Compress/update comments ubl_motion
…to fit more code on the screen and correct outdated commentary contrasting ABL.
This commit is contained in:
parent
646aa20b43
commit
3bc179a16f
1 changed files with 48 additions and 101 deletions
|
@ -75,19 +75,16 @@
|
||||||
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
|
debug_current_and_destination(PSTR("Start of ubl.line_to_destination_cartesian()"));
|
||||||
}
|
}
|
||||||
|
|
||||||
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
|
// A move within the same cell needs no splitting
|
||||||
/**
|
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) {
|
||||||
* we don't need to break up the move
|
|
||||||
*
|
|
||||||
* If we are moving off the print bed, we are going to allow the move at this level.
|
|
||||||
* But we detect it and isolate it. For now, we just pass along the request.
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
// For a move off the bed, use a constant Z raise
|
||||||
if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||||
|
|
||||||
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
// Note: There is no Z Correction in this case. We are off the grid and don't know what
|
||||||
// a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
|
// a reasonable correction would be. If the user has specified a UBL_Z_RAISE_WHEN_OFF_MESH
|
||||||
// value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
|
// value, that will be used instead of a calculated (Bi-Linear interpolation) correction.
|
||||||
|
|
||||||
const float z_raise = 0.0
|
const float z_raise = 0.0
|
||||||
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
#ifdef UBL_Z_RAISE_WHEN_OFF_MESH
|
||||||
+ UBL_Z_RAISE_WHEN_OFF_MESH
|
+ UBL_Z_RAISE_WHEN_OFF_MESH
|
||||||
|
@ -104,15 +101,7 @@
|
||||||
|
|
||||||
FINAL_MOVE:
|
FINAL_MOVE:
|
||||||
|
|
||||||
/**
|
// The distance is always MESH_X_DIST so multiply by the constant reciprocal.
|
||||||
* Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
|
|
||||||
* generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
|
|
||||||
* We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
|
|
||||||
* We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
|
|
||||||
* instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
|
|
||||||
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
|
||||||
*/
|
|
||||||
|
|
||||||
const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
|
const float xratio = (end[X_AXIS] - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
|
||||||
|
|
||||||
float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||||
|
@ -122,22 +111,13 @@
|
||||||
|
|
||||||
if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
|
if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
|
||||||
|
|
||||||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
// X cell-fraction done. Interpolate the two Z offsets with the Y fraction for the final Z offset.
|
||||||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST)),
|
||||||
|
z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
|
||||||
|
|
||||||
const float yratio = (end[Y_AXIS] - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||||
float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * planner.fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||||
|
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + (isnan(z0) ? 0.0 : z0), end[E_AXIS], feed_rate, extruder);
|
||||||
/**
|
|
||||||
* If part of the Mesh is undefined, it will show up as NAN
|
|
||||||
* in z_values[][] and propagate through the
|
|
||||||
* calculations. If our correction is NAN, we throw it out
|
|
||||||
* because part of the Mesh is undefined and we don't have the
|
|
||||||
* information we need to complete the height correction.
|
|
||||||
*/
|
|
||||||
if (isnan(z0)) z0 = 0.0;
|
|
||||||
|
|
||||||
planner.buffer_segment(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0, end[E_AXIS], feed_rate, extruder);
|
|
||||||
|
|
||||||
if (g26_debug_flag)
|
if (g26_debug_flag)
|
||||||
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
|
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination_cartesian()"));
|
||||||
|
@ -147,11 +127,8 @@
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* If we get here, we are processing a move that crosses at least one Mesh Line. We will check
|
* Past this point the move is known to cross one or more mesh lines. Check for the most common
|
||||||
* for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
|
* case - crossing only one X or Y line - after details are worked out to reduce computation.
|
||||||
* of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
|
|
||||||
* computation and in fact most lines are of this nature. We will check for that in the following
|
|
||||||
* blocks of code:
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
const float dx = end[X_AXIS] - start[X_AXIS],
|
const float dx = end[X_AXIS] - start[X_AXIS],
|
||||||
|
@ -167,12 +144,11 @@
|
||||||
dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
|
dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Compute the scaling factor for the extruder for each partial move.
|
* Compute the extruder scaling factor for each partial move, checking for
|
||||||
* We need to watch out for zero length moves because it will cause us to
|
* zero-length moves that would result in an infinite scaling factor.
|
||||||
* have an infinate scaling factor. We are stuck doing a floating point
|
* A float divide is required for this, but then it just multiplies.
|
||||||
* divide to get our scaling factor, but after that, we just multiply by this
|
* Also select a scaling factor based on the larger of the X and Y
|
||||||
* number. We also pick our scaling factor based on whether the X or Y
|
* components. The larger of the two is used to preserve precision.
|
||||||
* component is larger. We use the biggest of the two to preserve precision.
|
|
||||||
*/
|
*/
|
||||||
|
|
||||||
const bool use_x_dist = adx > ady;
|
const bool use_x_dist = adx > ady;
|
||||||
|
@ -192,43 +168,37 @@
|
||||||
|
|
||||||
const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
|
const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
|
||||||
inf_m_flag = (isinf(m) != 0);
|
inf_m_flag = (isinf(m) != 0);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* This block handles vertical lines. These are lines that stay within the same
|
* Handle vertical lines that stay within one column.
|
||||||
* X Cell column. They do not need to be perfectly vertical. They just can
|
* These need not be perfectly vertical.
|
||||||
* not cross into another X Cell column.
|
|
||||||
*/
|
*/
|
||||||
if (dxi == 0) { // Check for a vertical line
|
if (dxi == 0) { // Vertical line?
|
||||||
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
current_yi += down_flag; // Line going down? Just go to the bottom.
|
||||||
while (current_yi != cell_dest_yi + down_flag) {
|
while (current_yi != cell_dest_yi + down_flag) {
|
||||||
current_yi += dyi;
|
current_yi += dyi;
|
||||||
const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
|
const float next_mesh_line_y = mesh_index_to_ypos(current_yi);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* if the slope of the line is infinite, we won't do the calculations
|
* Skip the calculations for an infinite slope.
|
||||||
* else, we know the next X is the same so we can recover and continue!
|
* For others the next X is the same so this can continue.
|
||||||
* Calculate X at the next Y mesh line
|
* Calculate X at the next Y mesh line.
|
||||||
*/
|
*/
|
||||||
const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
const float rx = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
|
||||||
|
|
||||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi, current_yi)
|
||||||
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||||
|
|
||||||
/**
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||||
* If part of the Mesh is undefined, it will show up as NAN
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||||
* in z_values[][] and propagate through the
|
|
||||||
* calculations. If our correction is NAN, we throw it out
|
|
||||||
* because part of the Mesh is undefined and we don't have the
|
|
||||||
* information we need to complete the height correction.
|
|
||||||
*/
|
|
||||||
if (isnan(z0)) z0 = 0.0;
|
if (isnan(z0)) z0 = 0.0;
|
||||||
|
|
||||||
const float ry = mesh_index_to_ypos(current_yi);
|
const float ry = mesh_index_to_ypos(current_yi);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
* Without this check, it's possible to generate a zero length move, as in the case where
|
||||||
* where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
|
* the line is heading down, starting exactly on a mesh line boundary. Since this is rare
|
||||||
* happens, it might be best to remove the check and always 'schedule' the move because
|
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||||
* the planner.buffer_segment() routine will filter it if that happens.
|
|
||||||
*/
|
*/
|
||||||
if (ry != start[Y_AXIS]) {
|
if (ry != start[Y_AXIS]) {
|
||||||
if (!inf_normalized_flag) {
|
if (!inf_normalized_flag) {
|
||||||
|
@ -248,9 +218,7 @@
|
||||||
if (g26_debug_flag)
|
if (g26_debug_flag)
|
||||||
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
|
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination_cartesian()"));
|
||||||
|
|
||||||
//
|
// At the final destination? Usually not, but when on a Y Mesh Line it's completed.
|
||||||
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
|
|
||||||
//
|
|
||||||
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
|
||||||
goto FINAL_MOVE;
|
goto FINAL_MOVE;
|
||||||
|
|
||||||
|
@ -259,16 +227,11 @@
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
*
|
* Handle horizontal lines that stay within one row.
|
||||||
* This block handles horizontal lines. These are lines that stay within the same
|
* These need not be perfectly horizontal.
|
||||||
* Y Cell row. They do not need to be perfectly horizontal. They just can
|
|
||||||
* not cross into another Y Cell row.
|
|
||||||
*
|
|
||||||
*/
|
*/
|
||||||
|
if (dyi == 0) { // Horizontal line?
|
||||||
if (dyi == 0) { // Check for a horizontal line
|
current_xi += left_flag; // Heading left? Just go to the left edge of the cell for the first move.
|
||||||
current_xi += left_flag; // Line is heading left, we just want to go to the left
|
|
||||||
// edge of this cell for the first move.
|
|
||||||
while (current_xi != cell_dest_xi + left_flag) {
|
while (current_xi != cell_dest_xi + left_flag) {
|
||||||
current_xi += dxi;
|
current_xi += dxi;
|
||||||
const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
|
const float next_mesh_line_x = mesh_index_to_xpos(current_xi),
|
||||||
|
@ -277,22 +240,16 @@
|
||||||
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
|
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi, current_yi)
|
||||||
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||||
|
|
||||||
/**
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||||
* If part of the Mesh is undefined, it will show up as NAN
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||||
* in z_values[][] and propagate through the
|
|
||||||
* calculations. If our correction is NAN, we throw it out
|
|
||||||
* because part of the Mesh is undefined and we don't have the
|
|
||||||
* information we need to complete the height correction.
|
|
||||||
*/
|
|
||||||
if (isnan(z0)) z0 = 0.0;
|
if (isnan(z0)) z0 = 0.0;
|
||||||
|
|
||||||
const float rx = mesh_index_to_xpos(current_xi);
|
const float rx = mesh_index_to_xpos(current_xi);
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
* Without this check, it's possible to generate a zero length move, as in the case where
|
||||||
* where the line is heading left and it is starting right on a Mesh Line boundary. For how often
|
* the line is heading left, starting exactly on a mesh line boundary. Since this is rare
|
||||||
* that happens, it might be best to remove the check and always 'schedule' the move because
|
* it might be fine to remove this check and let planner.buffer_segment() filter it out.
|
||||||
* the planner.buffer_segment() routine will filter it if that happens.
|
|
||||||
*/
|
*/
|
||||||
if (rx != start[X_AXIS]) {
|
if (rx != start[X_AXIS]) {
|
||||||
if (!inf_normalized_flag) {
|
if (!inf_normalized_flag) {
|
||||||
|
@ -321,7 +278,7 @@
|
||||||
|
|
||||||
/**
|
/**
|
||||||
*
|
*
|
||||||
* This block handles the generic case of a line crossing both X and Y Mesh lines.
|
* Handle the generic case of a line crossing both X and Y Mesh lines.
|
||||||
*
|
*
|
||||||
*/
|
*/
|
||||||
|
|
||||||
|
@ -334,7 +291,7 @@
|
||||||
current_xi += left_flag;
|
current_xi += left_flag;
|
||||||
current_yi += down_flag;
|
current_yi += down_flag;
|
||||||
|
|
||||||
while (xi_cnt > 0 || yi_cnt > 0) {
|
while (xi_cnt || yi_cnt) {
|
||||||
|
|
||||||
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
|
const float next_mesh_line_x = mesh_index_to_xpos(current_xi + dxi),
|
||||||
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
|
next_mesh_line_y = mesh_index_to_ypos(current_yi + dyi),
|
||||||
|
@ -349,13 +306,8 @@
|
||||||
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
|
float z0 = z_correction_for_x_on_horizontal_mesh_line(rx, current_xi - left_flag, current_yi + dyi)
|
||||||
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||||
|
|
||||||
/**
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||||
* If part of the Mesh is undefined, it will show up as NAN
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||||
* in z_values[][] and propagate through the
|
|
||||||
* calculations. If our correction is NAN, we throw it out
|
|
||||||
* because part of the Mesh is undefined and we don't have the
|
|
||||||
* information we need to complete the height correction.
|
|
||||||
*/
|
|
||||||
if (isnan(z0)) z0 = 0.0;
|
if (isnan(z0)) z0 = 0.0;
|
||||||
|
|
||||||
if (!inf_normalized_flag) {
|
if (!inf_normalized_flag) {
|
||||||
|
@ -376,13 +328,8 @@
|
||||||
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
|
float z0 = z_correction_for_y_on_vertical_mesh_line(ry, current_xi + dxi, current_yi - down_flag)
|
||||||
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
* planner.fade_scaling_factor_for_z(end[Z_AXIS]);
|
||||||
|
|
||||||
/**
|
// Undefined parts of the Mesh in z_values[][] are NAN.
|
||||||
* If part of the Mesh is undefined, it will show up as NAN
|
// Replace NAN corrections with 0.0 to prevent NAN propagation.
|
||||||
* in z_values[][] and propagate through the
|
|
||||||
* calculations. If our correction is NAN, we throw it out
|
|
||||||
* because part of the Mesh is undefined and we don't have the
|
|
||||||
* information we need to complete the height correction.
|
|
||||||
*/
|
|
||||||
if (isnan(z0)) z0 = 0.0;
|
if (isnan(z0)) z0 = 0.0;
|
||||||
|
|
||||||
if (!inf_normalized_flag) {
|
if (!inf_normalized_flag) {
|
||||||
|
@ -400,7 +347,7 @@
|
||||||
xi_cnt--;
|
xi_cnt--;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
|
//if (xi_cnt < 0 || yi_cnt < 0) break; // Too far! Exit the loop and go to FINAL_MOVE
|
||||||
}
|
}
|
||||||
|
|
||||||
if (g26_debug_flag)
|
if (g26_debug_flag)
|
||||||
|
|
Reference in a new issue