[New Feature] I2C position encoder support (#6946)

* [New Feature] I2C position encoder support

I plan to continue improving/cleaning this up, as there areas that need work.

* let the cleanups begin.

* progress

* more progress

* comments, rename files, etc.

* clean

* Cleanups per thinkyhead

* a few more cleanups

* cleanups, bugfixes, etc.

* remove unnecessary passes_test(), additional cleanups/optimizations

* cleanups

* misc.

* Fix up I2CPEM.init() and a few other things.

* organize, fix, rename, etc.

* more optimization

* a few more tweaks
This commit is contained in:
bgort 2017-06-09 08:06:23 -04:00 committed by GitHub
parent f7dacd1f50
commit 2f55870edb
8 changed files with 1684 additions and 17 deletions

View file

@ -1261,4 +1261,87 @@
#define USER_GCODE_5 "G28\nM503" #define USER_GCODE_5 "G28\nM503"
#endif #endif
//===========================================================================
//============================ I2C Encoder Settings =========================
//===========================================================================
/**
* I2C position encoders for closed loop control.
* Developed by Chris Barr at Aus3D.
*
* Wiki: http://wiki.aus3d.com.au/Magnetic_Encoder
* Github: https://github.com/Aus3D/MagneticEncoder
*
* Supplier: http://aus3d.com.au/magnetic-encoder-module
* Alternative Supplier: http://reliabuild3d.com/
*
* Reilabuild encoders have been modified to improve reliability.
*/
//#define I2C_POSITION_ENCODERS
#if ENABLED(I2C_POSITION_ENCODERS)
#define I2CPE_ENCODER_CNT 1 // The number of encoders installed; max of 5
// encoders supported currently.
#define I2CPE_ENC_1_ADDR I2CPE_PRESET_ADDR_X // I2C address of the encoder. 30-200.
#define I2CPE_ENC_1_AXIS X_AXIS // Axis the encoder module is installed on. <X|Y|Z|E>_AXIS.
#define I2CPE_ENC_1_TYPE I2CPE_ENC_TYPE_LINEAR // Type of encoder: I2CPE_ENC_TYPE_LINEAR -or-
// I2CPE_ENC_TYPE_ROTARY.
#define I2CPE_ENC_1_TICKS_UNIT 2048 // 1024 for magnetic strips with 2mm poles; 2048 for
// 1mm poles. For linear encoders this is ticks / mm,
// for rotary encoders this is ticks / revolution.
//#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper
// steps per full revolution (motor steps/rev * microstepping)
//#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel.
#define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_NONE // Type of error error correction.
#define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the
// printer will attempt to correct the error; errors
// smaller than this are ignored to minimize effects of
// measurement noise / latency (filter).
#define I2CPE_ENC_2_ADDR I2CPE_PRESET_ADDR_Y // Same as above, but for encoder 2.
#define I2CPE_ENC_2_AXIS Y_AXIS
#define I2CPE_ENC_2_TYPE I2CPE_ENC_TYPE_LINEAR
#define I2CPE_ENC_2_TICKS_UNIT 2048
//#define I2CPE_ENC_2_TICKS_REV (16 * 200)
//#define I2CPE_ENC_2_INVERT
#define I2CPE_ENC_2_EC_METHOD I2CPE_ECM_NONE
#define I2CPE_ENC_2_EC_THRESH 0.10
#define I2CPE_ENC_3_ADDR I2CPE_PRESET_ADDR_Z // Encoder 3. Add additional configuration options
#define I2CPE_ENC_3_AXIS Z_AXIS // as above, or use defaults below.
#define I2CPE_ENC_4_ADDR I2CPE_PRESET_ADDR_E // Encoder 4.
#define I2CPE_ENC_4_AXIS E_AXIS
#define I2CPE_ENC_5_ADDR 34 // Encoder 5.
#define I2CPE_ENC_5_AXIS E_AXIS
// Default settings for encoders which are enabled, but without settings configured above.
#define I2CPE_DEF_TYPE I2CPE_ENC_TYPE_LINEAR
#define I2CPE_DEF_ENC_TICKS_UNIT 2048
#define I2CPE_DEF_TICKS_REV (16 * 200)
#define I2CPE_DEF_EC_METHOD I2CPE_ECM_NONE
#define I2CPE_DEF_EC_THRESH 0.1
//#define I2CPE_ERR_THRESH_ABORT 100.0 // Threshold size for error (in mm) error on any given
// axis after which the printer will abort. Comment out to
// disable abort behaviour.
#define I2CPE_TIME_TRUSTED 10000 // After an encoder fault, there must be no further fault
// for this amount of time (in ms) before the encoder
// is trusted again.
/**
* Position is checked every time a new command is executed from the buffer but during long moves,
* this setting determines the minimum update time between checks. A value of 100 works well with
* error rolling average when attempting to correct only for skips and not for vibration.
*/
#define I2CPE_MIN_UPD_TIME_MS 100 // Minimum time in miliseconds between encoder checks.
// Use a rolling average to identify persistant errors that indicate skips, as opposed to vibration and noise.
#define I2CPE_ERR_ROLLING_AVERAGE
#endif
#endif // CONFIGURATION_ADV_H #endif // CONFIGURATION_ADV_H

View file

@ -0,0 +1,1101 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
//todo: add support for multiple encoders on a single axis
//todo: add z axis auto-leveling
//todo: consolidate some of the related M codes?
//todo: add endstop-replacement mode?
//todo: try faster I2C speed; tweak TWI_FREQ (400000L, or faster?); or just TWBR = ((CPU_FREQ / 400000L) - 16) / 2;
//todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial
#include "MarlinConfig.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "Marlin.h"
#include "temperature.h"
#include "stepper.h"
#include "I2CPositionEncoder.h"
#include "gcode.h"
#include <Wire.h>
void I2CPositionEncoder::init(uint8_t address, AxisEnum axis) {
encoderAxis = axis;
i2cAddress = address;
initialised++;
SERIAL_ECHOPAIR("Seetting up encoder on ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPAIR(" axis, addr = ", address);
position = get_position();
}
void I2CPositionEncoder::update() {
if (!initialised || !homed || !active) return; //check encoder is set up and active
position = get_position();
//we don't want to stop things just because the encoder missed a message,
//so we only care about responses that indicate bad magnetic strength
if (!passes_test(false)) { //check encoder data is good
lastErrorTime = millis();
/*
if (trusted) { //commented out as part of the note below
trusted = false;
SERIAL_ECHOPGM("Fault detected on ");
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder. Disengaging error correction until module is trusted again.");
}
*/
return;
}
if (!trusted) {
/**
* This is commented out because it introduces error and can cause bad print quality.
*
* This code is intended to manage situations where the encoder has reported bad magnetic strength.
* This indicates that the magnetic strip was too far away from the sensor to reliably track position.
* When this happens, this code resets the offset based on where the printer thinks it is. This has been
* shown to introduce errors in actual position which result in drifting prints and poor print quality.
* Perhaps a better method would be to disable correction on the axis with a problem, report it to the
* user via the status leds on the encoder module and prompt the user to re-home the axis at which point
* the encoder would be re-enabled.
*/
/*
// If the magnetic strength has been good for a certain time, start trusting the module again
if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
trusted = true;
SERIAL_ECHOPGM("Untrusted encoder module on ");
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis has been fault-free for set duration, reinstating error correction.");
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's
//idea of where it the axis is to re-initialise
double position = stepper.get_axis_position_mm(encoderAxis);
long positionInTicks = position * get_ticks_unit();
//shift position from previous to current position
zeroOffset -= (positionInTicks - get_position());
#if defined(I2CPE_DEBUG)
SERIAL_ECHOPGM("Current position is ");
SERIAL_ECHOLN(position);
SERIAL_ECHOPGM("Position in encoder ticks is ");
SERIAL_ECHOLN(positionInTicks);
SERIAL_ECHOPGM("New zero-offset of ");
SERIAL_ECHOLN(zeroOffset);
SERIAL_ECHOPGM("New position reads as ");
SERIAL_ECHO(get_position());
SERIAL_ECHOPGM("(");
SERIAL_ECHO(mm_from_count(get_position()));
SERIAL_ECHOLNPGM(")");
#endif
}
*/
return;
}
lastPosition = position;
unsigned long positionTime = millis();
//only do error correction if setup and enabled
if (ec && ecMethod != I2CPE_ECM_NONE) {
#if defined(I2CPE_EC_THRESH_PROPORTIONAL)
unsigned long distance = abs(position - lastPosition);
unsigned long deltaTime = positionTime - lastPositionTime;
unsigned long speed = distance / deltaTime;
float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
#else
float threshold = get_error_correct_threshold();
#endif
//check error
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
double sum = 0, diffSum = 0;
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
err[errIdx] = get_axis_error_steps(false);
LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) {
sum += err[i];
if (i) diffSum += abs(err[i-1] - err[i]);
}
long error = (long)(sum/(I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
#else
long error = get_axis_error_steps(false);
#endif
//SERIAL_ECHOPGM("Axis err*r steps: ");
//SERIAL_ECHOLN(error);
#if defined(I2CPE_ERR_THRESH_ABORT)
if (abs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
//kill("Significant Error");
SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
SERIAL_ECHOLN(error);
safe_delay(5000);
}
#endif
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
if (errIdx == 0) {
// in order to correct for "error" but avoid correcting for noise and non skips
// it must be > threshold and have a difference average of < 10 and be < 2000 steps
if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
diffSum < 10*(I2CPE_ERR_ARRAY_SIZE-1) && abs(error) < 2000) { //Check for persistent error (skip)
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOPAIR(" diffSum: ", diffSum/(I2CPE_ERR_ARRAY_SIZE-1));
SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
SERIAL_ECHOLNPGM("mm; correcting!");
thermalManager.babystepsTodo[encoderAxis] = -lround(error);
}
}
#else
if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
//SERIAL_ECHOLN(error);
//SERIAL_ECHOLN(position);
thermalManager.babystepsTodo[encoderAxis] = -lround(error/2);
}
#endif
if (abs(error) > (I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) && millis() - lastErrorCountTime > I2CPE_ERR_CNT_DEBOUNCE_MS) {
SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
SERIAL_ECHOPAIR(" axis. error: ", (int)error);
SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
errorCount++;
lastErrorCountTime = millis();
}
}
lastPositionTime = positionTime;
}
void I2CPositionEncoder::set_homed() {
if (active) {
reset(); // Reset module's offset to zero (so current position is homed / zero)
delay(10);
zeroOffset = get_raw_count();
homed++;
trusted++;
#if defined(I2CPE_DEBUG)
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset);
SERIAL_ECHOLNPGM(" ticks.");
#endif
}
}
bool I2CPositionEncoder::passes_test(bool report) {
if (H == I2CPE_MAG_SIG_GOOD) {
if (report) {
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength good.");
}
return true;
} else if (H == I2CPE_MAG_SIG_MID) {
if (report) {
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength fair.");
}
return true;
} else if (H == I2CPE_MAG_SIG_BAD) {
if (report) {
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis magnetic strip not detected!");
}
return false;
}
if (report) {
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder not detected!");
}
return false;
}
double I2CPositionEncoder::get_axis_error_mm(bool report) {
double target, actual, error;
target = stepper.get_axis_position_mm(encoderAxis);
actual = mm_from_count(position);
error = actual - target;
if (abs(error) > 10000) error = 0; // ?
if (report) {
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOPAIR(" axis target: ", target);
SERIAL_ECHOPAIR(", actual: ", actual);
SERIAL_ECHOLNPAIR(", error : ",error);
}
return error;
}
long I2CPositionEncoder::get_axis_error_steps(bool report) {
if (!active) {
if (report) {
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOLNPGM(" axis encoder not active!");
}
return 0;
}
float stepperTicksPerUnit;
long encoderTicks = position, encoderCountInStepperTicksScaled;
//long stepperTicks = stepper.position(encoderAxis);
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
//convert both 'ticks' into same units / base
encoderCountInStepperTicksScaled = lround((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
long target = stepper.position(encoderAxis),
error = (encoderCountInStepperTicksScaled - target);
//suppress discontinuities (might be caused by bad I2C readings...?)
bool suppressOutput = (abs(error - errorPrev) > 100);
if (report) {
SERIAL_ECHO(axis_codes[encoderAxis]);
SERIAL_ECHOPAIR(" axis target: ", target);
SERIAL_ECHOPAIR(", actual: ", encoderCountInStepperTicksScaled);
SERIAL_ECHOLNPAIR(", error : ", error);
if (suppressOutput) SERIAL_ECHOLNPGM("Discontinuity detected, suppressing error.");
}
errorPrev = error;
return (suppressOutput ? 0 : error);
}
long I2CPositionEncoder::get_raw_count() {
uint8_t index = 0;
i2cLong encoderCount;
encoderCount.val = 0x00;
if (Wire.requestFrom((int)i2cAddress, 3) != 3) {
//houston, we have a problem...
H = I2CPE_MAG_SIG_NF;
return 0;
}
while (Wire.available())
encoderCount.bval[index++] = (uint8_t)Wire.read();
//extract the magnetic strength
H = (B00000011 & (encoderCount.bval[2] >> 6));
//extract sign bit; sign = (encoderCount.bval[2] & B00100000);
//set all upper bits to the sign value to overwrite H
encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF);
if (invert) encoderCount.val *= -1;
return encoderCount.val;
}
bool I2CPositionEncoder::test_axis() {
//only works on XYZ cartesian machines for the time being
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
int feedrate;
float startPosition, endPosition;
float startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0};
startPosition = soft_endstop_min[encoderAxis] + 10;
endPosition = soft_endstop_max[encoderAxis] - 10;
feedrate = (int)MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
ec = false;
LOOP_NA(i) {
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
}
startCoord[encoderAxis] = startPosition;
endCoord[encoderAxis] = endPosition;
stepper.synchronize();
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
stepper.synchronize();
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
if (!trusted) {
long startWaitingTime = millis();
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
safe_delay(500);
}
if (trusted) { // if trusted, commence test
planner.buffer_line(endCoord[X_AXIS], endCoord[Y_AXIS], endCoord[Z_AXIS],
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
stepper.synchronize();
}
return trusted;
}
void I2CPositionEncoder::calibrate_steps_mm(int iter) {
if (type != I2CPE_ENC_TYPE_LINEAR) {
SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders.");
return;
}
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) {
SERIAL_ECHOLNPGM("Automatic steps / mm calibration not supported for this axis.");
return;
}
float oldStepsMm, newStepsMm,
startDistance, endDistance,
travelDistance, travelledDistance, total = 0,
startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0};
double feedrate;
long startCount, stopCount;
feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
bool oldec = ec;
ec = false;
startDistance = 20;
endDistance = soft_endstop_max[encoderAxis] - 20;
travelDistance = endDistance - startDistance;
LOOP_NA(i) {
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
}
startCoord[encoderAxis] = startDistance;
endCoord[encoderAxis] = endDistance;
LOOP_L_N(i, iter) {
stepper.synchronize();
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
stepper.synchronize();
delay(250);
startCount = get_position();
//do_blocking_move_to(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS]);
planner.buffer_line(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS],
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
stepper.synchronize();
//Read encoder distance
delay(250);
stopCount = get_position();
travelledDistance = mm_from_count(abs(stopCount - startCount));
SERIAL_ECHOPAIR("Attempted to travel: ", travelDistance);
SERIAL_ECHOLNPGM("mm.");
SERIAL_ECHOPAIR("Actually travelled: ", travelledDistance);
SERIAL_ECHOLNPGM("mm.");
//Calculate new axis steps per unit
oldStepsMm = planner.axis_steps_per_mm[encoderAxis];
newStepsMm = (oldStepsMm * travelDistance) / travelledDistance;
SERIAL_ECHOLNPAIR("Old steps per mm: ", oldStepsMm);
SERIAL_ECHOLNPAIR("New steps per mm: ", newStepsMm);
//Save new value
planner.axis_steps_per_mm[encoderAxis] = newStepsMm;
if (iter > 1) {
total += newStepsMm;
// swap start and end points so next loop runs from current position
float tempCoord = startCoord[encoderAxis];
startCoord[encoderAxis] = endCoord[encoderAxis];
endCoord[encoderAxis] = tempCoord;
}
}
if (iter > 1) {
total /= (float)iter;
SERIAL_ECHOLNPAIR("Average steps per mm: ", total);
}
ec = oldec;
SERIAL_ECHOLNPGM("Calculated steps per mm has been set. Please save to EEPROM (M500) if you wish to keep these values.");
}
void I2CPositionEncoder::reset() {
Wire.beginTransmission(i2cAddress);
Wire.write(I2CPE_RESET_COUNT);
Wire.endTransmission();
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
ZERO(err);
#endif
}
void I2CPositionEncodersMgr::init() {
Wire.begin();
#if I2CPE_ENCODER_CNT > 0
uint8_t i = 0;
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
#if defined(I2CPE_ENC_1_TYPE)
encoders[i].set_type(I2CPE_ENC_1_TYPE);
#endif
#if defined(I2CPE_ENC_1_TICKS_UNIT)
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
#endif
#if defined(I2CPE_ENC_1_TICKS_REV)
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
#endif
#if defined(I2CPE_ENC_1_INVERT)
encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
#endif
#if defined(I2CPE_ENC_1_EC_METHOD)
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
#endif
#if defined(I2CPE_ENC_1_EC_THRESH)
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_1_AXIS == E_AXIS)
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 1
i++;
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
#if defined(I2CPE_ENC_2_TYPE)
encoders[i].set_type(I2CPE_ENC_2_TYPE);
#endif
#if defined(I2CPE_ENC_2_TICKS_UNIT)
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
#endif
#if defined(I2CPE_ENC_2_TICKS_REV)
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
#endif
#if defined(I2CPE_ENC_2_INVERT)
encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
#endif
#if defined(I2CPE_ENC_2_EC_METHOD)
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
#endif
#if defined(I2CPE_ENC_2_EC_THRESH)
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_2_AXIS == E_AXIS)
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 2
i++;
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
#if defined(I2CPE_ENC_3_TYPE)
encoders[i].set_type(I2CPE_ENC_3_TYPE);
#endif
#if defined(I2CPE_ENC_3_TICKS_UNIT)
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
#endif
#if defined(I2CPE_ENC_3_TICKS_REV)
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
#endif
#if defined(I2CPE_ENC_3_INVERT)
encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
#endif
#if defined(I2CPE_ENC_3_EC_METHOD)
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
#endif
#if defined(I2CPE_ENC_3_EC_THRESH)
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_3_AXIS == E_AXIS)
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 3
i++;
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
#if defined(I2CPE_ENC_4_TYPE)
encoders[i].set_type(I2CPE_ENC_4_TYPE);
#endif
#if defined(I2CPE_ENC_4_TICKS_UNIT)
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
#endif
#if defined(I2CPE_ENC_4_TICKS_REV)
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
#endif
#if defined(I2CPE_ENC_4_INVERT)
encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
#endif
#if defined(I2CPE_ENC_4_EC_METHOD)
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
#endif
#if defined(I2CPE_ENC_4_EC_THRESH)
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_4_AXIS == E_AXIS)
encoders[i].set_homed();
#endif
#endif
#if I2CPE_ENCODER_CNT > 4
i++;
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
#if defined(I2CPE_ENC_5_TYPE)
encoders[i].set_type(I2CPE_ENC_5_TYPE);
#endif
#if defined(I2CPE_ENC_5_TICKS_UNIT)
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
#endif
#if defined(I2CPE_ENC_5_TICKS_REV)
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
#endif
#if defined(I2CPE_ENC_5_INVERT)
encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
#endif
#if defined(I2CPE_ENC_5_EC_METHOD)
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
#endif
#if defined(I2CPE_ENC_5_EC_THRESH)
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
#endif
encoders[i].set_active(encoders[i].passes_test(true));
#if (I2CPE_ENC_5_AXIS == E_AXIS)
encoders[i].set_homed();
#endif
#endif
}
void I2CPositionEncodersMgr::report_position(uint8_t idx, bool units, bool noOffset) {
CHECK_IDX
if (units) {
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
} else {
if (noOffset) {
long raw_count = encoders[idx].get_raw_count();
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
SERIAL_ECHOPGM(" ");
for (uint8_t j = 31; j > 0; j--)
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
SERIAL_ECHO((bool)(0x00000001 & (raw_count)));
SERIAL_ECHOLNPAIR(" ", raw_count);
} else
SERIAL_ECHOLN(encoders[idx].get_position());
}
}
void I2CPositionEncodersMgr::change_module_address(uint8_t oldaddr, uint8_t newaddr) {
// First check 'new' address is not in use
Wire.beginTransmission(newaddr);
if (!Wire.endTransmission()) {
SERIAL_ECHOPAIR("?There is already a device with that address on the I2C bus! (", newaddr);
SERIAL_ECHOLNPGM(")");
return;
}
// Now check that we can find the module on the oldaddr address
Wire.beginTransmission(oldaddr);
if (Wire.endTransmission()) {
SERIAL_ECHOPAIR("?No module detected at this address! (", oldaddr);
SERIAL_ECHOLNPGM(")");
return;
}
SERIAL_ECHOPAIR("Module found at ", oldaddr);
SERIAL_ECHOLNPAIR(", changing address to ", newaddr);
// Change the modules address
Wire.beginTransmission(oldaddr);
Wire.write(I2CPE_SET_ADDR);
Wire.write(newaddr);
Wire.endTransmission();
SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation..");
// Wait for the module to reset (can probably be improved by polling address with a timeout).
safe_delay(I2CPE_REBOOT_TIME);
// Look for the module at the new address.
Wire.beginTransmission(newaddr);
if (Wire.endTransmission()) {
SERIAL_ECHOLNPGM("Address change failed! Check encoder module.");
return;
}
SERIAL_ECHOLNPGM("Address change successful!");
// Now, if this module is configured, find which encoder instance it's supposed to correspond to
// and enable it (it will likely have failed initialisation on power-up, before the address change).
int8_t idx = idx_from_addr(newaddr);
if (idx >= 0 && !encoders[idx].get_active()) {
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
encoders[idx].set_active(encoders[idx].passes_test(true));
}
}
void I2CPositionEncodersMgr::report_module_firmware(uint8_t address) {
// First check there is a module
Wire.beginTransmission(address);
if (Wire.endTransmission()) {
SERIAL_ECHOPAIR("?No module detected at this address! (", address);
SERIAL_ECHOLNPGM(")");
return;
}
SERIAL_ECHOPAIR("Requesting version info from module at address ", address);
SERIAL_ECHOPGM(":\n");
Wire.beginTransmission(address);
Wire.write(I2CPE_SET_REPORT_MODE);
Wire.write(I2CPE_REPORT_VERSION);
Wire.endTransmission();
// Read value
if (Wire.requestFrom((int)address, 32)) {
char c;
while (Wire.available() > 0 && (c = (char)Wire.read()) > 0)
SERIAL_ECHO(c);
SERIAL_EOL;
}
// Set module back to normal (distance) mode
Wire.beginTransmission((int)address);
Wire.write(I2CPE_SET_REPORT_MODE);
Wire.write(I2CPE_REPORT_DISTANCE);
Wire.endTransmission();
}
int8_t I2CPositionEncodersMgr::parse() {
I2CPE_addr = 0;
if (parser.seen('A')) {
if (!parser.has_value()) {
SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]");
return I2CPE_PARSE_ERR;
};
I2CPE_addr = parser.value_byte();
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]");
return I2CPE_PARSE_ERR;
}
I2CPE_idx = idx_from_addr(I2CPE_addr);
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) {
SERIAL_PROTOCOLLNPGM("?No device with this address!");
return I2CPE_PARSE_ERR;
}
} else if (parser.seenval('I')) {
if (!parser.has_value()) {
SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1);
SERIAL_ECHOLNPGM("]");
return I2CPE_PARSE_ERR;
};
I2CPE_idx = parser.value_byte();
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) {
SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1);
SERIAL_ECHOLNPGM("]");
return I2CPE_PARSE_ERR;
}
I2CPE_addr = encoders[I2CPE_idx].get_address();
} else {
I2CPE_idx = -1;
}
I2CPE_anyaxis = parser.seen_axis();
return I2CPE_PARSE_OK;
};
/**
* M860: Report the position(s) of position encoder module(s).
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
* O Include homed zero-offset in returned position.
* U Units in mm or raw step count.
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*
*/
void I2CPositionEncodersMgr::M860() {
if (parse()) return;
bool hasU = parser.seen('U'), hasO = parser.seen('O');
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
report_position((uint8_t)idx, hasU, hasO);
}
} else report_position((uint8_t)I2CPE_idx, hasU, hasO);
}
/**
* M861: Report the status of position encoder modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*
*/
void I2CPositionEncodersMgr::M861() {
if (parse()) return;
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
report_status((uint8_t)idx);
}
} else report_status((uint8_t)I2CPE_idx);
}
/**
* M862: Perform an axis continuity test for position encoder
* modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*
*/
void I2CPositionEncodersMgr::M862() {
if (parse()) return;
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
test_axis((uint8_t)idx);
}
} else test_axis((uint8_t)I2CPE_idx);
}
/**
* M863: Perform steps-per-mm calibration for
* position encoder modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
* P Number of rePeats/iterations.
*
* If A or I not specified:
* X Report on X axis encoder, if present.
* Y Report on Y axis encoder, if present.
* Z Report on Z axis encoder, if present.
* E Report on E axis encoder, if present.
*
*/
void I2CPositionEncodersMgr::M863() {
if (parse()) return;
int iterations = parser.seenval('P') ? constrain(parser.value_byte(), 1, 10) : 1;
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
calibrate_steps_mm((uint8_t)idx, iterations);
}
} else calibrate_steps_mm((uint8_t)I2CPE_idx, iterations);
}
/**
* M864: Change position encoder module I2C address.
*
* A<addr> Module current/old I2C address. If not present,
* assumes default address (030). [30, 200].
* N<addr> Module new I2C address. [30, 200].
*
* If N not specified:
* X Use I2CPE_PRESET_ADDR_X (030).
* Y Use I2CPE_PRESET_ADDR_Y (031).
* Z Use I2CPE_PRESET_ADDR_Z (032).
* E Use I2CPE_PRESET_ADDR_E (033).
*/
void I2CPositionEncodersMgr::M864() {
uint8_t newAddress;
if (parse()) return;
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
if (parser.seen('N')) {
if (!parser.has_value()) {
SERIAL_PROTOCOLLNPGM("?N seen, but no address specified! [30-200]");
return;
};
newAddress = parser.value_byte();
if (!WITHIN(newAddress, 30, 200)) {
SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]");
return;
}
} else if (!I2CPE_anyaxis) {
SERIAL_PROTOCOLLNPGM("?You must specify N or [XYZE].");
return;
} else {
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
else return;
}
SERIAL_ECHOPAIR("Changing module at address ", I2CPE_addr);
SERIAL_ECHOLNPAIR(" to address ", newAddress);
change_module_address(I2CPE_addr, newAddress);
}
/**
* M865: Check position encoder module firmware version.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
*
* If A or I not specified:
* X Check X axis encoder, if present.
* Y Check Y axis encoder, if present.
* Z Check Z axis encoder, if present.
* E Check E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M865() {
if (parse()) return;
if (!I2CPE_addr) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
report_module_firmware(encoders[idx].get_address());
}
} else report_module_firmware(I2CPE_addr);
}
/**
* M866: Report or reset position encoder module error
* count.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
* R Reset error counter.
*
* If A or I not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M866() {
if (parse()) return;
bool hasR = parser.seen('R');
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) {
if (hasR) reset_error_count((uint8_t)idx, AxisEnum(i));
else report_error_count((uint8_t)idx, AxisEnum(i));
}
}
} else {
if (hasR) reset_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
else report_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
}
}
/**
* M867: Enable/disable or toggle error correction for position encoder modules.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
* S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not
* supplied, toggle.
*
* If A or I not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M867() {
if (parse()) return;
int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) {
if (onoff == -1) enable_ec((uint8_t)idx, !encoders[idx].get_ec_enabled(), AxisEnum(i));
else enable_ec((uint8_t)idx, (bool)onoff, AxisEnum(i));
}
}
} else {
if (onoff == -1) enable_ec((uint8_t)I2CPE_idx, !encoders[I2CPE_idx].get_ec_enabled(), encoders[I2CPE_idx].get_axis());
else enable_ec((uint8_t)I2CPE_idx, (bool)onoff, encoders[I2CPE_idx].get_axis());
}
}
/**
* M868: Report or set position encoder module error correction
* threshold.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
* T New error correction threshold.
*
* If A not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M868() {
if (parse()) return;
float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) {
if (newThreshold != -9999) set_ec_threshold((uint8_t)idx, newThreshold, encoders[idx].get_axis());
else get_ec_threshold((uint8_t)idx, encoders[idx].get_axis());
}
}
} else {
if (newThreshold != -9999) set_ec_threshold((uint8_t)I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
else get_ec_threshold((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
}
}
/**
* M869: Report position encoder module error.
*
* A<addr> Module I2C address. [30, 200].
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
*
* If A not specified:
* X Act on X axis encoder, if present.
* Y Act on Y axis encoder, if present.
* Z Act on Z axis encoder, if present.
* E Act on E axis encoder, if present.
*/
void I2CPositionEncodersMgr::M869() {
if (parse()) return;
if (I2CPE_idx < 0) {
int8_t idx;
LOOP_XYZE(i) {
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
report_error((uint8_t)idx);
}
} else report_error((uint8_t)I2CPE_idx);
}
#endif

356
Marlin/I2CPositionEncoder.h Normal file
View file

@ -0,0 +1,356 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef I2CPOSENC_H
#define I2CPOSENC_H
#include "MarlinConfig.h"
#if ENABLED(I2C_POSITION_ENCODERS)
#include "enum.h"
#include "macros.h"
#include "types.h"
#include <Wire.h>
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
// proportional to the current speed of the axis allows
// for very small error margin at low speeds without
// stuttering due to reading latency at high speeds
#define I2CPE_DEBUG // enable encoder-related debug serial echos
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
// after changing address.
#define I2CPE_MAG_SIG_GOOD 0
#define I2CPE_MAG_SIG_MID 1
#define I2CPE_MAG_SIG_BAD 2
#define I2CPE_MAG_SIG_NF 255
#define I2CPE_REQ_REPORT 0
#define I2CPE_RESET_COUNT 1
#define I2CPE_SET_ADDR 2
#define I2CPE_SET_REPORT_MODE 3
#define I2CPE_CLEAR_EEPROM 4
#define I2CPE_LED_PAR_MODE 10
#define I2CPE_LED_PAR_BRT 11
#define I2CPE_LED_PAR_RATE 14
#define I2CPE_REPORT_DISTANCE 0
#define I2CPE_REPORT_STRENGTH 1
#define I2CPE_REPORT_VERSION 2
// Default I2C addresses
#define I2CPE_PRESET_ADDR_X 30
#define I2CPE_PRESET_ADDR_Y 31
#define I2CPE_PRESET_ADDR_Z 32
#define I2CPE_PRESET_ADDR_E 33
#define I2CPE_DEF_AXIS X_AXIS
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
// Error event counter; tracks how many times there is an error exceeding a certain threshold
#define I2CPE_ERR_CNT_THRESH 3.00
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
#define I2CPE_ERR_ARRAY_SIZE 32
#endif
// Error Correction Methods
#define I2CPE_ECM_NONE 0
#define I2CPE_ECM_MICROSTEP 1
#define I2CPE_ECM_PLANNER 2
#define I2CPE_ECM_STALLDETECT 3
// Encoder types
#define I2CPE_ENC_TYPE_ROTARY 0
#define I2CPE_ENC_TYPE_LINEAR 1
// Parser
#define I2CPE_PARSE_ERR 1
#define I2CPE_PARSE_OK 0
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
#define CHECK_IDX if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return;
extern const char axis_codes[XYZE];
typedef union {
volatile long val = 0;
uint8_t bval[4];
} i2cLong;
class I2CPositionEncoder {
private:
AxisEnum encoderAxis = I2CPE_DEF_AXIS;
uint8_t i2cAddress = I2CPE_DEF_ADDR,
ecMethod = I2CPE_DEF_EC_METHOD,
type = I2CPE_DEF_TYPE,
H = I2CPE_MAG_SIG_NF; // Magnetic field strength
int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
stepperTicks = I2CPE_DEF_TICKS_REV;
float ecThreshold = I2CPE_DEF_EC_THRESH;
bool homed = false,
trusted = false,
initialised = false,
active = false,
invert = false,
ec = true;
int errorCount = 0,
errorPrev = 0;
float axisOffset = 0;
long axisOffsetTicks = 0,
zeroOffset = 0,
lastPosition = 0,
position;
unsigned long lastPositionTime = 0,
lastErrorCountTime = 0,
lastErrorTime;
//double positionMm; //calculate
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
uint8_t errIdx = 0;
int err[I2CPE_ERR_ARRAY_SIZE] = {0};
#endif
public:
void init(uint8_t address, AxisEnum axis);
void reset();
void update();
void set_homed();
long get_raw_count();
FORCE_INLINE double mm_from_count(long count) {
if (type == I2CPE_ENC_TYPE_LINEAR) return count / encoderTicksPerUnit;
else if (type == I2CPE_ENC_TYPE_ROTARY)
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
return -1;
}
FORCE_INLINE double get_position_mm() { return mm_from_count(get_position()); }
FORCE_INLINE long get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; }
long get_axis_error_steps(bool report);
double get_axis_error_mm(bool report);
void calibrate_steps_mm(int iter);
bool passes_test(bool report);
bool test_axis(void);
FORCE_INLINE int get_error_count(void) { return errorCount; }
FORCE_INLINE void set_error_count(int newCount) { errorCount = newCount; }
FORCE_INLINE uint8_t get_address() { return i2cAddress; }
FORCE_INLINE void set_address(uint8_t addr) { i2cAddress = addr; }
FORCE_INLINE bool get_active(void) { return active; }
FORCE_INLINE void set_active(bool a) { active = a; }
FORCE_INLINE void set_inverted(bool i) { invert = i; }
FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
FORCE_INLINE bool get_ec_enabled() { return ec; }
FORCE_INLINE void set_ec_enabled(bool enabled) { ec = enabled; }
FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
FORCE_INLINE void set_ec_method(byte method) { ecMethod = method; }
FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
FORCE_INLINE void set_ec_threshold(float newThreshold) { ecThreshold = newThreshold; }
FORCE_INLINE int get_encoder_ticks_mm() {
if (type == I2CPE_ENC_TYPE_LINEAR) return encoderTicksPerUnit;
else if (type == I2CPE_ENC_TYPE_ROTARY)
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
return 0;
}
FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
FORCE_INLINE void set_ticks_unit(int ticks) { encoderTicksPerUnit = ticks; }
FORCE_INLINE uint8_t get_type() { return type; }
FORCE_INLINE void set_type(byte newType) { type = newType; }
FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
FORCE_INLINE void set_stepper_ticks(int ticks) { stepperTicks = ticks; }
FORCE_INLINE float get_axis_offset() { return axisOffset; }
FORCE_INLINE void set_axis_offset(float newOffset) {
axisOffset = newOffset;
axisOffsetTicks = (long)(axisOffset * get_encoder_ticks_mm());
}
FORCE_INLINE void set_current_position(float newPositionMm) {
set_axis_offset(get_position_mm() - newPositionMm + axisOffset);
}
};
class I2CPositionEncodersMgr {
private:
bool I2CPE_anyaxis;
uint8_t I2CPE_addr;
int8_t I2CPE_idx;
public:
void init(void);
// consider only updating one endoder per call / tick if encoders become too time intensive
void update(void) { LOOP_PE(i) encoders[i].update(); }
void homed(AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) encoders[i].set_homed();
}
void report_position(uint8_t idx, bool units, bool noOffset);
void report_status(uint8_t idx) {
CHECK_IDX
SERIAL_ECHOPAIR("Encoder ",idx);
SERIAL_ECHOPGM(": ");
encoders[idx].get_raw_count();
encoders[idx].passes_test(true);
}
void report_error(uint8_t idx) {
CHECK_IDX
encoders[idx].get_axis_error_steps(true);
}
void test_axis(uint8_t idx) {
CHECK_IDX
encoders[idx].test_axis();
}
void calibrate_steps_mm(uint8_t idx, int iterations) {
CHECK_IDX
encoders[idx].calibrate_steps_mm(iterations);
}
void change_module_address(uint8_t oldaddr, uint8_t newaddr);
void report_module_firmware(uint8_t address);
void report_error_count(uint8_t idx, AxisEnum axis) {
CHECK_IDX
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
}
void reset_error_count(uint8_t idx, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_error_count(0);
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
SERIAL_ECHOLNPGM(" axis has been reset.");
}
void enable_ec(uint8_t idx, bool enabled, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_ec_enabled(enabled);
SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
SERIAL_ECHOPGM(" axis is ");
serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
SERIAL_ECHOLNPGM("abled.");
}
void set_ec_threshold(uint8_t idx, float newThreshold, AxisEnum axis) {
CHECK_IDX
encoders[idx].set_ec_threshold(newThreshold);
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
SERIAL_ECHOLNPGM("mm.");
}
void get_ec_threshold(uint8_t idx, AxisEnum axis) {
CHECK_IDX
float threshold = encoders[idx].get_ec_threshold();
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
SERIAL_ECHOPAIR_F(" axis is ", threshold);
SERIAL_ECHOLNPGM("mm.");
}
int8_t idx_from_axis(AxisEnum axis) {
LOOP_PE(i)
if (encoders[i].get_axis() == axis) return i;
return -1;
}
int8_t idx_from_addr(uint8_t addr) {
LOOP_PE(i)
if (encoders[i].get_address() == addr) return i;
return -1;
}
int8_t parse();
void M860();
void M861();
void M862();
void M863();
void M864();
void M865();
void M866();
void M867();
void M868();
void M869();
I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
};
extern I2CPositionEncodersMgr I2CPEM;
FORCE_INLINE void gcode_M860() { I2CPEM.M860(); }
FORCE_INLINE void gcode_M861() { I2CPEM.M861(); }
FORCE_INLINE void gcode_M862() { I2CPEM.M862(); }
FORCE_INLINE void gcode_M863() { I2CPEM.M863(); }
FORCE_INLINE void gcode_M864() { I2CPEM.M864(); }
FORCE_INLINE void gcode_M865() { I2CPEM.M865(); }
FORCE_INLINE void gcode_M866() { I2CPEM.M866(); }
FORCE_INLINE void gcode_M867() { I2CPEM.M867(); }
FORCE_INLINE void gcode_M868() { I2CPEM.M868(); }
FORCE_INLINE void gcode_M869() { I2CPEM.M869(); }
#endif //I2C_POSITION_ENCODERS
#endif //I2CPOSENC_H

View file

@ -200,6 +200,16 @@
* M666 - Set delta endstop adjustment. (Requires DELTA) * M666 - Set delta endstop adjustment. (Requires DELTA)
* M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE) * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.) * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
* M860 - Report the position of position encoder modules.
* M861 - Report the status of position encoder modules.
* M862 - Perform an axis continuity test for position encoder modules.
* M863 - Perform steps-per-mm calibration for position encoder modules.
* M864 - Change position encoder module I2C address.
* M865 - Check position encoder module firmware version.
* M866 - Report or reset position encoder module error count.
* M867 - Enable/disable or toggle error correction for position encoder modules.
* M868 - Report or set position encoder module error correction threshold.
* M869 - Report position encoder module error.
* M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE) * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130) * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots) * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
@ -286,6 +296,10 @@
#include "twibus.h" #include "twibus.h"
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS)
#include "I2CPositionEncoder.h"
#endif
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
#include "endstop_interrupts.h" #include "endstop_interrupts.h"
#endif #endif
@ -662,6 +676,12 @@ static bool send_ok[BUFSIZE];
#define host_keepalive() NOOP #define host_keepalive() NOOP
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPositionEncodersMgr I2CPEM;
uint8_t blockBufferIndexRef = 0;
millis_t lastUpdateMillis;
#endif
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); } FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); } FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
@ -1493,6 +1513,10 @@ static void set_axis_is_at_home(const AxisEnum axis) {
SERIAL_EOL; SERIAL_EOL;
} }
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.homed(axis);
#endif
} }
/** /**
@ -5609,6 +5633,11 @@ inline void gcode_G92() {
#if HAS_POSITION_SHIFT #if HAS_POSITION_SHIFT
position_shift[i] += v - p; // Offset the coordinate space position_shift[i] += v - p; // Offset the coordinate space
update_software_endstops((AxisEnum)i); update_software_endstops((AxisEnum)i);
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum) i)].set_axis_offset(position_shift[i]);
#endif
#endif #endif
} }
#endif #endif
@ -10904,6 +10933,50 @@ void process_next_command() {
break; break;
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS)
case 860: // M860 Report encoder module position
gcode_M860();
break;
case 861: // M861 Report encoder module status
gcode_M861();
break;
case 862: // M862 Perform axis test
gcode_M862();
break;
case 863: // M863 Calibrate steps/mm
gcode_M863();
break;
case 864: // M864 Change module address
gcode_M864();
break;
case 865: // M865 Check module firmware version
gcode_M865();
break;
case 866: // M866 Report axis error count
gcode_M866();
break;
case 867: // M867 Toggle error correction
gcode_M867();
break;
case 868: // M868 Set error correction threshold
gcode_M868();
break;
case 869: // M869 Report axis error
gcode_M869();
break;
#endif // I2C_POSITION_ENCODERS
case 999: // M999: Restart after being Stopped case 999: // M999: Restart after being Stopped
gcode_M999(); gcode_M999();
break; break;
@ -12200,7 +12273,7 @@ void disable_all_steppers() {
const bool has_days = (elapsed.value > 60*60*24L); const bool has_days = (elapsed.value > 60*60*24L);
(void)elapsed.toDigital(timestamp, has_days); (void)elapsed.toDigital(timestamp, has_days);
SERIAL_ECHO(timestamp); SERIAL_ECHO(timestamp);
SERIAL_ECHO(": "); SERIAL_ECHOPGM(": ");
SERIAL_ECHO(axisID); SERIAL_ECHO(axisID);
SERIAL_ECHOLNPGM(" driver overtemperature warning!"); SERIAL_ECHOLNPGM(" driver overtemperature warning!");
} }
@ -12495,6 +12568,16 @@ void idle(
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER) #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
buzzer.tick(); buzzer.tick();
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS)
if (planner.blocks_queued() &&
( (blockBufferIndexRef != planner.block_buffer_head) ||
((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
blockBufferIndexRef = planner.block_buffer_head;
I2CPEM.update();
lastUpdateMillis = millis();
}
#endif
} }
/** /**
@ -12739,6 +12822,10 @@ void setup() {
set_bltouch_deployed(false); set_bltouch_deployed(false);
#endif #endif
#if ENABLED(I2C_POSITION_ENCODERS)
I2CPEM.init();
#endif
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0 #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
i2c.onReceive(i2c_on_receive); i2c.onReceive(i2c_on_receive);
i2c.onRequest(i2c_on_request); i2c.onRequest(i2c_on_request);

View file

@ -270,11 +270,24 @@
#endif #endif
#endif #endif
/**
* I2C Position Encoders
*/
#if ENABLED(I2C_POSITION_ENCODERS)
#if DISABLED(BABYSTEPPING)
#error "I2C_POSITION_ENCODERS requires BABYSTEPPING."
#endif
#if I2CPE_ENCODER_CNT > 5 || I2CPE_ENCODER_CNT < 1
#error "I2CPE_ENCODER_CNT must be between 1 and 5."
#endif
#endif
/** /**
* Babystepping * Babystepping
*/ */
#if ENABLED(BABYSTEPPING) #if ENABLED(BABYSTEPPING)
#if DISABLED(ULTRA_LCD) #if DISABLED(ULTRA_LCD) && DISABLED(I2C_POSITION_ENCODERS)
#error "BABYSTEPPING requires an LCD controller." #error "BABYSTEPPING requires an LCD controller."
#elif ENABLED(SCARA) #elif ENABLED(SCARA)
#error "BABYSTEPPING is not implemented for SCARA yet." #error "BABYSTEPPING is not implemented for SCARA yet."

View file

@ -34,23 +34,29 @@
* between X_AXIS and X Head movement, like CoreXY bots * between X_AXIS and X Head movement, like CoreXY bots
*/ */
enum AxisEnum { enum AxisEnum {
NO_AXIS = -1, NO_AXIS = -1,
X_AXIS = 0, X_AXIS = 0,
A_AXIS = 0, A_AXIS = 0,
Y_AXIS = 1, Y_AXIS = 1,
B_AXIS = 1, B_AXIS = 1,
Z_AXIS = 2, Z_AXIS = 2,
C_AXIS = 2, C_AXIS = 2,
E_AXIS = 3, E_AXIS = 3,
X_HEAD = 4, X_HEAD = 4,
Y_HEAD = 5, Y_HEAD = 5,
Z_HEAD = 6, Z_HEAD = 6,
ALL_AXES = 100 ALL_AXES = 100
}; };
#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++) #define LOOP_S_LE_N(VAR, S, N) for (uint8_t VAR=S; VAR<=N; VAR++)
#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++) #define LOOP_S_L_N(VAR, S, N) for (uint8_t VAR=S; VAR<N; VAR++)
#define LOOP_XYZE_N(VAR) for (uint8_t VAR=X_AXIS; VAR<XYZE_N; VAR++) #define LOOP_LE_N(VAR, N) LOOP_S_LE_N(VAR, 0, N)
#define LOOP_L_N(VAR, N) LOOP_S_L_N(VAR, 0, N)
#define LOOP_NA(VAR) LOOP_L_N(VAR, NUM_AXIS)
#define LOOP_XYZ(VAR) LOOP_S_LE_N(VAR, X_AXIS, Z_AXIS)
#define LOOP_XYZE(VAR) LOOP_S_LE_N(VAR, X_AXIS, E_AXIS)
#define LOOP_XYZE_N(VAR) LOOP_S_L_N(VAR, X_AXIS, XYZE_N)
typedef enum { typedef enum {
LINEARUNIT_MM, LINEARUNIT_MM,

View file

@ -128,6 +128,12 @@ public:
return b; return b;
} }
static volatile bool seen_any() {
return codebits[3] || codebits[2] || codebits[1] || codebits[0];
}
#define SEEN_TEST(L) TEST(codebits[(L - 'A') >> 3], (L - 'A') & 0x7)
#else #else
// Code is found in the string. If not found, value_ptr is unchanged. // Code is found in the string. If not found, value_ptr is unchanged.
@ -139,6 +145,12 @@ public:
return b; return b;
} }
static volatile bool seen_any() {
return *command_args == '\0';
}
#define SEEN_TEST(L) !!strchr(command_args, L)
#endif // FASTER_GCODE_PARSER #endif // FASTER_GCODE_PARSER
// Populate all fields by parsing a single line of GCode // Populate all fields by parsing a single line of GCode
@ -148,6 +160,13 @@ public:
// Code value pointer was set // Code value pointer was set
FORCE_INLINE static bool has_value() { return value_ptr != NULL; } FORCE_INLINE static bool has_value() { return value_ptr != NULL; }
// Seen and has value
FORCE_INLINE static bool seenval(const char c) { return seen(c) && has_value(); }
static volatile bool seen_axis() {
return SEEN_TEST('X') || SEEN_TEST('Y') || SEEN_TEST('Z') || SEEN_TEST('E');
}
// Float removes 'E' to prevent scientific notation interpretation // Float removes 'E' to prevent scientific notation interpretation
inline static float value_float() { inline static float value_float() {
if (value_ptr) { if (value_ptr) {

View file

@ -108,6 +108,8 @@
#define HYPOT2(x,y) (sq(x)+sq(y)) #define HYPOT2(x,y) (sq(x)+sq(y))
#define HYPOT(x,y) sqrt(HYPOT2(x,y)) #define HYPOT(x,y) sqrt(HYPOT2(x,y))
#define SIGN(a) ((a>0)-(a<0))
// Macros to contrain values // Macros to contrain values
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0) #define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0) #define NOMORE(v,n) do{ if (v > n) v = n; }while(0)