SPI Emulated DOGM (like FSMC_GRAPHICAL_TFT, but SPI) (#18817)

This commit is contained in:
Victor Oliveira 2020-07-29 23:25:07 -03:00 committed by GitHub
parent 73ce80af3a
commit 38ce5966e1
Signed by: GitHub
GPG key ID: 4AEE18F83AFDEB23
15 changed files with 546 additions and 129 deletions

View file

@ -2156,6 +2156,12 @@
// //
//#define FSMC_GRAPHICAL_TFT //#define FSMC_GRAPHICAL_TFT
//
// SPI display (MKS Robin Nano V2.0, MKS Gen L V2.0)
// Upscaled 128x64 Marlin UI
//
//#define SPI_GRAPHICAL_TFT
// //
// TFT LVGL UI // TFT LVGL UI
// //
@ -2189,10 +2195,10 @@
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus
#define XPT2046_X_CALIBRATION 12316 //#define XPT2046_X_CALIBRATION 12316
#define XPT2046_Y_CALIBRATION -8981 //#define XPT2046_Y_CALIBRATION -8981
#define XPT2046_X_OFFSET -43 //#define XPT2046_X_OFFSET -43
#define XPT2046_Y_OFFSET 257 //#define XPT2046_Y_OFFSET 257
#endif #endif
// //

View file

@ -1509,9 +1509,10 @@
#endif #endif
// //
// FSMC Graphical TFT // FSMC / SPI Graphical TFT
// //
#if ENABLED(FSMC_GRAPHICAL_TFT) #if TFT_SCALED_DOGLCD
//#define GRAPHICAL_TFT_ROTATE_180
//#define TFT_MARLINUI_COLOR 0xFFFF // White //#define TFT_MARLINUI_COLOR 0xFFFF // White
//#define TFT_MARLINBG_COLOR 0x0000 // Black //#define TFT_MARLINBG_COLOR 0x0000 // Black
//#define TFT_DISABLED_COLOR 0x0003 // Almost black //#define TFT_DISABLED_COLOR 0x0003 // Almost black

View file

@ -208,6 +208,8 @@ public:
*/ */
void setDataSize(uint32_t ds); void setDataSize(uint32_t ds);
uint32_t getDataSize() { return _currentSetting->dataSize; }
/* Victor Perez 2017. Added to set and clear callback functions for callback /* Victor Perez 2017. Added to set and clear callback functions for callback
* on DMA transfer completion. * on DMA transfer completion.
* onReceive used to set the callback in case of dmaTransfer (tx/rx), once rx is completed * onReceive used to set the callback in case of dmaTransfer (tx/rx), once rx is completed

View file

@ -0,0 +1,236 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
*/
#ifdef __STM32F1__
#include "../../../inc/MarlinConfig.h"
#if BOTH(HAS_GRAPHICAL_LCD, SPI_GRAPHICAL_TFT) && DISABLED(FORCE_SOFT_SPI)
#include "../HAL.h"
#include <U8glib.h>
#include <SPI.h>
#define SPI_TFT_CS_H OUT_WRITE(SPI_TFT_CS_PIN, HIGH)
#define SPI_TFT_CS_L OUT_WRITE(SPI_TFT_CS_PIN, LOW)
#define SPI_TFT_DC_H OUT_WRITE(SPI_TFT_DC_PIN, HIGH)
#define SPI_TFT_DC_L OUT_WRITE(SPI_TFT_DC_PIN, LOW)
#define SPI_TFT_RST_H OUT_WRITE(SPI_TFT_RST_PIN, HIGH)
#define SPI_TFT_RST_L OUT_WRITE(SPI_TFT_RST_PIN, LOW)
#define SPI_TFT_BLK_H OUT_WRITE(LCD_BACKLIGHT_PIN, HIGH)
#define SPI_TFT_BLK_L OUT_WRITE(LCD_BACKLIGHT_PIN, LOW)
void LCD_IO_Init(uint8_t cs, uint8_t rs);
void LCD_IO_WriteData(uint16_t RegValue);
void LCD_IO_WriteReg(uint16_t Reg);
uint16_t LCD_IO_ReadData(uint16_t RegValue);
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize);
#ifdef LCD_USE_DMA_SPI
void LCD_IO_WriteMultiple(uint16_t data, uint32_t count);
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length);
#endif
void LCD_WR_REG(uint8_t cmd) {
SPI_TFT_CS_L;
SPI_TFT_DC_L;
SPI.send(cmd);
SPI_TFT_CS_H;
}
void LCD_WR_DATA(uint8_t data) {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.send(data);
SPI_TFT_CS_H;
}
void spi1Init(uint8_t spiRate) {
SPI_TFT_CS_H;
/**
* STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz
* STM32F1 has 3 SPI ports, SPI1 in APB2, SPI2/SPI3 in APB1
* so the minimum prescale of SPI1 is DIV4, SPI2/SPI3 is DIV2
*/
uint8_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_HALF_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_QUARTER_SPEED: clock = SPI_CLOCK_DIV8; break;
case SPI_EIGHTH_SPEED: clock = SPI_CLOCK_DIV16; break;
case SPI_SPEED_5: clock = SPI_CLOCK_DIV32; break;
case SPI_SPEED_6: clock = SPI_CLOCK_DIV64; break;
default: clock = SPI_CLOCK_DIV2; // Default from the SPI library
}
SPI.setModule(1);
SPI.begin();
SPI.setClockDivider(clock);
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
}
void LCD_IO_Init(uint8_t cs, uint8_t rs) {
spi1Init(SPI_FULL_SPEED);
}
void LCD_IO_WriteData(uint16_t RegValue) {
LCD_WR_DATA(RegValue);
}
void LCD_IO_WriteReg(uint16_t Reg) {
LCD_WR_REG(Reg);
}
uint16_t LCD_IO_ReadData(uint16_t RegValue) {
uint16_t d = 0;
SPI_TFT_CS_L;
SPI_TFT_DC_L;
SPI.send(RegValue);
SPI_TFT_DC_H;
SPI.read((uint8_t*)&d, 1); //dummy read
SPI.read((uint8_t*)&d, 1);
SPI_TFT_CS_H;
return d >> 7;
}
uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize) {
uint32_t data = 0;
uint8_t d = 0;
SPI_TFT_CS_L;
SPI_TFT_DC_L;
SPI.send(RegValue);
SPI_TFT_DC_H;
SPI.read((uint8_t*)&d, 1); //dummy read
SPI.read((uint8_t*)&d, 1);
data = d;
while (--ReadSize) {
data <<= 8;
SPI.read((uint8_t*)&d, 1);
data |= (d & 0xFF);
}
SPI_TFT_CS_H;
return uint32_t(data >> 7);
}
#ifdef LCD_USE_DMA_SPI
void LCD_IO_WriteMultiple(uint16_t data, uint32_t count) {
if (SPI.getDataSize() == DATA_SIZE_8BIT) {
count *= 2;
}
while (count > 0) {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(&data, 1, true);
SPI_TFT_CS_H;
count--;
}
}
void LCD_IO_WriteSequence(uint16_t *data, uint16_t length) {
if (SPI.getDataSize() == DATA_SIZE_8BIT) {
length *= 2;
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSend(data, length, true);
SPI_TFT_CS_H;
}
void LCD_IO_WriteSequence_Async(uint16_t *data, uint16_t length) {
if (SPI.getDataSize() == DATA_SIZE_8BIT) {
length *= 2;
}
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSendAsync(data, length, true);
SPI_TFT_CS_H;
}
void LCD_IO_WaitSequence_Async() {
SPI_TFT_CS_L;
SPI_TFT_DC_H;
SPI.dmaSendAsync(NULL, 0, true);
SPI_TFT_CS_H;
}
#endif
static uint8_t msgInitCount = 2; // Ignore all messages until 2nd U8G_COM_MSG_INIT
#ifndef LCD_READ_ID
#define LCD_READ_ID 0x04 // Read display identification information (0xD3 on ILI9341)
#endif
uint8_t u8g_com_stm32duino_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
if (msgInitCount) {
if (msg == U8G_COM_MSG_INIT) msgInitCount--;
if (msgInitCount) return -1;
}
static uint8_t isCommand;
LCD_IO_Init(-1, -1);
switch (msg) {
case U8G_COM_MSG_STOP: break;
case U8G_COM_MSG_INIT:
u8g_SetPIOutput(u8g, U8G_PI_RESET);
u8g_Delay(50);
if (arg_ptr) {
spi1Init(SPI_EIGHTH_SPEED);
*((uint32_t *)arg_ptr) = (LCD_READ_ID << 24) | LCD_IO_ReadData(LCD_READ_ID, 3);
spi1Init(SPI_FULL_SPEED);
}
isCommand = 0;
break;
case U8G_COM_MSG_ADDRESS: // define cmd (arg_val = 0) or data mode (arg_val = 1)
isCommand = arg_val == 0 ? 1 : 0;
break;
case U8G_COM_MSG_RESET:
u8g_SetPILevel(u8g, U8G_PI_RESET, arg_val);
break;
case U8G_COM_MSG_WRITE_BYTE:
if (isCommand)
LCD_IO_WriteReg(arg_val);
else
LCD_IO_WriteData((uint16_t)arg_val);
break;
case U8G_COM_MSG_WRITE_SEQ:
for (uint8_t i = 0; i < arg_val; i += 2)
LCD_IO_WriteData(*(uint16_t *)(((uint32_t)arg_ptr) + i));
break;
}
return 1;
}
#endif // HAS_GRAPHICAL_LCD
#endif // STM32F1

View file

@ -23,10 +23,14 @@
#include "xpt2046.h" #include "xpt2046.h"
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
#if ENABLED(FSMC_GRAPHICAL_TFT)
#if TFT_SCALED_DOGLCD
#include "../../lcd/dogm/ultralcd_DOGM.h" // for LCD_FULL_PIXEL_WIDTH, etc. #include "../../lcd/dogm/ultralcd_DOGM.h" // for LCD_FULL_PIXEL_WIDTH, etc.
#endif #endif
#ifndef XPT2046_Z1_THRESHOLD
#define XPT2046_Z1_THRESHOLD 10
#endif
/* /*
* Draw and Touch processing * Draw and Touch processing
@ -117,10 +121,15 @@ uint8_t XPT2046::read_buttons() {
// We rely on XPT2046 compatible mode to ADS7843, hence no Z1 and Z2 measurements possible. // We rely on XPT2046 compatible mode to ADS7843, hence no Z1 and Z2 measurements possible.
if (!isTouched()) return 0; if (!isTouched()) return 0;
const uint16_t x = uint16_t(((uint32_t(getInTouch(XPT2046_X))) * tsoffsets[0]) >> 16) + tsoffsets[1], uint16_t x = uint16_t(((uint32_t(getInTouch(XPT2046_X))) * tsoffsets[0]) >> 16) + tsoffsets[1],
y = uint16_t(((uint32_t(getInTouch(XPT2046_Y))) * tsoffsets[2]) >> 16) + tsoffsets[3]; y = uint16_t(((uint32_t(getInTouch(XPT2046_Y))) * tsoffsets[2]) >> 16) + tsoffsets[3];
if (!isTouched()) return 0; // Fingers must still be on the TS for a valid read. if (!isTouched()) return 0; // Fingers must still be on the TS for a valid read.
#if ENABLED(GRAPHICAL_TFT_ROTATE_180)
x = TOUCH_SCREEN_WIDTH - x;
y = TOUCH_SCREEN_HEIGHT - y;
#endif
// Touch within the button area simulates an encoder button // Touch within the button area simulates an encoder button
if (y > BUTTON_AREA_TOP && y < BUTTON_AREA_BOT) if (y > BUTTON_AREA_TOP && y < BUTTON_AREA_BOT)
return WITHIN(x, 14, 77) ? EN_D return WITHIN(x, 14, 77) ? EN_D
@ -151,13 +160,51 @@ bool XPT2046::isTouched() {
); );
} }
#if ENABLED(TOUCH_BUTTONS_HW_SPI)
#include <SPI.h>
static void touch_spi_init(uint8_t spiRate) {
/**
* STM32F1 APB2 = 72MHz, APB1 = 36MHz, max SPI speed of this MCU if 18Mhz
* STM32F1 has 3 SPI ports, SPI1 in APB2, SPI2/SPI3 in APB1
* so the minimum prescale of SPI1 is DIV4, SPI2/SPI3 is DIV2
*/
uint8_t clock;
switch (spiRate) {
case SPI_FULL_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_HALF_SPEED: clock = SPI_CLOCK_DIV4; break;
case SPI_QUARTER_SPEED: clock = SPI_CLOCK_DIV8; break;
case SPI_EIGHTH_SPEED: clock = SPI_CLOCK_DIV16; break;
case SPI_SPEED_5: clock = SPI_CLOCK_DIV32; break;
case SPI_SPEED_6: clock = SPI_CLOCK_DIV64; break;
default: clock = SPI_CLOCK_DIV2; // Default from the SPI library
}
SPI.setModule(TOUCH_BUTTONS_HW_SPI_DEVICE);
SPI.begin();
SPI.setClockDivider(clock);
SPI.setBitOrder(MSBFIRST);
SPI.setDataMode(SPI_MODE0);
}
#endif // TOUCH_BUTTONS_HW_SPI
uint16_t XPT2046::getInTouch(const XPTCoordinate coordinate) { uint16_t XPT2046::getInTouch(const XPTCoordinate coordinate) {
uint16_t data[3]; uint16_t data[3];
const uint8_t coord = uint8_t(coordinate) | XPT2046_CONTROL | XPT2046_DFR_MODE;
#if ENABLED(TOUCH_BUTTONS_HW_SPI)
touch_spi_init(SPI_SPEED_6);
for (uint16_t i = 0; i < 3; i++) {
OUT_WRITE(TOUCH_CS_PIN, LOW);
SPI.transfer(coord);
data[i] = (((SPI.transfer(0xFF) << 8) | SPI.transfer(0xFF)) >> 3) & 0x0FFF;
WRITE(TOUCH_CS_PIN, HIGH);
}
#else // !TOUCH_BUTTONS_HW_SPI
OUT_WRITE(TOUCH_CS_PIN, LOW); OUT_WRITE(TOUCH_CS_PIN, LOW);
for (uint16_t i = 0; i < 3; i++) {
const uint8_t coord = uint8_t(coordinate) | XPT2046_CONTROL | XPT2046_DFR_MODE;
for (uint16_t i = 0; i < 3 ; i++) {
for (uint8_t j = 0x80; j; j >>= 1) { for (uint8_t j = 0x80; j; j >>= 1) {
WRITE(TOUCH_SCK_PIN, LOW); WRITE(TOUCH_SCK_PIN, LOW);
WRITE(TOUCH_MOSI_PIN, bool(coord & j)); WRITE(TOUCH_MOSI_PIN, bool(coord & j));
@ -173,9 +220,10 @@ uint16_t XPT2046::getInTouch(const XPTCoordinate coordinate) {
WRITE(TOUCH_SCK_PIN, LOW); WRITE(TOUCH_SCK_PIN, LOW);
data[i] >>= 4; data[i] >>= 4;
} }
WRITE(TOUCH_CS_PIN, HIGH); WRITE(TOUCH_CS_PIN, HIGH);
#endif // !TOUCH_BUTTONS_HW_SPI
uint16_t delta01 = _MAX(data[0], data[1]) - _MIN(data[0], data[1]), uint16_t delta01 = _MAX(data[0], data[1]) - _MIN(data[0], data[1]),
delta02 = _MAX(data[0], data[2]) - _MIN(data[0], data[2]), delta02 = _MAX(data[0], data[2]) - _MIN(data[0], data[2]),
delta12 = _MAX(data[1], data[2]) - _MIN(data[1], data[2]); delta12 = _MAX(data[1], data[2]) - _MIN(data[1], data[2]);

View file

@ -34,10 +34,6 @@ enum XPTCoordinate : uint8_t {
XPT2046_Z2 = 0x40 XPT2046_Z2 = 0x40
}; };
#ifndef XPT2046_Z1_THRESHOLD
#define XPT2046_Z1_THRESHOLD 10
#endif
class XPT2046 { class XPT2046 {
public: public:
static void init(); static void init();

View file

@ -261,7 +261,11 @@
#endif #endif
// FSMC/SPI TFT Panels // FSMC/SPI TFT Panels
#if ENABLED(FSMC_GRAPHICAL_TFT) #if EITHER(FSMC_GRAPHICAL_TFT, SPI_GRAPHICAL_TFT)
#define TFT_SCALED_DOGLCD 1
#endif
#if TFT_SCALED_DOGLCD
#define DOGLCD #define DOGLCD
#define IS_ULTIPANEL #define IS_ULTIPANEL
#define DELAYED_BACKLIGHT_INIT #define DELAYED_BACKLIGHT_INIT

View file

@ -373,7 +373,7 @@
#endif #endif
#if EITHER(LCD_USE_DMA_FSMC, FSMC_GRAPHICAL_TFT) || !PIN_EXISTS(SD_DETECT) #if ANY(LCD_USE_DMA_FSMC, FSMC_GRAPHICAL_TFT, SPI_GRAPHICAL_TFT) || !PIN_EXISTS(SD_DETECT)
#define NO_LCD_REINIT 1 // Suppress LCD re-initialization #define NO_LCD_REINIT 1 // Suppress LCD re-initialization
#endif #endif

View file

@ -451,8 +451,6 @@
#error "MKS_ROBIN_TFT is now FSMC_GRAPHICAL_TFT. Please update your configuration." #error "MKS_ROBIN_TFT is now FSMC_GRAPHICAL_TFT. Please update your configuration."
#elif defined(TFT_LVGL_UI) #elif defined(TFT_LVGL_UI)
#error "TFT_LVGL_UI is now TFT_LVGL_UI_FSMC. Please update your configuration." #error "TFT_LVGL_UI is now TFT_LVGL_UI_FSMC. Please update your configuration."
#elif defined(SPI_GRAPHICAL_TFT)
#error "SPI_GRAPHICAL_TFT is now TFT_LVGL_UI_SPI. Please update your configuration."
#elif defined(SDPOWER) #elif defined(SDPOWER)
#error "SDPOWER is now SDPOWER_PIN. Please update your configuration and/or pins." #error "SDPOWER is now SDPOWER_PIN. Please update your configuration and/or pins."
#elif defined(STRING_SPLASH_LINE1) || defined(STRING_SPLASH_LINE2) #elif defined(STRING_SPLASH_LINE1) || defined(STRING_SPLASH_LINE2)
@ -3036,11 +3034,27 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
#endif #endif
/** /**
* Sanity checks for stepper chunk support * Stepper Chunk support
*/ */
#if ENABLED(DIRECT_STEPPING) #if BOTH(DIRECT_STEPPING, LIN_ADVANCE)
#if ENABLED(LIN_ADVANCE)
#error "DIRECT_STEPPING is incompatible with LIN_ADVANCE. Enable in external planner if possible." #error "DIRECT_STEPPING is incompatible with LIN_ADVANCE. Enable in external planner if possible."
#endif
/**
* Touch Buttons
*/
#if ENABLED(TOUCH_BUTTONS)
#ifndef XPT2046_X_CALIBRATION
#error "XPT2046_X_CALIBRATION must be defined with TOUCH_BUTTONS."
#endif
#ifndef XPT2046_Y_CALIBRATION
#error "XPT2046_Y_CALIBRATION must be defined with TOUCH_BUTTONS."
#endif
#ifndef XPT2046_X_OFFSET
#error "XPT2046_X_OFFSET must be defined with TOUCH_BUTTONS."
#endif
#ifndef XPT2046_Y_OFFSET
#error "XPT2046_Y_OFFSET must be defined with TOUCH_BUTTONS."
#endif #endif
#endif #endif

View file

@ -87,6 +87,11 @@
#define U8G_COM_HAL_FSMC_FN u8g_com_stm32duino_fsmc_fn #define U8G_COM_HAL_FSMC_FN u8g_com_stm32duino_fsmc_fn
#endif #endif
#if ENABLED(SPI_GRAPHICAL_TFT)
uint8_t u8g_com_stm32duino_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr);
#define U8G_COM_HAL_FSMC_FN u8g_com_stm32duino_spi_fn
#endif
#elif defined(TARGET_LPC1768) #elif defined(TARGET_LPC1768)
uint8_t u8g_com_HAL_LPC1768_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr); uint8_t u8g_com_HAL_LPC1768_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr);

View file

@ -57,14 +57,21 @@
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
#if HAS_GRAPHICAL_LCD && PIN_EXISTS(FSMC_CS) #if HAS_GRAPHICAL_LCD && (PIN_EXISTS(FSMC_CS) || ENABLED(SPI_GRAPHICAL_TFT))
#include "HAL_LCD_com_defines.h" #include "HAL_LCD_com_defines.h"
#include "ultralcd_DOGM.h" #include "ultralcd_DOGM.h"
#include <string.h> #include <string.h>
#ifdef LCD_USE_DMA_FSMC #if EITHER(LCD_USE_DMA_FSMC, LCD_USE_DMA_SPI)
#define HAS_LCD_IO 1
#endif
#if HAS_LCD_IO
extern void LCD_IO_Init(uint8_t cs, uint8_t rs);
extern uint16_t LCD_IO_ReadData(uint16_t Reg);
extern uint32_t LCD_IO_ReadData(uint16_t RegValue, uint8_t ReadSize);
extern void LCD_IO_WriteReg(uint16_t Reg); extern void LCD_IO_WriteReg(uint16_t Reg);
extern void LCD_IO_WriteData(uint16_t RegValue); extern void LCD_IO_WriteData(uint16_t RegValue);
extern void LCD_IO_WriteSequence(uint16_t *data, uint16_t length); extern void LCD_IO_WriteSequence(uint16_t *data, uint16_t length);
@ -148,46 +155,34 @@ static uint32_t lcd_id = 0;
static void setWindow_ili9328(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) { static void setWindow_ili9328(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) {
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
LCD_IO_WriteReg(ILI9328_HASTART); #define IO_REG_DATA(R,D) do { LCD_IO_WriteReg(R); LCD_IO_WriteData(D); }while(0)
LCD_IO_WriteData(Ymin); #else
LCD_IO_WriteReg(ILI9328_HAEND); #define IO_REG_DATA(R,D) do { u8g_WriteByte(u8g, dev, R); u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&D); }while(0)
LCD_IO_WriteData(Ymax); #endif
LCD_IO_WriteReg(ILI9328_VASTART);
LCD_IO_WriteData(Xmin);
LCD_IO_WriteReg(ILI9328_VAEND);
LCD_IO_WriteData(Xmax);
LCD_IO_WriteReg(ILI9328_HASET); #if NONE(LCD_USE_DMA_FSMC, LCD_USE_DMA_SPI)
LCD_IO_WriteData(Ymin); u8g_SetAddress(u8g, dev, 0);
LCD_IO_WriteReg(ILI9328_VASET); #endif
LCD_IO_WriteData(Xmin);
IO_REG_DATA(ILI9328_HASTART, Ymin);
IO_REG_DATA(ILI9328_HAEND, Ymax);
IO_REG_DATA(ILI9328_VASTART, Xmin);
IO_REG_DATA(ILI9328_VAEND, Xmax);
IO_REG_DATA(ILI9328_HASET, Ymin);
IO_REG_DATA(ILI9328_VASET, Xmin);
#if HAS_LCD_IO
LCD_IO_WriteReg(ILI9328_WRITE_RAM); LCD_IO_WriteReg(ILI9328_WRITE_RAM);
#else #else
u8g_SetAddress(u8g, dev, 0);
u8g_WriteByte(u8g, dev, ILI9328_HASTART);
u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&Ymin);
u8g_WriteByte(u8g, dev, ILI9328_HAEND);
u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&Ymax);
u8g_WriteByte(u8g, dev, ILI9328_VASTART);
u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&Xmin);
u8g_WriteByte(u8g, dev, ILI9328_VAEND);
u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&Xmax);
u8g_WriteByte(u8g, dev, ILI9328_HASET);
u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&Ymin);
u8g_WriteByte(u8g, dev, ILI9328_VASET);
u8g_WriteSequence(u8g, dev, 2, (uint8_t *)&Xmin);
u8g_WriteByte(u8g, dev, ILI9328_WRITE_RAM); u8g_WriteByte(u8g, dev, ILI9328_WRITE_RAM);
u8g_SetAddress(u8g, dev, 1); u8g_SetAddress(u8g, dev, 1);
#endif #endif
} }
static void setWindow_st7789v(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) { static void setWindow_st7789v(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint16_t Xmax, uint16_t Ymax) {
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
LCD_IO_WriteReg(ST7789V_CASET); LCD_IO_WriteReg(ST7789V_CASET);
LCD_IO_WriteData((Xmin >> 8) & 0xFF); LCD_IO_WriteData((Xmin >> 8) & 0xFF);
LCD_IO_WriteData(Xmin & 0xFF); LCD_IO_WriteData(Xmin & 0xFF);
@ -227,7 +222,7 @@ void (*setWindow)(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint
#define ESC_END 0xFFFF, 0x7FFF #define ESC_END 0xFFFF, 0x7FFF
#define ESC_FFFF 0xFFFF, 0xFFFF #define ESC_FFFF 0xFFFF, 0xFFFF
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
void writeEscSequence(const uint16_t *sequence) { void writeEscSequence(const uint16_t *sequence) {
uint16_t data; uint16_t data;
for (;;) { for (;;) {
@ -247,6 +242,7 @@ void (*setWindow)(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint
} }
} }
} }
#define WRITE_ESC_SEQUENCE(V) writeEscSequence(V)
#else #else
void writeEscSequence8(u8g_t *u8g, u8g_dev_t *dev, const uint16_t *sequence) { void writeEscSequence8(u8g_t *u8g, u8g_dev_t *dev, const uint16_t *sequence) {
uint16_t data; uint16_t data;
@ -271,6 +267,8 @@ void (*setWindow)(u8g_t *u8g, u8g_dev_t *dev, uint16_t Xmin, uint16_t Ymin, uint
} }
} }
#define WRITE_ESC_SEQUENCE(V) writeEscSequence8(u8g, dev, V)
void writeEscSequence16(u8g_t *u8g, u8g_dev_t *dev, const uint16_t *sequence) { void writeEscSequence16(u8g_t *u8g, u8g_dev_t *dev, const uint16_t *sequence) {
uint16_t data; uint16_t data;
u8g_SetAddress(u8g, dev, 0); u8g_SetAddress(u8g, dev, 0);
@ -381,6 +379,30 @@ static const uint16_t ili9341_init[] = {
ESC_END ESC_END
}; };
static const uint16_t st9677_init[] = {
ESC_REG(0x0010), ESC_DELAY(120),
ESC_REG(0x0001), ESC_DELAY(120),
ESC_REG(0x0011), ESC_DELAY(120),
ESC_REG(0x00F0), 0x00C3,
ESC_REG(0x00F0), 0x0096,
ESC_REG(0x0036), TERN(GRAPHICAL_TFT_ROTATE_180, 0x00E8, 0x0028),
ESC_REG(0x003A), 0x0055,
ESC_REG(0x00B4), 0x0001,
ESC_REG(0x00B7), 0x00C6,
ESC_REG(0x00E8), 0x0040, 0x008A, 0x0000, 0x0000, 0x0029, 0x0019, 0x00A5, 0x0033,
ESC_REG(0x00C1), 0x0006,
ESC_REG(0x00C2), 0x00A7,
ESC_REG(0x00C5), 0x0018,
ESC_REG(0x00E0), 0x00F0, 0x0009, 0x000B, 0x0006, 0x0004, 0x0015, 0x002F, 0x0054, 0x0042, 0x003C, 0x0017, 0x0014, 0x0018, 0x001B,
ESC_REG(0x00E1), 0x00F0, 0x0009, 0x000B, 0x0006, 0x0004, 0x0003, 0x002D, 0x0043, 0x0042, 0x003B, 0x0016, 0x0014, 0x0017, 0x001B,
ESC_REG(0x00F0), 0x003C,
ESC_REG(0x00F0), 0x0069, ESC_DELAY(120),
ESC_REG(0x0029),
ESC_REG(0x0011),
ESC_DELAY(100),
ESC_END
};
#if ENABLED(TOUCH_BUTTONS) #if ENABLED(TOUCH_BUTTONS)
static const uint8_t buttonD[] = { static const uint8_t buttonD[] = {
@ -560,7 +582,7 @@ static const uint16_t ili9341_init[] = {
v = TFT_MARLINBG_COLOR; v = TFT_MARLINBG_COLOR;
LOOP_L_N(n, FSMC_UPSCALE) buffer[k++] = v; LOOP_L_N(n, FSMC_UPSCALE) buffer[k++] = v;
} }
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
LOOP_S_L_N(n, 1, FSMC_UPSCALE) LOOP_S_L_N(n, 1, FSMC_UPSCALE)
for (uint16_t l = 0; l < length * (FSMC_UPSCALE); l++) for (uint16_t l = 0; l < length * (FSMC_UPSCALE); l++)
buffer[l + (length * (FSMC_UPSCALE) * n)] = buffer[l]; buffer[l + (length * (FSMC_UPSCALE) * n)] = buffer[l];
@ -586,41 +608,39 @@ static uint8_t page;
uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) { uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem); u8g_pb_t *pb = (u8g_pb_t *)(dev->dev_mem);
#ifdef LCD_USE_DMA_FSMC
#if ENABLED(SPI_GRAPHICAL_TFT)
LCD_IO_Init(-1, -1);
#endif
#if HAS_LCD_IO
static uint16_t bufferA[WIDTH * sq(FSMC_UPSCALE)], bufferB[WIDTH * sq(FSMC_UPSCALE)]; static uint16_t bufferA[WIDTH * sq(FSMC_UPSCALE)], bufferB[WIDTH * sq(FSMC_UPSCALE)];
uint16_t* buffer = &bufferA[0]; uint16_t* buffer = &bufferA[0];
bool allow_async = true; bool allow_async = DISABLED(SPI_GRAPHICAL_TFT);
#else #else
uint16_t buffer[WIDTH*2]; // 16-bit RGB 565 pixel line buffer uint16_t buffer[WIDTH*2]; // 16-bit RGB 565 pixel line buffer
#endif #endif
switch (msg) { switch (msg) {
case U8G_DEV_MSG_INIT: case U8G_DEV_MSG_INIT:
dev->com_fn(u8g, U8G_COM_MSG_INIT, U8G_SPI_CLK_CYCLE_NONE, &lcd_id); dev->com_fn(u8g, U8G_COM_MSG_INIT, U8G_SPI_CLK_CYCLE_NONE, &lcd_id);
switch (lcd_id & 0xFFFF) { switch (lcd_id & 0xFFFF) {
case 0x8552: // ST7789V case 0x8552: // ST7789V
#ifdef LCD_USE_DMA_FSMC WRITE_ESC_SEQUENCE(st7789v_init);
writeEscSequence(st7789v_init);
#else
writeEscSequence8(u8g, dev, st7789v_init);
#endif
setWindow = setWindow_st7789v; setWindow = setWindow_st7789v;
break; break;
case 0x9328: // ILI9328 case 0x9328: // ILI9328
#ifdef LCD_USE_DMA_FSMC WRITE_ESC_SEQUENCE(ili9328_init);
writeEscSequence(ili9328_init);
#else
writeEscSequence16(u8g, dev, ili9328_init);
#endif
setWindow = setWindow_ili9328; setWindow = setWindow_ili9328;
break; break;
case 0x9341: // ILI9341 case 0x9341: // ILI9341
case 0x8066: // Anycubic / TronXY TFTs (480x320) case 0x8066: // Anycubic / TronXY TFTs (480x320)
#ifdef LCD_USE_DMA_FSMC WRITE_ESC_SEQUENCE(ili9341_init);
writeEscSequence(ili9341_init); setWindow = setWindow_st7789v;
#else break;
writeEscSequence8(u8g, dev, ili9341_init); case 0x7796:
#endif WRITE_ESC_SEQUENCE(TERN(HAS_LCD_IO, st9677_init, ili9341_init));
setWindow = setWindow_st7789v; setWindow = setWindow_st7789v;
break; break;
case 0x0404: // No connected display on FSMC case 0x0404: // No connected display on FSMC
@ -630,10 +650,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
lcd_id = 0; lcd_id = 0;
return 0; return 0;
default: default:
if (lcd_id && 0xFF000000) setWindow = (lcd_id & 0xFF000000) ? setWindow_st7789v : setWindow_ili9328;
setWindow = setWindow_st7789v;
else
setWindow = setWindow_ili9328;
break; break;
} }
@ -644,7 +661,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
// Clear Screen // Clear Screen
setWindow(u8g, dev, 0, 0, LCD_FULL_PIXEL_WIDTH - 1, LCD_FULL_PIXEL_HEIGHT - 1); setWindow(u8g, dev, 0, 0, LCD_FULL_PIXEL_WIDTH - 1, LCD_FULL_PIXEL_HEIGHT - 1);
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
LCD_IO_WriteMultiple(TFT_MARLINBG_COLOR, LCD_FULL_PIXEL_WIDTH * LCD_FULL_PIXEL_HEIGHT); LCD_IO_WriteMultiple(TFT_MARLINBG_COLOR, LCD_FULL_PIXEL_WIDTH * LCD_FULL_PIXEL_HEIGHT);
#else #else
memset2(buffer, TFT_MARLINBG_COLOR, 160); memset2(buffer, TFT_MARLINBG_COLOR, 160);
@ -681,7 +698,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
LOOP_L_N(y, PAGE_HEIGHT) { LOOP_L_N(y, PAGE_HEIGHT) {
uint32_t k = 0; uint32_t k = 0;
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
buffer = (y & 1) ? bufferB : bufferA; buffer = (y & 1) ? bufferB : bufferA;
#endif #endif
for (uint16_t i = 0; i < (uint32_t)pb->width; i++) { for (uint16_t i = 0; i < (uint32_t)pb->width; i++) {
@ -689,7 +706,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
const uint16_t c = TEST(b, y) ? TFT_MARLINUI_COLOR : TFT_MARLINBG_COLOR; const uint16_t c = TEST(b, y) ? TFT_MARLINUI_COLOR : TFT_MARLINBG_COLOR;
LOOP_L_N(n, FSMC_UPSCALE) buffer[k++] = c; LOOP_L_N(n, FSMC_UPSCALE) buffer[k++] = c;
} }
#ifdef LCD_USE_DMA_FSMC #if HAS_LCD_IO
LOOP_S_L_N(n, 1, FSMC_UPSCALE) LOOP_S_L_N(n, 1, FSMC_UPSCALE)
for (uint16_t l = 0; l < WIDTH * (FSMC_UPSCALE); l++) for (uint16_t l = 0; l < WIDTH * (FSMC_UPSCALE); l++)
buffer[l + WIDTH * (FSMC_UPSCALE) * n] = buffer[l]; buffer[l + WIDTH * (FSMC_UPSCALE) * n] = buffer[l];

View file

@ -182,12 +182,16 @@
#define U8G_CLASS U8GLIB_SH1106_128X64 #define U8G_CLASS U8GLIB_SH1106_128X64
#define U8G_PARAM DOGLCD_SCK, DOGLCD_MOSI, DOGLCD_CS, LCD_PINS_DC, LCD_PINS_RS #define U8G_PARAM DOGLCD_SCK, DOGLCD_MOSI, DOGLCD_CS, LCD_PINS_DC, LCD_PINS_RS
#elif ENABLED(FSMC_GRAPHICAL_TFT) #elif TFT_SCALED_DOGLCD
// Unspecified 320x240 TFT pre-initialized by built-in bootloader // Unspecified 320x240 TFT pre-initialized by built-in bootloader
#define U8G_CLASS U8GLIB_TFT_320X240_UPSCALE_FROM_128X64 #define U8G_CLASS U8GLIB_TFT_320X240_UPSCALE_FROM_128X64
#if ENABLED(FSMC_GRAPHICAL_TFT)
#define U8G_PARAM FSMC_CS_PIN, FSMC_RS_PIN #define U8G_PARAM FSMC_CS_PIN, FSMC_RS_PIN
#else
#define U8G_PARAM -1, -1
#endif
#else #else
@ -210,7 +214,7 @@
// LCD_FULL_PIXEL_WIDTH = // LCD_FULL_PIXEL_WIDTH =
// LCD_PIXEL_OFFSET_X + (LCD_PIXEL_WIDTH * 2) + LCD_PIXEL_OFFSET_X // LCD_PIXEL_OFFSET_X + (LCD_PIXEL_WIDTH * 2) + LCD_PIXEL_OFFSET_X
#if ENABLED(FSMC_GRAPHICAL_TFT) #if TFT_SCALED_DOGLCD
#ifndef LCD_FULL_PIXEL_WIDTH #ifndef LCD_FULL_PIXEL_WIDTH
#define LCD_FULL_PIXEL_WIDTH 320 #define LCD_FULL_PIXEL_WIDTH 320
#endif #endif

View file

@ -135,11 +135,20 @@
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus
#ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION -12316 #define XPT2046_X_CALIBRATION -12316
#endif
#ifndef XPT2046_Y_CALIBRATION
#define XPT2046_Y_CALIBRATION 8981 #define XPT2046_Y_CALIBRATION 8981
#endif
#ifndef XPT2046_X_OFFSET
#define XPT2046_X_OFFSET 340 #define XPT2046_X_OFFSET 340
#endif
#ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET -20 #define XPT2046_Y_OFFSET -20
#endif #endif
#endif
#endif #endif
#define SPI_FLASH_SIZE 0x200000 // 2MB #define SPI_FLASH_SIZE 0x200000 // 2MB

View file

@ -141,11 +141,19 @@
#define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens #define BUTTON_DELAY_EDIT 50 // (ms) Button repeat delay for edit screens
#define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus #define BUTTON_DELAY_MENU 250 // (ms) Button repeat delay for menus
#ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION -12316 #define XPT2046_X_CALIBRATION -12316
#endif
#ifndef XPT2046_Y_CALIBRATION
#define XPT2046_Y_CALIBRATION 8981 #define XPT2046_Y_CALIBRATION 8981
#endif
#ifndef XPT2046_X_OFFSET
#define XPT2046_X_OFFSET 340 #define XPT2046_X_OFFSET 340
#endif
#ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET -20 #define XPT2046_Y_OFFSET -20
#endif #endif
#endif
#endif #endif
#define SPI_FLASH_SIZE 0x200000 // 2MB #define SPI_FLASH_SIZE 0x200000 // 2MB

View file

@ -207,6 +207,13 @@
#define MT_DET_2_PIN PE6 #define MT_DET_2_PIN PE6
#define MT_DET_PIN_INVERTING false #define MT_DET_PIN_INVERTING false
#ifndef FIL_RUNOUT_PIN
#define FIL_RUNOUT_PIN MT_DET_1_PIN
#endif
#ifndef FIL_RUNOUT2_PIN
#define FIL_RUNOUT2_PIN MT_DET_2_PIN
#endif
#define WIFI_IO0_PIN PC13 #define WIFI_IO0_PIN PC13
// //
@ -224,7 +231,9 @@
// //
// LCD / Controller // LCD / Controller
// //
#define BEEPER_PIN PC5 #ifndef BEEPER_PIN
#define BEEPER_PIN PC5
#endif
/** /**
* Note: MKS Robin TFT screens use various TFT controllers. * Note: MKS Robin TFT screens use various TFT controllers.
@ -250,7 +259,6 @@
#define BTN_EN1 PE8 #define BTN_EN1 PE8
#define BTN_EN2 PE11 #define BTN_EN2 PE11
#define BEEPER_PIN PC5
#define BTN_ENC PE13 #define BTN_ENC PE13
#elif ENABLED(TFT_LITTLE_VGL_UI) #elif ENABLED(TFT_LITTLE_VGL_UI)
@ -269,16 +277,71 @@
#if HAS_SPI_LCD #if HAS_SPI_LCD
#define BEEPER_PIN PC5 #if ENABLED(SPI_GRAPHICAL_TFT) // Emulated DOGM SPI
#define SPI_TFT_CS_PIN PD11
#define SPI_TFT_SCK_PIN PA5
#define SPI_TFT_MISO_PIN PA6
#define SPI_TFT_MOSI_PIN PA7
#define SPI_TFT_DC_PIN PD10
#define SPI_TFT_RST_PIN PC6
#define LCD_BACKLIGHT_PIN PD13
#define LCD_READ_ID 0xD3
#define LCD_USE_DMA_SPI
#define TOUCH_BUTTONS_HW_SPI
#define TOUCH_BUTTONS_HW_SPI_DEVICE 1
//#define TOUCH_BUTTONS
#if ENABLED(TOUCH_BUTTONS)
#define TOUCH_CS_PIN PE14 // SPI1_NSS
#define TOUCH_SCK_PIN PA5 // SPI1_SCK
#define TOUCH_MISO_PIN PA6 // SPI1_MISO
#define TOUCH_MOSI_PIN PA7 // SPI1_MOSI
#ifndef XPT2046_X_CALIBRATION
#define XPT2046_X_CALIBRATION -5481
#endif
#ifndef XPT2046_Y_CALIBRATION
#define XPT2046_Y_CALIBRATION 4000
#endif
#ifndef XPT2046_X_OFFSET
#define XPT2046_X_OFFSET 343
#endif
#ifndef XPT2046_Y_OFFSET
#define XPT2046_Y_OFFSET 0
#endif
#endif
#ifndef FSMC_UPSCALE
#define FSMC_UPSCALE 3
#endif
#ifndef LCD_FULL_PIXEL_WIDTH
#define LCD_FULL_PIXEL_WIDTH 480
#endif
#ifndef LCD_PIXEL_OFFSET_X
#define LCD_PIXEL_OFFSET_X 48
#endif
#ifndef LCD_FULL_PIXEL_HEIGHT
#define LCD_FULL_PIXEL_HEIGHT 320
#endif
#ifndef LCD_PIXEL_OFFSET_Y
#define LCD_PIXEL_OFFSET_Y 32
#endif
#define BTN_ENC PE13 #define BTN_ENC PE13
#define LCD_PINS_ENABLE PD13
#define LCD_PINS_RS PC6
#define BTN_EN1 PE8 #define BTN_EN1 PE8
#define BTN_EN2 PE11 #define BTN_EN2 PE11
#define LCD_BACKLIGHT_PIN -1
// MKS MINI12864 and MKS LCD12864B; If using MKS LCD12864A (Need to remove RPK2 resistor) #define LCD_PINS_ENABLE PD13
#if ENABLED(MKS_MINI_12864) #define LCD_PINS_RS PC6
#elif ENABLED(MKS_MINI_12864)
// MKS MINI12864 and MKS LCD12864B
// If using MKS LCD12864A (Need to remove RPK2 resistor)
#define LCD_BACKLIGHT_PIN -1 #define LCD_BACKLIGHT_PIN -1
#define LCD_RESET_PIN -1 #define LCD_RESET_PIN -1
#define DOGLCD_A0 PD11 #define DOGLCD_A0 PD11
@ -320,3 +383,7 @@
#define W25QXX_MISO_PIN PB14 #define W25QXX_MISO_PIN PB14
#define W25QXX_SCK_PIN PB13 #define W25QXX_SCK_PIN PB13
#endif #endif
#if ENABLED(SPEAKER) && BEEPER_PIN == PC5
#error "MKS Robin nano default BEEPER_PIN is not a SPEAKER."
#endif