater to reach target.
|
||||||
LCD_MESSAGE("Heating...");
|
LCD_MESSAGE("Heating...");
|
||||||
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND] = temp2analog(code_value());
|
if (code_seen('S')) target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(code_value());
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
pid_setpoint = code_value();
|
pid_setpoint = code_value();
|
||||||
#endif //PIDTEM
|
#endif //PIDTEM
|
||||||
#ifdef WATCHPERIOD
|
#ifdef WATCHPERIOD
|
||||||
if(target_raw[TEMPSENSOR_HOTEND]>current_raw[TEMPSENSOR_HOTEND]){
|
if(target_raw[TEMPSENSOR_HOTEND_0]>current_raw[TEMPSENSOR_HOTEND_0]){
|
||||||
watchmillis = max(1,millis());
|
watchmillis = max(1,millis());
|
||||||
watch_raw[TEMPSENSOR_HOTEND] = current_raw[TEMPSENSOR_HOTEND];
|
watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
|
||||||
} else {
|
} else {
|
||||||
watchmillis = 0;
|
watchmillis = 0;
|
||||||
}
|
}
|
||||||
#endif //WATCHPERIOD
|
#endif //WATCHPERIOD
|
||||||
codenum = millis();
|
codenum = millis();
|
||||||
|
|
||||||
/* See if we are heating up or cooling down */
|
/* See if we are heating up or cooling down */
|
||||||
bool target_direction = (current_raw[0] < target_raw[0]); // true if heating, false if cooling
|
bool target_direction = (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]); // true if heating, false if cooling
|
||||||
|
|
||||||
#ifdef TEMP_RESIDENCY_TIME
|
#ifdef TEMP_RESIDENCY_TIME
|
||||||
long residencyStart;
|
long residencyStart;
|
||||||
residencyStart = -1;
|
residencyStart = -1;
|
||||||
/* continue to loop until we have reached the target temp
|
/* continue to loop until we have reached the target temp
|
||||||
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
|
||||||
while((target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0])) ||
|
while((target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0])) ||
|
||||||
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
|
(residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
|
||||||
#else
|
#else
|
||||||
while ( target_direction ? (current_raw[0] < target_raw[0]) : (current_raw[0] > target_raw[0]) ) {
|
while ( target_direction ? (current_raw[TEMPSENSOR_HOTEND_0] < target_raw[TEMPSENSOR_HOTEND_0]) : (current_raw[TEMPSENSOR_HOTEND_0] > target_raw[TEMPSENSOR_HOTEND_0]) ) {
|
||||||
#endif //TEMP_RESIDENCY_TIME
|
#endif //TEMP_RESIDENCY_TIME
|
||||||
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
|
if( (millis() - codenum) > 1000 ) { //Print Temp Reading every 1 second while heating up/cooling down
|
||||||
Serial.print("T:");
|
Serial.print("T:");
|
||||||
Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND]) );
|
Serial.println( analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) );
|
||||||
codenum = millis();
|
codenum = millis();
|
||||||
}
|
}
|
||||||
manage_heater();
|
manage_heater();
|
||||||
LCD_STATUS;
|
LCD_STATUS;
|
||||||
#ifdef TEMP_RESIDENCY_TIME
|
#ifdef TEMP_RESIDENCY_TIME
|
||||||
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
|
||||||
or when current temp falls outside the hysteresis after target temp was reached */
|
or when current temp falls outside the hysteresis after target temp was reached */
|
||||||
if ((residencyStart == -1 && target_direction && current_raw[0] >= target_raw[0]) ||
|
if ((residencyStart == -1 && target_direction && current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) ||
|
||||||
(residencyStart == -1 && !target_direction && current_raw[0] <= target_raw[0]) ||
|
(residencyStart == -1 && !target_direction && current_raw[TEMPSENSOR_HOTEND_0] <= target_raw[TEMPSENSOR_HOTEND_0]) ||
|
||||||
(residencyStart > -1 && labs(analog2temp(current_raw[0]) - analog2temp(target_raw[0])) > TEMP_HYSTERESIS) ) {
|
(residencyStart > -1 && labs(analog2temp(current_raw[TEMPSENSOR_HOTEND_0]) - analog2temp(target_raw[TEMPSENSOR_HOTEND_0])) > TEMP_HYSTERESIS) ) {
|
||||||
residencyStart = millis();
|
residencyStart = millis();
|
||||||
}
|
}
|
||||||
#endif //TEMP_RESIDENCY_TIME
|
#endif //TEMP_RESIDENCY_TIME
|
||||||
}
|
}
|
||||||
LCD_MESSAGE("Marlin ready.");
|
LCD_MESSAGE("Marlin ready.");
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 190: // M190 - Wait bed for heater to reach target.
|
case 190: // M190 - Wait bed for heater to reach target.
|
||||||
#if TEMP_1_PIN > -1
|
#if TEMP_1_PIN > -1
|
||||||
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
|
if (code_seen('S')) target_raw[TEMPSENSOR_BED] = temp2analog(code_value());
|
||||||
codenum = millis();
|
codenum = millis();
|
||||||
while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
|
while(current_raw[TEMPSENSOR_BED] < target_raw[TEMPSENSOR_BED])
|
||||||
{
|
{
|
||||||
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
|
||||||
{
|
{
|
||||||
float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND]);
|
float tt=analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
||||||
Serial.print("T:");
|
Serial.print("T:");
|
||||||
Serial.println( tt );
|
Serial.println( tt );
|
||||||
Serial.print("ok T:");
|
Serial.print("ok T:");
|
||||||
Serial.print( tt );
|
Serial.print( tt );
|
||||||
Serial.print(" B:");
|
Serial.print(" B:");
|
||||||
Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
|
Serial.println( analog2temp(current_raw[TEMPSENSOR_BED]) );
|
||||||
codenum = millis();
|
codenum = millis();
|
||||||
}
|
}
|
||||||
manage_heater();
|
manage_heater();
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
break;
|
break;
|
||||||
#if FAN_PIN > -1
|
#if FAN_PIN > -1
|
||||||
case 106: //M106 Fan On
|
case 106: //M106 Fan On
|
||||||
if (code_seen('S')){
|
if (code_seen('S')){
|
||||||
WRITE(FAN_PIN,HIGH);
|
WRITE(FAN_PIN,HIGH);
|
||||||
fanpwm=constrain(code_value(),0,255);
|
fanpwm=constrain(code_value(),0,255);
|
||||||
analogWrite(FAN_PIN, fanpwm);
|
analogWrite(FAN_PIN, fanpwm);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
WRITE(FAN_PIN,HIGH);
|
WRITE(FAN_PIN,HIGH);
|
||||||
fanpwm=255;
|
fanpwm=255;
|
||||||
analogWrite(FAN_PIN, fanpwm);
|
analogWrite(FAN_PIN, fanpwm);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 107: //M107 Fan Off
|
case 107: //M107 Fan Off
|
||||||
WRITE(FAN_PIN,LOW);
|
WRITE(FAN_PIN,LOW);
|
||||||
analogWrite(FAN_PIN, 0);
|
analogWrite(FAN_PIN, 0);
|
||||||
break;
|
break;
|
||||||
#endif
|
#endif
|
||||||
#if (PS_ON_PIN > -1)
|
#if (PS_ON_PIN > -1)
|
||||||
case 80: // M80 - ATX Power On
|
case 80: // M80 - ATX Power On
|
||||||
SET_OUTPUT(PS_ON_PIN); //GND
|
SET_OUTPUT(PS_ON_PIN); //GND
|
||||||
break;
|
break;
|
||||||
case 81: // M81 - ATX Power Off
|
case 81: // M81 - ATX Power Off
|
||||||
SET_INPUT(PS_ON_PIN); //Floating
|
SET_INPUT(PS_ON_PIN); //Floating
|
||||||
break;
|
break;
|
||||||
#endif
|
#endif
|
||||||
case 82:
|
case 82:
|
||||||
axis_relative_modes[3] = false;
|
axis_relative_modes[3] = false;
|
||||||
break;
|
break;
|
||||||
case 83:
|
case 83:
|
||||||
axis_relative_modes[3] = true;
|
axis_relative_modes[3] = true;
|
||||||
break;
|
break;
|
||||||
case 18:
|
case 18:
|
||||||
case 84:
|
case 84:
|
||||||
if(code_seen('S')){
|
if(code_seen('S')){
|
||||||
stepper_inactive_time = code_value() * 1000;
|
stepper_inactive_time = code_value() * 1000;
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
st_synchronize();
|
st_synchronize();
|
||||||
disable_x();
|
disable_x();
|
||||||
disable_y();
|
disable_y();
|
||||||
disable_z();
|
disable_z();
|
||||||
disable_e();
|
disable_e();
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 85: // M85
|
case 85: // M85
|
||||||
code_seen('S');
|
code_seen('S');
|
||||||
max_inactive_time = code_value() * 1000;
|
max_inactive_time = code_value() * 1000;
|
||||||
break;
|
break;
|
||||||
case 92: // M92
|
case 92: // M92
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
|
if(code_seen(axis_codes[i])) axis_steps_per_unit[i] = code_value();
|
||||||
}
|
}
|
||||||
|
|
||||||
break;
|
break;
|
||||||
case 115: // M115
|
case 115: // M115
|
||||||
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
|
Serial.println("FIRMWARE_NAME:Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
|
||||||
break;
|
break;
|
||||||
case 114: // M114
|
case 114: // M114
|
||||||
Serial.print("X:");
|
Serial.print("X:");
|
||||||
Serial.print(current_position[X_AXIS]);
|
Serial.print(current_position[X_AXIS]);
|
||||||
Serial.print("Y:");
|
Serial.print("Y:");
|
||||||
Serial.print(current_position[Y_AXIS]);
|
Serial.print(current_position[Y_AXIS]);
|
||||||
Serial.print("Z:");
|
Serial.print("Z:");
|
||||||
Serial.print(current_position[Z_AXIS]);
|
Serial.print(current_position[Z_AXIS]);
|
||||||
Serial.print("E:");
|
Serial.print("E:");
|
||||||
Serial.print(current_position[E_AXIS]);
|
Serial.print(current_position[E_AXIS]);
|
||||||
#ifdef DEBUG_STEPS
|
#ifdef DEBUG_STEPS
|
||||||
Serial.print(" Count X:");
|
Serial.print(" Count X:");
|
||||||
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
|
Serial.print(float(count_position[X_AXIS])/axis_steps_per_unit[X_AXIS]);
|
||||||
Serial.print("Y:");
|
Serial.print("Y:");
|
||||||
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
|
Serial.print(float(count_position[Y_AXIS])/axis_steps_per_unit[Y_AXIS]);
|
||||||
Serial.print("Z:");
|
Serial.print("Z:");
|
||||||
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
|
Serial.println(float(count_position[Z_AXIS])/axis_steps_per_unit[Z_AXIS]);
|
||||||
#endif
|
#endif
|
||||||
Serial.println("");
|
Serial.println("");
|
||||||
break;
|
break;
|
||||||
case 119: // M119
|
case 119: // M119
|
||||||
#if (X_MIN_PIN > -1)
|
#if (X_MIN_PIN > -1)
|
||||||
Serial.print("x_min:");
|
Serial.print("x_min:");
|
||||||
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
Serial.print((READ(X_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||||||
#endif
|
#endif
|
||||||
#if (X_MAX_PIN > -1)
|
#if (X_MAX_PIN > -1)
|
||||||
Serial.print("x_max:");
|
Serial.print("x_max:");
|
||||||
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
Serial.print((READ(X_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||||||
#endif
|
#endif
|
||||||
#if (Y_MIN_PIN > -1)
|
#if (Y_MIN_PIN > -1)
|
||||||
Serial.print("y_min:");
|
Serial.print("y_min:");
|
||||||
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
Serial.print((READ(Y_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||||||
#endif
|
#endif
|
||||||
#if (Y_MAX_PIN > -1)
|
#if (Y_MAX_PIN > -1)
|
||||||
Serial.print("y_max:");
|
Serial.print("y_max:");
|
||||||
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
Serial.print((READ(Y_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||||||
#endif
|
#endif
|
||||||
#if (Z_MIN_PIN > -1)
|
#if (Z_MIN_PIN > -1)
|
||||||
Serial.print("z_min:");
|
Serial.print("z_min:");
|
||||||
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
Serial.print((READ(Z_MIN_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||||||
#endif
|
#endif
|
||||||
#if (Z_MAX_PIN > -1)
|
#if (Z_MAX_PIN > -1)
|
||||||
Serial.print("z_max:");
|
Serial.print("z_max:");
|
||||||
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
Serial.print((READ(Z_MAX_PIN)^ENDSTOPS_INVERTING)?"H ":"L ");
|
||||||
#endif
|
#endif
|
||||||
Serial.println("");
|
Serial.println("");
|
||||||
break;
|
break;
|
||||||
//TODO: update for all axis, use for loop
|
//TODO: update for all axis, use for loop
|
||||||
case 201: // M201
|
case 201: // M201
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
#if 0 // Not used for Sprinter/grbl gen6
|
#if 0 // Not used for Sprinter/grbl gen6
|
||||||
case 202: // M202
|
case 202: // M202
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
#endif
|
#endif
|
||||||
case 203: // M203 max feedrate mm/sec
|
case 203: // M203 max feedrate mm/sec
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
|
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 204: // M204 acclereration S normal moves T filmanent only moves
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
||||||
{
|
{
|
||||||
if(code_seen('S')) acceleration = code_value() ;
|
if(code_seen('S')) acceleration = code_value() ;
|
||||||
if(code_seen('T')) retract_acceleration = code_value() ;
|
if(code_seen('T')) retract_acceleration = code_value() ;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
||||||
{
|
{
|
||||||
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
|
if(code_seen('S')) minimumfeedrate = code_value()*60 ;
|
||||||
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
|
if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
|
||||||
if(code_seen('B')) minsegmenttime = code_value() ;
|
if(code_seen('B')) minsegmenttime = code_value() ;
|
||||||
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
|
if(code_seen('X')) max_xy_jerk = code_value()*60 ;
|
||||||
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
|
if(code_seen('Z')) max_z_jerk = code_value()*60 ;
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
||||||
{
|
{
|
||||||
if(code_seen('S'))
|
if(code_seen('S'))
|
||||||
{
|
{
|
||||||
feedmultiply = code_value() ;
|
feedmultiply = code_value() ;
|
||||||
feedmultiplychanged=true;
|
feedmultiplychanged=true;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
case 301: // M301
|
case 301: // M301
|
||||||
if(code_seen('P')) Kp = code_value();
|
if(code_seen('P')) Kp = code_value();
|
||||||
if(code_seen('I')) Ki = code_value()*PID_dT;
|
if(code_seen('I')) Ki = code_value()*PID_dT;
|
||||||
if(code_seen('D')) Kd = code_value()/PID_dT;
|
if(code_seen('D')) Kd = code_value()/PID_dT;
|
||||||
// ECHOLN("Kp "<<_FLOAT(Kp,2));
|
// ECHOLN("Kp "<<_FLOAT(Kp,2));
|
||||||
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
|
// ECHOLN("Ki "<<_FLOAT(Ki/PID_dT,2));
|
||||||
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
|
// ECHOLN("Kd "<<_FLOAT(Kd*PID_dT,2));
|
||||||
|
|
||||||
// temp_iState_min = 0.0;
|
// temp_iState_min = 0.0;
|
||||||
// if (Ki!=0) {
|
// if (Ki!=0) {
|
||||||
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
|
// temp_iState_max = PID_INTEGRAL_DRIVE_MAX / (Ki/100.0);
|
||||||
// }
|
// }
|
||||||
// else temp_iState_max = 1.0e10;
|
// else temp_iState_max = 1.0e10;
|
||||||
break;
|
break;
|
||||||
#endif //PIDTEMP
|
#endif //PIDTEMP
|
||||||
case 500: // Store settings in EEPROM
|
case 500: // Store settings in EEPROM
|
||||||
{
|
{
|
||||||
StoreSettings();
|
StoreSettings();
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 501: // Read settings from EEPROM
|
case 501: // Read settings from EEPROM
|
||||||
{
|
{
|
||||||
RetrieveSettings();
|
RetrieveSettings();
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case 502: // Revert to default settings
|
case 502: // Revert to default settings
|
||||||
{
|
{
|
||||||
RetrieveSettings(true);
|
RetrieveSettings(true);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else{
|
else{
|
||||||
Serial.println("Unknown command:");
|
Serial.println("Unknown command:");
|
||||||
Serial.println(cmdbuffer[bufindr]);
|
Serial.println(cmdbuffer[bufindr]);
|
||||||
}
|
}
|
||||||
|
|
||||||
ClearToSend();
|
ClearToSend();
|
||||||
}
|
}
|
||||||
|
|
||||||
void FlushSerialRequestResend()
|
void FlushSerialRequestResend()
|
||||||
{
|
{
|
||||||
//char cmdbuffer[bufindr][100]="Resend:";
|
//char cmdbuffer[bufindr][100]="Resend:";
|
||||||
Serial.flush();
|
Serial.flush();
|
||||||
Serial.print("Resend:");
|
Serial.print("Resend:");
|
||||||
Serial.println(gcode_LastN + 1);
|
Serial.println(gcode_LastN + 1);
|
||||||
ClearToSend();
|
ClearToSend();
|
||||||
}
|
}
|
||||||
|
|
||||||
void ClearToSend()
|
void ClearToSend()
|
||||||
{
|
{
|
||||||
previous_millis_cmd = millis();
|
previous_millis_cmd = millis();
|
||||||
#ifdef SDSUPPORT
|
#ifdef SDSUPPORT
|
||||||
if(fromsd[bufindr])
|
if(fromsd[bufindr])
|
||||||
return;
|
return;
|
||||||
#endif //SDSUPPORT
|
#endif //SDSUPPORT
|
||||||
Serial.println("ok");
|
Serial.println("ok");
|
||||||
}
|
}
|
||||||
|
|
||||||
inline void get_coordinates()
|
inline void get_coordinates()
|
||||||
{
|
{
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
|
||||||
else destination[i] = current_position[i]; //Are these else lines really needed?
|
else destination[i] = current_position[i]; //Are these else lines really needed?
|
||||||
}
|
}
|
||||||
if(code_seen('F')) {
|
if(code_seen('F')) {
|
||||||
next_feedrate = code_value();
|
next_feedrate = code_value();
|
||||||
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
if(next_feedrate > 0.0) feedrate = next_feedrate;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void prepare_move()
|
void prepare_move()
|
||||||
{
|
{
|
||||||
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
|
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60.0/100.0);
|
||||||
for(int i=0; i < NUM_AXIS; i++) {
|
for(int i=0; i < NUM_AXIS; i++) {
|
||||||
current_position[i] = destination[i];
|
current_position[i] = destination[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
#ifdef USE_WATCHDOG
|
#ifdef USE_WATCHDOG
|
||||||
|
|
||||||
#include <avr/wdt.h>
|
#include <avr/wdt.h>
|
||||||
#include <avr/interrupt.h>
|
#include <avr/interrupt.h>
|
||||||
|
|
||||||
volatile uint8_t timeout_seconds=0;
|
volatile uint8_t timeout_seconds=0;
|
||||||
|
|
||||||
void(* ctrlaltdelete) (void) = 0;
|
void(* ctrlaltdelete) (void) = 0;
|
||||||
|
|
||||||
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
|
ISR(WDT_vect) { //Watchdog timer interrupt, called if main program blocks >1sec
|
||||||
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
|
if(timeout_seconds++ >= WATCHDOG_TIMEOUT)
|
||||||
{
|
{
|
||||||
kill();
|
kill();
|
||||||
#ifdef RESET_MANUAL
|
#ifdef RESET_MANUAL
|
||||||
LCD_MESSAGE("Please Reset!");
|
LCD_MESSAGE("Please Reset!");
|
||||||
ECHOLN("echo_: Something is wrong, please turn off the printer.");
|
ECHOLN("echo_: Something is wrong, please turn off the printer.");
|
||||||
#else
|
#else
|
||||||
LCD_MESSAGE("Timeout, resetting!");
|
LCD_MESSAGE("Timeout, resetting!");
|
||||||
#endif
|
#endif
|
||||||
//disable watchdog, it will survife reboot.
|
//disable watchdog, it will survife reboot.
|
||||||
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
WDTCSR |= (1<<WDCE) | (1<<WDE);
|
||||||
WDTCSR = 0;
|
WDTCSR = 0;
|
||||||
#ifdef RESET_MANUAL
|
#ifdef RESET_MANUAL
|
||||||
while(1); //wait for user or serial reset
|
while(1); //wait for user or serial reset
|
||||||
#else
|
#else
|
||||||
ctrlaltdelete();
|
ctrlaltdelete();
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// intialise watch dog with a 1 sec interrupt time
|
/// intialise watch dog with a 1 sec interrupt time
|
||||||
void wd_init() {
|
void wd_init() {
|
||||||
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
|
WDTCSR = (1<<WDCE )|(1<<WDE ); //allow changes
|
||||||
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
|
WDTCSR = (1<<WDIF)|(1<<WDIE)| (1<<WDCE )|(1<<WDE )| (1<<WDP2 )|(1<<WDP1)|(0<<WDP0);
|
||||||
}
|
}
|
||||||
|
|
||||||
/// reset watchdog. MUST be called every 1s after init or avr will reset.
|
/// reset watchdog. MUST be called every 1s after init or avr will reset.
|
||||||
void wd_reset() {
|
void wd_reset() {
|
||||||
wdt_reset();
|
wdt_reset();
|
||||||
timeout_seconds=0; //reset counter for resets
|
timeout_seconds=0; //reset counter for resets
|
||||||
}
|
}
|
||||||
#endif /* USE_WATCHDOG */
|
#endif /* USE_WATCHDOG */
|
||||||
|
|
||||||
|
|
||||||
inline void kill()
|
inline void kill()
|
||||||
{
|
{
|
||||||
#if TEMP_0_PIN > -1
|
#if TEMP_0_PIN > -1
|
||||||
target_raw[0]=0;
|
target_raw[0]=0;
|
||||||
#if HEATER_0_PIN > -1
|
#if HEATER_0_PIN > -1
|
||||||
WRITE(HEATER_0_PIN,LOW);
|
WRITE(HEATER_0_PIN,LOW);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#if TEMP_1_PIN > -1
|
#if TEMP_1_PIN > -1
|
||||||
target_raw[1]=0;
|
target_raw[1]=0;
|
||||||
#if HEATER_1_PIN > -1
|
#if HEATER_1_PIN > -1
|
||||||
WRITE(HEATER_1_PIN,LOW);
|
WRITE(HEATER_1_PIN,LOW);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
#if TEMP_2_PIN > -1
|
#if TEMP_2_PIN > -1
|
||||||
target_raw[2]=0;
|
target_raw[2]=0;
|
||||||
#if HEATER_2_PIN > -1
|
#if HEATER_2_PIN > -1
|
||||||
WRITE(HEATER_2_PIN,LOW);
|
WRITE(HEATER_2_PIN,LOW);
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
disable_x();
|
disable_x();
|
||||||
disable_y();
|
disable_y();
|
||||||
disable_z();
|
disable_z();
|
||||||
disable_e();
|
disable_e();
|
||||||
|
|
||||||
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
|
if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
|
||||||
Serial.println("!! Printer halted. kill() called!!");
|
Serial.println("!! Printer halted. kill() called!!");
|
||||||
while(1); // Wait for reset
|
while(1); // Wait for reset
|
||||||
}
|
}
|
||||||
|
|
||||||
void manage_inactivity(byte debug) {
|
void manage_inactivity(byte debug) {
|
||||||
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
|
if( (millis()-previous_millis_cmd) > max_inactive_time ) if(max_inactive_time) kill();
|
||||||
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
|
if( (millis()-previous_millis_cmd) > stepper_inactive_time ) if(stepper_inactive_time) {
|
||||||
disable_x();
|
disable_x();
|
||||||
disable_y();
|
disable_y();
|
||||||
disable_z();
|
disable_z();
|
||||||
disable_e();
|
disable_e();
|
||||||
}
|
}
|
||||||
check_axes_activity();
|
check_axes_activity();
|
||||||
}
|
}
|
||||||
|
|
|
@ -1,501 +1,503 @@
|
||||||
/*
|
/*
|
||||||
temperature.c - temperature control
|
temperature.c - temperature control
|
||||||
Part of Marlin
|
Part of Marlin
|
||||||
|
|
||||||
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||||
|
|
||||||
This program is free software: you can redistribute it and/or modify
|
This program is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
This program is distributed in the hope that it will be useful,
|
This program is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
/*
|
/*
|
||||||
This firmware is a mashup between Sprinter and grbl.
|
This firmware is a mashup between Sprinter and grbl.
|
||||||
(https://github.com/kliment/Sprinter)
|
(https://github.com/kliment/Sprinter)
|
||||||
(https://github.com/simen/grbl/tree)
|
(https://github.com/simen/grbl/tree)
|
||||||
|
|
||||||
It has preliminary support for Matthew Roberts advance algorithm
|
It has preliminary support for Matthew Roberts advance algorithm
|
||||||
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
||||||
|
|
||||||
This firmware is optimized for gen6 electronics.
|
This firmware is optimized for gen6 electronics.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#include "fastio.h"
|
#include "fastio.h"
|
||||||
#include "Configuration.h"
|
#include "Configuration.h"
|
||||||
#include "pins.h"
|
#include "pins.h"
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
#include "ultralcd.h"
|
#include "ultralcd.h"
|
||||||
#include "streaming.h"
|
#include "streaming.h"
|
||||||
#include "temperature.h"
|
#include "temperature.h"
|
||||||
|
|
||||||
int target_bed_raw = 0;
|
int target_bed_raw = 0;
|
||||||
int current_bed_raw = 0;
|
int current_bed_raw = 0;
|
||||||
|
|
||||||
int target_raw[3] = {0, 0, 0};
|
int target_raw[3] = {0, 0, 0};
|
||||||
int current_raw[3] = {0, 0, 0};
|
int current_raw[3] = {0, 0, 0};
|
||||||
unsigned char temp_meas_ready = false;
|
unsigned char temp_meas_ready = false;
|
||||||
|
|
||||||
unsigned long previous_millis_heater, previous_millis_bed_heater;
|
unsigned long previous_millis_heater, previous_millis_bed_heater;
|
||||||
|
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
double temp_iState = 0;
|
double temp_iState = 0;
|
||||||
double temp_dState = 0;
|
double temp_dState = 0;
|
||||||
double pTerm;
|
double pTerm;
|
||||||
double iTerm;
|
double iTerm;
|
||||||
double dTerm;
|
double dTerm;
|
||||||
//int output;
|
//int output;
|
||||||
double pid_error;
|
double pid_error;
|
||||||
double temp_iState_min;
|
double temp_iState_min;
|
||||||
double temp_iState_max;
|
double temp_iState_max;
|
||||||
double pid_setpoint = 0.0;
|
double pid_setpoint = 0.0;
|
||||||
double pid_input;
|
double pid_input;
|
||||||
double pid_output;
|
double pid_output;
|
||||||
bool pid_reset;
|
bool pid_reset;
|
||||||
float HeaterPower;
|
float HeaterPower;
|
||||||
|
|
||||||
float Kp=DEFAULT_Kp;
|
float Kp=DEFAULT_Kp;
|
||||||
float Ki=DEFAULT_Ki;
|
float Ki=DEFAULT_Ki;
|
||||||
float Kd=DEFAULT_Kd;
|
float Kd=DEFAULT_Kd;
|
||||||
float Kc=DEFAULT_Kc;
|
float Kc=DEFAULT_Kc;
|
||||||
#endif //PIDTEMP
|
#endif //PIDTEMP
|
||||||
|
|
||||||
#ifdef HEATER_0_MINTEMP
|
#ifdef HEATER_0_MINTEMP
|
||||||
int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
|
int minttemp_0 = temp2analog(HEATER_0_MINTEMP);
|
||||||
#endif //MINTEMP
|
#endif //MINTEMP
|
||||||
#ifdef HEATER_0_MAXTEMP
|
#ifdef HEATER_0_MAXTEMP
|
||||||
int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
|
int maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
|
||||||
#endif //MAXTEMP
|
#endif //MAXTEMP
|
||||||
|
|
||||||
#ifdef HEATER_1_MINTEMP
|
#ifdef HEATER_1_MINTEMP
|
||||||
int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
|
int minttemp_1 = temp2analog(HEATER_1_MINTEMP);
|
||||||
#endif //MINTEMP
|
#endif //MINTEMP
|
||||||
#ifdef HEATER_1_MAXTEMP
|
#ifdef HEATER_1_MAXTEMP
|
||||||
int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
|
int maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
|
||||||
#endif //MAXTEMP
|
#endif //MAXTEMP
|
||||||
|
|
||||||
#ifdef BED_MINTEMP
|
#ifdef BED_MINTEMP
|
||||||
int bed_minttemp = temp2analog(BED_MINTEMP);
|
int bed_minttemp = temp2analog(BED_MINTEMP);
|
||||||
#endif //BED_MINTEMP
|
#endif //BED_MINTEMP
|
||||||
#ifdef BED_MAXTEMP
|
#ifdef BED_MAXTEMP
|
||||||
int bed_maxttemp = temp2analog(BED_MAXTEMP);
|
int bed_maxttemp = temp2analog(BED_MAXTEMP);
|
||||||
#endif //BED_MAXTEMP
|
#endif //BED_MAXTEMP
|
||||||
|
|
||||||
void manage_heater()
|
void manage_heater()
|
||||||
{
|
{
|
||||||
#ifdef USE_WATCHDOG
|
#ifdef USE_WATCHDOG
|
||||||
wd_reset();
|
wd_reset();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
float pid_input;
|
float pid_input;
|
||||||
float pid_output;
|
float pid_output;
|
||||||
if(temp_meas_ready != true) //better readability
|
if(temp_meas_ready != true) //better readability
|
||||||
return;
|
return;
|
||||||
|
|
||||||
CRITICAL_SECTION_START;
|
CRITICAL_SECTION_START;
|
||||||
temp_meas_ready = false;
|
temp_meas_ready = false;
|
||||||
CRITICAL_SECTION_END;
|
CRITICAL_SECTION_END;
|
||||||
|
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND]);
|
pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
|
||||||
|
|
||||||
#ifndef PID_OPENLOOP
|
#ifndef PID_OPENLOOP
|
||||||
pid_error = pid_setpoint - pid_input;
|
pid_error = pid_setpoint - pid_input;
|
||||||
if(pid_error > 10){
|
if(pid_error > 10){
|
||||||
pid_output = PID_MAX;
|
pid_output = PID_MAX;
|
||||||
pid_reset = true;
|
pid_reset = true;
|
||||||
}
|
}
|
||||||
else if(pid_error < -10) {
|
else if(pid_error < -10) {
|
||||||
pid_output = 0;
|
pid_output = 0;
|
||||||
pid_reset = true;
|
pid_reset = true;
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
if(pid_reset == true) {
|
if(pid_reset == true) {
|
||||||
temp_iState = 0.0;
|
temp_iState = 0.0;
|
||||||
pid_reset = false;
|
pid_reset = false;
|
||||||
}
|
}
|
||||||
pTerm = Kp * pid_error;
|
pTerm = Kp * pid_error;
|
||||||
temp_iState += pid_error;
|
temp_iState += pid_error;
|
||||||
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
|
||||||
iTerm = Ki * temp_iState;
|
iTerm = Ki * temp_iState;
|
||||||
//K1 defined in Configuration.h in the PID settings
|
//K1 defined in Configuration.h in the PID settings
|
||||||
#define K2 (1.0-K1)
|
#define K2 (1.0-K1)
|
||||||
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
|
||||||
temp_dState = pid_input;
|
temp_dState = pid_input;
|
||||||
#ifdef PID_ADD_EXTRUSION_RATE
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||||||
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
|
||||||
#endif
|
#endif
|
||||||
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
|
||||||
}
|
}
|
||||||
#endif //PID_OPENLOOP
|
#endif //PID_OPENLOOP
|
||||||
#ifdef PID_DEBUG
|
#ifdef PID_DEBUG
|
||||||
Serial.print(" Input ");
|
Serial.print(" Input ");
|
||||||
Serial.print(pid_input);
|
Serial.print(pid_input);
|
||||||
Serial.print(" Output ");
|
Serial.print(" Output ");
|
||||||
Serial.print(pid_output);
|
Serial.print(pid_output);
|
||||||
Serial.print(" pTerm ");
|
Serial.print(" pTerm ");
|
||||||
Serial.print(pTerm);
|
Serial.print(pTerm);
|
||||||
Serial.print(" iTerm ");
|
Serial.print(" iTerm ");
|
||||||
Serial.print(iTerm);
|
Serial.print(iTerm);
|
||||||
Serial.print(" dTerm ");
|
Serial.print(" dTerm ");
|
||||||
Serial.print(dTerm);
|
Serial.print(dTerm);
|
||||||
Serial.println();
|
Serial.println();
|
||||||
#endif //PID_DEBUG
|
#endif //PID_DEBUG
|
||||||
analogWrite(HEATER_0_PIN, pid_output);
|
analogWrite(HEATER_0_PIN, pid_output);
|
||||||
#endif //PIDTEMP
|
#endif //PIDTEMP
|
||||||
|
|
||||||
#ifndef PIDTEMP
|
#ifndef PIDTEMP
|
||||||
if(current_raw[0] >= target_raw[0])
|
if(current_raw[0] >= target_raw[0])
|
||||||
{
|
{
|
||||||
WRITE(HEATER_0_PIN,LOW);
|
WRITE(HEATER_0_PIN,LOW);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
WRITE(HEATER_0_PIN,HIGH);
|
WRITE(HEATER_0_PIN,HIGH);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
||||||
return;
|
return;
|
||||||
previous_millis_bed_heater = millis();
|
previous_millis_bed_heater = millis();
|
||||||
|
|
||||||
#if TEMP_1_PIN > -1
|
#if TEMP_1_PIN > -1
|
||||||
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
|
if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
|
||||||
{
|
{
|
||||||
WRITE(HEATER_1_PIN,LOW);
|
WRITE(HEATER_1_PIN,LOW);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
WRITE(HEATER_1_PIN,HIGH);
|
WRITE(HEATER_1_PIN,HIGH);
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// Takes hot end temperature value as input and returns corresponding raw value.
|
// Takes hot end temperature value as input and returns corresponding raw value.
|
||||||
// For a thermistor, it uses the RepRap thermistor temp table.
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
||||||
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
||||||
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
||||||
int temp2analog(int celsius) {
|
int temp2analog(int celsius) {
|
||||||
#ifdef HEATER_0_USES_THERMISTOR
|
#ifdef HEATER_0_USES_THERMISTOR
|
||||||
int raw = 0;
|
int raw = 0;
|
||||||
byte i;
|
byte i;
|
||||||
|
|
||||||
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
||||||
{
|
{
|
||||||
if (heater_0_temptable[i][1] < celsius)
|
if (heater_0_temptable[i][1] < celsius)
|
||||||
{
|
{
|
||||||
raw = heater_0_temptable[i-1][0] +
|
raw = heater_0_temptable[i-1][0] +
|
||||||
(celsius - heater_0_temptable[i-1][1]) *
|
(celsius - heater_0_temptable[i-1][1]) *
|
||||||
(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /
|
(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]) /
|
||||||
(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]);
|
(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]);
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Overflow: Set to last value in the table
|
// Overflow: Set to last value in the table
|
||||||
if (i == NUMTEMPS_0) raw = heater_0_temptable[i-1][0];
|
if (i == NUMTEMPS_0) raw = heater_0_temptable[i-1][0];
|
||||||
|
|
||||||
return (1023 * OVERSAMPLENR) - raw;
|
return (1023 * OVERSAMPLENR) - raw;
|
||||||
#elif defined HEATER_0_USES_AD595
|
#elif defined HEATER_0_USES_AD595
|
||||||
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// Takes bed temperature value as input and returns corresponding raw value.
|
// Takes bed temperature value as input and returns corresponding raw value.
|
||||||
// For a thermistor, it uses the RepRap thermistor temp table.
|
// For a thermistor, it uses the RepRap thermistor temp table.
|
||||||
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
// This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
|
||||||
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
// This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
|
||||||
int temp2analogBed(int celsius) {
|
int temp2analogBed(int celsius) {
|
||||||
#ifdef BED_USES_THERMISTOR
|
#ifdef BED_USES_THERMISTOR
|
||||||
|
|
||||||
int raw = 0;
|
int raw = 0;
|
||||||
byte i;
|
byte i;
|
||||||
|
|
||||||
for (i=1; i<BNUMTEMPS; i++)
|
for (i=1; i<BNUMTEMPS; i++)
|
||||||
{
|
{
|
||||||
if (bedtemptable[i][1] < celsius)
|
if (bedtemptable[i][1] < celsius)
|
||||||
{
|
{
|
||||||
raw = bedtemptable[i-1][0] +
|
raw = bedtemptable[i-1][0] +
|
||||||
(celsius - bedtemptable[i-1][1]) *
|
(celsius - bedtemptable[i-1][1]) *
|
||||||
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
|
(bedtemptable[i][0] - bedtemptable[i-1][0]) /
|
||||||
(bedtemptable[i][1] - bedtemptable[i-1][1]);
|
(bedtemptable[i][1] - bedtemptable[i-1][1]);
|
||||||
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Overflow: Set to last value in the table
|
// Overflow: Set to last value in the table
|
||||||
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
|
if (i == BNUMTEMPS) raw = bedtemptable[i-1][0];
|
||||||
|
|
||||||
return (1023 * OVERSAMPLENR) - raw;
|
return (1023 * OVERSAMPLENR) - raw;
|
||||||
#elif defined BED_USES_AD595
|
#elif defined BED_USES_AD595
|
||||||
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// Derived from RepRap FiveD extruder::getTemperature()
|
// Derived from RepRap FiveD extruder::getTemperature()
|
||||||
// For hot end temperature measurement.
|
// For hot end temperature measurement.
|
||||||
float analog2temp(int raw) {
|
float analog2temp(int raw) {
|
||||||
#ifdef HEATER_0_USES_THERMISTOR
|
#ifdef HEATER_0_USES_THERMISTOR
|
||||||
float celsius = 0;
|
float celsius = 0;
|
||||||
byte i;
|
byte i;
|
||||||
raw = (1023 * OVERSAMPLENR) - raw;
|
raw = (1023 * OVERSAMPLENR) - raw;
|
||||||
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
for (i=1; i<NUMTEMPS_HEATER_0; i++)
|
||||||
{
|
{
|
||||||
if (heater_0_temptable[i][0] > raw)
|
if (heater_0_temptable[i][0] > raw)
|
||||||
{
|
{
|
||||||
celsius = heater_0_temptable[i-1][1] +
|
celsius = heater_0_temptable[i-1][1] +
|
||||||
(raw - heater_0_temptable[i-1][0]) *
|
(raw - heater_0_temptable[i-1][0]) *
|
||||||
(float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /
|
(float)(heater_0_temptable[i][1] - heater_0_temptable[i-1][1]) /
|
||||||
(float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);
|
(float)(heater_0_temptable[i][0] - heater_0_temptable[i-1][0]);
|
||||||
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Overflow: Set to last value in the table
|
// Overflow: Set to last value in the table
|
||||||
if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];
|
if (i == NUMTEMPS_HEATER_0) celsius = heater_0_temptable[i-1][1];
|
||||||
|
|
||||||
return celsius;
|
return celsius;
|
||||||
#elif defined HEATER_0_USES_AD595
|
#elif defined HEATER_0_USES_AD595
|
||||||
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
// Derived from RepRap FiveD extruder::getTemperature()
|
// Derived from RepRap FiveD extruder::getTemperature()
|
||||||
// For bed temperature measurement.
|
// For bed temperature measurement.
|
||||||
float analog2tempBed(int raw) {
|
float analog2tempBed(int raw) {
|
||||||
#ifdef BED_USES_THERMISTOR
|
#ifdef BED_USES_THERMISTOR
|
||||||
int celsius = 0;
|
int celsius = 0;
|
||||||
byte i;
|
byte i;
|
||||||
|
|
||||||
raw = (1023 * OVERSAMPLENR) - raw;
|
raw = (1023 * OVERSAMPLENR) - raw;
|
||||||
|
|
||||||
for (i=1; i<BNUMTEMPS; i++)
|
for (i=1; i<BNUMTEMPS; i++)
|
||||||
{
|
{
|
||||||
if (bedtemptable[i][0] > raw)
|
if (bedtemptable[i][0] > raw)
|
||||||
{
|
{
|
||||||
celsius = bedtemptable[i-1][1] +
|
celsius = bedtemptable[i-1][1] +
|
||||||
(raw - bedtemptable[i-1][0]) *
|
(raw - bedtemptable[i-1][0]) *
|
||||||
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
|
(bedtemptable[i][1] - bedtemptable[i-1][1]) /
|
||||||
(bedtemptable[i][0] - bedtemptable[i-1][0]);
|
(bedtemptable[i][0] - bedtemptable[i-1][0]);
|
||||||
|
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// Overflow: Set to last value in the table
|
// Overflow: Set to last value in the table
|
||||||
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
|
if (i == BNUMTEMPS) celsius = bedtemptable[i-1][1];
|
||||||
|
|
||||||
return celsius;
|
return celsius;
|
||||||
|
|
||||||
#elif defined BED_USES_AD595
|
#elif defined BED_USES_AD595
|
||||||
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
void tp_init()
|
void tp_init()
|
||||||
{
|
{
|
||||||
#if (HEATER_0_PIN > -1)
|
#if (HEATER_0_PIN > -1)
|
||||||
SET_OUTPUT(HEATER_0_PIN);
|
SET_OUTPUT(HEATER_0_PIN);
|
||||||
#endif
|
#endif
|
||||||
#if (HEATER_1_PIN > -1)
|
#if (HEATER_1_PIN > -1)
|
||||||
SET_OUTPUT(HEATER_1_PIN);
|
SET_OUTPUT(HEATER_1_PIN);
|
||||||
#endif
|
#endif
|
||||||
#if (HEATER_2_PIN > -1)
|
#if (HEATER_2_PIN > -1)
|
||||||
SET_OUTPUT(HEATER_2_PIN);
|
SET_OUTPUT(HEATER_2_PIN);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef PIDTEMP
|
#ifdef PIDTEMP
|
||||||
temp_iState_min = 0.0;
|
temp_iState_min = 0.0;
|
||||||
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
|
||||||
#endif //PIDTEMP
|
#endif //PIDTEMP
|
||||||
|
|
||||||
// Set analog inputs
|
// Set analog inputs
|
||||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
||||||
|
|
||||||
// Use timer0 for temperature measurement
|
// Use timer0 for temperature measurement
|
||||||
// Interleave temperature interrupt with millies interrupt
|
// Interleave temperature interrupt with millies interrupt
|
||||||
OCR0B = 128;
|
OCR0B = 128;
|
||||||
TIMSK0 |= (1<<OCIE0B);
|
TIMSK0 |= (1<<OCIE0B);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// Timer 0 is shared with millies
|
// Timer 0 is shared with millies
|
||||||
ISR(TIMER0_COMPB_vect)
|
ISR(TIMER0_COMPB_vect)
|
||||||
{
|
{
|
||||||
//these variables are only accesible from the ISR, but static, so they don't loose their value
|
//these variables are only accesible from the ISR, but static, so they don't loose their value
|
||||||
static unsigned char temp_count = 0;
|
static unsigned char temp_count = 0;
|
||||||
static unsigned long raw_temp_0_value = 0;
|
static unsigned long raw_temp_0_value = 0;
|
||||||
static unsigned long raw_temp_1_value = 0;
|
static unsigned long raw_temp_1_value = 0;
|
||||||
static unsigned long raw_temp_2_value = 0;
|
static unsigned long raw_temp_2_value = 0;
|
||||||
static unsigned char temp_state = 0;
|
static unsigned char temp_state = 0;
|
||||||
|
|
||||||
switch(temp_state) {
|
switch(temp_state) {
|
||||||
case 0: // Prepare TEMP_0
|
case 0: // Prepare TEMP_0
|
||||||
#if (TEMP_0_PIN > -1)
|
#if (TEMP_0_PIN > -1)
|
||||||
#if TEMP_0_PIN < 8
|
#if TEMP_0_PIN < 8
|
||||||
DIDR0 = 1 << TEMP_0_PIN;
|
DIDR0 = 1 << TEMP_0_PIN;
|
||||||
#else
|
#else
|
||||||
DIDR2 = 1<<(TEMP_0_PIN - 8);
|
DIDR2 = 1<<(TEMP_0_PIN - 8);
|
||||||
ADCSRB = 1<<MUX5;
|
ADCSRB = 1<<MUX5;
|
||||||
#endif
|
#endif
|
||||||
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
||||||
ADCSRA |= 1<<ADSC; // Start conversion
|
ADCSRA |= 1<<ADSC; // Start conversion
|
||||||
#endif
|
#endif
|
||||||
#ifdef ULTIPANEL
|
#ifdef ULTIPANEL
|
||||||
buttons_check();
|
buttons_check();
|
||||||
#endif
|
#endif
|
||||||
temp_state = 1;
|
temp_state = 1;
|
||||||
break;
|
break;
|
||||||
case 1: // Measure TEMP_0
|
case 1: // Measure TEMP_0
|
||||||
#if (TEMP_0_PIN > -1)
|
#if (TEMP_0_PIN > -1)
|
||||||
raw_temp_0_value += ADC;
|
raw_temp_0_value += ADC;
|
||||||
#endif
|
#endif
|
||||||
temp_state = 2;
|
temp_state = 2;
|
||||||
break;
|
break;
|
||||||
case 2: // Prepare TEMP_1
|
case 2: // Prepare TEMP_1
|
||||||
#if (TEMP_1_PIN > -1)
|
#if (TEMP_1_PIN > -1)
|
||||||
#if TEMP_1_PIN < 7
|
#if TEMP_1_PIN < 7
|
||||||
DIDR0 = 1<<TEMP_1_PIN;
|
DIDR0 = 1<<TEMP_1_PIN;
|
||||||
#else
|
#else
|
||||||
DIDR2 = 1<<(TEMP_1_PIN - 8);
|
DIDR2 = 1<<(TEMP_1_PIN - 8);
|
||||||
ADCSRB = 1<<MUX5;
|
ADCSRB = 1<<MUX5;
|
||||||
#endif
|
#endif
|
||||||
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
||||||
ADCSRA |= 1<<ADSC; // Start conversion
|
ADCSRA |= 1<<ADSC; // Start conversion
|
||||||
#endif
|
#endif
|
||||||
#ifdef ULTIPANEL
|
#ifdef ULTIPANEL
|
||||||
buttons_check();
|
buttons_check();
|
||||||
#endif
|
#endif
|
||||||
temp_state = 3;
|
temp_state = 3;
|
||||||
break;
|
break;
|
||||||
case 3: // Measure TEMP_1
|
case 3: // Measure TEMP_1
|
||||||
#if (TEMP_1_PIN > -1)
|
#if (TEMP_1_PIN > -1)
|
||||||
raw_temp_1_value += ADC;
|
raw_temp_1_value += ADC;
|
||||||
#endif
|
#endif
|
||||||
temp_state = 4;
|
temp_state = 4;
|
||||||
break;
|
break;
|
||||||
case 4: // Prepare TEMP_2
|
case 4: // Prepare TEMP_2
|
||||||
#if (TEMP_2_PIN > -1)
|
#if (TEMP_2_PIN > -1)
|
||||||
#if TEMP_2_PIN < 7
|
#if TEMP_2_PIN < 7
|
||||||
DIDR0 = 1 << TEMP_2_PIN;
|
DIDR0 = 1 << TEMP_2_PIN;
|
||||||
#else
|
#else
|
||||||
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
DIDR2 = 1<<(TEMP_2_PIN - 8);
|
||||||
ADCSRB = 1<<MUX5;
|
ADCSRB = 1<<MUX5;
|
||||||
#endif
|
#endif
|
||||||
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
||||||
ADCSRA |= 1<<ADSC; // Start conversion
|
ADCSRA |= 1<<ADSC; // Start conversion
|
||||||
#endif
|
#endif
|
||||||
#ifdef ULTIPANEL
|
#ifdef ULTIPANEL
|
||||||
buttons_check();
|
buttons_check();
|
||||||
#endif
|
#endif
|
||||||
temp_state = 5;
|
temp_state = 5;
|
||||||
break;
|
break;
|
||||||
case 5: // Measure TEMP_2
|
case 5: // Measure TEMP_2
|
||||||
#if (TEMP_2_PIN > -1)
|
#if (TEMP_2_PIN > -1)
|
||||||
raw_temp_2_value += ADC;
|
raw_temp_2_value += ADC;
|
||||||
#endif
|
#endif
|
||||||
temp_state = 0;
|
temp_state = 0;
|
||||||
temp_count++;
|
temp_count++;
|
||||||
break;
|
break;
|
||||||
default:
|
default:
|
||||||
Serial.println("!! Temp measurement error !!");
|
Serial.println("!! Temp measurement error !!");
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
if(temp_count >= 16) // 6 ms * 16 = 96ms.
|
if(temp_count >= 16) // 6 ms * 16 = 96ms.
|
||||||
{
|
{
|
||||||
#ifdef HEATER_0_USES_AD595
|
#ifdef HEATER_0_USES_AD595
|
||||||
current_raw[0] = raw_temp_0_value;
|
current_raw[0] = raw_temp_0_value;
|
||||||
#else
|
#else
|
||||||
current_raw[0] = 16383 - raw_temp_0_value;
|
current_raw[0] = 16383 - raw_temp_0_value;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef HEATER_1_USES_AD595
|
#ifdef HEATER_1_USES_AD595
|
||||||
current_raw[2] = raw_temp_2_value;
|
current_raw[2] = raw_temp_2_value;
|
||||||
#else
|
#else
|
||||||
current_raw[2] = 16383 - raw_temp_2_value;
|
current_raw[2] = 16383 - raw_temp_2_value;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#ifdef BED_USES_AD595
|
#ifdef BED_USES_AD595
|
||||||
current_raw[1] = raw_temp_1_value;
|
current_raw[1] = raw_temp_1_value;
|
||||||
#else
|
#else
|
||||||
current_raw[1] = 16383 - raw_temp_1_value;
|
current_raw[1] = 16383 - raw_temp_1_value;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
temp_meas_ready = true;
|
temp_meas_ready = true;
|
||||||
temp_count = 0;
|
temp_count = 0;
|
||||||
raw_temp_0_value = 0;
|
raw_temp_0_value = 0;
|
||||||
raw_temp_1_value = 0;
|
raw_temp_1_value = 0;
|
||||||
raw_temp_2_value = 0;
|
raw_temp_2_value = 0;
|
||||||
#ifdef HEATER_0_MAXTEMP
|
#ifdef HEATER_0_MAXTEMP
|
||||||
#if (HEATER_0_PIN > -1)
|
#if (HEATER_0_PIN > -1)
|
||||||
if(current_raw[TEMPSENSOR_HOTEND] >= maxttemp) {
|
if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
|
||||||
target_raw[TEMPSENSOR_HOTEND] = 0;
|
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
||||||
analogWrite(HEATER_0_PIN, 0);
|
analogWrite(HEATER_0_PIN, 0);
|
||||||
Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
|
Serial.println("!! Temperature extruder 0 switched off. MAXTEMP triggered !!");
|
||||||
kill();
|
kill();
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
#endif
|
#endif
|
||||||
if(current_raw[TEMPSENSOR_AUX] >= maxttemp) {
|
#ifdef HEATER_1_MAXTEMP
|
||||||
target_raw[TEMPSENSOR_AUX] = 0;
|
#if (HEATER_1_PIN > -1)
|
||||||
if(current_raw[2] >= maxttemp_1) {
|
if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
|
||||||
analogWrite(HEATER_2_PIN, 0);
|
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
||||||
Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
|
if(current_raw[2] >= maxttemp_1) {
|
||||||
kill()
|
analogWrite(HEATER_2_PIN, 0);
|
||||||
}
|
Serial.println("!! Temperature extruder 1 switched off. MAXTEMP triggered !!");
|
||||||
#endif
|
kill()
|
||||||
#endif //MAXTEMP
|
}
|
||||||
#ifdef HEATER_0_MINTEMP
|
#endif
|
||||||
#if (HEATER_0_PIN > -1)
|
#endif //MAXTEMP
|
||||||
if(current_raw[TEMPSENSOR_HOTEND] <= minttemp) {
|
#ifdef HEATER_0_MINTEMP
|
||||||
target_raw[TEMPSENSOR_HOTEND] = 0;
|
#if (HEATER_0_PIN > -1)
|
||||||
analogWrite(HEATER_0_PIN, 0);
|
if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
|
||||||
Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
|
target_raw[TEMPSENSOR_HOTEND_0] = 0;
|
||||||
kill();
|
analogWrite(HEATER_0_PIN, 0);
|
||||||
}
|
Serial.println("!! Temperature extruder 0 switched off. MINTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
#endif
|
}
|
||||||
#ifdef HEATER_1_MINTEMP
|
#endif
|
||||||
#if (HEATER_2_PIN > -1)
|
#endif
|
||||||
if(current_raw[TEMPSENSOR_AUX] <= minttemp) {
|
#ifdef HEATER_1_MINTEMP
|
||||||
target_raw[TEMPSENSOR_AUX] = 0;
|
#if (HEATER_2_PIN > -1)
|
||||||
analogWrite(HEATER_2_PIN, 0);
|
if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
|
||||||
Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
|
target_raw[TEMPSENSOR_HOTEND_1] = 0;
|
||||||
kill();
|
analogWrite(HEATER_2_PIN, 0);
|
||||||
}
|
Serial.println("!! Temperature extruder 1 switched off. MINTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
#endif //MAXTEMP
|
}
|
||||||
#ifdef BED_MINTEMP
|
#endif
|
||||||
#if (HEATER_1_PIN > -1)
|
#endif //MAXTEMP
|
||||||
if(current_raw[1] <= bed_minttemp) {
|
#ifdef BED_MINTEMP
|
||||||
target_raw[1] = 0;
|
#if (HEATER_1_PIN > -1)
|
||||||
WRITE(HEATER_1_PIN, 0);
|
if(current_raw[1] <= bed_minttemp) {
|
||||||
Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
|
target_raw[1] = 0;
|
||||||
kill();
|
WRITE(HEATER_1_PIN, 0);
|
||||||
}
|
Serial.println("!! Temperatur heated bed switched off. MINTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
#endif
|
}
|
||||||
#ifdef BED_MAXTEMP
|
#endif
|
||||||
#if (HEATER_1_PIN > -1)
|
#endif
|
||||||
if(current_raw[1] >= bed_maxttemp) {
|
#ifdef BED_MAXTEMP
|
||||||
target_raw[1] = 0;
|
#if (HEATER_1_PIN > -1)
|
||||||
WRITE(HEATER_1_PIN, 0);
|
if(current_raw[1] >= bed_maxttemp) {
|
||||||
Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
|
target_raw[1] = 0;
|
||||||
kill();
|
WRITE(HEATER_1_PIN, 0);
|
||||||
}
|
Serial.println("!! Temperature heated bed switched off. MAXTEMP triggered !!");
|
||||||
#endif
|
kill();
|
||||||
#endif
|
}
|
||||||
}
|
#endif
|
||||||
}
|
#endif
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
|
@ -1,58 +1,58 @@
|
||||||
/*
|
/*
|
||||||
temperature.h - temperature controller
|
temperature.h - temperature controller
|
||||||
Part of Marlin
|
Part of Marlin
|
||||||
|
|
||||||
Copyright (c) 2011 Erik van der Zalm
|
Copyright (c) 2011 Erik van der Zalm
|
||||||
|
|
||||||
Grbl is free software: you can redistribute it and/or modify
|
Grbl is free software: you can redistribute it and/or modify
|
||||||
it under the terms of the GNU General Public License as published by
|
it under the terms of the GNU General Public License as published by
|
||||||
the Free Software Foundation, either version 3 of the License, or
|
the Free Software Foundation, either version 3 of the License, or
|
||||||
(at your option) any later version.
|
(at your option) any later version.
|
||||||
|
|
||||||
Grbl is distributed in the hope that it will be useful,
|
Grbl is distributed in the hope that it will be useful,
|
||||||
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||||
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||||
GNU General Public License for more details.
|
GNU General Public License for more details.
|
||||||
|
|
||||||
You should have received a copy of the GNU General Public License
|
You should have received a copy of the GNU General Public License
|
||||||
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
||||||
*/
|
*/
|
||||||
|
|
||||||
#ifndef temperature_h
|
#ifndef temperature_h
|
||||||
#define temperature_h
|
#define temperature_h
|
||||||
|
|
||||||
#include "Marlin.h"
|
#include "Marlin.h"
|
||||||
#ifdef PID_ADD_EXTRUSION_RATE
|
#ifdef PID_ADD_EXTRUSION_RATE
|
||||||
#include "stepper.h"
|
#include "stepper.h"
|
||||||
#endif
|
#endif
|
||||||
void tp_init();
|
void tp_init();
|
||||||
void manage_heater();
|
void manage_heater();
|
||||||
//int temp2analogu(int celsius, const short table[][2], int numtemps);
|
//int temp2analogu(int celsius, const short table[][2], int numtemps);
|
||||||
//float analog2tempu(int raw, const short table[][2], int numtemps);
|
//float analog2tempu(int raw, const short table[][2], int numtemps);
|
||||||
int temp2analog(int celsius);
|
int temp2analog(int celsius);
|
||||||
int temp2analogBed(int celsius);
|
int temp2analogBed(int celsius);
|
||||||
float analog2temp(int raw);
|
float analog2temp(int raw);
|
||||||
float analog2tempBed(int raw);
|
float analog2tempBed(int raw);
|
||||||
|
|
||||||
#ifdef HEATER_USES_THERMISTOR
|
#ifdef HEATER_0_USES_THERMISTOR
|
||||||
#define HEATERSOURCE 1
|
#define HEATERSOURCE 1
|
||||||
#endif
|
#endif
|
||||||
#ifdef BED_USES_THERMISTOR
|
#ifdef BED_USES_THERMISTOR
|
||||||
#define BEDSOURCE 1
|
#define BEDSOURCE 1
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
|
//#define temp2analogh( c ) temp2analogu((c),temptable,NUMTEMPS)
|
||||||
//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS
|
//#define analog2temp( c ) analog2tempu((c),temptable,NUMTEMPS
|
||||||
|
|
||||||
|
|
||||||
extern float Kp;
|
extern float Kp;
|
||||||
extern float Ki;
|
extern float Ki;
|
||||||
extern float Kd;
|
extern float Kd;
|
||||||
extern float Kc;
|
extern float Kc;
|
||||||
|
|
||||||
enum {TEMPSENSOR_HOTEND=0,TEMPSENSOR_BED=1, TEMPSENSOR_AUX=2};
|
enum {TEMPSENSOR_HOTEND_0=0,TEMPSENSOR_BED=1, TEMPSENSOR_HOTEND_1=2};
|
||||||
extern int target_raw[3];
|
extern int target_raw[3];
|
||||||
extern int current_raw[3];
|
extern int current_raw[3];
|
||||||
extern double pid_setpoint;
|
extern double pid_setpoint;
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
|
@ -253,17 +253,17 @@ void MainMenu::showStatus()
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
if((abs(current_raw[TEMPSENSOR_HOTEND]-oldcurrentraw)>3)||force_lcd_update)
|
if((abs(current_raw[TEMPSENSOR_HOTEND_0]-oldcurrentraw)>3)||force_lcd_update)
|
||||||
{
|
{
|
||||||
lcd.setCursor(1,0);
|
lcd.setCursor(1,0);
|
||||||
lcd.print(ftostr3(analog2temp(current_raw[TEMPSENSOR_HOTEND])));
|
lcd.print(ftostr3(analog2temp(current_raw[TEMPSENSOR_HOTEND_0])));
|
||||||
oldcurrentraw=current_raw[TEMPSENSOR_HOTEND];
|
oldcurrentraw=current_raw[TEMPSENSOR_HOTEND_0];
|
||||||
}
|
}
|
||||||
if((target_raw[TEMPSENSOR_HOTEND]!=oldtargetraw)||force_lcd_update)
|
if((target_raw[TEMPSENSOR_HOTEND_0]!=oldtargetraw)||force_lcd_update)
|
||||||
{
|
{
|
||||||
lcd.setCursor(5,0);
|
lcd.setCursor(5,0);
|
||||||
lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND])));
|
lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND_0])));
|
||||||
oldtargetraw=target_raw[TEMPSENSOR_HOTEND];
|
oldtargetraw=target_raw[TEMPSENSOR_HOTEND_0];
|
||||||
}
|
}
|
||||||
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
|
#if defined BED_USES_THERMISTOR || defined BED_USES_AD595
|
||||||
static int oldcurrentbedraw=-1;
|
static int oldcurrentbedraw=-1;
|
||||||
|
@ -426,7 +426,7 @@ void MainMenu::showPrepare()
|
||||||
if((activeline==line) && CLICKED)
|
if((activeline==line) && CLICKED)
|
||||||
{
|
{
|
||||||
BLOCK
|
BLOCK
|
||||||
target_raw[TEMPSENSOR_HOTEND] = temp2analog(170);
|
target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(170);
|
||||||
beepshort();
|
beepshort();
|
||||||
}
|
}
|
||||||
}break;
|
}break;
|
||||||
|
@ -531,7 +531,7 @@ void MainMenu::showControl()
|
||||||
if(force_lcd_update)
|
if(force_lcd_update)
|
||||||
{
|
{
|
||||||
lcd.setCursor(0,line);lcd.print(" \002Nozzle:");
|
lcd.setCursor(0,line);lcd.print(" \002Nozzle:");
|
||||||
lcd.setCursor(13,line);lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND])));
|
lcd.setCursor(13,line);lcd.print(ftostr3(analog2temp(target_raw[TEMPSENSOR_HOTEND_0])));
|
||||||
}
|
}
|
||||||
|
|
||||||
if((activeline==line) )
|
if((activeline==line) )
|
||||||
|
@ -541,11 +541,11 @@ void MainMenu::showControl()
|
||||||
linechanging=!linechanging;
|
linechanging=!linechanging;
|
||||||
if(linechanging)
|
if(linechanging)
|
||||||
{
|
{
|
||||||
encoderpos=(int)analog2temp(target_raw[TEMPSENSOR_HOTEND]);
|
encoderpos=(int)analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
target_raw[TEMPSENSOR_HOTEND] = temp2analog(encoderpos);
|
target_raw[TEMPSENSOR_HOTEND_0] = temp2analog(encoderpos);
|
||||||
encoderpos=activeline*lcdslow;
|
encoderpos=activeline*lcdslow;
|
||||||
beepshort();
|
beepshort();
|
||||||
}
|
}
|
||||||
|
@ -1590,4 +1590,4 @@ char *fillto(int8_t n,char *c)
|
||||||
#else
|
#else
|
||||||
inline void lcd_status() {};
|
inline void lcd_status() {};
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
Reference in a new issue