[New Feature] I2C position encoder support (#6946)
* [New Feature] I2C position encoder support I plan to continue improving/cleaning this up, as there areas that need work. * let the cleanups begin. * progress * more progress * comments, rename files, etc. * clean * Cleanups per thinkyhead * a few more cleanups * cleanups, bugfixes, etc. * remove unnecessary passes_test(), additional cleanups/optimizations * cleanups * misc. * Fix up I2CPEM.init() and a few other things. * organize, fix, rename, etc. * more optimization * a few more tweaks
This commit is contained in:
parent
f7dacd1f50
commit
2f55870edb
8 changed files with 1684 additions and 17 deletions
|
@ -1261,4 +1261,87 @@
|
|||
#define USER_GCODE_5 "G28\nM503"
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//============================ I2C Encoder Settings =========================
|
||||
//===========================================================================
|
||||
/**
|
||||
* I2C position encoders for closed loop control.
|
||||
* Developed by Chris Barr at Aus3D.
|
||||
*
|
||||
* Wiki: http://wiki.aus3d.com.au/Magnetic_Encoder
|
||||
* Github: https://github.com/Aus3D/MagneticEncoder
|
||||
*
|
||||
* Supplier: http://aus3d.com.au/magnetic-encoder-module
|
||||
* Alternative Supplier: http://reliabuild3d.com/
|
||||
*
|
||||
* Reilabuild encoders have been modified to improve reliability.
|
||||
*/
|
||||
|
||||
//#define I2C_POSITION_ENCODERS
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
|
||||
#define I2CPE_ENCODER_CNT 1 // The number of encoders installed; max of 5
|
||||
// encoders supported currently.
|
||||
|
||||
#define I2CPE_ENC_1_ADDR I2CPE_PRESET_ADDR_X // I2C address of the encoder. 30-200.
|
||||
#define I2CPE_ENC_1_AXIS X_AXIS // Axis the encoder module is installed on. <X|Y|Z|E>_AXIS.
|
||||
#define I2CPE_ENC_1_TYPE I2CPE_ENC_TYPE_LINEAR // Type of encoder: I2CPE_ENC_TYPE_LINEAR -or-
|
||||
// I2CPE_ENC_TYPE_ROTARY.
|
||||
#define I2CPE_ENC_1_TICKS_UNIT 2048 // 1024 for magnetic strips with 2mm poles; 2048 for
|
||||
// 1mm poles. For linear encoders this is ticks / mm,
|
||||
// for rotary encoders this is ticks / revolution.
|
||||
//#define I2CPE_ENC_1_TICKS_REV (16 * 200) // Only needed for rotary encoders; number of stepper
|
||||
// steps per full revolution (motor steps/rev * microstepping)
|
||||
//#define I2CPE_ENC_1_INVERT // Invert the direction of axis travel.
|
||||
#define I2CPE_ENC_1_EC_METHOD I2CPE_ECM_NONE // Type of error error correction.
|
||||
#define I2CPE_ENC_1_EC_THRESH 0.10 // Threshold size for error (in mm) above which the
|
||||
// printer will attempt to correct the error; errors
|
||||
// smaller than this are ignored to minimize effects of
|
||||
// measurement noise / latency (filter).
|
||||
|
||||
#define I2CPE_ENC_2_ADDR I2CPE_PRESET_ADDR_Y // Same as above, but for encoder 2.
|
||||
#define I2CPE_ENC_2_AXIS Y_AXIS
|
||||
#define I2CPE_ENC_2_TYPE I2CPE_ENC_TYPE_LINEAR
|
||||
#define I2CPE_ENC_2_TICKS_UNIT 2048
|
||||
//#define I2CPE_ENC_2_TICKS_REV (16 * 200)
|
||||
//#define I2CPE_ENC_2_INVERT
|
||||
#define I2CPE_ENC_2_EC_METHOD I2CPE_ECM_NONE
|
||||
#define I2CPE_ENC_2_EC_THRESH 0.10
|
||||
|
||||
#define I2CPE_ENC_3_ADDR I2CPE_PRESET_ADDR_Z // Encoder 3. Add additional configuration options
|
||||
#define I2CPE_ENC_3_AXIS Z_AXIS // as above, or use defaults below.
|
||||
|
||||
#define I2CPE_ENC_4_ADDR I2CPE_PRESET_ADDR_E // Encoder 4.
|
||||
#define I2CPE_ENC_4_AXIS E_AXIS
|
||||
|
||||
#define I2CPE_ENC_5_ADDR 34 // Encoder 5.
|
||||
#define I2CPE_ENC_5_AXIS E_AXIS
|
||||
|
||||
// Default settings for encoders which are enabled, but without settings configured above.
|
||||
#define I2CPE_DEF_TYPE I2CPE_ENC_TYPE_LINEAR
|
||||
#define I2CPE_DEF_ENC_TICKS_UNIT 2048
|
||||
#define I2CPE_DEF_TICKS_REV (16 * 200)
|
||||
#define I2CPE_DEF_EC_METHOD I2CPE_ECM_NONE
|
||||
#define I2CPE_DEF_EC_THRESH 0.1
|
||||
|
||||
//#define I2CPE_ERR_THRESH_ABORT 100.0 // Threshold size for error (in mm) error on any given
|
||||
// axis after which the printer will abort. Comment out to
|
||||
// disable abort behaviour.
|
||||
|
||||
#define I2CPE_TIME_TRUSTED 10000 // After an encoder fault, there must be no further fault
|
||||
// for this amount of time (in ms) before the encoder
|
||||
// is trusted again.
|
||||
|
||||
/**
|
||||
* Position is checked every time a new command is executed from the buffer but during long moves,
|
||||
* this setting determines the minimum update time between checks. A value of 100 works well with
|
||||
* error rolling average when attempting to correct only for skips and not for vibration.
|
||||
*/
|
||||
#define I2CPE_MIN_UPD_TIME_MS 100 // Minimum time in miliseconds between encoder checks.
|
||||
|
||||
// Use a rolling average to identify persistant errors that indicate skips, as opposed to vibration and noise.
|
||||
#define I2CPE_ERR_ROLLING_AVERAGE
|
||||
|
||||
#endif
|
||||
|
||||
#endif // CONFIGURATION_ADV_H
|
||||
|
|
1101
Marlin/I2CPositionEncoder.cpp
Normal file
1101
Marlin/I2CPositionEncoder.cpp
Normal file
|
@ -0,0 +1,1101 @@
|
|||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
//todo: add support for multiple encoders on a single axis
|
||||
//todo: add z axis auto-leveling
|
||||
//todo: consolidate some of the related M codes?
|
||||
//todo: add endstop-replacement mode?
|
||||
//todo: try faster I2C speed; tweak TWI_FREQ (400000L, or faster?); or just TWBR = ((CPU_FREQ / 400000L) - 16) / 2;
|
||||
//todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial
|
||||
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "temperature.h"
|
||||
#include "stepper.h"
|
||||
#include "I2CPositionEncoder.h"
|
||||
#include "gcode.h"
|
||||
|
||||
#include <Wire.h>
|
||||
|
||||
void I2CPositionEncoder::init(uint8_t address, AxisEnum axis) {
|
||||
encoderAxis = axis;
|
||||
i2cAddress = address;
|
||||
|
||||
initialised++;
|
||||
|
||||
SERIAL_ECHOPAIR("Seetting up encoder on ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPAIR(" axis, addr = ", address);
|
||||
|
||||
position = get_position();
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::update() {
|
||||
if (!initialised || !homed || !active) return; //check encoder is set up and active
|
||||
|
||||
position = get_position();
|
||||
|
||||
//we don't want to stop things just because the encoder missed a message,
|
||||
//so we only care about responses that indicate bad magnetic strength
|
||||
|
||||
if (!passes_test(false)) { //check encoder data is good
|
||||
lastErrorTime = millis();
|
||||
/*
|
||||
if (trusted) { //commented out as part of the note below
|
||||
trusted = false;
|
||||
SERIAL_ECHOPGM("Fault detected on ");
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder. Disengaging error correction until module is trusted again.");
|
||||
}
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
if (!trusted) {
|
||||
/**
|
||||
* This is commented out because it introduces error and can cause bad print quality.
|
||||
*
|
||||
* This code is intended to manage situations where the encoder has reported bad magnetic strength.
|
||||
* This indicates that the magnetic strip was too far away from the sensor to reliably track position.
|
||||
* When this happens, this code resets the offset based on where the printer thinks it is. This has been
|
||||
* shown to introduce errors in actual position which result in drifting prints and poor print quality.
|
||||
* Perhaps a better method would be to disable correction on the axis with a problem, report it to the
|
||||
* user via the status leds on the encoder module and prompt the user to re-home the axis at which point
|
||||
* the encoder would be re-enabled.
|
||||
*/
|
||||
|
||||
/*
|
||||
// If the magnetic strength has been good for a certain time, start trusting the module again
|
||||
|
||||
if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
|
||||
trusted = true;
|
||||
|
||||
SERIAL_ECHOPGM("Untrusted encoder module on ");
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis has been fault-free for set duration, reinstating error correction.");
|
||||
|
||||
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's
|
||||
//idea of where it the axis is to re-initialise
|
||||
double position = stepper.get_axis_position_mm(encoderAxis);
|
||||
long positionInTicks = position * get_ticks_unit();
|
||||
|
||||
//shift position from previous to current position
|
||||
zeroOffset -= (positionInTicks - get_position());
|
||||
|
||||
#if defined(I2CPE_DEBUG)
|
||||
SERIAL_ECHOPGM("Current position is ");
|
||||
SERIAL_ECHOLN(position);
|
||||
|
||||
SERIAL_ECHOPGM("Position in encoder ticks is ");
|
||||
SERIAL_ECHOLN(positionInTicks);
|
||||
|
||||
SERIAL_ECHOPGM("New zero-offset of ");
|
||||
SERIAL_ECHOLN(zeroOffset);
|
||||
|
||||
SERIAL_ECHOPGM("New position reads as ");
|
||||
SERIAL_ECHO(get_position());
|
||||
SERIAL_ECHOPGM("(");
|
||||
SERIAL_ECHO(mm_from_count(get_position()));
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
lastPosition = position;
|
||||
unsigned long positionTime = millis();
|
||||
|
||||
//only do error correction if setup and enabled
|
||||
if (ec && ecMethod != I2CPE_ECM_NONE) {
|
||||
|
||||
#if defined(I2CPE_EC_THRESH_PROPORTIONAL)
|
||||
unsigned long distance = abs(position - lastPosition);
|
||||
unsigned long deltaTime = positionTime - lastPositionTime;
|
||||
unsigned long speed = distance / deltaTime;
|
||||
float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
|
||||
#else
|
||||
float threshold = get_error_correct_threshold();
|
||||
#endif
|
||||
|
||||
//check error
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
double sum = 0, diffSum = 0;
|
||||
|
||||
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
|
||||
err[errIdx] = get_axis_error_steps(false);
|
||||
|
||||
LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) {
|
||||
sum += err[i];
|
||||
if (i) diffSum += abs(err[i-1] - err[i]);
|
||||
}
|
||||
|
||||
long error = (long)(sum/(I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
|
||||
|
||||
#else
|
||||
long error = get_axis_error_steps(false);
|
||||
#endif
|
||||
|
||||
//SERIAL_ECHOPGM("Axis err*r steps: ");
|
||||
//SERIAL_ECHOLN(error);
|
||||
|
||||
#if defined(I2CPE_ERR_THRESH_ABORT)
|
||||
if (abs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
//kill("Significant Error");
|
||||
SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
|
||||
SERIAL_ECHOLN(error);
|
||||
safe_delay(5000);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
if (errIdx == 0) {
|
||||
// in order to correct for "error" but avoid correcting for noise and non skips
|
||||
// it must be > threshold and have a difference average of < 10 and be < 2000 steps
|
||||
if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
|
||||
diffSum < 10*(I2CPE_ERR_ARRAY_SIZE-1) && abs(error) < 2000) { //Check for persistent error (skip)
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" diffSum: ", diffSum/(I2CPE_ERR_ARRAY_SIZE-1));
|
||||
SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM("mm; correcting!");
|
||||
thermalManager.babystepsTodo[encoderAxis] = -lround(error);
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (abs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
//SERIAL_ECHOLN(error);
|
||||
//SERIAL_ECHOLN(position);
|
||||
thermalManager.babystepsTodo[encoderAxis] = -lround(error/2);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (abs(error) > (I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) && millis() - lastErrorCountTime > I2CPE_ERR_CNT_DEBOUNCE_MS) {
|
||||
SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis. error: ", (int)error);
|
||||
SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
|
||||
errorCount++;
|
||||
lastErrorCountTime = millis();
|
||||
}
|
||||
}
|
||||
|
||||
lastPositionTime = positionTime;
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::set_homed() {
|
||||
if (active) {
|
||||
reset(); // Reset module's offset to zero (so current position is homed / zero)
|
||||
delay(10);
|
||||
|
||||
zeroOffset = get_raw_count();
|
||||
homed++;
|
||||
trusted++;
|
||||
|
||||
#if defined(I2CPE_DEBUG)
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset);
|
||||
SERIAL_ECHOLNPGM(" ticks.");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::passes_test(bool report) {
|
||||
if (H == I2CPE_MAG_SIG_GOOD) {
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength good.");
|
||||
}
|
||||
return true;
|
||||
} else if (H == I2CPE_MAG_SIG_MID) {
|
||||
if (report) {
|
||||
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder passes test; field strength fair.");
|
||||
}
|
||||
return true;
|
||||
} else if (H == I2CPE_MAG_SIG_BAD) {
|
||||
if (report) {
|
||||
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis magnetic strip not detected!");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
if (report) {
|
||||
SERIAL_ECHOPAIR("Warning, ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder not detected!");
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
double I2CPositionEncoder::get_axis_error_mm(bool report) {
|
||||
double target, actual, error;
|
||||
|
||||
target = stepper.get_axis_position_mm(encoderAxis);
|
||||
actual = mm_from_count(position);
|
||||
error = actual - target;
|
||||
|
||||
if (abs(error) > 10000) error = 0; // ?
|
||||
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis target: ", target);
|
||||
SERIAL_ECHOPAIR(", actual: ", actual);
|
||||
SERIAL_ECHOLNPAIR(", error : ",error);
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
long I2CPositionEncoder::get_axis_error_steps(bool report) {
|
||||
if (!active) {
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder not active!");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
||||
float stepperTicksPerUnit;
|
||||
long encoderTicks = position, encoderCountInStepperTicksScaled;
|
||||
//long stepperTicks = stepper.position(encoderAxis);
|
||||
|
||||
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
|
||||
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
|
||||
|
||||
//convert both 'ticks' into same units / base
|
||||
encoderCountInStepperTicksScaled = lround((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
|
||||
|
||||
long target = stepper.position(encoderAxis),
|
||||
error = (encoderCountInStepperTicksScaled - target);
|
||||
|
||||
//suppress discontinuities (might be caused by bad I2C readings...?)
|
||||
bool suppressOutput = (abs(error - errorPrev) > 100);
|
||||
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis target: ", target);
|
||||
SERIAL_ECHOPAIR(", actual: ", encoderCountInStepperTicksScaled);
|
||||
SERIAL_ECHOLNPAIR(", error : ", error);
|
||||
|
||||
if (suppressOutput) SERIAL_ECHOLNPGM("Discontinuity detected, suppressing error.");
|
||||
}
|
||||
|
||||
errorPrev = error;
|
||||
|
||||
return (suppressOutput ? 0 : error);
|
||||
}
|
||||
|
||||
long I2CPositionEncoder::get_raw_count() {
|
||||
uint8_t index = 0;
|
||||
i2cLong encoderCount;
|
||||
|
||||
encoderCount.val = 0x00;
|
||||
|
||||
if (Wire.requestFrom((int)i2cAddress, 3) != 3) {
|
||||
//houston, we have a problem...
|
||||
H = I2CPE_MAG_SIG_NF;
|
||||
return 0;
|
||||
}
|
||||
|
||||
while (Wire.available())
|
||||
encoderCount.bval[index++] = (uint8_t)Wire.read();
|
||||
|
||||
//extract the magnetic strength
|
||||
H = (B00000011 & (encoderCount.bval[2] >> 6));
|
||||
|
||||
//extract sign bit; sign = (encoderCount.bval[2] & B00100000);
|
||||
//set all upper bits to the sign value to overwrite H
|
||||
encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF);
|
||||
|
||||
if (invert) encoderCount.val *= -1;
|
||||
|
||||
return encoderCount.val;
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::test_axis() {
|
||||
//only works on XYZ cartesian machines for the time being
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
|
||||
|
||||
int feedrate;
|
||||
float startPosition, endPosition;
|
||||
float startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0};
|
||||
|
||||
startPosition = soft_endstop_min[encoderAxis] + 10;
|
||||
endPosition = soft_endstop_max[encoderAxis] - 10;
|
||||
|
||||
feedrate = (int)MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
|
||||
|
||||
ec = false;
|
||||
|
||||
LOOP_NA(i) {
|
||||
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
}
|
||||
|
||||
startCoord[encoderAxis] = startPosition;
|
||||
endCoord[encoderAxis] = endPosition;
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
|
||||
if (!trusted) {
|
||||
long startWaitingTime = millis();
|
||||
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
|
||||
safe_delay(500);
|
||||
}
|
||||
|
||||
if (trusted) { // if trusted, commence test
|
||||
planner.buffer_line(endCoord[X_AXIS], endCoord[Y_AXIS], endCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
return trusted;
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::calibrate_steps_mm(int iter) {
|
||||
if (type != I2CPE_ENC_TYPE_LINEAR) {
|
||||
SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders.");
|
||||
return;
|
||||
}
|
||||
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) {
|
||||
SERIAL_ECHOLNPGM("Automatic steps / mm calibration not supported for this axis.");
|
||||
return;
|
||||
}
|
||||
|
||||
float oldStepsMm, newStepsMm,
|
||||
startDistance, endDistance,
|
||||
travelDistance, travelledDistance, total = 0,
|
||||
startCoord[NUM_AXIS] = {0}, endCoord[NUM_AXIS] = {0};
|
||||
|
||||
double feedrate;
|
||||
|
||||
long startCount, stopCount;
|
||||
|
||||
feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
|
||||
|
||||
bool oldec = ec;
|
||||
ec = false;
|
||||
|
||||
startDistance = 20;
|
||||
endDistance = soft_endstop_max[encoderAxis] - 20;
|
||||
travelDistance = endDistance - startDistance;
|
||||
|
||||
LOOP_NA(i) {
|
||||
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
}
|
||||
|
||||
startCoord[encoderAxis] = startDistance;
|
||||
endCoord[encoderAxis] = endDistance;
|
||||
|
||||
LOOP_L_N(i, iter) {
|
||||
stepper.synchronize();
|
||||
|
||||
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
delay(250);
|
||||
startCount = get_position();
|
||||
|
||||
//do_blocking_move_to(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS]);
|
||||
|
||||
planner.buffer_line(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
//Read encoder distance
|
||||
delay(250);
|
||||
stopCount = get_position();
|
||||
|
||||
travelledDistance = mm_from_count(abs(stopCount - startCount));
|
||||
|
||||
SERIAL_ECHOPAIR("Attempted to travel: ", travelDistance);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
|
||||
SERIAL_ECHOPAIR("Actually travelled: ", travelledDistance);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
|
||||
//Calculate new axis steps per unit
|
||||
oldStepsMm = planner.axis_steps_per_mm[encoderAxis];
|
||||
newStepsMm = (oldStepsMm * travelDistance) / travelledDistance;
|
||||
|
||||
SERIAL_ECHOLNPAIR("Old steps per mm: ", oldStepsMm);
|
||||
SERIAL_ECHOLNPAIR("New steps per mm: ", newStepsMm);
|
||||
|
||||
//Save new value
|
||||
planner.axis_steps_per_mm[encoderAxis] = newStepsMm;
|
||||
|
||||
if (iter > 1) {
|
||||
total += newStepsMm;
|
||||
|
||||
// swap start and end points so next loop runs from current position
|
||||
float tempCoord = startCoord[encoderAxis];
|
||||
startCoord[encoderAxis] = endCoord[encoderAxis];
|
||||
endCoord[encoderAxis] = tempCoord;
|
||||
}
|
||||
}
|
||||
|
||||
if (iter > 1) {
|
||||
total /= (float)iter;
|
||||
SERIAL_ECHOLNPAIR("Average steps per mm: ", total);
|
||||
}
|
||||
|
||||
ec = oldec;
|
||||
|
||||
SERIAL_ECHOLNPGM("Calculated steps per mm has been set. Please save to EEPROM (M500) if you wish to keep these values.");
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::reset() {
|
||||
Wire.beginTransmission(i2cAddress);
|
||||
Wire.write(I2CPE_RESET_COUNT);
|
||||
Wire.endTransmission();
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
ZERO(err);
|
||||
#endif
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::init() {
|
||||
Wire.begin();
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 0
|
||||
uint8_t i = 0;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
|
||||
|
||||
#if defined(I2CPE_ENC_1_TYPE)
|
||||
encoders[i].set_type(I2CPE_ENC_1_TYPE);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_1_TICKS_UNIT)
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_1_TICKS_REV)
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_1_INVERT)
|
||||
encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_1_EC_METHOD)
|
||||
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_1_EC_THRESH)
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if (I2CPE_ENC_1_AXIS == E_AXIS)
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 1
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
|
||||
|
||||
#if defined(I2CPE_ENC_2_TYPE)
|
||||
encoders[i].set_type(I2CPE_ENC_2_TYPE);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_2_TICKS_UNIT)
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_2_TICKS_REV)
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_2_INVERT)
|
||||
encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_2_EC_METHOD)
|
||||
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_2_EC_THRESH)
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if (I2CPE_ENC_2_AXIS == E_AXIS)
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 2
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
|
||||
|
||||
#if defined(I2CPE_ENC_3_TYPE)
|
||||
encoders[i].set_type(I2CPE_ENC_3_TYPE);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_3_TICKS_UNIT)
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_3_TICKS_REV)
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_3_INVERT)
|
||||
encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_3_EC_METHOD)
|
||||
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_3_EC_THRESH)
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if (I2CPE_ENC_3_AXIS == E_AXIS)
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 3
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
|
||||
|
||||
#if defined(I2CPE_ENC_4_TYPE)
|
||||
encoders[i].set_type(I2CPE_ENC_4_TYPE);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_4_TICKS_UNIT)
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_4_TICKS_REV)
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_4_INVERT)
|
||||
encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_4_EC_METHOD)
|
||||
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_4_EC_THRESH)
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if (I2CPE_ENC_4_AXIS == E_AXIS)
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 4
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
|
||||
|
||||
#if defined(I2CPE_ENC_5_TYPE)
|
||||
encoders[i].set_type(I2CPE_ENC_5_TYPE);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_5_TICKS_UNIT)
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_5_TICKS_REV)
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_5_INVERT)
|
||||
encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_5_EC_METHOD)
|
||||
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
|
||||
#endif
|
||||
#if defined(I2CPE_ENC_5_EC_THRESH)
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if (I2CPE_ENC_5_AXIS == E_AXIS)
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::report_position(uint8_t idx, bool units, bool noOffset) {
|
||||
CHECK_IDX
|
||||
|
||||
if (units) {
|
||||
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
|
||||
} else {
|
||||
if (noOffset) {
|
||||
long raw_count = encoders[idx].get_raw_count();
|
||||
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
|
||||
SERIAL_ECHOPGM(" ");
|
||||
|
||||
for (uint8_t j = 31; j > 0; j--)
|
||||
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
|
||||
|
||||
SERIAL_ECHO((bool)(0x00000001 & (raw_count)));
|
||||
SERIAL_ECHOLNPAIR(" ", raw_count);
|
||||
} else
|
||||
SERIAL_ECHOLN(encoders[idx].get_position());
|
||||
}
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::change_module_address(uint8_t oldaddr, uint8_t newaddr) {
|
||||
// First check 'new' address is not in use
|
||||
Wire.beginTransmission(newaddr);
|
||||
if (!Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?There is already a device with that address on the I2C bus! (", newaddr);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
|
||||
// Now check that we can find the module on the oldaddr address
|
||||
Wire.beginTransmission(oldaddr);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?No module detected at this address! (", oldaddr);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Module found at ", oldaddr);
|
||||
SERIAL_ECHOLNPAIR(", changing address to ", newaddr);
|
||||
|
||||
// Change the modules address
|
||||
Wire.beginTransmission(oldaddr);
|
||||
Wire.write(I2CPE_SET_ADDR);
|
||||
Wire.write(newaddr);
|
||||
Wire.endTransmission();
|
||||
|
||||
SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation..");
|
||||
|
||||
// Wait for the module to reset (can probably be improved by polling address with a timeout).
|
||||
safe_delay(I2CPE_REBOOT_TIME);
|
||||
|
||||
// Look for the module at the new address.
|
||||
Wire.beginTransmission(newaddr);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOLNPGM("Address change failed! Check encoder module.");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOLNPGM("Address change successful!");
|
||||
|
||||
// Now, if this module is configured, find which encoder instance it's supposed to correspond to
|
||||
// and enable it (it will likely have failed initialisation on power-up, before the address change).
|
||||
int8_t idx = idx_from_addr(newaddr);
|
||||
if (idx >= 0 && !encoders[idx].get_active()) {
|
||||
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
|
||||
encoders[idx].set_active(encoders[idx].passes_test(true));
|
||||
}
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::report_module_firmware(uint8_t address) {
|
||||
// First check there is a module
|
||||
Wire.beginTransmission(address);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?No module detected at this address! (", address);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Requesting version info from module at address ", address);
|
||||
SERIAL_ECHOPGM(":\n");
|
||||
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(I2CPE_SET_REPORT_MODE);
|
||||
Wire.write(I2CPE_REPORT_VERSION);
|
||||
Wire.endTransmission();
|
||||
|
||||
// Read value
|
||||
if (Wire.requestFrom((int)address, 32)) {
|
||||
char c;
|
||||
while (Wire.available() > 0 && (c = (char)Wire.read()) > 0)
|
||||
SERIAL_ECHO(c);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
// Set module back to normal (distance) mode
|
||||
Wire.beginTransmission((int)address);
|
||||
Wire.write(I2CPE_SET_REPORT_MODE);
|
||||
Wire.write(I2CPE_REPORT_DISTANCE);
|
||||
Wire.endTransmission();
|
||||
}
|
||||
|
||||
int8_t I2CPositionEncodersMgr::parse() {
|
||||
I2CPE_addr = 0;
|
||||
|
||||
if (parser.seen('A')) {
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
};
|
||||
|
||||
I2CPE_addr = parser.value_byte();
|
||||
|
||||
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
|
||||
SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
|
||||
I2CPE_idx = idx_from_addr(I2CPE_addr);
|
||||
|
||||
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) {
|
||||
SERIAL_PROTOCOLLNPGM("?No device with this address!");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
} else if (parser.seenval('I')) {
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1);
|
||||
SERIAL_ECHOLNPGM("]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
};
|
||||
|
||||
I2CPE_idx = parser.value_byte();
|
||||
|
||||
if (!WITHIN(I2CPE_idx, 0, I2CPE_ENCODER_CNT - 1)) {
|
||||
SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1);
|
||||
SERIAL_ECHOLNPGM("]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
|
||||
I2CPE_addr = encoders[I2CPE_idx].get_address();
|
||||
} else {
|
||||
I2CPE_idx = -1;
|
||||
}
|
||||
|
||||
I2CPE_anyaxis = parser.seen_axis();
|
||||
|
||||
return I2CPE_PARSE_OK;
|
||||
};
|
||||
|
||||
/**
|
||||
* M860: Report the position(s) of position encoder module(s).
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
* O Include homed zero-offset in returned position.
|
||||
* U Units in mm or raw step count.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M860() {
|
||||
if (parse()) return;
|
||||
|
||||
bool hasU = parser.seen('U'), hasO = parser.seen('O');
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
|
||||
report_position((uint8_t)idx, hasU, hasO);
|
||||
}
|
||||
} else report_position((uint8_t)I2CPE_idx, hasU, hasO);
|
||||
}
|
||||
|
||||
/**
|
||||
* M861: Report the status of position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M861() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
|
||||
report_status((uint8_t)idx);
|
||||
}
|
||||
} else report_status((uint8_t)I2CPE_idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* M862: Perform an axis continuity test for position encoder
|
||||
* modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M862() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
|
||||
test_axis((uint8_t)idx);
|
||||
}
|
||||
} else test_axis((uint8_t)I2CPE_idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* M863: Perform steps-per-mm calibration for
|
||||
* position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
* P Number of rePeats/iterations.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M863() {
|
||||
if (parse()) return;
|
||||
|
||||
int iterations = parser.seenval('P') ? constrain(parser.value_byte(), 1, 10) : 1;
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
|
||||
calibrate_steps_mm((uint8_t)idx, iterations);
|
||||
}
|
||||
} else calibrate_steps_mm((uint8_t)I2CPE_idx, iterations);
|
||||
}
|
||||
|
||||
/**
|
||||
* M864: Change position encoder module I2C address.
|
||||
*
|
||||
* A<addr> Module current/old I2C address. If not present,
|
||||
* assumes default address (030). [30, 200].
|
||||
* N<addr> Module new I2C address. [30, 200].
|
||||
*
|
||||
* If N not specified:
|
||||
* X Use I2CPE_PRESET_ADDR_X (030).
|
||||
* Y Use I2CPE_PRESET_ADDR_Y (031).
|
||||
* Z Use I2CPE_PRESET_ADDR_Z (032).
|
||||
* E Use I2CPE_PRESET_ADDR_E (033).
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M864() {
|
||||
uint8_t newAddress;
|
||||
|
||||
if (parse()) return;
|
||||
|
||||
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
|
||||
|
||||
if (parser.seen('N')) {
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPGM("?N seen, but no address specified! [30-200]");
|
||||
return;
|
||||
};
|
||||
|
||||
newAddress = parser.value_byte();
|
||||
|
||||
if (!WITHIN(newAddress, 30, 200)) {
|
||||
SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]");
|
||||
return;
|
||||
}
|
||||
} else if (!I2CPE_anyaxis) {
|
||||
SERIAL_PROTOCOLLNPGM("?You must specify N or [XYZE].");
|
||||
return;
|
||||
} else {
|
||||
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
|
||||
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
|
||||
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
|
||||
else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
|
||||
else return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Changing module at address ", I2CPE_addr);
|
||||
SERIAL_ECHOLNPAIR(" to address ", newAddress);
|
||||
|
||||
change_module_address(I2CPE_addr, newAddress);
|
||||
}
|
||||
|
||||
/**
|
||||
* M865: Check position encoder module firmware version.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Check X axis encoder, if present.
|
||||
* Y Check Y axis encoder, if present.
|
||||
* Z Check Z axis encoder, if present.
|
||||
* E Check E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M865() {
|
||||
if (parse()) return;
|
||||
|
||||
if (!I2CPE_addr) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
|
||||
report_module_firmware(encoders[idx].get_address());
|
||||
}
|
||||
} else report_module_firmware(I2CPE_addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* M866: Report or reset position encoder module error
|
||||
* count.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* R Reset error counter.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M866() {
|
||||
if (parse()) return;
|
||||
|
||||
bool hasR = parser.seen('R');
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) {
|
||||
if (hasR) reset_error_count((uint8_t)idx, AxisEnum(i));
|
||||
else report_error_count((uint8_t)idx, AxisEnum(i));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (hasR) reset_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
else report_error_count((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M867: Enable/disable or toggle error correction for position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not
|
||||
* supplied, toggle.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M867() {
|
||||
if (parse()) return;
|
||||
|
||||
int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) {
|
||||
if (onoff == -1) enable_ec((uint8_t)idx, !encoders[idx].get_ec_enabled(), AxisEnum(i));
|
||||
else enable_ec((uint8_t)idx, (bool)onoff, AxisEnum(i));
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (onoff == -1) enable_ec((uint8_t)I2CPE_idx, !encoders[I2CPE_idx].get_ec_enabled(), encoders[I2CPE_idx].get_axis());
|
||||
else enable_ec((uint8_t)I2CPE_idx, (bool)onoff, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M868: Report or set position encoder module error correction
|
||||
* threshold.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* T New error correction threshold.
|
||||
*
|
||||
* If A not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M868() {
|
||||
if (parse()) return;
|
||||
|
||||
float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0)) {
|
||||
if (newThreshold != -9999) set_ec_threshold((uint8_t)idx, newThreshold, encoders[idx].get_axis());
|
||||
else get_ec_threshold((uint8_t)idx, encoders[idx].get_axis());
|
||||
}
|
||||
}
|
||||
} else {
|
||||
if (newThreshold != -9999) set_ec_threshold((uint8_t)I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
|
||||
else get_ec_threshold((uint8_t)I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M869: Report position encoder module error.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
*
|
||||
* If A not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M869() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx < 0) {
|
||||
int8_t idx;
|
||||
LOOP_XYZE(i) {
|
||||
if ((!I2CPE_anyaxis || parser.seen(axis_codes[i])) && ((idx = idx_from_axis(AxisEnum(i))) >= 0))
|
||||
report_error((uint8_t)idx);
|
||||
}
|
||||
} else report_error((uint8_t)I2CPE_idx);
|
||||
}
|
||||
|
||||
#endif
|
356
Marlin/I2CPositionEncoder.h
Normal file
356
Marlin/I2CPositionEncoder.h
Normal file
|
@ -0,0 +1,356 @@
|
|||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef I2CPOSENC_H
|
||||
#define I2CPOSENC_H
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
|
||||
#include "enum.h"
|
||||
#include "macros.h"
|
||||
#include "types.h"
|
||||
#include <Wire.h>
|
||||
|
||||
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
|
||||
|
||||
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
|
||||
// proportional to the current speed of the axis allows
|
||||
// for very small error margin at low speeds without
|
||||
// stuttering due to reading latency at high speeds
|
||||
|
||||
#define I2CPE_DEBUG // enable encoder-related debug serial echos
|
||||
|
||||
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
|
||||
// after changing address.
|
||||
|
||||
#define I2CPE_MAG_SIG_GOOD 0
|
||||
#define I2CPE_MAG_SIG_MID 1
|
||||
#define I2CPE_MAG_SIG_BAD 2
|
||||
#define I2CPE_MAG_SIG_NF 255
|
||||
|
||||
#define I2CPE_REQ_REPORT 0
|
||||
#define I2CPE_RESET_COUNT 1
|
||||
#define I2CPE_SET_ADDR 2
|
||||
#define I2CPE_SET_REPORT_MODE 3
|
||||
#define I2CPE_CLEAR_EEPROM 4
|
||||
|
||||
#define I2CPE_LED_PAR_MODE 10
|
||||
#define I2CPE_LED_PAR_BRT 11
|
||||
#define I2CPE_LED_PAR_RATE 14
|
||||
|
||||
#define I2CPE_REPORT_DISTANCE 0
|
||||
#define I2CPE_REPORT_STRENGTH 1
|
||||
#define I2CPE_REPORT_VERSION 2
|
||||
|
||||
// Default I2C addresses
|
||||
#define I2CPE_PRESET_ADDR_X 30
|
||||
#define I2CPE_PRESET_ADDR_Y 31
|
||||
#define I2CPE_PRESET_ADDR_Z 32
|
||||
#define I2CPE_PRESET_ADDR_E 33
|
||||
|
||||
#define I2CPE_DEF_AXIS X_AXIS
|
||||
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
|
||||
|
||||
// Error event counter; tracks how many times there is an error exceeding a certain threshold
|
||||
#define I2CPE_ERR_CNT_THRESH 3.00
|
||||
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
#define I2CPE_ERR_ARRAY_SIZE 32
|
||||
#endif
|
||||
|
||||
// Error Correction Methods
|
||||
#define I2CPE_ECM_NONE 0
|
||||
#define I2CPE_ECM_MICROSTEP 1
|
||||
#define I2CPE_ECM_PLANNER 2
|
||||
#define I2CPE_ECM_STALLDETECT 3
|
||||
|
||||
// Encoder types
|
||||
#define I2CPE_ENC_TYPE_ROTARY 0
|
||||
#define I2CPE_ENC_TYPE_LINEAR 1
|
||||
|
||||
// Parser
|
||||
#define I2CPE_PARSE_ERR 1
|
||||
#define I2CPE_PARSE_OK 0
|
||||
|
||||
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
|
||||
#define CHECK_IDX if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return;
|
||||
|
||||
extern const char axis_codes[XYZE];
|
||||
|
||||
typedef union {
|
||||
volatile long val = 0;
|
||||
uint8_t bval[4];
|
||||
} i2cLong;
|
||||
|
||||
class I2CPositionEncoder {
|
||||
private:
|
||||
AxisEnum encoderAxis = I2CPE_DEF_AXIS;
|
||||
|
||||
uint8_t i2cAddress = I2CPE_DEF_ADDR,
|
||||
ecMethod = I2CPE_DEF_EC_METHOD,
|
||||
type = I2CPE_DEF_TYPE,
|
||||
H = I2CPE_MAG_SIG_NF; // Magnetic field strength
|
||||
|
||||
int encoderTicksPerUnit = I2CPE_DEF_ENC_TICKS_UNIT,
|
||||
stepperTicks = I2CPE_DEF_TICKS_REV;
|
||||
|
||||
float ecThreshold = I2CPE_DEF_EC_THRESH;
|
||||
|
||||
bool homed = false,
|
||||
trusted = false,
|
||||
initialised = false,
|
||||
active = false,
|
||||
invert = false,
|
||||
ec = true;
|
||||
|
||||
int errorCount = 0,
|
||||
errorPrev = 0;
|
||||
|
||||
float axisOffset = 0;
|
||||
|
||||
long axisOffsetTicks = 0,
|
||||
zeroOffset = 0,
|
||||
lastPosition = 0,
|
||||
position;
|
||||
|
||||
unsigned long lastPositionTime = 0,
|
||||
lastErrorCountTime = 0,
|
||||
lastErrorTime;
|
||||
|
||||
//double positionMm; //calculate
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
uint8_t errIdx = 0;
|
||||
int err[I2CPE_ERR_ARRAY_SIZE] = {0};
|
||||
#endif
|
||||
|
||||
public:
|
||||
void init(uint8_t address, AxisEnum axis);
|
||||
void reset();
|
||||
|
||||
void update();
|
||||
|
||||
void set_homed();
|
||||
|
||||
long get_raw_count();
|
||||
|
||||
FORCE_INLINE double mm_from_count(long count) {
|
||||
if (type == I2CPE_ENC_TYPE_LINEAR) return count / encoderTicksPerUnit;
|
||||
else if (type == I2CPE_ENC_TYPE_ROTARY)
|
||||
return (count * stepperTicks) / (encoderTicksPerUnit * planner.axis_steps_per_mm[encoderAxis]);
|
||||
return -1;
|
||||
}
|
||||
|
||||
FORCE_INLINE double get_position_mm() { return mm_from_count(get_position()); }
|
||||
FORCE_INLINE long get_position() { return get_raw_count() - zeroOffset - axisOffsetTicks; }
|
||||
|
||||
long get_axis_error_steps(bool report);
|
||||
double get_axis_error_mm(bool report);
|
||||
|
||||
void calibrate_steps_mm(int iter);
|
||||
|
||||
bool passes_test(bool report);
|
||||
|
||||
bool test_axis(void);
|
||||
|
||||
FORCE_INLINE int get_error_count(void) { return errorCount; }
|
||||
FORCE_INLINE void set_error_count(int newCount) { errorCount = newCount; }
|
||||
|
||||
FORCE_INLINE uint8_t get_address() { return i2cAddress; }
|
||||
FORCE_INLINE void set_address(uint8_t addr) { i2cAddress = addr; }
|
||||
|
||||
FORCE_INLINE bool get_active(void) { return active; }
|
||||
FORCE_INLINE void set_active(bool a) { active = a; }
|
||||
|
||||
FORCE_INLINE void set_inverted(bool i) { invert = i; }
|
||||
|
||||
FORCE_INLINE AxisEnum get_axis() { return encoderAxis; }
|
||||
|
||||
FORCE_INLINE bool get_ec_enabled() { return ec; }
|
||||
FORCE_INLINE void set_ec_enabled(bool enabled) { ec = enabled; }
|
||||
|
||||
FORCE_INLINE uint8_t get_ec_method() { return ecMethod; }
|
||||
FORCE_INLINE void set_ec_method(byte method) { ecMethod = method; }
|
||||
|
||||
FORCE_INLINE float get_ec_threshold() { return ecThreshold; }
|
||||
FORCE_INLINE void set_ec_threshold(float newThreshold) { ecThreshold = newThreshold; }
|
||||
|
||||
FORCE_INLINE int get_encoder_ticks_mm() {
|
||||
if (type == I2CPE_ENC_TYPE_LINEAR) return encoderTicksPerUnit;
|
||||
else if (type == I2CPE_ENC_TYPE_ROTARY)
|
||||
return (int)((encoderTicksPerUnit / stepperTicks) * planner.axis_steps_per_mm[encoderAxis]);
|
||||
return 0;
|
||||
}
|
||||
|
||||
FORCE_INLINE int get_ticks_unit() { return encoderTicksPerUnit; }
|
||||
FORCE_INLINE void set_ticks_unit(int ticks) { encoderTicksPerUnit = ticks; }
|
||||
|
||||
FORCE_INLINE uint8_t get_type() { return type; }
|
||||
FORCE_INLINE void set_type(byte newType) { type = newType; }
|
||||
|
||||
FORCE_INLINE int get_stepper_ticks() { return stepperTicks; }
|
||||
FORCE_INLINE void set_stepper_ticks(int ticks) { stepperTicks = ticks; }
|
||||
|
||||
FORCE_INLINE float get_axis_offset() { return axisOffset; }
|
||||
FORCE_INLINE void set_axis_offset(float newOffset) {
|
||||
axisOffset = newOffset;
|
||||
axisOffsetTicks = (long)(axisOffset * get_encoder_ticks_mm());
|
||||
}
|
||||
|
||||
FORCE_INLINE void set_current_position(float newPositionMm) {
|
||||
set_axis_offset(get_position_mm() - newPositionMm + axisOffset);
|
||||
}
|
||||
};
|
||||
|
||||
class I2CPositionEncodersMgr {
|
||||
private:
|
||||
bool I2CPE_anyaxis;
|
||||
uint8_t I2CPE_addr;
|
||||
int8_t I2CPE_idx;
|
||||
|
||||
public:
|
||||
void init(void);
|
||||
|
||||
// consider only updating one endoder per call / tick if encoders become too time intensive
|
||||
void update(void) { LOOP_PE(i) encoders[i].update(); }
|
||||
|
||||
void homed(AxisEnum axis) {
|
||||
LOOP_PE(i)
|
||||
if (encoders[i].get_axis() == axis) encoders[i].set_homed();
|
||||
}
|
||||
|
||||
void report_position(uint8_t idx, bool units, bool noOffset);
|
||||
|
||||
void report_status(uint8_t idx) {
|
||||
CHECK_IDX
|
||||
SERIAL_ECHOPAIR("Encoder ",idx);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
encoders[idx].get_raw_count();
|
||||
encoders[idx].passes_test(true);
|
||||
}
|
||||
|
||||
void report_error(uint8_t idx) {
|
||||
CHECK_IDX
|
||||
encoders[idx].get_axis_error_steps(true);
|
||||
}
|
||||
|
||||
void test_axis(uint8_t idx) {
|
||||
CHECK_IDX
|
||||
encoders[idx].test_axis();
|
||||
}
|
||||
|
||||
void calibrate_steps_mm(uint8_t idx, int iterations) {
|
||||
CHECK_IDX
|
||||
encoders[idx].calibrate_steps_mm(iterations);
|
||||
}
|
||||
|
||||
void change_module_address(uint8_t oldaddr, uint8_t newaddr);
|
||||
void report_module_firmware(uint8_t address);
|
||||
|
||||
void report_error_count(uint8_t idx, AxisEnum axis) {
|
||||
CHECK_IDX
|
||||
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
|
||||
SERIAL_ECHOLNPAIR(" axis is ", encoders[idx].get_error_count());
|
||||
}
|
||||
|
||||
void reset_error_count(uint8_t idx, AxisEnum axis) {
|
||||
CHECK_IDX
|
||||
encoders[idx].set_error_count(0);
|
||||
SERIAL_ECHOPAIR("Error count on ", axis_codes[axis]);
|
||||
SERIAL_ECHOLNPGM(" axis has been reset.");
|
||||
}
|
||||
|
||||
void enable_ec(uint8_t idx, bool enabled, AxisEnum axis) {
|
||||
CHECK_IDX
|
||||
encoders[idx].set_ec_enabled(enabled);
|
||||
SERIAL_ECHOPAIR("Error correction on ", axis_codes[axis]);
|
||||
SERIAL_ECHOPGM(" axis is ");
|
||||
serialprintPGM(encoders[idx].get_ec_enabled() ? PSTR("en") : PSTR("dis"));
|
||||
SERIAL_ECHOLNPGM("abled.");
|
||||
}
|
||||
|
||||
void set_ec_threshold(uint8_t idx, float newThreshold, AxisEnum axis) {
|
||||
CHECK_IDX
|
||||
encoders[idx].set_ec_threshold(newThreshold);
|
||||
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
|
||||
SERIAL_ECHOPAIR_F(" axis set to ", newThreshold);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
}
|
||||
|
||||
void get_ec_threshold(uint8_t idx, AxisEnum axis) {
|
||||
CHECK_IDX
|
||||
float threshold = encoders[idx].get_ec_threshold();
|
||||
SERIAL_ECHOPAIR("Error correct threshold for ", axis_codes[axis]);
|
||||
SERIAL_ECHOPAIR_F(" axis is ", threshold);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
}
|
||||
|
||||
int8_t idx_from_axis(AxisEnum axis) {
|
||||
LOOP_PE(i)
|
||||
if (encoders[i].get_axis() == axis) return i;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
int8_t idx_from_addr(uint8_t addr) {
|
||||
LOOP_PE(i)
|
||||
if (encoders[i].get_address() == addr) return i;
|
||||
|
||||
return -1;
|
||||
}
|
||||
|
||||
int8_t parse();
|
||||
|
||||
void M860();
|
||||
void M861();
|
||||
void M862();
|
||||
void M863();
|
||||
void M864();
|
||||
void M865();
|
||||
void M866();
|
||||
void M867();
|
||||
void M868();
|
||||
void M869();
|
||||
|
||||
I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
|
||||
};
|
||||
|
||||
extern I2CPositionEncodersMgr I2CPEM;
|
||||
|
||||
FORCE_INLINE void gcode_M860() { I2CPEM.M860(); }
|
||||
FORCE_INLINE void gcode_M861() { I2CPEM.M861(); }
|
||||
FORCE_INLINE void gcode_M862() { I2CPEM.M862(); }
|
||||
FORCE_INLINE void gcode_M863() { I2CPEM.M863(); }
|
||||
FORCE_INLINE void gcode_M864() { I2CPEM.M864(); }
|
||||
FORCE_INLINE void gcode_M865() { I2CPEM.M865(); }
|
||||
FORCE_INLINE void gcode_M866() { I2CPEM.M866(); }
|
||||
FORCE_INLINE void gcode_M867() { I2CPEM.M867(); }
|
||||
FORCE_INLINE void gcode_M868() { I2CPEM.M868(); }
|
||||
FORCE_INLINE void gcode_M869() { I2CPEM.M869(); }
|
||||
|
||||
#endif //I2C_POSITION_ENCODERS
|
||||
#endif //I2CPOSENC_H
|
||||
|
||||
|
|
@ -200,6 +200,16 @@
|
|||
* M666 - Set delta endstop adjustment. (Requires DELTA)
|
||||
* M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
|
||||
* M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
|
||||
* M860 - Report the position of position encoder modules.
|
||||
* M861 - Report the status of position encoder modules.
|
||||
* M862 - Perform an axis continuity test for position encoder modules.
|
||||
* M863 - Perform steps-per-mm calibration for position encoder modules.
|
||||
* M864 - Change position encoder module I2C address.
|
||||
* M865 - Check position encoder module firmware version.
|
||||
* M866 - Report or reset position encoder module error count.
|
||||
* M867 - Enable/disable or toggle error correction for position encoder modules.
|
||||
* M868 - Report or set position encoder module error correction threshold.
|
||||
* M869 - Report position encoder module error.
|
||||
* M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
|
||||
* M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
|
||||
* M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
|
||||
|
@ -286,6 +296,10 @@
|
|||
#include "twibus.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
#include "I2CPositionEncoder.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
#include "endstop_interrupts.h"
|
||||
#endif
|
||||
|
@ -662,6 +676,12 @@ static bool send_ok[BUFSIZE];
|
|||
#define host_keepalive() NOOP
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
I2CPositionEncodersMgr I2CPEM;
|
||||
uint8_t blockBufferIndexRef = 0;
|
||||
millis_t lastUpdateMillis;
|
||||
#endif
|
||||
|
||||
FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
|
||||
FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
|
||||
|
||||
|
@ -1493,6 +1513,10 @@ static void set_axis_is_at_home(const AxisEnum axis) {
|
|||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
I2CPEM.homed(axis);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -5609,6 +5633,11 @@ inline void gcode_G92() {
|
|||
#if HAS_POSITION_SHIFT
|
||||
position_shift[i] += v - p; // Offset the coordinate space
|
||||
update_software_endstops((AxisEnum)i);
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum) i)].set_axis_offset(position_shift[i]);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
@ -10904,6 +10933,50 @@ void process_next_command() {
|
|||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
|
||||
case 860: // M860 Report encoder module position
|
||||
gcode_M860();
|
||||
break;
|
||||
|
||||
case 861: // M861 Report encoder module status
|
||||
gcode_M861();
|
||||
break;
|
||||
|
||||
case 862: // M862 Perform axis test
|
||||
gcode_M862();
|
||||
break;
|
||||
|
||||
case 863: // M863 Calibrate steps/mm
|
||||
gcode_M863();
|
||||
break;
|
||||
|
||||
case 864: // M864 Change module address
|
||||
gcode_M864();
|
||||
break;
|
||||
|
||||
case 865: // M865 Check module firmware version
|
||||
gcode_M865();
|
||||
break;
|
||||
|
||||
case 866: // M866 Report axis error count
|
||||
gcode_M866();
|
||||
break;
|
||||
|
||||
case 867: // M867 Toggle error correction
|
||||
gcode_M867();
|
||||
break;
|
||||
|
||||
case 868: // M868 Set error correction threshold
|
||||
gcode_M868();
|
||||
break;
|
||||
|
||||
case 869: // M869 Report axis error
|
||||
gcode_M869();
|
||||
break;
|
||||
|
||||
#endif // I2C_POSITION_ENCODERS
|
||||
|
||||
case 999: // M999: Restart after being Stopped
|
||||
gcode_M999();
|
||||
break;
|
||||
|
@ -12200,7 +12273,7 @@ void disable_all_steppers() {
|
|||
const bool has_days = (elapsed.value > 60*60*24L);
|
||||
(void)elapsed.toDigital(timestamp, has_days);
|
||||
SERIAL_ECHO(timestamp);
|
||||
SERIAL_ECHO(": ");
|
||||
SERIAL_ECHOPGM(": ");
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOLNPGM(" driver overtemperature warning!");
|
||||
}
|
||||
|
@ -12495,6 +12568,16 @@ void idle(
|
|||
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
||||
buzzer.tick();
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
if (planner.blocks_queued() &&
|
||||
( (blockBufferIndexRef != planner.block_buffer_head) ||
|
||||
((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
|
||||
blockBufferIndexRef = planner.block_buffer_head;
|
||||
I2CPEM.update();
|
||||
lastUpdateMillis = millis();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -12739,6 +12822,10 @@ void setup() {
|
|||
set_bltouch_deployed(false);
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
I2CPEM.init();
|
||||
#endif
|
||||
|
||||
#if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
|
||||
i2c.onReceive(i2c_on_receive);
|
||||
i2c.onRequest(i2c_on_request);
|
||||
|
|
|
@ -270,11 +270,24 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* I2C Position Encoders
|
||||
*/
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
#if DISABLED(BABYSTEPPING)
|
||||
#error "I2C_POSITION_ENCODERS requires BABYSTEPPING."
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 5 || I2CPE_ENCODER_CNT < 1
|
||||
#error "I2CPE_ENCODER_CNT must be between 1 and 5."
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Babystepping
|
||||
*/
|
||||
#if ENABLED(BABYSTEPPING)
|
||||
#if DISABLED(ULTRA_LCD)
|
||||
#if DISABLED(ULTRA_LCD) && DISABLED(I2C_POSITION_ENCODERS)
|
||||
#error "BABYSTEPPING requires an LCD controller."
|
||||
#elif ENABLED(SCARA)
|
||||
#error "BABYSTEPPING is not implemented for SCARA yet."
|
||||
|
|
|
@ -48,9 +48,15 @@ enum AxisEnum {
|
|||
ALL_AXES = 100
|
||||
};
|
||||
|
||||
#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++)
|
||||
#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++)
|
||||
#define LOOP_XYZE_N(VAR) for (uint8_t VAR=X_AXIS; VAR<XYZE_N; VAR++)
|
||||
#define LOOP_S_LE_N(VAR, S, N) for (uint8_t VAR=S; VAR<=N; VAR++)
|
||||
#define LOOP_S_L_N(VAR, S, N) for (uint8_t VAR=S; VAR<N; VAR++)
|
||||
#define LOOP_LE_N(VAR, N) LOOP_S_LE_N(VAR, 0, N)
|
||||
#define LOOP_L_N(VAR, N) LOOP_S_L_N(VAR, 0, N)
|
||||
|
||||
#define LOOP_NA(VAR) LOOP_L_N(VAR, NUM_AXIS)
|
||||
#define LOOP_XYZ(VAR) LOOP_S_LE_N(VAR, X_AXIS, Z_AXIS)
|
||||
#define LOOP_XYZE(VAR) LOOP_S_LE_N(VAR, X_AXIS, E_AXIS)
|
||||
#define LOOP_XYZE_N(VAR) LOOP_S_L_N(VAR, X_AXIS, XYZE_N)
|
||||
|
||||
typedef enum {
|
||||
LINEARUNIT_MM,
|
||||
|
|
|
@ -128,6 +128,12 @@ public:
|
|||
return b;
|
||||
}
|
||||
|
||||
static volatile bool seen_any() {
|
||||
return codebits[3] || codebits[2] || codebits[1] || codebits[0];
|
||||
}
|
||||
|
||||
#define SEEN_TEST(L) TEST(codebits[(L - 'A') >> 3], (L - 'A') & 0x7)
|
||||
|
||||
#else
|
||||
|
||||
// Code is found in the string. If not found, value_ptr is unchanged.
|
||||
|
@ -139,6 +145,12 @@ public:
|
|||
return b;
|
||||
}
|
||||
|
||||
static volatile bool seen_any() {
|
||||
return *command_args == '\0';
|
||||
}
|
||||
|
||||
#define SEEN_TEST(L) !!strchr(command_args, L)
|
||||
|
||||
#endif // FASTER_GCODE_PARSER
|
||||
|
||||
// Populate all fields by parsing a single line of GCode
|
||||
|
@ -148,6 +160,13 @@ public:
|
|||
// Code value pointer was set
|
||||
FORCE_INLINE static bool has_value() { return value_ptr != NULL; }
|
||||
|
||||
// Seen and has value
|
||||
FORCE_INLINE static bool seenval(const char c) { return seen(c) && has_value(); }
|
||||
|
||||
static volatile bool seen_axis() {
|
||||
return SEEN_TEST('X') || SEEN_TEST('Y') || SEEN_TEST('Z') || SEEN_TEST('E');
|
||||
}
|
||||
|
||||
// Float removes 'E' to prevent scientific notation interpretation
|
||||
inline static float value_float() {
|
||||
if (value_ptr) {
|
||||
|
|
|
@ -108,6 +108,8 @@
|
|||
#define HYPOT2(x,y) (sq(x)+sq(y))
|
||||
#define HYPOT(x,y) sqrt(HYPOT2(x,y))
|
||||
|
||||
#define SIGN(a) ((a>0)-(a<0))
|
||||
|
||||
// Macros to contrain values
|
||||
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
|
||||
#define NOMORE(v,n) do{ if (v > n) v = n; }while(0)
|
||||
|
|
Reference in a new issue