Merge pull request #5109 from thinkyhead/rc_eeprom_M218_tool_offset

Save hotend_offset array (M218) in EEPROM
This commit is contained in:
Scott Lahteine 2016-10-28 20:08:29 -05:00 committed by GitHub
commit 47ad97c35e
4 changed files with 665 additions and 615 deletions

View file

@ -278,6 +278,10 @@ extern float current_position[NUM_AXIS];
extern float position_shift[XYZ]; extern float position_shift[XYZ];
extern float home_offset[XYZ]; extern float home_offset[XYZ];
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
// Software Endstops // Software Endstops
void update_software_endstops(AxisEnum axis); void update_software_endstops(AxisEnum axis);
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops) #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)

View file

@ -481,13 +481,7 @@ static uint8_t target_extruder;
// Extruder offsets // Extruder offsets
#if HOTENDS > 1 #if HOTENDS > 1
float hotend_offset[][HOTENDS] = { float hotend_offset[XYZ][HOTENDS];
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#endif
};
#endif #endif
#if HAS_Z_SERVO_ENDSTOP #if HAS_Z_SERVO_ENDSTOP
@ -6129,7 +6123,7 @@ inline void gcode_M211() {
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
*/ */
inline void gcode_M218() { inline void gcode_M218() {
if (get_target_extruder_from_command(218)) return; if (get_target_extruder_from_command(218) || target_extruder == 0) return;
if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS); if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS); if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);

View file

@ -36,13 +36,13 @@
* *
*/ */
#define EEPROM_VERSION "V26" #define EEPROM_VERSION "V27"
// Change EEPROM version if these are changed: // Change EEPROM version if these are changed:
#define EEPROM_OFFSET 100 #define EEPROM_OFFSET 100
/** /**
* V24 EEPROM Layout: * V27 EEPROM Layout:
* *
* 100 Version (char x4) * 100 Version (char x4)
* 104 EEPROM Checksum (uint16_t) * 104 EEPROM Checksum (uint16_t)
@ -61,65 +61,66 @@
* 186 M205 Z planner.max_jerk[Z_AXIS] (float) * 186 M205 Z planner.max_jerk[Z_AXIS] (float)
* 190 M205 E planner.max_jerk[E_AXIS] (float) * 190 M205 E planner.max_jerk[E_AXIS] (float)
* 194 M206 XYZ home_offset (float x3) * 194 M206 XYZ home_offset (float x3)
* 206 M218 XYZ hotend_offset (float x3 per additional hotend)
* *
* Mesh bed leveling: * Mesh bed leveling:
* 206 M420 S status (uint8) * 218 M420 S status (uint8)
* 207 z_offset (float) * 219 z_offset (float)
* 211 mesh_num_x (uint8 as set in firmware) * 223 mesh_num_x (uint8 as set in firmware)
* 212 mesh_num_y (uint8 as set in firmware) * 224 mesh_num_y (uint8 as set in firmware)
* 213 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81) * 225 G29 S3 XYZ z_values[][] (float x9, by default, up to float x 81)
* *
* AUTO BED LEVELING * AUTO BED LEVELING
* 249 M851 zprobe_zoffset (float) * 261 M851 zprobe_zoffset (float)
* *
* DELTA: * DELTA:
* 253 M666 XYZ endstop_adj (float x3) * 265 M666 XYZ endstop_adj (float x3)
* 265 M665 R delta_radius (float) * 277 M665 R delta_radius (float)
* 269 M665 L delta_diagonal_rod (float) * 281 M665 L delta_diagonal_rod (float)
* 273 M665 S delta_segments_per_second (float) * 285 M665 S delta_segments_per_second (float)
* 277 M665 A delta_diagonal_rod_trim_tower_1 (float) * 289 M665 A delta_diagonal_rod_trim_tower_1 (float)
* 281 M665 B delta_diagonal_rod_trim_tower_2 (float) * 293 M665 B delta_diagonal_rod_trim_tower_2 (float)
* 285 M665 C delta_diagonal_rod_trim_tower_3 (float) * 297 M665 C delta_diagonal_rod_trim_tower_3 (float)
* *
* Z_DUAL_ENDSTOPS: * Z_DUAL_ENDSTOPS:
* 289 M666 Z z_endstop_adj (float) * 301 M666 Z z_endstop_adj (float)
* *
* ULTIPANEL: * ULTIPANEL:
* 293 M145 S0 H preheatHotendTemp1 (int) * 305 M145 S0 H preheatHotendTemp1 (int)
* 295 M145 S0 B preheatBedTemp1 (int) * 307 M145 S0 B preheatBedTemp1 (int)
* 297 M145 S0 F preheatFanSpeed1 (int) * 309 M145 S0 F preheatFanSpeed1 (int)
* 299 M145 S1 H preheatHotendTemp2 (int) * 311 M145 S1 H preheatHotendTemp2 (int)
* 301 M145 S1 B preheatBedTemp2 (int) * 313 M145 S1 B preheatBedTemp2 (int)
* 303 M145 S1 F preheatFanSpeed2 (int) * 315 M145 S1 F preheatFanSpeed2 (int)
* *
* PIDTEMP: * PIDTEMP:
* 305 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4) * 317 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
* 321 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4) * 333 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
* 337 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4) * 349 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
* 353 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4) * 365 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
* 369 M301 L lpq_len (int) * 381 M301 L lpq_len (int)
* *
* PIDTEMPBED: * PIDTEMPBED:
* 371 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3) * 383 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
* *
* DOGLCD: * DOGLCD:
* 383 M250 C lcd_contrast (int) * 395 M250 C lcd_contrast (int)
* *
* FWRETRACT: * FWRETRACT:
* 385 M209 S autoretract_enabled (bool) * 397 M209 S autoretract_enabled (bool)
* 386 M207 S retract_length (float) * 398 M207 S retract_length (float)
* 390 M207 W retract_length_swap (float) * 402 M207 W retract_length_swap (float)
* 394 M207 F retract_feedrate_mm_s (float) * 406 M207 F retract_feedrate_mm_s (float)
* 399 M207 Z retract_zlift (float) * 410 M207 Z retract_zlift (float)
* 402 M208 S retract_recover_length (float) * 414 M208 S retract_recover_length (float)
* 406 M208 W retract_recover_length_swap (float) * 418 M208 W retract_recover_length_swap (float)
* 410 M208 F retract_recover_feedrate_mm_s (float) * 422 M208 F retract_recover_feedrate_mm_s (float)
* *
* Volumetric Extrusion: * Volumetric Extrusion:
* 414 M200 D volumetric_enabled (bool) * 426 M200 D volumetric_enabled (bool)
* 415 M200 T D filament_size (float x4) (T0..3) * 427 M200 T D filament_size (float x4) (T0..3)
* *
* 431 This Slot is Available! * 443 This Slot is Available!
* *
*/ */
#include "Marlin.h" #include "Marlin.h"
@ -196,371 +197,389 @@ void Config_Postprocess() {
#define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) #define EEPROM_WRITE(VAR) _EEPROM_writeData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
#define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR)) #define EEPROM_READ(VAR) _EEPROM_readData(eeprom_index, (uint8_t*)&VAR, sizeof(VAR))
/** /**
* M500 - Store Configuration * M500 - Store Configuration
*/ */
void Config_StoreSettings() { void Config_StoreSettings() {
float dummy = 0.0f; float dummy = 0.0f;
char ver[4] = "000"; char ver[4] = "000";
EEPROM_START(); EEPROM_START();
EEPROM_WRITE(ver); // invalidate data first EEPROM_WRITE(ver); // invalidate data first
EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot EEPROM_SKIP(eeprom_checksum); // Skip the checksum slot
eeprom_checksum = 0; // clear before first "real data" eeprom_checksum = 0; // clear before first "real data"
EEPROM_WRITE(planner.axis_steps_per_mm); EEPROM_WRITE(planner.axis_steps_per_mm);
EEPROM_WRITE(planner.max_feedrate_mm_s); EEPROM_WRITE(planner.max_feedrate_mm_s);
EEPROM_WRITE(planner.max_acceleration_mm_per_s2); EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
EEPROM_WRITE(planner.acceleration); EEPROM_WRITE(planner.acceleration);
EEPROM_WRITE(planner.retract_acceleration); EEPROM_WRITE(planner.retract_acceleration);
EEPROM_WRITE(planner.travel_acceleration); EEPROM_WRITE(planner.travel_acceleration);
EEPROM_WRITE(planner.min_feedrate_mm_s); EEPROM_WRITE(planner.min_feedrate_mm_s);
EEPROM_WRITE(planner.min_travel_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time); EEPROM_WRITE(planner.min_segment_time);
EEPROM_WRITE(planner.max_jerk); EEPROM_WRITE(planner.max_jerk);
EEPROM_WRITE(home_offset); EEPROM_WRITE(home_offset);
#if ENABLED(MESH_BED_LEVELING) #if HOTENDS > 1
// Compile time test that sizeof(mbl.z_values) is as expected // Skip hotend 0 which must be 0
typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1]; for (uint8_t e = 1; e < HOTENDS; e++)
uint8_t mesh_num_x = MESH_NUM_X_POINTS, LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
mesh_num_y = MESH_NUM_Y_POINTS,
dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE(mbl.z_offset);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else
// For disabled MBL write a default mesh
uint8_t mesh_num_x = 3,
mesh_num_y = 3,
dummy_uint8 = 0;
dummy = 0.0f;
EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE(dummy);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset = 0;
#endif
EEPROM_WRITE(zprobe_zoffset);
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
#if ENABLED(DELTA)
EEPROM_WRITE(endstop_adj); // 3 floats
EEPROM_WRITE(delta_radius); // 1 float
EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f;
for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
#else
dummy = 0.0f;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif
#if DISABLED(ULTIPANEL)
int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
#endif // !ULTIPANEL
EEPROM_WRITE(preheatHotendTemp1);
EEPROM_WRITE(preheatBedTemp1);
EEPROM_WRITE(preheatFanSpeed1);
EEPROM_WRITE(preheatHotendTemp2);
EEPROM_WRITE(preheatBedTemp2);
EEPROM_WRITE(preheatFanSpeed2);
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
#if ENABLED(PIDTEMP)
if (e < HOTENDS) {
EEPROM_WRITE(PID_PARAM(Kp, e));
EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_WRITE(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_WRITE(PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif
}
else
#endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
}
} // Hotends Loop
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len = 20;
#endif
EEPROM_WRITE(lpq_len);
#if DISABLED(PIDTEMPBED)
dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
#else
EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
#endif
#if !HAS_LCD_CONTRAST
const int lcd_contrast = 32;
#endif
EEPROM_WRITE(lcd_contrast);
#if ENABLED(FWRETRACT)
EEPROM_WRITE(autoretract_enabled);
EEPROM_WRITE(retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE(retract_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif #endif
EEPROM_WRITE(retract_feedrate_mm_s);
EEPROM_WRITE(retract_zlift);
EEPROM_WRITE(retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE(retract_recover_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif
EEPROM_WRITE(retract_recover_feedrate_mm_s);
#endif // FWRETRACT
EEPROM_WRITE(volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < COUNT(filament_size)) dummy = filament_size[q];
EEPROM_WRITE(dummy);
}
uint16_t final_checksum = eeprom_checksum,
eeprom_size = eeprom_index;
eeprom_index = EEPROM_OFFSET;
EEPROM_WRITE(version);
EEPROM_WRITE(final_checksum);
// Report storage size
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
SERIAL_ECHOLNPGM(" bytes)");
}
/**
* M501 - Retrieve Configuration
*/
void Config_RetrieveSettings() {
EEPROM_START();
char stored_ver[4];
EEPROM_READ(stored_ver);
uint16_t stored_checksum;
EEPROM_READ(stored_checksum);
// SERIAL_ECHOPAIR("Version: [", ver);
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
// SERIAL_CHAR(']');
// SERIAL_EOL;
if (strncmp(version, stored_ver, 3) != 0) {
Config_ResetDefault();
}
else {
float dummy = 0;
eeprom_checksum = 0; // clear before reading first "real data"
// version number match
EEPROM_READ(planner.axis_steps_per_mm);
EEPROM_READ(planner.max_feedrate_mm_s);
EEPROM_READ(planner.max_acceleration_mm_per_s2);
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time);
EEPROM_READ(planner.max_jerk);
EEPROM_READ(home_offset);
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
EEPROM_READ(dummy_uint8);
EEPROM_READ(dummy);
EEPROM_READ(mesh_num_x);
EEPROM_READ(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mbl.status = dummy_uint8; // Compile time test that sizeof(mbl.z_values) is as expected
mbl.z_offset = dummy; typedef char c_assert[(sizeof(mbl.z_values) == (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS) * sizeof(dummy)) ? 1 : -1];
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) { uint8_t mesh_num_x = MESH_NUM_X_POINTS,
// EEPROM data fits the current mesh mesh_num_y = MESH_NUM_Y_POINTS,
EEPROM_READ(mbl.z_values); dummy_uint8 = mbl.status & _BV(MBL_STATUS_HAS_MESH_BIT);
} EEPROM_WRITE(dummy_uint8);
else { EEPROM_WRITE(mbl.z_offset);
// EEPROM data is stale EEPROM_WRITE(mesh_num_x);
mbl.reset(); EEPROM_WRITE(mesh_num_y);
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy); EEPROM_WRITE(mbl.z_values);
}
#else #else
// MBL is disabled - skip the stored data // For disabled MBL write a default mesh
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy); uint8_t mesh_num_x = 3,
mesh_num_y = 3,
dummy_uint8 = 0;
dummy = 0.0f;
EEPROM_WRITE(dummy_uint8);
EEPROM_WRITE(dummy);
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_WRITE(dummy);
#endif // MESH_BED_LEVELING #endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE #if !HAS_BED_PROBE
float zprobe_zoffset = 0; float zprobe_zoffset = 0;
#endif #endif
EEPROM_READ(zprobe_zoffset); EEPROM_WRITE(zprobe_zoffset);
// 9 floats for DELTA / Z_DUAL_ENDSTOPS
#if ENABLED(DELTA) #if ENABLED(DELTA)
EEPROM_READ(endstop_adj); // 3 floats EEPROM_WRITE(endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float EEPROM_WRITE(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float EEPROM_WRITE(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float EEPROM_WRITE(delta_segments_per_second); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float EEPROM_WRITE(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS) #elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj); EEPROM_WRITE(z_endstop_adj); // 1 float
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q=8; q--;) EEPROM_READ(dummy); for (uint8_t q = 8; q--;) EEPROM_WRITE(dummy);
#else #else
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q=9; q--;) EEPROM_READ(dummy); for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
#endif #endif
#if DISABLED(ULTIPANEL) #if DISABLED(ULTIPANEL)
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1, int preheatHotendTemp1 = PREHEAT_1_TEMP_HOTEND, preheatBedTemp1 = PREHEAT_1_TEMP_BED, preheatFanSpeed1 = PREHEAT_1_FAN_SPEED,
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2; preheatHotendTemp2 = PREHEAT_2_TEMP_HOTEND, preheatBedTemp2 = PREHEAT_2_TEMP_BED, preheatFanSpeed2 = PREHEAT_2_FAN_SPEED;
#endif #endif // !ULTIPANEL
EEPROM_READ(preheatHotendTemp1); EEPROM_WRITE(preheatHotendTemp1);
EEPROM_READ(preheatBedTemp1); EEPROM_WRITE(preheatBedTemp1);
EEPROM_READ(preheatFanSpeed1); EEPROM_WRITE(preheatFanSpeed1);
EEPROM_READ(preheatHotendTemp2); EEPROM_WRITE(preheatHotendTemp2);
EEPROM_READ(preheatBedTemp2); EEPROM_WRITE(preheatBedTemp2);
EEPROM_READ(preheatFanSpeed2); EEPROM_WRITE(preheatFanSpeed2);
#if ENABLED(PIDTEMP) for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp #if ENABLED(PIDTEMP)
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) { if (e < HOTENDS) {
// do not need to scale PID values as the values in EEPROM are already scaled EEPROM_WRITE(PID_PARAM(Kp, e));
PID_PARAM(Kp, e) = dummy; EEPROM_WRITE(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Ki, e)); EEPROM_WRITE(PID_PARAM(Kd, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING) #if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e)); EEPROM_WRITE(PID_PARAM(Kc, e));
#else #else
EEPROM_READ(dummy); dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE(dummy);
#endif #endif
} }
else { else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc #endif // !PIDTEMP
{
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE(dummy); // Kp
dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
} }
}
#else // !PIDTEMP } // Hotends Loop
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
#if DISABLED(PID_EXTRUSION_SCALING) #if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len; int lpq_len = 20;
#endif #endif
EEPROM_READ(lpq_len); EEPROM_WRITE(lpq_len);
#if ENABLED(PIDTEMPBED) #if DISABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp dummy = DUMMY_PID_VALUE;
if (dummy != DUMMY_PID_VALUE) { for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else #else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd EEPROM_WRITE(thermalManager.bedKp);
EEPROM_WRITE(thermalManager.bedKi);
EEPROM_WRITE(thermalManager.bedKd);
#endif #endif
#if !HAS_LCD_CONTRAST #if !HAS_LCD_CONTRAST
int lcd_contrast; const int lcd_contrast = 32;
#endif #endif
EEPROM_READ(lcd_contrast); EEPROM_WRITE(lcd_contrast);
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
EEPROM_READ(autoretract_enabled); EEPROM_WRITE(autoretract_enabled);
EEPROM_READ(retract_length); EEPROM_WRITE(retract_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ(retract_length_swap); EEPROM_WRITE(retract_length_swap);
#else #else
EEPROM_READ(dummy); dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif #endif
EEPROM_READ(retract_feedrate_mm_s); EEPROM_WRITE(retract_feedrate_mm_s);
EEPROM_READ(retract_zlift); EEPROM_WRITE(retract_zlift);
EEPROM_READ(retract_recover_length); EEPROM_WRITE(retract_recover_length);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
EEPROM_READ(retract_recover_length_swap); EEPROM_WRITE(retract_recover_length_swap);
#else #else
EEPROM_READ(dummy); dummy = 0.0f;
EEPROM_WRITE(dummy);
#endif #endif
EEPROM_READ(retract_recover_feedrate_mm_s); EEPROM_WRITE(retract_recover_feedrate_mm_s);
#endif // FWRETRACT #endif // FWRETRACT
EEPROM_READ(volumetric_enabled); EEPROM_WRITE(volumetric_enabled);
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) { for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy); if (q < COUNT(filament_size)) dummy = filament_size[q];
if (q < COUNT(filament_size)) filament_size[q] = dummy; EEPROM_WRITE(dummy);
} }
if (eeprom_checksum == stored_checksum) { uint16_t final_checksum = eeprom_checksum,
Config_Postprocess(); eeprom_size = eeprom_index;
SERIAL_ECHO_START;
SERIAL_ECHO(version); eeprom_index = EEPROM_OFFSET;
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index); EEPROM_WRITE(version);
SERIAL_ECHOLNPGM(" bytes)"); EEPROM_WRITE(final_checksum);
}
else { // Report storage size
SERIAL_ERROR_START; SERIAL_ECHO_START;
SERIAL_ERRORLNPGM("EEPROM checksum mismatch"); SERIAL_ECHOPAIR("Settings Stored (", eeprom_size);
SERIAL_ECHOLNPGM(" bytes)");
}
/**
* M501 - Retrieve Configuration
*/
void Config_RetrieveSettings() {
EEPROM_START();
char stored_ver[4];
EEPROM_READ(stored_ver);
uint16_t stored_checksum;
EEPROM_READ(stored_checksum);
// SERIAL_ECHOPAIR("Version: [", ver);
// SERIAL_ECHOPAIR("] Stored version: [", stored_ver);
// SERIAL_CHAR(']');
// SERIAL_EOL;
if (strncmp(version, stored_ver, 3) != 0) {
Config_ResetDefault(); Config_ResetDefault();
} }
} else {
float dummy = 0;
#if ENABLED(EEPROM_CHITCHAT) eeprom_checksum = 0; // clear before reading first "real data"
Config_PrintSettings();
#endif
}
#endif // EEPROM_SETTINGS // version number match
EEPROM_READ(planner.axis_steps_per_mm);
EEPROM_READ(planner.max_feedrate_mm_s);
EEPROM_READ(planner.max_acceleration_mm_per_s2);
EEPROM_READ(planner.acceleration);
EEPROM_READ(planner.retract_acceleration);
EEPROM_READ(planner.travel_acceleration);
EEPROM_READ(planner.min_feedrate_mm_s);
EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time);
EEPROM_READ(planner.max_jerk);
EEPROM_READ(home_offset);
#if HOTENDS > 1
// Skip hotend 0 which must be 0
for (uint8_t e = 1; e < HOTENDS; e++)
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
#endif
uint8_t dummy_uint8 = 0, mesh_num_x = 0, mesh_num_y = 0;
EEPROM_READ(dummy_uint8);
EEPROM_READ(dummy);
EEPROM_READ(mesh_num_x);
EEPROM_READ(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
mbl.status = dummy_uint8;
mbl.z_offset = dummy;
if (mesh_num_x == MESH_NUM_X_POINTS && mesh_num_y == MESH_NUM_Y_POINTS) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
}
else {
// EEPROM data is stale
mbl.reset();
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
}
#else
// MBL is disabled - skip the stored data
for (uint8_t q = 0; q < mesh_num_x * mesh_num_y; q++) EEPROM_READ(dummy);
#endif // MESH_BED_LEVELING
#if !HAS_BED_PROBE
float zprobe_zoffset = 0;
#endif
EEPROM_READ(zprobe_zoffset);
#if ENABLED(DELTA)
EEPROM_READ(endstop_adj); // 3 floats
EEPROM_READ(delta_radius); // 1 float
EEPROM_READ(delta_diagonal_rod); // 1 float
EEPROM_READ(delta_segments_per_second); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_1); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_2); // 1 float
EEPROM_READ(delta_diagonal_rod_trim_tower_3); // 1 float
#elif ENABLED(Z_DUAL_ENDSTOPS)
EEPROM_READ(z_endstop_adj);
dummy = 0.0f;
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
#else
dummy = 0.0f;
for (uint8_t q=9; q--;) EEPROM_READ(dummy);
#endif
#if DISABLED(ULTIPANEL)
int preheatHotendTemp1, preheatBedTemp1, preheatFanSpeed1,
preheatHotendTemp2, preheatBedTemp2, preheatFanSpeed2;
#endif
EEPROM_READ(preheatHotendTemp1);
EEPROM_READ(preheatBedTemp1);
EEPROM_READ(preheatFanSpeed1);
EEPROM_READ(preheatHotendTemp2);
EEPROM_READ(preheatBedTemp2);
EEPROM_READ(preheatFanSpeed2);
#if ENABLED(PIDTEMP)
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
EEPROM_READ(dummy); // Kp
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy;
EEPROM_READ(PID_PARAM(Ki, e));
EEPROM_READ(PID_PARAM(Kd, e));
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(PID_PARAM(Kc, e));
#else
EEPROM_READ(dummy);
#endif
}
else {
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
#endif // !PIDTEMP
#if DISABLED(PID_EXTRUSION_SCALING)
int lpq_len;
#endif
EEPROM_READ(lpq_len);
#if ENABLED(PIDTEMPBED)
EEPROM_READ(dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy;
EEPROM_READ(thermalManager.bedKi);
EEPROM_READ(thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
#endif
#if !HAS_LCD_CONTRAST
int lcd_contrast;
#endif
EEPROM_READ(lcd_contrast);
#if ENABLED(FWRETRACT)
EEPROM_READ(autoretract_enabled);
EEPROM_READ(retract_length);
#if EXTRUDERS > 1
EEPROM_READ(retract_length_swap);
#else
EEPROM_READ(dummy);
#endif
EEPROM_READ(retract_feedrate_mm_s);
EEPROM_READ(retract_zlift);
EEPROM_READ(retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ(retract_recover_length_swap);
#else
EEPROM_READ(dummy);
#endif
EEPROM_READ(retract_recover_feedrate_mm_s);
#endif // FWRETRACT
EEPROM_READ(volumetric_enabled);
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ(dummy);
if (q < COUNT(filament_size)) filament_size[q] = dummy;
}
if (eeprom_checksum == stored_checksum) {
Config_Postprocess();
SERIAL_ECHO_START;
SERIAL_ECHO(version);
SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index);
SERIAL_ECHOLNPGM(" bytes)");
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("EEPROM checksum mismatch");
Config_ResetDefault();
}
}
#if ENABLED(EEPROM_CHITCHAT)
Config_PrintSettings();
#endif
}
#else // !EEPROM_SETTINGS
void Config_StoreSettings() {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("EEPROM disabled");
}
#endif // !EEPROM_SETTINGS
/** /**
* M502 - Reset Configuration * M502 - Reset Configuration
*/ */
void Config_ResetDefault() { void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT; const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
float tmp2[] = DEFAULT_MAX_FEEDRATE; const long tmp3[] = DEFAULT_MAX_ACCELERATION;
long tmp3[] = DEFAULT_MAX_ACCELERATION;
LOOP_XYZE(i) { LOOP_XYZE(i) {
planner.axis_steps_per_mm[i] = tmp1[i]; planner.axis_steps_per_mm[i] = tmp1[i];
planner.max_feedrate_mm_s[i] = tmp2[i]; planner.max_feedrate_mm_s[i] = tmp2[i];
@ -579,6 +598,23 @@ void Config_ResetDefault() {
planner.max_jerk[E_AXIS] = DEFAULT_EJERK; planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0; home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
#if HOTENDS > 1
constexpr float tmp4[XYZ][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#else
, { 0 }
#endif
};
static_assert(
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
"Offsets for the first hotend must be 0.0."
);
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
#endif
#if ENABLED(MESH_BED_LEVELING) #if ENABLED(MESH_BED_LEVELING)
mbl.reset(); mbl.reset();
#endif #endif
@ -675,293 +711,310 @@ void Config_ResetDefault() {
#if DISABLED(DISABLE_M503) #if DISABLED(DISABLE_M503)
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0) #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
/** /**
* M503 - Print Configuration * M503 - Print Configuration
*/ */
void Config_PrintSettings(bool forReplay) { void Config_PrintSettings(bool forReplay) {
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown // Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:");
CONFIG_ECHO_START; CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#if ENABLED(MESH_BED_LEVELING)
if (!forReplay) { if (!forReplay) {
SERIAL_ECHOLNPGM("Mesh bed leveling:"); SERIAL_ECHOLNPGM("Steps per unit:");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} }
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0); SERIAL_ECHOPAIR(" M92 X", planner.axis_steps_per_mm[X_AXIS]);
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS); SERIAL_ECHOPAIR(" Y", planner.axis_steps_per_mm[Y_AXIS]);
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS); SERIAL_ECHOPAIR(" Z", planner.axis_steps_per_mm[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.axis_steps_per_mm[E_AXIS]);
SERIAL_EOL; SERIAL_EOL;
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) { CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M203 X", planner.max_feedrate_mm_s[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_feedrate_mm_s[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_feedrate_mm_s[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_feedrate_mm_s[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M201 X", planner.max_acceleration_mm_per_s2[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_acceleration_mm_per_s2[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_acceleration_mm_per_s2[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_acceleration_mm_per_s2[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M204 P", planner.acceleration);
SERIAL_ECHOPAIR(" R", planner.retract_acceleration);
SERIAL_ECHOPAIR(" T", planner.travel_acceleration);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M205 S", planner.min_feedrate_mm_s);
SERIAL_ECHOPAIR(" T", planner.min_travel_feedrate_mm_s);
SERIAL_ECHOPAIR(" B", planner.min_segment_time);
SERIAL_ECHOPAIR(" X", planner.max_jerk[X_AXIS]);
SERIAL_ECHOPAIR(" Y", planner.max_jerk[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", planner.max_jerk[Z_AXIS]);
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#if HOTENDS > 1
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Hotend offsets (mm)");
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" G29 S3 X", px);
SERIAL_ECHOPAIR(" Y", py);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
SERIAL_EOL;
} }
} for (uint8_t e = 1; e < HOTENDS; e++) {
#endif SERIAL_ECHOPAIR(" M218 T", (int)e);
SERIAL_ECHOPAIR(" X", hotend_offset[X_AXIS]);
#if ENABLED(DELTA) SERIAL_ECHOPAIR(" Y", hotend_offset[Y_AXIS]);
CONFIG_ECHO_START; #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
if (!forReplay) { SERIAL_ECHOPAIR(" Z", hotend_offset[Z_AXIS]);
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
SERIAL_ECHOPAIR(" R", delta_radius);
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
SERIAL_EOL;
#elif ENABLED(Z_DUAL_ENDSTOPS)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
SERIAL_EOL;
#endif // DELTA
#if ENABLED(ULTIPANEL)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Material heatup parameters:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
SERIAL_EOL;
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
SERIAL_EOL;
#endif // ULTIPANEL
#if HAS_PID_HEATING
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR(" L", lpq_len);
#endif #endif
SERIAL_EOL; SERIAL_EOL;
} }
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL;
#endif #endif
#endif // PIDTEMP || PIDTEMPBED #if ENABLED(MESH_BED_LEVELING)
if (!forReplay) {
#if HAS_LCD_CONTRAST SERIAL_ECHOLNPGM("Mesh bed leveling:");
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("LCD Contrast:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
SERIAL_EOL;
#endif
#if ENABLED(FWRETRACT)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M207 S", retract_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
SERIAL_EOL;
#endif // FWRETRACT
/**
* Volumetric extrusion M200
*/
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOPGM("Filament settings:");
if (volumetric_enabled)
SERIAL_EOL;
else
SERIAL_ECHOLNPGM(" Disabled");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL;
#if EXTRUDERS > 1
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]); }
SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
SERIAL_ECHOPAIR(" X", MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR(" Y", MESH_NUM_Y_POINTS);
SERIAL_EOL;
for (uint8_t py = 1; py <= MESH_NUM_Y_POINTS; py++) {
for (uint8_t px = 1; px <= MESH_NUM_X_POINTS; px++) {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" G29 S3 X", (int)px);
SERIAL_ECHOPAIR(" Y", (int)py);
SERIAL_ECHOPGM(" Z");
SERIAL_PROTOCOL_F(mbl.z_values[py-1][px-1], 5);
SERIAL_EOL;
}
}
#endif
#if ENABLED(DELTA)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS]);
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS]);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Delta settings: L=diagonal_rod, R=radius, S=segments_per_second, ABC=diagonal_rod_trim_tower_[123]");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod);
SERIAL_ECHOPAIR(" R", delta_radius);
SERIAL_ECHOPAIR(" S", delta_segments_per_second);
SERIAL_ECHOPAIR(" A", delta_diagonal_rod_trim_tower_1);
SERIAL_ECHOPAIR(" B", delta_diagonal_rod_trim_tower_2);
SERIAL_ECHOPAIR(" C", delta_diagonal_rod_trim_tower_3);
SERIAL_EOL;
#elif ENABLED(Z_DUAL_ENDSTOPS)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z2 Endstop adjustment (mm):");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj);
SERIAL_EOL;
#endif // DELTA
#if ENABLED(ULTIPANEL)
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Material heatup parameters:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M145 S0 H", preheatHotendTemp1);
SERIAL_ECHOPAIR(" B", preheatBedTemp1);
SERIAL_ECHOPAIR(" F", preheatFanSpeed1);
SERIAL_EOL;
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M145 S1 H", preheatHotendTemp2);
SERIAL_ECHOPAIR(" B", preheatBedTemp2);
SERIAL_ECHOPAIR(" F", preheatFanSpeed2);
SERIAL_EOL;
#endif // ULTIPANEL
#if HAS_PID_HEATING
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
}
#if ENABLED(PIDTEMP)
#if HOTENDS > 1
if (forReplay) {
HOTEND_LOOP() {
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 E", e);
SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
}
else
#endif // HOTENDS > 1
// !forReplay || HOTENDS == 1
{
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
#if ENABLED(PID_EXTRUSION_SCALING)
SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
SERIAL_ECHOPAIR(" L", lpq_len);
#endif
SERIAL_EOL;
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL; SERIAL_EOL;
#endif #endif
#endif // PIDTEMP || PIDTEMPBED
#if HAS_LCD_CONTRAST
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("LCD Contrast:");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M250 C", lcd_contrast);
SERIAL_EOL;
#endif #endif
#endif
if (!volumetric_enabled) { #if ENABLED(FWRETRACT)
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
/** CONFIG_ECHO_START;
* Auto Bed Leveling if (!forReplay) {
*/ SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
#if HAS_BED_PROBE CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M207 S", retract_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_feedrate_mm_s));
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
#if EXTRUDERS > 1
SERIAL_ECHOPAIR(" W", retract_recover_length_swap);
#endif
SERIAL_ECHOPAIR(" F", MMS_TO_MMM(retract_recover_feedrate_mm_s));
SERIAL_EOL;
CONFIG_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
CONFIG_ECHO_START;
}
SERIAL_ECHOPAIR(" M209 S", autoretract_enabled ? 1 : 0);
SERIAL_EOL;
#endif // FWRETRACT
/**
* Volumetric extrusion M200
*/
if (!forReplay) { if (!forReplay) {
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):"); SERIAL_ECHOPGM("Filament settings:");
if (volumetric_enabled)
SERIAL_EOL;
else
SERIAL_ECHOLNPGM(" Disabled");
} }
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset); SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL; SERIAL_EOL;
#endif #if EXTRUDERS > 1
} CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_EOL;
#endif
#endif
#endif
if (!volumetric_enabled) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM(" M200 D0");
}
/**
* Auto Bed Leveling
*/
#if HAS_BED_PROBE
if (!forReplay) {
CONFIG_ECHO_START;
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
}
CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M851 Z", zprobe_zoffset);
SERIAL_EOL;
#endif
}
#endif // !DISABLE_M503 #endif // !DISABLE_M503

View file

@ -26,6 +26,7 @@
#include "MarlinConfig.h" #include "MarlinConfig.h"
void Config_ResetDefault(); void Config_ResetDefault();
void Config_StoreSettings();
#if DISABLED(DISABLE_M503) #if DISABLED(DISABLE_M503)
void Config_PrintSettings(bool forReplay=false); void Config_PrintSettings(bool forReplay=false);
@ -34,10 +35,8 @@ void Config_ResetDefault();
#endif #endif
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
void Config_StoreSettings();
void Config_RetrieveSettings(); void Config_RetrieveSettings();
#else #else
FORCE_INLINE void Config_StoreSettings() {}
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); } FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif #endif