Merge remote-tracking branch 'remotes/upstream/Development' into Development

This commit is contained in:
domonoky 2015-03-02 17:52:12 +01:00
commit 4a7aca2736
26 changed files with 2313 additions and 2826 deletions

View file

@ -33,7 +33,7 @@ rambo.build.variant=rambo
######################################## ########################################
sanguino.name=Sanguino sanguino.name=Sanguino
sanguino.upload.tool=ardunio:avrdude sanguino.upload.tool=arduino:avrdude
sanguino.upload.protocol=stk500 sanguino.upload.protocol=stk500
sanguino.upload.maximum_size=131072 sanguino.upload.maximum_size=131072
sanguino.upload.speed=57600 sanguino.upload.speed=57600

View file

@ -5,16 +5,9 @@
#include "Marlin.h" #include "Marlin.h"
#ifdef BLINKM #ifdef BLINKM
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
#include "BlinkM.h" #include "BlinkM.h"
void SendColors(byte red, byte grn, byte blu) void SendColors(byte red, byte grn, byte blu) {
{
Wire.begin(); Wire.begin();
Wire.beginTransmission(0x09); Wire.beginTransmission(0x09);
Wire.write('o'); //to disable ongoing script, only needs to be used once Wire.write('o'); //to disable ongoing script, only needs to be used once

View file

@ -2,13 +2,12 @@
BlinkM.h BlinkM.h
Library header file for BlinkM library Library header file for BlinkM library
*/ */
#if (ARDUINO >= 100) #if ARDUINO >= 100
# include "Arduino.h" #include "Arduino.h"
#else #else
# include "WProgram.h" #include "WProgram.h"
#endif #endif
#include "Wire.h" #include "Wire.h"
void SendColors(byte red, byte grn, byte blu); void SendColors(byte red, byte grn, byte blu);

View file

@ -118,7 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard) // 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup // 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard) // 110 is Pt100 with 1k pullup (non standard)
// 999 is a Dummy Table. It will ALWAYS read 25C.. Use it for Testing or Development purposes. NEVER for production machine. // 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 -1 #define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1 #define TEMP_SENSOR_1 -1
@ -582,6 +585,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -640,6 +647,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -1,5 +1,5 @@
#ifndef CONFIG_STORE_H #ifndef CONFIGURATIONSTORE_H
#define CONFIG_STORE_H #define CONFIGURATIONSTORE_H
#include "Configuration.h" #include "Configuration.h"
@ -19,4 +19,4 @@ void Config_ResetDefault();
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); } FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif #endif
#endif // __CONFIG_STORE_H #endif //CONFIGURATIONSTORE_H

View file

@ -180,8 +180,8 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#define disable_e3() /* nothing */ #define disable_e3() /* nothing */
#endif #endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
void FlushSerialRequestResend(); void FlushSerialRequestResend();
void ClearToSend(); void ClearToSend();

View file

@ -1720,6 +1720,7 @@ void process_commands()
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
// Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values
{ {
#if Z_MIN_PIN == -1 #if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin." #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
@ -1753,9 +1754,19 @@ void process_commands()
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid // probe at the points of a lattice grid
int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
int back_probe_bed_position=BACK_PROBE_BED_POSITION;
int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
if (code_seen('L')) left_probe_bed_position=(int)code_value();
if (code_seen('R')) right_probe_bed_position=(int)code_value();
if (code_seen('B')) back_probe_bed_position=(int)code_value();
if (code_seen('F')) front_probe_bed_position=(int)code_value();
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
// solve the plane equation ax + by + d = z // solve the plane equation ax + by + d = z
@ -1765,32 +1776,35 @@ void process_commands()
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations // "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
// "B" vector of Z points // "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points];
int probePointCounter = 0; int probePointCounter = 0;
bool zig = true; bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing)
{ {
int xProbe, xInc; int xProbe, xInc;
if (zig) if (zig)
{ {
xProbe = LEFT_PROBE_BED_POSITION; xProbe = left_probe_bed_position;
//xEnd = RIGHT_PROBE_BED_POSITION; //xEnd = right_probe_bed_position;
xInc = xGridSpacing; xInc = xGridSpacing;
zig = false; zig = false;
} else // zag } else // zag
{ {
xProbe = RIGHT_PROBE_BED_POSITION; xProbe = right_probe_bed_position;
//xEnd = LEFT_PROBE_BED_POSITION; //xEnd = left_probe_bed_position;
xInc = -xGridSpacing; xInc = -xGridSpacing;
zig = true; zig = true;
} }
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++)
{ {
float z_before; float z_before;
if (probePointCounter == 0) if (probePointCounter == 0)
@ -1822,9 +1836,9 @@ void process_commands()
eqnBVector[probePointCounter] = measured_z; eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
probePointCounter++; probePointCounter++;
xProbe += xInc; xProbe += xInc;
} }
@ -1832,7 +1846,7 @@ void process_commands()
clean_up_after_endstop_move(); clean_up_after_endstop_move();
// solve lsq problem // solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]); SERIAL_PROTOCOL(plane_equation_coefficients[0]);
@ -4695,21 +4709,12 @@ bool setTargetedHotend(int code){
float calculate_volumetric_multiplier(float diameter) { float calculate_volumetric_multiplier(float diameter) {
float area = .0; if (!volumetric_enabled || diameter == 0) return 1.0;
float radius = .0; float d2 = diameter * 0.5;
return 1.0 / (M_PI * d2 * d2);
radius = diameter * .5;
if (! volumetric_enabled || radius == 0) {
area = 1;
}
else {
area = M_PI * pow(radius, 2);
}
return 1.0 / area;
} }
void calculate_volumetric_multipliers() { void calculate_volumetric_multipliers() {
for (int i=0; i<EXTRUDERS; i++) for (int i=0; i<EXTRUDERS; i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
} }

View file

@ -7,476 +7,383 @@
#ifdef SDSUPPORT #ifdef SDSUPPORT
CardReader::CardReader() {
filesize = 0;
sdpos = 0;
sdprinting = false;
cardOK = false;
saving = false;
logging = false;
workDirDepth = 0;
file_subcall_ctr = 0;
memset(workDirParents, 0, sizeof(workDirParents));
autostart_stilltocheck = true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
CardReader::CardReader() autostart_index = 0;
{
filesize = 0;
sdpos = 0;
sdprinting = false;
cardOK = false;
saving = false;
logging = false;
autostart_atmillis=0;
workDirDepth = 0;
file_subcall_ctr=0;
memset(workDirParents, 0, sizeof(workDirParents));
autostart_stilltocheck=true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
autostart_index=0;
//power to SD reader //power to SD reader
#if SDPOWER > -1 #if SDPOWER > -1
SET_OUTPUT(SDPOWER); SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH); WRITE(SDPOWER, HIGH);
#endif //SDPOWER #endif //SDPOWER
autostart_atmillis=millis()+5000; autostart_atmillis = millis() + 5000;
} }
char *createFilename(char *buffer,const dir_t &p) //buffer>12characters char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
{ char *pos = buffer;
char *pos=buffer; for (uint8_t i = 0; i < 11; i++) {
for (uint8_t i = 0; i < 11; i++) if (p.name[i] == ' ') continue;
{ if (i == 8) *pos++ = '.';
if (p.name[i] == ' ')continue; *pos++ = p.name[i];
if (i == 8)
{
*pos++='.';
}
*pos++=p.name[i];
} }
*pos++=0; *pos++ = 0;
return buffer; return buffer;
} }
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/)
{
dir_t p; dir_t p;
uint8_t cnt=0; uint8_t cnt = 0;
while (parent.readDir(p, longFilename) > 0)
{
if( DIR_IS_SUBDIR(&p) && lsAction!=LS_Count && lsAction!=LS_GetFilename) // hence LS_SerialPrint
{
while (parent.readDir(p, longFilename) > 0) {
if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) { // hence LS_SerialPrint
char path[FILENAME_LENGTH*2]; char path[FILENAME_LENGTH*2];
char lfilename[FILENAME_LENGTH]; char lfilename[FILENAME_LENGTH];
createFilename(lfilename,p); createFilename(lfilename, p);
path[0]=0; path[0] = 0;
if(prepend[0]==0) //avoid leading / if already in prepend if (prepend[0] == 0) strcat(path, "/"); //avoid leading / if already in prepend
{ strcat(path, prepend);
strcat(path,"/"); strcat(path, lfilename);
} strcat(path, "/");
strcat(path,prepend);
strcat(path,lfilename);
strcat(path,"/");
//Serial.print(path); //Serial.print(path);
SdFile dir; SdFile dir;
if(!dir.open(parent,lfilename, O_READ)) if (!dir.open(parent, lfilename, O_READ)) {
{ if (lsAction == LS_SerialPrint) {
if(lsAction==LS_SerialPrint)
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR); SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR);
SERIAL_ECHOLN(lfilename); SERIAL_ECHOLN(lfilename);
} }
} }
lsDive(path,dir); lsDive(path, dir);
//close done automatically by destructor of SdFile //close done automatically by destructor of SdFile
} }
else else {
{
char pn0 = p.name[0]; char pn0 = p.name[0];
if (pn0 == DIR_NAME_FREE) break; if (pn0 == DIR_NAME_FREE) break;
if (pn0 == DIR_NAME_DELETED || pn0 == '.' || pn0 == '_') continue; if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue;
char lf0 = longFilename[0]; char lf0 = longFilename[0];
if (lf0 == '.' || lf0 == '_') continue; if (lf0 == '.') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue; if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
filenameIsDir=DIR_IS_SUBDIR(&p);
filenameIsDir = DIR_IS_SUBDIR(&p);
if(!filenameIsDir) if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue;
{
if(p.name[8]!='G') continue; //if (cnt++ != nr) continue;
if(p.name[9]=='~') continue; createFilename(filename, p);
} if (lsAction == LS_SerialPrint) {
//if(cnt++!=nr) continue;
createFilename(filename,p);
if(lsAction==LS_SerialPrint)
{
SERIAL_PROTOCOL(prepend); SERIAL_PROTOCOL(prepend);
SERIAL_PROTOCOLLN(filename); SERIAL_PROTOCOLLN(filename);
} }
else if(lsAction==LS_Count) else if (lsAction == LS_Count) {
{
nrFiles++; nrFiles++;
} }
else if(lsAction==LS_GetFilename) else if (lsAction == LS_GetFilename) {
{
if (match != NULL) { if (match != NULL) {
if (strcasecmp(match, filename) == 0) return; if (strcasecmp(match, filename) == 0) return;
} }
else if (cnt == nrFiles) return; else if (cnt == nrFiles) return;
cnt++; cnt++;
} }
} }
} }
} }
void CardReader::ls() void CardReader::ls() {
{ lsAction = LS_SerialPrint;
lsAction=LS_SerialPrint;
if(lsAction==LS_Count)
nrFiles=0;
root.rewind(); root.rewind();
lsDive("",root); lsDive("", root);
} }
void CardReader::initsd() {
void CardReader::initsd()
{
cardOK = false; cardOK = false;
if(root.isOpen()) if (root.isOpen()) root.close();
root.close();
#ifdef SDSLOW #ifdef SDSLOW
if (!card.init(SPI_HALF_SPEED,SDSS) #define SPI_SPEED SPI_HALF_SPEED
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS) #else
&& !card.init(SPI_HALF_SPEED,LCD_SDSS) #define SPI_SPEED SPI_FULL_SPEED
#endif #endif
)
#else if (!card.init(SPI_SPEED,SDSS)
if (!card.init(SPI_FULL_SPEED,SDSS) #if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS) && !card.init(SPI_SPEED, LCD_SDSS)
&& !card.init(SPI_FULL_SPEED,LCD_SDSS) #endif
#endif ) {
)
#endif
{
//if (!card.init(SPI_HALF_SPEED,SDSS)) //if (!card.init(SPI_HALF_SPEED,SDSS))
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL); SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL);
} }
else if (!volume.init(&card)) else if (!volume.init(&card)) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL); SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL);
} }
else if (!root.openRoot(&volume)) else if (!root.openRoot(&volume)) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL); SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL);
} }
else else {
{
cardOK = true; cardOK = true;
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_CARD_OK); SERIAL_ECHOLNPGM(MSG_SD_CARD_OK);
} }
workDir=root; workDir = root;
curDir=&root; curDir = &root;
/* /*
if(!workDir.openRoot(&volume)) if (!workDir.openRoot(&volume)) {
{
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL); SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
} }
*/ */
} }
void CardReader::setroot() void CardReader::setroot() {
{ /*if (!workDir.openRoot(&volume)) {
/*if(!workDir.openRoot(&volume))
{
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL); SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}*/ }*/
workDir=root; workDir = root;
curDir = &workDir;
curDir=&workDir;
} }
void CardReader::release()
{ void CardReader::release() {
sdprinting = false; sdprinting = false;
cardOK = false; cardOK = false;
} }
void CardReader::startFileprint() void CardReader::startFileprint() {
{ if (cardOK) {
if(cardOK)
{
sdprinting = true; sdprinting = true;
} }
} }
void CardReader::pauseSDPrint() void CardReader::pauseSDPrint() {
{ if (sdprinting) sdprinting = false;
if(sdprinting)
{
sdprinting = false;
}
} }
void CardReader::openLogFile(char* name) {
void CardReader::openLogFile(char* name)
{
logging = true; logging = true;
openFile(name, false); openFile(name, false);
} }
void CardReader::getAbsFilename(char *t) void CardReader::getAbsFilename(char *t) {
{ uint8_t cnt = 0;
uint8_t cnt=0; *t = '/'; t++; cnt++;
*t='/';t++;cnt++; for (uint8_t i = 0; i < workDirDepth; i++) {
for(uint8_t i=0;i<workDirDepth;i++)
{
workDirParents[i].getFilename(t); //SDBaseFile.getfilename! workDirParents[i].getFilename(t); //SDBaseFile.getfilename!
while(*t!=0 && cnt< MAXPATHNAMELENGTH) while(*t && cnt < MAXPATHNAMELENGTH) { t++; cnt++; } //crawl counter forward.
{t++;cnt++;} //crawl counter forward.
} }
if(cnt<MAXPATHNAMELENGTH-FILENAME_LENGTH) if (cnt < MAXPATHNAMELENGTH - FILENAME_LENGTH)
file.getFilename(t); file.getFilename(t);
else else
t[0]=0; t[0] = 0;
} }
void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/) void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) {
{ if (!cardOK) return;
if(!cardOK) if (file.isOpen()) { //replacing current file by new file, or subfile call
return; if (!replace_current) {
if(file.isOpen()) //replacing current file by new file, or subfile call if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) {
{
if(!replace_current)
{
if((int)file_subcall_ctr>(int)SD_PROCEDURE_DEPTH-1)
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:"); SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:");
SERIAL_ERRORLN(SD_PROCEDURE_DEPTH); SERIAL_ERRORLN(SD_PROCEDURE_DEPTH);
kill(); kill();
return; return;
} }
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("SUBROUTINE CALL target:\""); SERIAL_ECHOPGM("SUBROUTINE CALL target:\"");
SERIAL_ECHO(name); SERIAL_ECHO(name);
SERIAL_ECHOPGM("\" parent:\""); SERIAL_ECHOPGM("\" parent:\"");
//store current filename and position //store current filename and position
getAbsFilename(filenames[file_subcall_ctr]); getAbsFilename(filenames[file_subcall_ctr]);
SERIAL_ECHO(filenames[file_subcall_ctr]); SERIAL_ECHO(filenames[file_subcall_ctr]);
SERIAL_ECHOPGM("\" pos"); SERIAL_ECHOPGM("\" pos");
SERIAL_ECHOLN(sdpos); SERIAL_ECHOLN(sdpos);
filespos[file_subcall_ctr]=sdpos; filespos[file_subcall_ctr] = sdpos;
file_subcall_ctr++; file_subcall_ctr++;
} }
else else {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now doing file: "); SERIAL_ECHOPGM("Now doing file: ");
SERIAL_ECHOLN(name); SERIAL_ECHOLN(name);
} }
file.close(); file.close();
} }
else //opening fresh file else { //opening fresh file
{ file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure
file_subcall_ctr=0; //resetting procedure depth in case user cancels print while in procedure
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now fresh file: "); SERIAL_ECHOPGM("Now fresh file: ");
SERIAL_ECHOLN(name); SERIAL_ECHOLN(name);
} }
sdprinting = false; sdprinting = false;
SdFile myDir; SdFile myDir;
curDir=&root; curDir = &root;
char *fname=name; char *fname = name;
char *dirname_start,*dirname_end; char *dirname_start, *dirname_end;
if(name[0]=='/') if (name[0] == '/') {
{ dirname_start = &name[1];
dirname_start=strchr(name,'/')+1; while(dirname_start > 0) {
while(dirname_start>0) dirname_end = strchr(dirname_start, '/');
{ //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
dirname_end=strchr(dirname_start,'/'); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start-name)); if (dirname_end > 0 && dirname_end > dirname_start) {
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end-name));
if(dirname_end>0 && dirname_end>dirname_start)
{
char subdirname[FILENAME_LENGTH]; char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end-dirname_start); strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end-dirname_start]=0; subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname); SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ)) if (!myDir.open(curDir, subdirname, O_READ)) {
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
return; return;
} }
else else {
{
//SERIAL_ECHOLN("dive ok"); //SERIAL_ECHOLN("dive ok");
} }
curDir=&myDir; curDir = &myDir;
dirname_start=dirname_end+1; dirname_start = dirname_end + 1;
} }
else // the reminder after all /fsa/fdsa/ is the filename else { // the remainder after all /fsa/fdsa/ is the filename
{ fname = dirname_start;
fname=dirname_start; //SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN("remaider");
//SERIAL_ECHOLN(fname); //SERIAL_ECHOLN(fname);
break; break;
} }
} }
} }
else //relative path else { //relative path
{ curDir = &workDir;
curDir=&workDir;
} }
if(read)
{ if (read) {
if (file.open(curDir, fname, O_READ)) if (file.open(curDir, fname, O_READ)) {
{
filesize = file.fileSize(); filesize = file.fileSize();
SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED); SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLPGM(MSG_SD_SIZE); SERIAL_PROTOCOLPGM(MSG_SD_SIZE);
SERIAL_PROTOCOLLN(filesize); SERIAL_PROTOCOLLN(filesize);
sdpos = 0; sdpos = 0;
SERIAL_PROTOCOLLNPGM(MSG_SD_FILE_SELECTED); SERIAL_PROTOCOLLNPGM(MSG_SD_FILE_SELECTED);
getfilename(0, fname); getfilename(0, fname);
lcd_setstatus(longFilename[0] ? longFilename : fname); lcd_setstatus(longFilename[0] ? longFilename : fname);
} }
else else {
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
} }
else else { //write
{ //write if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
else else {
{
saving = true; saving = true;
SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE); SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE);
SERIAL_PROTOCOLLN(name); SERIAL_PROTOCOLLN(name);
lcd_setstatus(fname); lcd_setstatus(fname);
} }
} }
} }
void CardReader::removeFile(char* name) void CardReader::removeFile(char* name) {
{ if (!cardOK) return;
if(!cardOK)
return;
file.close(); file.close();
sdprinting = false; sdprinting = false;
SdFile myDir; SdFile myDir;
curDir=&root; curDir = &root;
char *fname=name; char *fname = name;
char *dirname_start,*dirname_end; char *dirname_start, *dirname_end;
if(name[0]=='/') if (name[0] == '/') {
{ dirname_start = strchr(name, '/') + 1;
dirname_start=strchr(name,'/')+1; while (dirname_start > 0) {
while(dirname_start>0) dirname_end = strchr(dirname_start, '/');
{ //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
dirname_end=strchr(dirname_start,'/'); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start-name)); if (dirname_end > 0 && dirname_end > dirname_start) {
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end-name));
if(dirname_end>0 && dirname_end>dirname_start)
{
char subdirname[FILENAME_LENGTH]; char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end-dirname_start); strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end-dirname_start]=0; subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname); SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ)) if (!myDir.open(curDir, subdirname, O_READ)) {
{
SERIAL_PROTOCOLPGM("open failed, File: "); SERIAL_PROTOCOLPGM("open failed, File: ");
SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
return; return;
} }
else else {
{
//SERIAL_ECHOLN("dive ok"); //SERIAL_ECHOLN("dive ok");
} }
curDir=&myDir; curDir = &myDir;
dirname_start=dirname_end+1; dirname_start = dirname_end + 1;
} }
else // the reminder after all /fsa/fdsa/ is the filename else { // the remainder after all /fsa/fdsa/ is the filename
{ fname = dirname_start;
fname=dirname_start; //SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN("remaider");
//SERIAL_ECHOLN(fname); //SERIAL_ECHOLN(fname);
break; break;
} }
} }
} }
else //relative path else { // relative path
{ curDir = &workDir;
curDir=&workDir; }
if (file.remove(curDir, fname)) {
SERIAL_PROTOCOLPGM("File deleted:");
SERIAL_PROTOCOLLN(fname);
sdpos = 0;
}
else {
SERIAL_PROTOCOLPGM("Deletion failed, File: ");
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
} }
if (file.remove(curDir, fname))
{
SERIAL_PROTOCOLPGM("File deleted:");
SERIAL_PROTOCOLLN(fname);
sdpos = 0;
}
else
{
SERIAL_PROTOCOLPGM("Deletion failed, File: ");
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
} }
void CardReader::getStatus() void CardReader::getStatus() {
{ if (cardOK) {
if(cardOK){
SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE); SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE);
SERIAL_PROTOCOL(sdpos); SERIAL_PROTOCOL(sdpos);
SERIAL_PROTOCOLPGM("/"); SERIAL_PROTOCOLPGM("/");
SERIAL_PROTOCOLLN(filesize); SERIAL_PROTOCOLLN(filesize);
} }
else{ else {
SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING); SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING);
} }
} }
void CardReader::write_command(char *buf)
{ void CardReader::write_command(char *buf) {
char* begin = buf; char* begin = buf;
char* npos = 0; char* npos = 0;
char* end = buf + strlen(buf) - 1; char* end = buf + strlen(buf) - 1;
file.writeError = false; file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL) if ((npos = strchr(buf, 'N')) != NULL) {
{
begin = strchr(npos, ' ') + 1; begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1; end = strchr(npos, '*') - 1;
} }
@ -484,162 +391,129 @@ void CardReader::write_command(char *buf)
end[2] = '\n'; end[2] = '\n';
end[3] = '\0'; end[3] = '\0';
file.write(begin); file.write(begin);
if (file.writeError) if (file.writeError) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE); SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE);
} }
} }
void CardReader::checkautostart(bool force) {
if (!force && (!autostart_stilltocheck || autostart_atmillis < millis()))
return;
void CardReader::checkautostart(bool force) autostart_stilltocheck = false;
{
if(!force) if (!cardOK) {
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return;
}
autostart_stilltocheck=false;
if(!cardOK)
{
initsd(); initsd();
if(!cardOK) //fail if (!cardOK) return; // fail
return;
} }
char autoname[30]; char autoname[30];
sprintf_P(autoname, PSTR("auto%i.g"), autostart_index); sprintf_P(autoname, PSTR("auto%i.g"), autostart_index);
for(int8_t i=0;i<(int8_t)strlen(autoname);i++) for (int8_t i = 0; i < (int8_t)strlen(autoname); i++) autoname[i] = tolower(autoname[i]);
autoname[i]=tolower(autoname[i]);
dir_t p; dir_t p;
root.rewind(); root.rewind();
bool found=false;
while (root.readDir(p, NULL) > 0)
{
for(int8_t i=0;i<(int8_t)strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30];
bool found = false;
while (root.readDir(p, NULL) > 0) {
for (int8_t i = 0; i < (int8_t)strlen((char*)p.name); i++) p.name[i] = tolower(p.name[i]);
if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) {
char cmd[30];
sprintf_P(cmd, PSTR("M23 %s"), autoname); sprintf_P(cmd, PSTR("M23 %s"), autoname);
enquecommand(cmd); enquecommand(cmd);
enquecommands_P(PSTR("M24")); enquecommands_P(PSTR("M24"));
found=true; found = true;
} }
} }
if(!found) if (!found)
autostart_index=-1; autostart_index = -1;
else else
autostart_index++; autostart_index++;
} }
void CardReader::closefile(bool store_location) void CardReader::closefile(bool store_location) {
{
file.sync(); file.sync();
file.close(); file.close();
saving = false; saving = logging = false;
logging = false;
if (store_location) {
if(store_location)
{
//future: store printer state, filename and position for continuing a stopped print //future: store printer state, filename and position for continuing a stopped print
// so one can unplug the printer and continue printing the next day. // so one can unplug the printer and continue printing the next day.
} }
} }
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) /**
{ * Get the name of a file in the current directory by index
curDir=&workDir; */
lsAction=LS_GetFilename; void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) {
nrFiles=nr; curDir = &workDir;
lsAction = LS_GetFilename;
nrFiles = nr;
curDir->rewind(); curDir->rewind();
lsDive("",*curDir,match); lsDive("", *curDir, match);
} }
uint16_t CardReader::getnrfilenames() uint16_t CardReader::getnrfilenames() {
{ curDir = &workDir;
curDir=&workDir; lsAction = LS_Count;
lsAction=LS_Count; nrFiles = 0;
nrFiles=0;
curDir->rewind(); curDir->rewind();
lsDive("",*curDir); lsDive("", *curDir);
//SERIAL_ECHOLN(nrFiles); //SERIAL_ECHOLN(nrFiles);
return nrFiles; return nrFiles;
} }
void CardReader::chdir(const char * relpath) void CardReader::chdir(const char * relpath) {
{
SdFile newfile; SdFile newfile;
SdFile *parent=&root; SdFile *parent = &root;
if(workDir.isOpen()) if (workDir.isOpen()) parent = &workDir;
parent=&workDir;
if (!newfile.open(*parent, relpath, O_READ)) {
if(!newfile.open(*parent,relpath, O_READ)) SERIAL_ECHO_START;
{ SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR);
SERIAL_ECHO_START; SERIAL_ECHOLN(relpath);
SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR);
SERIAL_ECHOLN(relpath);
} }
else else {
{
if (workDirDepth < MAX_DIR_DEPTH) { if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;) ++workDirDepth;
workDirParents[d+1] = workDirParents[d]; for (int d = workDirDepth; d--;) workDirParents[d + 1] = workDirParents[d];
workDirParents[0]=*parent; workDirParents[0] = *parent;
} }
workDir=newfile; workDir = newfile;
} }
} }
void CardReader::updir() void CardReader::updir() {
{ if (workDirDepth > 0) {
if(workDirDepth > 0)
{
--workDirDepth; --workDirDepth;
workDir = workDirParents[0]; workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++) for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1]; workDirParents[d] = workDirParents[d+1];
} }
} }
void CardReader::printingHasFinished() {
void CardReader::printingHasFinished() st_synchronize();
{ if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
st_synchronize(); file.close();
if(file_subcall_ctr>0) //heading up to a parent file that called current as a procedure. file_subcall_ctr--;
{ openFile(filenames[file_subcall_ctr], true, true);
file.close(); setIndex(filespos[file_subcall_ctr]);
file_subcall_ctr--; startFileprint();
openFile(filenames[file_subcall_ctr],true,true); }
setIndex(filespos[file_subcall_ctr]); else {
startFileprint(); quickStop();
} file.close();
else sdprinting = false;
{ if (SD_FINISHED_STEPPERRELEASE) {
quickStop(); //finishAndDisableSteppers();
file.close(); enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
sdprinting = false;
if(SD_FINISHED_STEPPERRELEASE)
{
//finishAndDisableSteppers();
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
}
autotempShutdown();
} }
autotempShutdown();
}
} }
#endif //SDSUPPORT #endif //SDSUPPORT

View file

@ -3,21 +3,21 @@
#ifdef SDSUPPORT #ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10 #define MAX_DIR_DEPTH 10 // Maximum folder depth
#include "SdFile.h" #include "SdFile.h"
enum LsAction {LS_SerialPrint,LS_Count,LS_GetFilename}; enum LsAction { LS_SerialPrint, LS_Count, LS_GetFilename };
class CardReader
{ class CardReader {
public: public:
CardReader(); CardReader();
void initsd(); void initsd();
void write_command(char *buf); void write_command(char *buf);
//files auto[0-9].g on the sd card are performed in a row //files auto[0-9].g on the sd card are performed in a row
//this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset //this is to delay autostart and hence the initialisaiton of the sd card to some seconds after the normal init, so the device is available quick after a reset
void checkautostart(bool x); void checkautostart(bool x);
void openFile(char* name,bool read,bool replace_current=true); void openFile(char* name,bool read,bool replace_current=true);
void openLogFile(char* name); void openLogFile(char* name);
void removeFile(char* name); void removeFile(char* name);
@ -30,9 +30,8 @@ public:
void getfilename(uint16_t nr, const char* const match=NULL); void getfilename(uint16_t nr, const char* const match=NULL);
uint16_t getnrfilenames(); uint16_t getnrfilenames();
void getAbsFilename(char *t); void getAbsFilename(char *t);
void ls(); void ls();
void chdir(const char * relpath); void chdir(const char * relpath);
@ -41,56 +40,52 @@ public:
FORCE_INLINE bool isFileOpen() { return file.isOpen(); } FORCE_INLINE bool isFileOpen() { return file.isOpen(); }
FORCE_INLINE bool eof() { return sdpos>=filesize ;}; FORCE_INLINE bool eof() { return sdpos >= filesize; }
FORCE_INLINE int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();}; FORCE_INLINE int16_t get() { sdpos = file.curPosition(); return (int16_t)file.read(); }
FORCE_INLINE void setIndex(long index) {sdpos = index;file.seekSet(index);}; FORCE_INLINE void setIndex(long index) { sdpos = index; file.seekSet(index); }
FORCE_INLINE uint8_t percentDone(){if(!isFileOpen()) return 0; if(filesize) return sdpos/((filesize+99)/100); else return 0;}; FORCE_INLINE uint8_t percentDone() { return (isFileOpen() && filesize) ? sdpos / ((filesize + 99) / 100) : 0; }
FORCE_INLINE char* getWorkDirName(){workDir.getFilename(filename);return filename;}; FORCE_INLINE char* getWorkDirName() { workDir.getFilename(filename); return filename; }
public: public:
bool saving; bool saving, logging, sdprinting, cardOK, filenameIsDir;
bool logging; char filename[FILENAME_LENGTH], longFilename[LONG_FILENAME_LENGTH];
bool sdprinting;
bool cardOK;
char filename[FILENAME_LENGTH];
char longFilename[LONG_FILENAME_LENGTH];
bool filenameIsDir;
int autostart_index; int autostart_index;
private: private:
SdFile root,*curDir,workDir,workDirParents[MAX_DIR_DEPTH]; SdFile root, *curDir, workDir, workDirParents[MAX_DIR_DEPTH];
uint16_t workDirDepth; uint16_t workDirDepth;
Sd2Card card; Sd2Card card;
SdVolume volume; SdVolume volume;
SdFile file; SdFile file;
#define SD_PROCEDURE_DEPTH 1 #define SD_PROCEDURE_DEPTH 1
#define MAXPATHNAMELENGTH (FILENAME_LENGTH*MAX_DIR_DEPTH+MAX_DIR_DEPTH+1) #define MAXPATHNAMELENGTH (FILENAME_LENGTH*MAX_DIR_DEPTH + MAX_DIR_DEPTH + 1)
uint8_t file_subcall_ctr; uint8_t file_subcall_ctr;
uint32_t filespos[SD_PROCEDURE_DEPTH]; uint32_t filespos[SD_PROCEDURE_DEPTH];
char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH]; char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH];
uint32_t filesize; uint32_t filesize;
//int16_t n;
unsigned long autostart_atmillis; unsigned long autostart_atmillis;
uint32_t sdpos ; uint32_t sdpos;
bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware. bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
LsAction lsAction; //stored for recursion. LsAction lsAction; //stored for recursion.
int16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory. uint16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
char* diveDirName; char* diveDirName;
void lsDive(const char *prepend, SdFile parent, const char * const match=NULL); void lsDive(const char *prepend, SdFile parent, const char * const match=NULL);
}; };
extern CardReader card; extern CardReader card;
#define IS_SD_PRINTING (card.sdprinting) #define IS_SD_PRINTING (card.sdprinting)
#if (SDCARDDETECT > -1) #if (SDCARDDETECT > -1)
# ifdef SDCARDDETECTINVERTED #ifdef SDCARDDETECTINVERTED
# define IS_SD_INSERTED (READ(SDCARDDETECT)!=0) #define IS_SD_INSERTED (READ(SDCARDDETECT) != 0)
# else #else
# define IS_SD_INSERTED (READ(SDCARDDETECT)==0) #define IS_SD_INSERTED (READ(SDCARDDETECT) == 0)
# endif //SDCARDTETECTINVERTED #endif
#else #else
//If we don't have a card detect line, aways asume the card is inserted //No card detect line? Assume the card is inserted.
# define IS_SD_INSERTED true #define IS_SD_INSERTED true
#endif #endif
#else #else
@ -98,4 +93,5 @@ extern CardReader card;
#define IS_SD_PRINTING (false) #define IS_SD_PRINTING (false)
#endif //SDSUPPORT #endif //SDSUPPORT
#endif
#endif //__CARDREADER_H

View file

@ -1,59 +1,58 @@
#include "Configuration.h" #include "Configuration.h"
#ifdef DIGIPOT_I2C #ifdef DIGIPOT_I2C
#include "Stream.h" #include "Stream.h"
#include "utility/twi.h" #include "utility/twi.h"
#include "Wire.h" #include "Wire.h"
// Settings for the I2C based DIGIPOT (MCP4451) on Azteeg X3 Pro // Settings for the I2C based DIGIPOT (MCP4451) on Azteeg X3 Pro
#if MB(5DPRINT) #if MB(5DPRINT)
#define DIGIPOT_I2C_FACTOR 117.96 #define DIGIPOT_I2C_FACTOR 117.96
#define DIGIPOT_I2C_MAX_CURRENT 1.736 #define DIGIPOT_I2C_MAX_CURRENT 1.736
#else #else
#define DIGIPOT_I2C_FACTOR 106.7 #define DIGIPOT_I2C_FACTOR 106.7
#define DIGIPOT_I2C_MAX_CURRENT 2.5 #define DIGIPOT_I2C_MAX_CURRENT 2.5
#endif #endif
static byte current_to_wiper( float current ){ static byte current_to_wiper(float current) {
return byte(ceil(float((DIGIPOT_I2C_FACTOR*current)))); return byte(ceil(float((DIGIPOT_I2C_FACTOR*current))));
} }
static void i2c_send(byte addr, byte a, byte b) static void i2c_send(byte addr, byte a, byte b) {
{ Wire.beginTransmission(addr);
Wire.beginTransmission(addr); Wire.write(a);
Wire.write(a); Wire.write(b);
Wire.write(b); Wire.endTransmission();
Wire.endTransmission();
} }
// This is for the MCP4451 I2C based digipot // This is for the MCP4451 I2C based digipot
void digipot_i2c_set_current( int channel, float current ) void digipot_i2c_set_current(int channel, float current) {
{ current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT);
current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT); // these addresses are specific to Azteeg X3 Pro, can be set to others,
// these addresses are specific to Azteeg X3 Pro, can be set to others, // In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1
// In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1 byte addr = 0x2C; // channel 0-3
byte addr= 0x2C; // channel 0-3 if (channel >= 4) {
if(channel >= 4) { addr = 0x2E; // channel 4-7
addr= 0x2E; // channel 4-7 channel -= 4;
channel-= 4; }
}
// Initial setup // Initial setup
i2c_send( addr, 0x40, 0xff ); i2c_send(addr, 0x40, 0xff);
i2c_send( addr, 0xA0, 0xff ); i2c_send(addr, 0xA0, 0xff);
// Set actual wiper value // Set actual wiper value
byte addresses[4] = { 0x00, 0x10, 0x60, 0x70 }; byte addresses[4] = { 0x00, 0x10, 0x60, 0x70 };
i2c_send( addr, addresses[channel], current_to_wiper(current) ); i2c_send(addr, addresses[channel], current_to_wiper(current));
} }
void digipot_i2c_init() void digipot_i2c_init() {
{ const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS;
const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS; Wire.begin();
Wire.begin(); // setup initial currents as defined in Configuration_adv.h
// setup initial currents as defined in Configuration_adv.h for(int i = 0; i <= sizeof(digipot_motor_current) / sizeof(float); i++) {
for(int i=0;i<=sizeof(digipot_motor_current)/sizeof(float);i++) { digipot_i2c_set_current(i, digipot_motor_current[i]);
digipot_i2c_set_current(i, digipot_motor_current[i]); }
}
} }
#endif
#endif //DIGIPOT_I2C

View file

@ -587,6 +587,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -645,6 +649,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -597,6 +597,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -655,6 +659,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -590,6 +590,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -648,6 +652,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -591,6 +591,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -649,6 +653,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -495,6 +495,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -560,6 +564,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -565,6 +565,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -623,6 +627,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -578,6 +578,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -636,6 +640,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

View file

@ -159,6 +159,43 @@
#define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!" #define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!"
// temperature.cpp strings
#define MSG_PID_AUTOTUNE "PID Autotune"
#define MSG_PID_AUTOTUNE_START MSG_PID_AUTOTUNE " start"
#define MSG_PID_AUTOTUNE_FAILED MSG_PID_AUTOTUNE " failed!"
#define MSG_PID_BAD_EXTRUDER_NUM MSG_PID_AUTOTUNE_FAILED " Bad extruder number"
#define MSG_PID_TEMP_TOO_HIGH MSG_PID_AUTOTUNE_FAILED " Temperature too high"
#define MSG_PID_TIMEOUT MSG_PID_AUTOTUNE_FAILED " timeout"
#define MSG_BIAS " bias: "
#define MSG_D " d: "
#define MSG_MIN " min: "
#define MSG_MAX " max: "
#define MSG_KU " Ku: "
#define MSG_TU " Tu: "
#define MSG_CLASSIC_PID " Classic PID "
#define MSG_KP " Kp: "
#define MSG_KI " Ki: "
#define MSG_KD " Kd: "
#define MSG_OK_B "ok B:"
#define MSG_OK_T "ok T:"
#define MSG_AT " @:"
#define MSG_PID_AUTOTUNE_FINISHED MSG_PID_AUTOTUNE " finished! Put the last Kp, Ki and Kd constants from above into Configuration.h"
#define MSG_PID_DEBUG " PID_DEBUG "
#define MSG_PID_DEBUG_INPUT ": Input "
#define MSG_PID_DEBUG_OUTPUT " Output "
#define MSG_PID_DEBUG_PTERM " pTerm "
#define MSG_PID_DEBUG_ITERM " iTerm "
#define MSG_PID_DEBUG_DTERM " dTerm "
#define MSG_HEATING_FAILED "Heating failed"
#define MSG_EXTRUDER_SWITCHED_OFF "Extruder switched off. Temperature difference between temp sensors is too high !"
#define MSG_INVALID_EXTRUDER_NUM " - Invalid extruder number !"
#define MSG_THERMAL_RUNAWAY_STOP "Thermal Runaway, system stopped! Heater_ID: "
#define MSG_SWITCHED_OFF_MAX " switched off. MAXTEMP triggered !!"
#define MSG_MINTEMP_EXTRUDER_OFF ": Extruder switched off. MINTEMP triggered !"
#define MSG_MAXTEMP_EXTRUDER_OFF ": Extruder" MSG_SWITCHED_OFF_MAX
#define MSG_MAXTEMP_BED_OFF "Heated bed" MSG_SWITCHED_OFF_MAX
// LCD Menu Messages // LCD Menu Messages
// Add your own character. Reference: https://github.com/MarlinFirmware/Marlin/pull/1434 photos // Add your own character. Reference: https://github.com/MarlinFirmware/Marlin/pull/1434 photos

View file

@ -65,6 +65,18 @@
#ifndef MSG_PREHEAT_ABS_SETTINGS #ifndef MSG_PREHEAT_ABS_SETTINGS
#define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " conf" #define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " conf"
#endif #endif
#ifndef MSG_H1
#define MSG_H1 "1"
#endif
#ifndef MSG_H2
#define MSG_H2 "2"
#endif
#ifndef MSG_H3
#define MSG_H3 "3"
#endif
#ifndef MSG_H4
#define MSG_H4 "4"
#endif
#ifndef MSG_COOLDOWN #ifndef MSG_COOLDOWN
#define MSG_COOLDOWN "Cooldown" #define MSG_COOLDOWN "Cooldown"
#endif #endif
@ -110,6 +122,15 @@
#ifndef MSG_NOZZLE #ifndef MSG_NOZZLE
#define MSG_NOZZLE "Nozzle" #define MSG_NOZZLE "Nozzle"
#endif #endif
#ifndef MSG_N2
#define MSG_N2 " 2"
#endif
#ifndef MSG_N3
#define MSG_N3 " 3"
#endif
#ifndef MSG_N4
#define MSG_N4 " 4"
#endif
#ifndef MSG_BED #ifndef MSG_BED
#define MSG_BED "Bed" #define MSG_BED "Bed"
#endif #endif
@ -119,6 +140,18 @@
#ifndef MSG_FLOW #ifndef MSG_FLOW
#define MSG_FLOW "Flow" #define MSG_FLOW "Flow"
#endif #endif
#ifndef MSG_F0
#define MSG_F0 " 0"
#endif
#ifndef MSG_F1
#define MSG_F1 " 1"
#endif
#ifndef MSG_F2
#define MSG_F2 " 2"
#endif
#ifndef MSG_F3
#define MSG_F3 " 3"
#endif
#ifndef MSG_CONTROL #ifndef MSG_CONTROL
#define MSG_CONTROL "Control" #define MSG_CONTROL "Control"
#endif #endif
@ -152,6 +185,15 @@
#ifndef MSG_PID_C #ifndef MSG_PID_C
#define MSG_PID_C "PID-C" #define MSG_PID_C "PID-C"
#endif #endif
#ifndef MSG_E2
#define MSG_E2 " E2"
#endif
#ifndef MSG_E3
#define MSG_E3 " E3"
#endif
#ifndef MSG_E4
#define MSG_E4 " E4"
#endif
#ifndef MSG_ACC #ifndef MSG_ACC
#define MSG_ACC "Accel" #define MSG_ACC "Accel"
#endif #endif
@ -213,7 +255,7 @@
#define MSG_VOLUMETRIC "Filament" #define MSG_VOLUMETRIC "Filament"
#endif #endif
#ifndef MSG_VOLUMETRIC_ENABLED #ifndef MSG_VOLUMETRIC_ENABLED
#define MSG_VOLUMETRIC_ENABLED "E in mm" STR_h3 #define MSG_VOLUMETRIC_ENABLED "E in mm" STR_h3
#endif #endif
#ifndef MSG_FILAMENT_SIZE_EXTRUDER_0 #ifndef MSG_FILAMENT_SIZE_EXTRUDER_0
#define MSG_FILAMENT_SIZE_EXTRUDER_0 "Fil. Dia. 1" #define MSG_FILAMENT_SIZE_EXTRUDER_0 "Fil. Dia. 1"
@ -341,23 +383,41 @@
#ifndef MSG_ENDSTOP_ABORT #ifndef MSG_ENDSTOP_ABORT
#define MSG_ENDSTOP_ABORT "Endstop abort" #define MSG_ENDSTOP_ABORT "Endstop abort"
#endif #endif
#ifndef MSG_HEATING_FAILED_LCD
#define MSG_HEATING_FAILED_LCD "Heating failed"
#endif
#ifndef MSG_ERR_REDUNDANT_TEMP
#define MSG_ERR_REDUNDANT_TEMP "Err: REDUNDANT TEMP ERROR"
#endif
#ifndef MSG_THERMAL_RUNAWAY
#define MSG_THERMAL_RUNAWAY "THERMAL RUNAWAY"
#endif
#ifndef MSG_ERR_MAXTEMP
#define MSG_ERR_MAXTEMP "Err: MAXTEMP"
#endif
#ifndef MSG_ERR_MINTEMP
#define MSG_ERR_MINTEMP "Err: MINTEMP"
#endif
#ifndef MSG_ERR_MAXTEMP_BED
#define MSG_ERR_MAXTEMP_BED "Err: MAXTEMP BED"
#endif
#ifdef DELTA_CALIBRATION_MENU #ifdef DELTA_CALIBRATION_MENU
#ifndef MSG_DELTA_CALIBRATE #ifndef MSG_DELTA_CALIBRATE
#define MSG_DELTA_CALIBRATE "Delta Calibration" #define MSG_DELTA_CALIBRATE "Delta Calibration"
#endif #endif
#ifndef MSG_DELTA_CALIBRATE_X #ifndef MSG_DELTA_CALIBRATE_X
#define MSG_DELTA_CALIBRATE_X "Calibrate X" #define MSG_DELTA_CALIBRATE_X "Calibrate X"
#endif #endif
#ifndef MSG_DELTA_CALIBRATE_Y #ifndef MSG_DELTA_CALIBRATE_Y
#define MSG_DELTA_CALIBRATE_Y "Calibrate Y" #define MSG_DELTA_CALIBRATE_Y "Calibrate Y"
#endif #endif
#ifndef MSG_DELTA_CALIBRATE_Z #ifndef MSG_DELTA_CALIBRATE_Z
#define MSG_DELTA_CALIBRATE_Z "Calibrate Z" #define MSG_DELTA_CALIBRATE_Z "Calibrate Z"
#endif #endif
#ifndef MSG_DELTA_CALIBRATE_CENTER #ifndef MSG_DELTA_CALIBRATE_CENTER
#define MSG_DELTA_CALIBRATE_CENTER "Calibrate Center" #define MSG_DELTA_CALIBRATE_CENTER "Calibrate Center"
#endif #endif
#endif // DELTA_CALIBRATION_MENU #endif // DELTA_CALIBRATION_MENU
#endif // LANGUAGE_EN_H #endif // LANGUAGE_EN_H

View file

@ -122,12 +122,22 @@
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#ifdef NEWPANEL #ifdef NEWPANEL
#define LCD_PINS_RS 16 #ifdef PANEL_ONE
#define LCD_PINS_ENABLE 17 #define LCD_PINS_RS 40
#define LCD_PINS_D4 23 #define LCD_PINS_ENABLE 42
#define LCD_PINS_D5 25 #define LCD_PINS_D4 65
#define LCD_PINS_D6 27 #define LCD_PINS_D5 66
#define LCD_PINS_D7 29 #define LCD_PINS_D6 44
#define LCD_PINS_D7 64
#else
#define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 23
#define LCD_PINS_D5 25
#define LCD_PINS_D6 27
#define LCD_PINS_D7 29
#endif
#ifdef REPRAP_DISCOUNT_SMART_CONTROLLER #ifdef REPRAP_DISCOUNT_SMART_CONTROLLER
#define BEEPER 37 #define BEEPER 37
@ -162,6 +172,10 @@
#define SHIFT_OUT 40 // shift register #define SHIFT_OUT 40 // shift register
#define SHIFT_CLK 44 // shift register #define SHIFT_CLK 44 // shift register
#define SHIFT_LD 42 // shift register #define SHIFT_LD 42 // shift register
#elif defined(PANEL_ONE)
#define BTN_EN1 59 // AUX2 PIN 3
#define BTN_EN2 63 // AUX2 PIN 4
#define BTN_ENC 49 // AUX3 PIN 7
#else #else
#define BTN_EN1 37 #define BTN_EN1 37
#define BTN_EN2 35 #define BTN_EN2 35

View file

@ -6,6 +6,10 @@
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu. #error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif #endif
#if EXTRUDERS > 3
#error RUMBA supports up to 3 extruders. Comment this line to keep going.
#endif
#define X_STEP_PIN 17 #define X_STEP_PIN 17
#define X_DIR_PIN 16 #define X_DIR_PIN 16
#define X_ENABLE_PIN 48 #define X_ENABLE_PIN 48

View file

@ -399,89 +399,84 @@ ISR(TIMER1_COMPA_vect)
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
} }
// Set direction en check limit switches if(check_endstops) // check X and Y Endstops
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
#else
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
#endif
{ {
CHECK_ENDSTOPS #ifndef COREXY
{ if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
#ifdef DUAL_X_CARRIAGE #else
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1)) #endif
#endif { // -direction
{ #ifdef DUAL_X_CARRIAGE
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { #endif
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; {
endstop_x_hit=true; #if defined(X_MIN_PIN) && X_MIN_PIN > -1
step_events_completed = current_block->step_event_count; bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
}
old_x_min_endstop = x_min_endstop;
#endif
} }
old_x_min_endstop = x_min_endstop;
#endif
} }
} else
} { // +direction
else #ifdef DUAL_X_CARRIAGE
{ // +direction // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
CHECK_ENDSTOPS if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
{ #endif
#ifdef DUAL_X_CARRIAGE {
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder #if defined(X_MAX_PIN) && X_MAX_PIN > -1
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1)) if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
#endif {
{ endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 endstop_x_hit=true;
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); step_events_completed = current_block->step_event_count;
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ }
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; old_x_max_endstop = x_max_endstop;
endstop_x_hit=true; #endif
step_events_completed = current_block->step_event_count;
} }
old_x_max_endstop = x_max_endstop;
#endif
} }
}
}
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else #else
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
#endif if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
{
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_min_endstop = y_min_endstop;
#endif #endif
} { // -direction
} #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
else bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
{ // +direction if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
CHECK_ENDSTOPS {
{ endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 endstop_y_hit=true;
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); step_events_completed = current_block->step_event_count;
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ }
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; old_y_min_endstop = y_min_endstop;
endstop_y_hit=true; #endif
step_events_completed = current_block->step_event_count; }
} else
old_y_max_endstop = y_max_endstop; { // +direction
#endif #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
} bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
}
} }
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction

View file

@ -33,9 +33,43 @@
#include "ultralcd.h" #include "ultralcd.h"
#include "temperature.h" #include "temperature.h"
#include "watchdog.h" #include "watchdog.h"
#include "language.h"
#include "Sd2PinMap.h" #include "Sd2PinMap.h"
//===========================================================================
//================================== macros =================================
//===========================================================================
#if EXTRUDERS > 4
#error Unsupported number of extruders
#elif EXTRUDERS > 3
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif EXTRUDERS > 2
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
#elif EXTRUDERS > 1
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
#else
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
#endif
#define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN >= 0)
#define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN >= 0)
#define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN >= 0)
#define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN >= 0)
#define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN >= 0)
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN >= 0)
#define HAS_HEATER_0 (defined(HEATER_0_PIN) && HEATER_0_PIN >= 0)
#define HAS_HEATER_1 (defined(HEATER_1_PIN) && HEATER_1_PIN >= 0)
#define HAS_HEATER_2 (defined(HEATER_2_PIN) && HEATER_2_PIN >= 0)
#define HAS_HEATER_3 (defined(HEATER_3_PIN) && HEATER_3_PIN >= 0)
#define HAS_HEATER_BED (defined(HEATER_BED_PIN) && HEATER_BED_PIN >= 0)
#define HAS_AUTO_FAN_0 (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN_1 (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN_2 (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN_3 (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3
#define HAS_FAN (defined(FAN_PIN) && FAN_PIN >= 0)
//=========================================================================== //===========================================================================
//============================= public variables ============================ //============================= public variables ============================
@ -71,7 +105,7 @@ float current_temperature_bed = 0.0;
unsigned char soft_pwm_bed; unsigned char soft_pwm_bed;
#ifdef BABYSTEPPING #ifdef BABYSTEPPING
volatile int babystepsTodo[3]={0,0,0}; volatile int babystepsTodo[3] = { 0 };
#endif #endif
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
@ -116,40 +150,26 @@ static volatile bool temp_meas_ready = false;
#ifdef FAN_SOFT_PWM #ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan; static unsigned char soft_pwm_fan;
#endif #endif
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \ #if HAS_AUTO_FAN
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
static unsigned long extruder_autofan_last_check; static unsigned long extruder_autofan_last_check;
#endif #endif
#if EXTRUDERS > 4
# error Unsupported number of extruders
#elif EXTRUDERS > 3
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
#endif
#ifdef PIDTEMP #ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER #ifdef PID_PARAMS_PER_EXTRUDER
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp); float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT); float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT); float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc); float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
#endif // PID_ADD_EXTRUSION_RATE #endif // PID_ADD_EXTRUSION_RATE
#else //PID_PARAMS_PER_EXTRUDER #else //PID_PARAMS_PER_EXTRUDER
float Kp = DEFAULT_Kp; float Kp = DEFAULT_Kp;
float Ki = DEFAULT_Ki * PID_dT; float Ki = DEFAULT_Ki * PID_dT;
float Kd = DEFAULT_Kd / PID_dT; float Kd = DEFAULT_Kd / PID_dT;
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
float Kc = DEFAULT_Kc; float Kc = DEFAULT_Kc;
#endif // PID_ADD_EXTRUSION_RATE #endif // PID_ADD_EXTRUSION_RATE
#endif // PID_PARAMS_PER_EXTRUDER #endif // PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP #endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup // Init min and max temp with extreme values to prevent false errors during startup
@ -159,7 +179,7 @@ static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 ); static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */ //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
#ifdef BED_MAXTEMP #ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP; static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif #endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT #ifdef TEMP_SENSOR_1_AS_REDUNDANT
@ -175,12 +195,12 @@ static float analog2tempBed(int raw);
static void updateTemperaturesFromRawValues(); static void updateTemperaturesFromRawValues();
#ifdef WATCH_TEMP_PERIOD #ifdef WATCH_TEMP_PERIOD
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0); int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0); unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
#endif //WATCH_TEMP_PERIOD #endif //WATCH_TEMP_PERIOD
#ifndef SOFT_PWM_SCALE #ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0 #define SOFT_PWM_SCALE 0
#endif #endif
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
@ -198,113 +218,98 @@ unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
void PID_autotune(float temp, int extruder, int ncycles) void PID_autotune(float temp, int extruder, int ncycles)
{ {
float input = 0.0; float input = 0.0;
int cycles=0; int cycles = 0;
bool heating = true; bool heating = true;
unsigned long temp_millis = millis(); unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
unsigned long t1=temp_millis; long t_high = 0, t_low = 0;
unsigned long t2=temp_millis;
long t_high = 0;
long t_low = 0;
long bias, d; long bias, d;
float Ku, Tu; float Ku, Tu;
float Kp, Ki, Kd; float Kp, Ki, Kd;
float max = 0, min = 10000; float max = 0, min = 10000;
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \ #if HAS_AUTO_FAN
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \ unsigned long extruder_autofan_last_check = temp_millis;
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
unsigned long extruder_autofan_last_check = millis();
#endif
if ((extruder >= EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
#endif #endif
){
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number."); if (extruder >= EXTRUDERS
return; #if !HAS_TEMP_BED
} || extruder < 0
#endif
) {
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
}
SERIAL_ECHOLN("PID Autotune start"); SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_heater(); // switch off all heaters. disable_heater(); // switch off all heaters.
if (extruder<0) if (extruder < 0)
{ soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
soft_pwm_bed = (MAX_BED_POWER)/2; else
bias = d = (MAX_BED_POWER)/2; soft_pwm[extruder] = bias = d = PID_MAX / 2;
}
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
}
// PID Tuning loop
for(;;) {
unsigned long ms = millis();
if (temp_meas_ready == true) { // temp sample ready
for(;;) {
if(temp_meas_ready == true) { // temp sample ready
updateTemperaturesFromRawValues(); updateTemperaturesFromRawValues();
input = (extruder<0)?current_temperature_bed:current_temperature[extruder]; input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
max=max(max,input); max = max(max, input);
min=min(min,input); min = min(min, input);
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \ #if HAS_AUTO_FAN
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \ if (ms > extruder_autofan_last_check + 2500) {
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \ checkExtruderAutoFans();
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1) extruder_autofan_last_check = ms;
if(millis() - extruder_autofan_last_check > 2500) { }
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
}
#endif #endif
if(heating == true && input > temp) { if (heating == true && input > temp) {
if(millis() - t2 > 5000) { if (ms - t2 > 5000) {
heating=false; heating = false;
if (extruder<0) if (extruder < 0)
soft_pwm_bed = (bias - d) >> 1; soft_pwm_bed = (bias - d) >> 1;
else else
soft_pwm[extruder] = (bias - d) >> 1; soft_pwm[extruder] = (bias - d) >> 1;
t1=millis(); t1 = ms;
t_high=t1 - t2; t_high = t1 - t2;
max=temp; max = temp;
} }
} }
if(heating == false && input < temp) { if (heating == false && input < temp) {
if(millis() - t1 > 5000) { if (ms - t1 > 5000) {
heating=true; heating = true;
t2=millis(); t2 = ms;
t_low=t2 - t1; t_low = t2 - t1;
if(cycles > 0) { if (cycles > 0) {
long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
bias += (d*(t_high - t_low))/(t_low + t_high); bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20); bias = constrain(bias, 20, max_pow - 20);
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias; d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
else d = bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias); SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d); SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min); SERIAL_PROTOCOLPGM(MSG_MIN); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max); SERIAL_PROTOCOLPGM(MSG_MAX); SERIAL_PROTOCOLLN(max);
if(cycles > 2) { if (cycles > 2) {
Ku = (4.0*d)/(3.14159*(max-min)/2.0); Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
Tu = ((float)(t_low + t_high)/1000.0); Tu = ((float)(t_low + t_high) / 1000.0);
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku); SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu); SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
Kp = 0.6*Ku; Kp = 0.6 * Ku;
Ki = 2*Kp/Tu; Ki = 2 * Kp / Tu;
Kd = Kp*Tu/8; Kd = Kp * Tu / 8;
SERIAL_PROTOCOLLNPGM(" Classic PID "); SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp); SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki); SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd); SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
/* /*
Kp = 0.33*Ku; Kp = 0.33*Ku;
Ki = Kp/Tu; Ki = Kp/Tu;
@ -323,79 +328,80 @@ void PID_autotune(float temp, int extruder, int ncycles)
*/ */
} }
} }
if (extruder<0) if (extruder < 0)
soft_pwm_bed = (bias + d) >> 1; soft_pwm_bed = (bias + d) >> 1;
else else
soft_pwm[extruder] = (bias + d) >> 1; soft_pwm[extruder] = (bias + d) >> 1;
cycles++; cycles++;
min=temp; min = temp;
} }
} }
} }
if(input > (temp + 20)) { if (input > temp + 20) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high"); SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return; return;
} }
if(millis() - temp_millis > 2000) { // Every 2 seconds...
if (ms > temp_millis + 2000) {
int p; int p;
if (extruder<0){ if (extruder < 0) {
p=soft_pwm_bed; p = soft_pwm_bed;
SERIAL_PROTOCOLPGM("ok B:"); SERIAL_PROTOCOLPGM(MSG_OK_B);
}else{ }
p=soft_pwm[extruder]; else {
SERIAL_PROTOCOLPGM("ok T:"); p = soft_pwm[extruder];
SERIAL_PROTOCOLPGM(MSG_OK_T);
} }
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLLN(p);
temp_millis = millis(); SERIAL_PROTOCOL(input);
} SERIAL_PROTOCOLPGM(MSG_AT);
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) { SERIAL_PROTOCOLLN(p);
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
temp_millis = ms;
} // every 2 seconds
// Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
return; return;
} }
if(cycles > ncycles) { if (cycles > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h"); SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
return; return;
} }
lcd_update(); lcd_update();
} }
} }
void updatePID() void updatePID() {
{ #ifdef PIDTEMP
#ifdef PIDTEMP for (int e = 0; e < EXTRUDERS; e++) {
for(int e = 0; e < EXTRUDERS; e++) { temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e); }
} #endif
#endif #ifdef PIDTEMPBED
#ifdef PIDTEMPBED temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi; #endif
#endif
} }
int getHeaterPower(int heater) { int getHeaterPower(int heater) {
if (heater<0) return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
return soft_pwm_bed;
return soft_pwm[heater];
} }
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \ #if HAS_AUTO_FAN
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
#if defined(FAN_PIN) && FAN_PIN > -1 #if HAS_FAN
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN" #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif #endif
#if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN" #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
#endif #endif
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN" #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
#endif #endif
#if EXTRUDER_3_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_3_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif #endif
void setExtruderAutoFanState(int pin, bool state) void setExtruderAutoFanState(int pin, bool state)
@ -412,20 +418,20 @@ void checkExtruderAutoFans()
uint8_t fanState = 0; uint8_t fanState = 0;
// which fan pins need to be turned on? // which fan pins need to be turned on?
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_0
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1; fanState |= 1;
#endif #endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{ {
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1; fanState |= 1;
else else
fanState |= 2; fanState |= 2;
} }
#endif #endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_2
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{ {
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
@ -436,7 +442,7 @@ void checkExtruderAutoFans()
fanState |= 4; fanState |= 4;
} }
#endif #endif
#if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_3
if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE) if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{ {
if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
@ -451,19 +457,19 @@ void checkExtruderAutoFans()
#endif #endif
// update extruder auto fan states // update extruder auto fan states
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0); setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif #endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_1
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN) if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0); setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif #endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_2
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0); setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif #endif
#if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1 #if HAS_AUTO_FAN_3
if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
@ -473,47 +479,81 @@ void checkExtruderAutoFans()
#endif // any extruder auto fan pins set #endif // any extruder auto fan pins set
void manage_heater() //
{ // Error checking and Write Routines
float pid_input; //
float pid_output; #if !HAS_HEATER_0
#error HEATER_0_PIN not defined for this board
#endif
#define WRITE_HEATER_0P(v) WRITE(HEATER_0_PIN, v)
#if EXTRUDERS > 1 || defined(HEATERS_PARALLEL)
#if !HAS_HEATER_1
#error HEATER_1_PIN not defined for this board
#endif
#define WRITE_HEATER_1(v) WRITE(HEATER_1_PIN, v)
#if EXTRUDERS > 2
#if !HAS_HEATER_2
#error HEATER_2_PIN not defined for this board
#endif
#define WRITE_HEATER_2(v) WRITE(HEATER_2_PIN, v)
#if EXTRUDERS > 3
#if !HAS_HEATER_3
#error HEATER_3_PIN not defined for this board
#endif
#define WRITE_HEATER_3(v) WRITE(HEATER_3_PIN, v)
#endif
#endif
#endif
#ifdef HEATERS_PARALLEL
#define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); }
#else
#define WRITE_HEATER_0(v) WRITE_HEATER_0P(v)
#endif
#if HAS_HEATER_BED
#define WRITE_HEATER_BED(v) WRITE(HEATER_BED_PIN, v)
#endif
#if HAS_FAN
#define WRITE_FAN(v) WRITE(FAN_PIN, v)
#endif
if(temp_meas_ready != true) //better readability void manage_heater() {
return;
if (!temp_meas_ready) return;
float pid_input, pid_output;
updateTemperaturesFromRawValues(); updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
if (current_temperature[0] > 1023 || current_temperature[0] > HEATER_0_MAXTEMP) { float ct = current_temperature[0];
max_temp_error(0); if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
} if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
if (current_temperature[0] == 0 || current_temperature[0] < HEATER_0_MINTEMP) {
min_temp_error(0);
}
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
for(int e = 0; e < EXTRUDERS; e++) unsigned long ms = millis();
{
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 // Loop through all extruders
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS); for (int e = 0; e < EXTRUDERS; e++) {
#endif
#ifdef PIDTEMP #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
pid_input = current_temperature[e]; thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
#endif
#ifndef PID_OPENLOOP #ifdef PIDTEMP
pid_input = current_temperature[e];
#ifndef PID_OPENLOOP
pid_error[e] = target_temperature[e] - pid_input; pid_error[e] = target_temperature[e] - pid_input;
if(pid_error[e] > PID_FUNCTIONAL_RANGE) { if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
pid_output = BANG_MAX; pid_output = BANG_MAX;
pid_reset[e] = true; pid_reset[e] = true;
} }
else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) { else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
pid_output = 0; pid_output = 0;
pid_reset[e] = true; pid_reset[e] = true;
} }
else { else {
if(pid_reset[e] == true) { if (pid_reset[e] == true) {
temp_iState[e] = 0.0; temp_iState[e] = 0.0;
pid_reset[e] = false; pid_reset[e] = false;
} }
@ -524,95 +564,89 @@ void manage_heater()
//K1 defined in Configuration.h in the PID settings //K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]); dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e])) * K2 + (K1 * dTerm[e]);
pid_output = pTerm[e] + iTerm[e] - dTerm[e]; pid_output = pTerm[e] + iTerm[e] - dTerm[e];
if (pid_output > PID_MAX) { if (pid_output > PID_MAX) {
if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output=PID_MAX; pid_output = PID_MAX;
} else if (pid_output < 0){ }
if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration else if (pid_output < 0) {
pid_output=0; if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = 0;
} }
} }
temp_dState[e] = pid_input; temp_dState[e] = pid_input;
#else #else
pid_output = constrain(target_temperature[e], 0, PID_MAX); pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP #endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START; #ifdef PID_DEBUG
SERIAL_ECHO(" PID_DEBUG "); SERIAL_ECHO_START;
SERIAL_ECHO(e); SERIAL_ECHO(MSG_PID_DEBUG);
SERIAL_ECHO(": Input "); SERIAL_ECHO(e);
SERIAL_ECHO(pid_input); SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
SERIAL_ECHO(" Output "); SERIAL_ECHO(pid_input);
SERIAL_ECHO(pid_output); SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
SERIAL_ECHO(" pTerm "); SERIAL_ECHO(pid_output);
SERIAL_ECHO(pTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
SERIAL_ECHO(" iTerm "); SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(iTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
SERIAL_ECHO(" dTerm "); SERIAL_ECHO(iTerm[e]);
SERIAL_ECHOLN(dTerm[e]); SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
#endif //PID_DEBUG SERIAL_ECHOLN(dTerm[e]);
#else /* PID off */ #endif //PID_DEBUG
pid_output = 0;
if(current_temperature[e] < target_temperature[e]) { #else /* PID off */
pid_output = PID_MAX;
} pid_output = 0;
#endif if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX;
#endif
// Check if temperature is within the correct range // Check if temperature is within the correct range
if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e])) soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
{
soft_pwm[e] = (int)pid_output >> 1;
}
else {
soft_pwm[e] = 0;
}
#ifdef WATCH_TEMP_PERIOD #ifdef WATCH_TEMP_PERIOD
if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD) if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
{ if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) setTargetHotend(0, e);
{ LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
setTargetHotend(0, e); SERIAL_ECHO_START;
LCD_MESSAGEPGM("Heating failed"); SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
SERIAL_ECHO_START;
SERIAL_ECHOLN("Heating failed");
}else{
watchmillis[e] = 0;
} }
} else {
#endif watchmillis[e] = 0;
}
}
#endif //WATCH_TEMP_PERIOD
#ifdef TEMP_SENSOR_1_AS_REDUNDANT #ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) { if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater(); disable_heater();
if(IsStopped() == false) { if (IsStopped() == false) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !"); SERIAL_ERRORLNPGM(MSG_EXTRUDER_SWITCHED_OFF);
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR"); LCD_ALERTMESSAGEPGM(MSG_ERR_REDUNDANT_TEMP); // translatable
} }
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop(); Stop();
#endif #endif
} }
#endif #endif //TEMP_SENSOR_1_AS_REDUNDANT
} // End extruder for loop
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \ } // Extruders Loop
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) #if HAS_AUTO_FAN
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
{ checkExtruderAutoFans();
checkExtruderAutoFans(); extruder_autofan_last_check = ms;
extruder_autofan_last_check = millis(); }
}
#endif #endif
#ifndef PIDTEMPBED #ifndef PIDTEMPBED
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL) if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
return; previous_millis_bed_heater = ms;
previous_millis_bed_heater = millis(); #endif //PIDTEMPBED
#endif
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
@ -620,102 +654,75 @@ void manage_heater()
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS); thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
#endif #endif
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
pid_input = current_temperature_bed; pid_input = current_temperature_bed;
#ifndef PID_OPENLOOP #ifndef PID_OPENLOOP
pid_error_bed = target_temperature_bed - pid_input; pid_error_bed = target_temperature_bed - pid_input;
pTerm_bed = bedKp * pid_error_bed; pTerm_bed = bedKp * pid_error_bed;
temp_iState_bed += pid_error_bed; temp_iState_bed += pid_error_bed;
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed); temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
iTerm_bed = bedKi * temp_iState_bed; iTerm_bed = bedKi * temp_iState_bed;
//K1 defined in Configuration.h in the PID settings //K1 defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed); dTerm_bed = (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
temp_dState_bed = pid_input; temp_dState_bed = pid_input;
pid_output = pTerm_bed + iTerm_bed - dTerm_bed; pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
if (pid_output > MAX_BED_POWER) { if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output=MAX_BED_POWER; pid_output = MAX_BED_POWER;
} else if (pid_output < 0){ }
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration else if (pid_output < 0) {
pid_output=0; if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
} pid_output = 0;
}
#else #else
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER); pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP #endif //PID_OPENLOOP
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP)) soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
{
soft_pwm_bed = (int)pid_output >> 1;
}
else {
soft_pwm_bed = 0;
}
#elif !defined(BED_LIMIT_SWITCHING) #elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range // Check if temperature is within the correct range
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP)) if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
{ soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
if(current_temperature_bed >= target_temperature_bed)
{
soft_pwm_bed = 0;
}
else
{
soft_pwm_bed = MAX_BED_POWER>>1;
}
} }
else else {
{
soft_pwm_bed = 0; soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW); WRITE_HEATER_BED(LOW);
} }
#else //#ifdef BED_LIMIT_SWITCHING #else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band // Check if temperature is within the correct band
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP)) if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
{ if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
{
soft_pwm_bed = 0; soft_pwm_bed = 0;
} else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS) soft_pwm_bed = MAX_BED_POWER >> 1;
{
soft_pwm_bed = MAX_BED_POWER>>1;
}
} }
else else {
{
soft_pwm_bed = 0; soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW); WRITE_HEATER_BED(LOW);
} }
#endif #endif
#endif #endif //TEMP_SENSOR_BED != 0
//code for controlling the extruder rate based on the width sensor // Control the extruder rate based on the width sensor
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
if(filament_sensor) if (filament_sensor) {
{ meas_shift_index = delay_index1 - meas_delay_cm;
meas_shift_index=delay_index1-meas_delay_cm; if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
if(meas_shift_index<0)
meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
//get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter // Get the delayed info and add 100 to reconstitute to a percent of
//then square it to get an area // the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
if(meas_shift_index<0) float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
meas_shift_index=0; if (vm < 0.01) vm = 0.01;
else if (meas_shift_index>MAX_MEASUREMENT_DELAY) volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
meas_shift_index=MAX_MEASUREMENT_DELAY; }
#endif //FILAMENT_SENSOR
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
}
#endif
} }
#define PGM_RD_W(x) (short)pgm_read_word(&x) #define PGM_RD_W(x) (short)pgm_read_word(&x)
@ -723,14 +730,14 @@ void manage_heater()
// For hot end temperature measurement. // For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) { static float analog2temp(int raw, uint8_t e) {
#ifdef TEMP_SENSOR_1_AS_REDUNDANT #ifdef TEMP_SENSOR_1_AS_REDUNDANT
if(e > EXTRUDERS) if (e > EXTRUDERS)
#else #else
if(e >= EXTRUDERS) if (e >= EXTRUDERS)
#endif #endif
{ {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERROR((int)e); SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !"); SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill(); kill();
return 0.0; return 0.0;
} }
@ -799,54 +806,45 @@ static float analog2tempBed(int raw) {
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context, /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */ and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
static void updateTemperaturesFromRawValues() static void updateTemperaturesFromRawValues() {
{ #ifdef HEATER_0_USES_MAX6675
#ifdef HEATER_0_USES_MAX6675 current_temperature_raw[0] = read_max6675();
current_temperature_raw[0] = read_max6675(); #endif
#endif for(uint8_t e = 0; e < EXTRUDERS; e++) {
for(uint8_t e=0;e<EXTRUDERS;e++) current_temperature[e] = analog2temp(current_temperature_raw[e], e);
{ }
current_temperature[e] = analog2temp(current_temperature_raw[e], e); current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
} #ifdef TEMP_SENSOR_1_AS_REDUNDANT
current_temperature_bed = analog2tempBed(current_temperature_bed_raw); redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#ifdef TEMP_SENSOR_1_AS_REDUNDANT #endif
redundant_temperature = analog2temp(redundant_temperature_raw, 1); #if HAS_FILAMENT_SENSOR
#endif filament_width_meas = analog2widthFil();
#if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported #endif
filament_width_meas = analog2widthFil(); //Reset the watchdog after we know we have a temperature measurement.
#endif watchdog_reset();
//Reset the watchdog after we know we have a temperature measurement.
watchdog_reset();
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
temp_meas_ready = false; temp_meas_ready = false;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
// For converting raw Filament Width to milimeters
#ifdef FILAMENT_SENSOR #ifdef FILAMENT_SENSOR
float analog2widthFil() {
return current_raw_filwidth/16383.0*5.0;
//return current_raw_filwidth;
}
// For converting raw Filament Width to a ratio
int widthFil_to_size_ratio() {
float temp;
temp=filament_width_meas;
if(filament_width_meas<MEASURED_LOWER_LIMIT)
temp=filament_width_nominal; //assume sensor cut out
else if (filament_width_meas>MEASURED_UPPER_LIMIT)
temp= MEASURED_UPPER_LIMIT;
// Convert raw Filament Width to millimeters
float analog2widthFil() {
return current_raw_filwidth / 16383.0 * 5.0;
//return current_raw_filwidth;
}
return(filament_width_nominal/temp*100); // Convert raw Filament Width to a ratio
int widthFil_to_size_ratio() {
float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
return filament_width_nominal / temp * 100;
}
}
#endif #endif
@ -855,50 +853,50 @@ return(filament_width_nominal/temp*100);
void tp_init() void tp_init()
{ {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR=(1<<JTD); MCUCR=(1<<JTD);
MCUCR=(1<<JTD); MCUCR=(1<<JTD);
#endif #endif
// Finish init of mult extruder arrays // Finish init of mult extruder arrays
for(int e = 0; e < EXTRUDERS; e++) { for (int e = 0; e < EXTRUDERS; e++) {
// populate with the first value // populate with the first value
maxttemp[e] = maxttemp[0]; maxttemp[e] = maxttemp[0];
#ifdef PIDTEMP #ifdef PIDTEMP
temp_iState_min[e] = 0.0; temp_iState_min[e] = 0.0;
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e); temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
#endif //PIDTEMP #endif //PIDTEMP
#ifdef PIDTEMPBED #ifdef PIDTEMPBED
temp_iState_min_bed = 0.0; temp_iState_min_bed = 0.0;
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi; temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
#endif //PIDTEMPBED #endif //PIDTEMPBED
} }
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1) #if HAS_HEATER_0
SET_OUTPUT(HEATER_0_PIN); SET_OUTPUT(HEATER_0_PIN);
#endif #endif
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1) #if HAS_HEATER_1
SET_OUTPUT(HEATER_1_PIN); SET_OUTPUT(HEATER_1_PIN);
#endif #endif
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1) #if HAS_HEATER_2
SET_OUTPUT(HEATER_2_PIN); SET_OUTPUT(HEATER_2_PIN);
#endif #endif
#if defined(HEATER_3_PIN) && (HEATER_3_PIN > -1) #if HAS_HEATER_3
SET_OUTPUT(HEATER_3_PIN); SET_OUTPUT(HEATER_3_PIN);
#endif #endif
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1) #if HAS_HEATER_BED
SET_OUTPUT(HEATER_BED_PIN); SET_OUTPUT(HEATER_BED_PIN);
#endif #endif
#if defined(FAN_PIN) && (FAN_PIN > -1) #if HAS_FAN
SET_OUTPUT(FAN_PIN); SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN #ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8 setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
#endif #endif
#ifdef FAN_SOFT_PWM #ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2; soft_pwm_fan = fanSpeedSoftPwm / 2;
#endif #endif
#endif #endif
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
@ -921,57 +919,35 @@ void tp_init()
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
#ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
#else
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
#endif
// Set analog inputs // Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07; ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
DIDR0 = 0; DIDR0 = 0;
#ifdef DIDR2 #ifdef DIDR2
DIDR2 = 0; DIDR2 = 0;
#endif #endif
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1) #if HAS_TEMP_0
#if TEMP_0_PIN < 8 ANALOG_SELECT(TEMP_0_PIN);
DIDR0 |= 1 << TEMP_0_PIN;
#else
DIDR2 |= 1<<(TEMP_0_PIN - 8);
#endif
#endif #endif
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1) #if HAS_TEMP_1
#if TEMP_1_PIN < 8 ANALOG_SELECT(TEMP_1_PIN);
DIDR0 |= 1<<TEMP_1_PIN;
#else
DIDR2 |= 1<<(TEMP_1_PIN - 8);
#endif
#endif #endif
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1) #if HAS_TEMP_2
#if TEMP_2_PIN < 8 ANALOG_SELECT(TEMP_2_PIN);
DIDR0 |= 1 << TEMP_2_PIN;
#else
DIDR2 |= 1<<(TEMP_2_PIN - 8);
#endif
#endif #endif
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1) #if HAS_TEMP_3
#if TEMP_3_PIN < 8 ANALOG_SELECT(TEMP_3_PIN);
DIDR0 |= 1 << TEMP_3_PIN;
#else
DIDR2 |= 1<<(TEMP_3_PIN - 8);
#endif
#endif #endif
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1) #if HAS_TEMP_BED
#if TEMP_BED_PIN < 8 ANALOG_SELECT(TEMP_BED_PIN);
DIDR0 |= 1<<TEMP_BED_PIN;
#else
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
#endif
#endif #endif
#if HAS_FILAMENT_SENSOR
//Added for Filament Sensor ANALOG_SELECT(FILWIDTH_PIN);
#ifdef FILAMENT_SENSOR
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1)
#if FILWIDTH_PIN < 8
DIDR0 |= 1<<FILWIDTH_PIN;
#else
DIDR2 |= 1<<(FILWIDTH_PIN - 8);
#endif
#endif
#endif #endif
// Use timer0 for temperature measurement // Use timer0 for temperature measurement
@ -982,128 +958,89 @@ void tp_init()
// Wait for temperature measurement to settle // Wait for temperature measurement to settle
delay(250); delay(250);
#ifdef HEATER_0_MINTEMP #define TEMP_MIN_ROUTINE(NR) \
minttemp[0] = HEATER_0_MINTEMP; minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) { while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
minttemp_raw[0] += OVERSAMPLENR; minttemp_raw[NR] += OVERSAMPLENR; \
#else else \
minttemp_raw[0] -= OVERSAMPLENR; minttemp_raw[NR] -= OVERSAMPLENR; \
#endif }
} #define TEMP_MAX_ROUTINE(NR) \
#endif //MINTEMP maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
#ifdef HEATER_0_MAXTEMP while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
maxttemp[0] = HEATER_0_MAXTEMP; if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) { maxttemp_raw[NR] -= OVERSAMPLENR; \
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP else \
maxttemp_raw[0] -= OVERSAMPLENR; maxttemp_raw[NR] += OVERSAMPLENR; \
#else }
maxttemp_raw[0] += OVERSAMPLENR;
#endif
}
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP) #ifdef HEATER_0_MINTEMP
minttemp[1] = HEATER_1_MINTEMP; TEMP_MIN_ROUTINE(0);
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) { #endif
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP #ifdef HEATER_0_MAXTEMP
minttemp_raw[1] += OVERSAMPLENR; TEMP_MAX_ROUTINE(0);
#else #endif
minttemp_raw[1] -= OVERSAMPLENR; #if EXTRUDERS > 1
#endif #ifdef HEATER_1_MINTEMP
} TEMP_MIN_ROUTINE(1);
#endif // MINTEMP 1 #endif
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP) #ifdef HEATER_1_MAXTEMP
maxttemp[1] = HEATER_1_MAXTEMP; TEMP_MAX_ROUTINE(1);
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) { #endif
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP #if EXTRUDERS > 2
maxttemp_raw[1] -= OVERSAMPLENR; #ifdef HEATER_2_MINTEMP
#else TEMP_MIN_ROUTINE(2);
maxttemp_raw[1] += OVERSAMPLENR; #endif
#endif #ifdef HEATER_2_MAXTEMP
} TEMP_MAX_ROUTINE(2);
#endif //MAXTEMP 1 #endif
#if EXTRUDERS > 3
#ifdef HEATER_3_MINTEMP
TEMP_MIN_ROUTINE(3);
#endif
#ifdef HEATER_3_MAXTEMP
TEMP_MAX_ROUTINE(3);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP) #ifdef BED_MINTEMP
minttemp[2] = HEATER_2_MINTEMP; /* No bed MINTEMP error implemented?!? */ /*
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) { while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR; bed_minttemp_raw += OVERSAMPLENR;
#else #else
minttemp_raw[2] -= OVERSAMPLENR; bed_minttemp_raw -= OVERSAMPLENR;
#endif #endif
} }
#endif //MINTEMP 2 */
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP) #endif //BED_MINTEMP
maxttemp[2] = HEATER_2_MAXTEMP; #ifdef BED_MAXTEMP
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) { while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
maxttemp_raw[2] -= OVERSAMPLENR; bed_maxttemp_raw -= OVERSAMPLENR;
#else #else
maxttemp_raw[2] += OVERSAMPLENR; bed_maxttemp_raw += OVERSAMPLENR;
#endif #endif
} }
#endif //MAXTEMP 2 #endif //BED_MAXTEMP
#if (EXTRUDERS > 3) && defined(HEATER_3_MINTEMP)
minttemp[3] = HEATER_3_MINTEMP;
while(analog2temp(minttemp_raw[3], 3) < HEATER_3_MINTEMP) {
#if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
minttemp_raw[3] += OVERSAMPLENR;
#else
minttemp_raw[3] -= OVERSAMPLENR;
#endif
}
#endif //MINTEMP 3
#if (EXTRUDERS > 3) && defined(HEATER_3_MAXTEMP)
maxttemp[3] = HEATER_3_MAXTEMP;
while(analog2temp(maxttemp_raw[3], 3) > HEATER_3_MAXTEMP) {
#if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
maxttemp_raw[3] -= OVERSAMPLENR;
#else
maxttemp_raw[3] += OVERSAMPLENR;
#endif
}
#endif // MAXTEMP 3
#ifdef BED_MINTEMP
/* No bed MINTEMP error implemented?!? */ /*
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_minttemp_raw += OVERSAMPLENR;
#else
bed_minttemp_raw -= OVERSAMPLENR;
#endif
}
*/
#endif //BED_MINTEMP
#ifdef BED_MAXTEMP
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
bed_maxttemp_raw -= OVERSAMPLENR;
#else
bed_maxttemp_raw += OVERSAMPLENR;
#endif
}
#endif //BED_MAXTEMP
} }
void setWatch() void setWatch() {
{ #ifdef WATCH_TEMP_PERIOD
#ifdef WATCH_TEMP_PERIOD unsigned long ms = millis();
for (int e = 0; e < EXTRUDERS; e++) for (int e = 0; e < EXTRUDERS; e++) {
{ if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) watch_start_temp[e] = degHotend(e);
{ watchmillis[e] = ms;
watch_start_temp[e] = degHotend(e); }
watchmillis[e] = millis(); }
} #endif
}
#endif
} }
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0 #if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
{ {
/* /*
@ -1135,16 +1072,18 @@ void thermal_runaway_protection(int *state, unsigned long *timer, float temperat
if (temperature >= target_temperature) *state = 2; if (temperature >= target_temperature) *state = 2;
break; break;
case 2: // "Temperature Stable" state case 2: // "Temperature Stable" state
{
unsigned long ms = millis();
if (temperature >= (target_temperature - hysteresis_degc)) if (temperature >= (target_temperature - hysteresis_degc))
{ {
*timer = millis(); *timer = ms;
} }
else if ( (millis() - *timer) > ((unsigned long) period_seconds) * 1000) else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
{ {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: "); SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
SERIAL_ERRORLN((int)heater_id); SERIAL_ERRORLN((int)heater_id);
LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY"); LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
thermal_runaway = true; thermal_runaway = true;
while(1) while(1)
{ {
@ -1160,56 +1099,47 @@ void thermal_runaway_protection(int *state, unsigned long *timer, float temperat
lcd_update(); lcd_update();
} }
} }
break; } break;
} }
} }
#endif #endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
void disable_heater()
{ void disable_heater() {
for(int i=0;i<EXTRUDERS;i++) for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
setTargetHotend(0,i);
setTargetBed(0); setTargetBed(0);
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
target_temperature[0]=0; #if HAS_TEMP_0
soft_pwm[0]=0; target_temperature[0] = 0;
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1 soft_pwm[0] = 0;
WRITE(HEATER_0_PIN,LOW); WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
#endif
#endif
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
target_temperature[1]=0;
soft_pwm[1]=0;
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
#endif
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
target_temperature[2]=0;
soft_pwm[2]=0;
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
#endif #endif
#if defined(TEMP_3_PIN) && TEMP_3_PIN > -1 && EXTRUDERS > 3 #if EXTRUDERS > 1 && HAS_TEMP_1
target_temperature[3]=0; target_temperature[1] = 0;
soft_pwm[3]=0; soft_pwm[1] = 0;
#if defined(HEATER_3_PIN) && HEATER_3_PIN > -1 WRITE_HEATER_1(LOW);
WRITE(HEATER_3_PIN,LOW); #endif
#endif
#endif
#if EXTRUDERS > 2 && HAS_TEMP_2
target_temperature[2] = 0;
soft_pwm[2] = 0;
WRITE_HEATER_2(LOW);
#endif
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1 #if EXTRUDERS > 3 && HAS_TEMP_3
target_temperature_bed=0; target_temperature[3] = 0;
soft_pwm_bed=0; soft_pwm[3] = 0;
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 WRITE_HEATER_3(LOW);
WRITE(HEATER_BED_PIN,LOW); #endif
#if HAS_TEMP_BED
target_temperature_bed = 0;
soft_pwm_bed = 0;
#if HAS_HEATER_BED
WRITE_HEATER_BED(LOW);
#endif #endif
#endif #endif
} }
void max_temp_error(uint8_t e) { void max_temp_error(uint8_t e) {
@ -1217,8 +1147,8 @@ void max_temp_error(uint8_t e) {
if(IsStopped() == false) { if(IsStopped() == false) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e); SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !"); SERIAL_ERRORLNPGM(MSG_MAXTEMP_EXTRUDER_OFF);
LCD_ALERTMESSAGEPGM("Err: MAXTEMP"); LCD_ALERTMESSAGEPGM(MSG_ERR_MAXTEMP); // translatable
} }
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop(); Stop();
@ -1230,8 +1160,8 @@ void min_temp_error(uint8_t e) {
if(IsStopped() == false) { if(IsStopped() == false) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e); SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !"); SERIAL_ERRORLNPGM(MSG_MINTEMP_EXTRUDER_OFF);
LCD_ALERTMESSAGEPGM("Err: MINTEMP"); LCD_ALERTMESSAGEPGM(MSG_ERR_MINTEMP); // translatable
} }
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop(); Stop();
@ -1239,13 +1169,13 @@ void min_temp_error(uint8_t e) {
} }
void bed_max_temp_error(void) { void bed_max_temp_error(void) {
#if HEATER_BED_PIN > -1 #if HAS_HEATER_BED
WRITE(HEATER_BED_PIN, 0); WRITE_HEATER_BED(0);
#endif #endif
if(IsStopped() == false) { if (IsStopped() == false) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!"); SERIAL_ERRORLNPGM(MSG_MAXTEMP_BED_OFF);
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED"); LCD_ALERTMESSAGEPGM(MSG_ERR_MAXTEMP_BED); // translatable
} }
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop(); Stop();
@ -1253,66 +1183,84 @@ void bed_max_temp_error(void) {
} }
#ifdef HEATER_0_USES_MAX6675 #ifdef HEATER_0_USES_MAX6675
#define MAX6675_HEAT_INTERVAL 250 #define MAX6675_HEAT_INTERVAL 250
long max6675_previous_millis = MAX6675_HEAT_INTERVAL; long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000; int max6675_temp = 2000;
static int read_max6675() static int read_max6675() {
{
if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL) unsigned long ms = millis();
return max6675_temp; if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = millis();
max6675_temp = 0;
#ifdef PRR max6675_previous_millis = ms;
PRR &= ~(1<<PRSPI); max6675_temp = 0;
#elif defined(PRR0)
PRR0 &= ~(1<<PRSPI);
#endif
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// read MSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4) #ifdef PRR
{ PRR &= ~(1<<PRSPI);
// thermocouple open #elif defined(PRR0)
max6675_temp = 4000; PRR0 &= ~(1<<PRSPI);
} #endif
else
{
max6675_temp = max6675_temp >> 3;
}
return max6675_temp; SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
}
// enable TT_MAX6675
WRITE(MAX6675_SS, 0);
// ensure 100ns delay - a bit extra is fine
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
// read MSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp = SPDR;
max6675_temp <<= 8;
// read LSB
SPDR = 0;
for (;(SPSR & (1<<SPIF)) == 0;);
max6675_temp |= SPDR;
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4) {
// thermocouple open
max6675_temp = 4000;
}
else {
max6675_temp = max6675_temp >> 3;
}
return max6675_temp;
}
#endif //HEATER_0_USES_MAX6675 #endif //HEATER_0_USES_MAX6675
/**
* Stages in the ISR loop
*/
enum TempState {
PrepareTemp_0,
MeasureTemp_0,
PrepareTemp_BED,
MeasureTemp_BED,
PrepareTemp_1,
MeasureTemp_1,
PrepareTemp_2,
MeasureTemp_2,
PrepareTemp_3,
MeasureTemp_3,
Prepare_FILWIDTH,
Measure_FILWIDTH,
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
//
// Timer 0 is shared with millies // Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect) //
{ ISR(TIMER0_COMPB_vect) {
//these variables are only accesible from the ISR, but static, so they don't lose their value //these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0; static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0; static unsigned long raw_temp_0_value = 0;
@ -1320,542 +1268,324 @@ ISR(TIMER0_COMPB_vect)
static unsigned long raw_temp_2_value = 0; static unsigned long raw_temp_2_value = 0;
static unsigned long raw_temp_3_value = 0; static unsigned long raw_temp_3_value = 0;
static unsigned long raw_temp_bed_value = 0; static unsigned long raw_temp_bed_value = 0;
static unsigned char temp_state = 12; static TempState temp_state = StartupDelay;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE); static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
static unsigned char soft_pwm_0;
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_0 = 0;
static unsigned char state_timer_heater_0 = 0;
#endif
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL) // Static members for each heater
static unsigned char soft_pwm_1; #ifdef SLOW_PWM_HEATERS
#ifdef SLOW_PWM_HEATERS static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_1 = 0; #define ISR_STATICS(n) \
static unsigned char state_timer_heater_1 = 0; static unsigned char soft_pwm_ ## n; \
#endif static unsigned char state_heater_ ## n = 0; \
#endif static unsigned char state_timer_heater_ ## n = 0
#if EXTRUDERS > 2 #else
static unsigned char soft_pwm_2; #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
#ifdef SLOW_PWM_HEATERS #endif
static unsigned char state_heater_2 = 0;
static unsigned char state_timer_heater_2 = 0;
#endif
#endif
#if EXTRUDERS > 3
static unsigned char soft_pwm_3;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_3 = 0;
static unsigned char state_timer_heater_3 = 0;
#endif
#endif
#if HEATER_BED_PIN > -1 // Statics per heater
static unsigned char soft_pwm_b; ISR_STATICS(0);
#ifdef SLOW_PWM_HEATERS #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
static unsigned char state_heater_b = 0; ISR_STATICS(1);
static unsigned char state_timer_heater_b = 0; #if EXTRUDERS > 2
#endif ISR_STATICS(2);
#endif #if EXTRUDERS > 3
ISR_STATICS(3);
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1) #endif
static unsigned long raw_filwidth_value = 0; //added for filament width sensor #endif
#endif #endif
#if HAS_HEATER_BED
#ifndef SLOW_PWM_HEATERS ISR_STATICS(BED);
/* #endif
* standard PWM modulation
*/
if(pwm_count == 0){
soft_pwm_0 = soft_pwm[0];
if(soft_pwm_0 > 0) {
WRITE(HEATER_0_PIN,1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,1);
#endif
} else WRITE(HEATER_0_PIN,0);
#if EXTRUDERS > 1 #if HAS_FILAMENT_SENSOR
soft_pwm_1 = soft_pwm[1]; static unsigned long raw_filwidth_value = 0;
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0); #endif
#endif
#if EXTRUDERS > 2 #ifndef SLOW_PWM_HEATERS
soft_pwm_2 = soft_pwm[2]; /**
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0); * standard PWM modulation
#endif */
#if EXTRUDERS > 3 if (pwm_count == 0) {
soft_pwm_3 = soft_pwm[3]; soft_pwm_0 = soft_pwm[0];
if(soft_pwm_3 > 0) WRITE(HEATER_3_PIN,1); else WRITE(HEATER_3_PIN,0); if (soft_pwm_0 > 0) {
#endif WRITE_HEATER_0(1);
}
else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
#if EXTRUDERS > 1
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 soft_pwm_1 = soft_pwm[1];
soft_pwm_b = soft_pwm_bed; WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0); #if EXTRUDERS > 2
#endif soft_pwm_2 = soft_pwm[2];
#ifdef FAN_SOFT_PWM WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
soft_pwm_fan = fanSpeedSoftPwm / 2; #if EXTRUDERS > 3
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0); soft_pwm_3 = soft_pwm[3];
#endif WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
} #endif
if(soft_pwm_0 < pwm_count) {
WRITE(HEATER_0_PIN,0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,0);
#endif
}
#if EXTRUDERS > 1
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
#endif
#if EXTRUDERS > 2
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
#endif
#if EXTRUDERS > 3
if(soft_pwm_3 < pwm_count) WRITE(HEATER_3_PIN,0);
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
#endif
#ifdef FAN_SOFT_PWM
if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else //ifndef SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
if (slow_pwm_count == 0) {
// EXTRUDER 0
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 0) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 1;
WRITE(HEATER_0_PIN, 1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 1);
#endif
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
soft_pwm_1 = soft_pwm[1];
if (soft_pwm_1 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 0) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 1;
WRITE(HEATER_1_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
soft_pwm_2 = soft_pwm[2];
if (soft_pwm_2 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 0) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 1;
WRITE(HEATER_2_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if EXTRUDERS > 3
// EXTRUDER 3
soft_pwm_3 = soft_pwm[3];
if (soft_pwm_3 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_3 == 0) {
// if change state set timer
if (state_heater_3 == 0) {
state_timer_heater_3 = MIN_STATE_TIME;
}
state_heater_3 = 1;
WRITE(HEATER_3_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_3 == 0) {
// if change state set timer
if (state_heater_3 == 1) {
state_timer_heater_3 = MIN_STATE_TIME;
}
state_heater_3 = 0;
WRITE(HEATER_3_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
soft_pwm_b = soft_pwm_bed;
if (soft_pwm_b > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 0) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 1;
WRITE(HEATER_BED_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
} // if (slow_pwm_count == 0)
// EXTRUDER 0
if (soft_pwm_0 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
#if EXTRUDERS > 1
// EXTRUDER 1
if (soft_pwm_1 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
#if EXTRUDERS > 2
// EXTRUDER 2
if (soft_pwm_2 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
#if EXTRUDERS > 3
// EXTRUDER 3
if (soft_pwm_3 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_3 == 0) {
// if change state set timer
if (state_heater_3 == 1) {
state_timer_heater_3 = MIN_STATE_TIME;
}
state_heater_3 = 0;
WRITE(HEATER_3_PIN, 0);
}
}
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
if (soft_pwm_b < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
#ifdef FAN_SOFT_PWM
if (pwm_count == 0){
soft_pwm_fan = fanSpeedSoftPwm / 2;
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
}
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// Extruder 0
if (state_timer_heater_0 > 0) {
state_timer_heater_0--;
}
#if EXTRUDERS > 1
// Extruder 1
if (state_timer_heater_1 > 0)
state_timer_heater_1--;
#endif
#if EXTRUDERS > 2
// Extruder 2
if (state_timer_heater_2 > 0)
state_timer_heater_2--;
#endif
#if EXTRUDERS > 3
// Extruder 3
if (state_timer_heater_3 > 0)
state_timer_heater_3--;
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// Bed
if (state_timer_heater_b > 0)
state_timer_heater_b--;
#endif
} //if ((pwm_count % 64) == 0) {
#endif //ifndef SLOW_PWM_HEATERS
switch(temp_state) {
case 0: // Prepare TEMP_0
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
#if TEMP_0_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif #endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07)); #endif
ADCSRA |= 1<<ADSC; // Start conversion
#if HAS_HEATER_BED
soft_pwm_BED = soft_pwm_bed;
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
#endif
}
if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
#if EXTRUDERS > 1
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
#if EXTRUDERS > 2
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
#if EXTRUDERS > 3
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
#endif
#endif
#endif
#if HAS_HEATER_BED
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
#endif
#ifdef FAN_SOFT_PWM
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else // SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
* for heaters drived by relay
*/
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
// Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
#define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ## NR = src; \
if (soft_pwm_ ## NR > 0) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 1; \
WRITE_HEATER_ ## NR(1); \
} \
} \
else { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR(0); \
} \
}
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
#define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ## NR < slow_pwm_count) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR (0); \
} \
}
if (slow_pwm_count == 0) {
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
#endif
} // slow_pwm_count == 0
PWM_OFF_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
PWM_OFF_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
PWM_OFF_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
PWM_OFF_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
PWM_OFF_ROUTINE(BED); // BED
#endif
#ifdef FAN_SOFT_PWM
if (pwm_count == 0) {
soft_pwm_fan = fanSpeedSoftPwm / 2;
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
}
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
if ((pwm_count % 64) == 0) {
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// EXTRUDER 0
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if EXTRUDERS > 1 // EXTRUDER 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if EXTRUDERS > 2 // EXTRUDER 2
if (state_timer_heater_2 > 0) state_timer_heater_2--;
#if EXTRUDERS > 3 // EXTRUDER 3
if (state_timer_heater_3 > 0) state_timer_heater_3--;
#endif
#endif
#endif
#if HAS_HEATER_BED
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} // (pwm_count % 64) == 0
#endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
#ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
switch(temp_state) {
case PrepareTemp_0:
#if HAS_TEMP_0
START_ADC(TEMP_0_PIN);
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
temp_state = 1; temp_state = MeasureTemp_0;
break; break;
case 1: // Measure TEMP_0 case MeasureTemp_0:
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1) #if HAS_TEMP_0
raw_temp_0_value += ADC; raw_temp_0_value += ADC;
#endif #endif
temp_state = 2; temp_state = PrepareTemp_BED;
break; break;
case 2: // Prepare TEMP_BED case PrepareTemp_BED:
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1) #if HAS_TEMP_BED
#if TEMP_BED_PIN > 7 START_ADC(TEMP_BED_PIN);
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
temp_state = 3; temp_state = MeasureTemp_BED;
break; break;
case 3: // Measure TEMP_BED case MeasureTemp_BED:
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1) #if HAS_TEMP_BED
raw_temp_bed_value += ADC; raw_temp_bed_value += ADC;
#endif #endif
temp_state = 4; temp_state = PrepareTemp_1;
break; break;
case 4: // Prepare TEMP_1 case PrepareTemp_1:
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1) #if HAS_TEMP_1
#if TEMP_1_PIN > 7 START_ADC(TEMP_1_PIN);
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
temp_state = 5; temp_state = MeasureTemp_1;
break; break;
case 5: // Measure TEMP_1 case MeasureTemp_1:
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1) #if HAS_TEMP_1
raw_temp_1_value += ADC; raw_temp_1_value += ADC;
#endif #endif
temp_state = 6; temp_state = PrepareTemp_2;
break; break;
case 6: // Prepare TEMP_2 case PrepareTemp_2:
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1) #if HAS_TEMP_2
#if TEMP_2_PIN > 7 START_ADC(TEMP_2_PIN);
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
temp_state = 7; temp_state = MeasureTemp_2;
break; break;
case 7: // Measure TEMP_2 case MeasureTemp_2:
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1) #if HAS_TEMP_2
raw_temp_2_value += ADC; raw_temp_2_value += ADC;
#endif #endif
temp_state = 8; temp_state = PrepareTemp_3;
break; break;
case 8: // Prepare TEMP_3 case PrepareTemp_3:
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1) #if HAS_TEMP_3
#if TEMP_3_PIN > 7 START_ADC(TEMP_3_PIN);
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_3_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
temp_state = 9; temp_state = MeasureTemp_3;
break; break;
case 9: // Measure TEMP_3 case MeasureTemp_3:
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1) #if HAS_TEMP_3
raw_temp_3_value += ADC; raw_temp_3_value += ADC;
#endif #endif
temp_state = 10; //change so that Filament Width is also measured temp_state = Prepare_FILWIDTH;
break; break;
case 10: //Prepare FILWIDTH case Prepare_FILWIDTH:
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1) #if HAS_FILAMENT_SENSOR
#if FILWIDTH_PIN>7 START_ADC(FILWIDTH_PIN);
ADCSRB = 1<<MUX5; #endif
#else lcd_buttons_update();
ADCSRB = 0; temp_state = Measure_FILWIDTH;
#endif break;
ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07)); case Measure_FILWIDTH:
ADCSRA |= 1<<ADSC; // Start conversion #if HAS_FILAMENT_SENSOR
#endif // raw_filwidth_value += ADC; //remove to use an IIR filter approach
lcd_buttons_update(); if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
temp_state = 11; raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
break; raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
case 11: //Measure FILWIDTH
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
//raw_filwidth_value += ADC; //remove to use an IIR filter approach
if(ADC>102) //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
{
raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7); //multipliy raw_filwidth_value by 127/128
raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7); //add new ADC reading
} }
#endif #endif
temp_state = 0; temp_state = PrepareTemp_0;
temp_count++;
temp_count++; break;
break; case StartupDelay:
temp_state = PrepareTemp_0;
case 12: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
temp_state = 0;
break; break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
}
if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256) = 164ms.
{
if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
{
#ifndef HEATER_0_USES_MAX6675
current_temperature_raw[0] = raw_temp_0_value;
#endif
#if EXTRUDERS > 1
current_temperature_raw[1] = raw_temp_1_value;
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_1_value;
#endif
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#endif
#if EXTRUDERS > 3
current_temperature_raw[3] = raw_temp_3_value;
#endif
current_temperature_bed_raw = raw_temp_bed_value;
}
//Add similar code for Filament Sensor - can be read any time since IIR filtering is used // default:
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1) // SERIAL_ERROR_START;
current_raw_filwidth = raw_filwidth_value>>10; //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach // SERIAL_ERRORLNPGM("Temp measurement error!");
#endif // break;
} // switch(temp_state)
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
#ifndef HEATER_0_USES_MAX6675
current_temperature_raw[0] = raw_temp_0_value;
#endif
#if EXTRUDERS > 1
current_temperature_raw[1] = raw_temp_1_value;
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#if EXTRUDERS > 3
current_temperature_raw[3] = raw_temp_3_value;
#endif
#endif
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_1_value;
#endif
current_temperature_bed_raw = raw_temp_bed_value;
} //!temp_meas_ready
// Filament Sensor - can be read any time since IIR filtering is used
#if HAS_FILAMENT_SENSOR
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
temp_meas_ready = true; temp_meas_ready = true;
temp_count = 0; temp_count = 0;
@ -1865,131 +1595,47 @@ ISR(TIMER0_COMPB_vect)
raw_temp_3_value = 0; raw_temp_3_value = 0;
raw_temp_bed_value = 0; raw_temp_bed_value = 0;
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if(current_temperature_raw[0] <= maxttemp_raw[0]) { #define MAXTEST <=
#else #define MINTEST >=
if(current_temperature_raw[0] >= maxttemp_raw[0]) { #else
#endif #define MAXTEST >=
#ifndef HEATER_0_USES_MAX6675 #define MINTEST <=
max_temp_error(0); #endif
#endif
}
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if(current_temperature_raw[0] >= minttemp_raw[0]) {
#else
if(current_temperature_raw[0] <= minttemp_raw[0]) {
#endif
#ifndef HEATER_0_USES_MAX6675
min_temp_error(0);
#endif
}
for (int i=0; i<EXTRUDERS; i++) {
if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i);
else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i);
}
/* No bed MINTEMP error? */
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) {
target_temperature_bed = 0;
bed_max_temp_error();
}
#endif
} // temp_count >= OVERSAMPLENR
#if EXTRUDERS > 1 #ifdef BABYSTEPPING
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
if(current_temperature_raw[1] <= maxttemp_raw[1]) { int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
#else
if(current_temperature_raw[1] >= maxttemp_raw[1]) { if (curTodo > 0) {
#endif babystep(axis,/*fwd*/true);
max_temp_error(1); babystepsTodo[axis]--; //less to do next time
}
else if(curTodo < 0) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
}
} }
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP #endif //BABYSTEPPING
if(current_temperature_raw[1] >= minttemp_raw[1]) {
#else
if(current_temperature_raw[1] <= minttemp_raw[1]) {
#endif
min_temp_error(1);
}
#endif
#if EXTRUDERS > 2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
if(current_temperature_raw[2] <= maxttemp_raw[2]) {
#else
if(current_temperature_raw[2] >= maxttemp_raw[2]) {
#endif
max_temp_error(2);
}
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
if(current_temperature_raw[2] >= minttemp_raw[2]) {
#else
if(current_temperature_raw[2] <= minttemp_raw[2]) {
#endif
min_temp_error(2);
}
#endif
#if EXTRUDERS > 3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
if(current_temperature_raw[3] <= maxttemp_raw[3]) {
#else
if(current_temperature_raw[3] >= maxttemp_raw[3]) {
#endif
max_temp_error(3);
}
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
if(current_temperature_raw[3] >= minttemp_raw[3]) {
#else
if(current_temperature_raw[3] <= minttemp_raw[3]) {
#endif
min_temp_error(3);
}
#endif
/* No bed MINTEMP error? */
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
# if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if(current_temperature_bed_raw <= bed_maxttemp_raw) {
#else
if(current_temperature_bed_raw >= bed_maxttemp_raw) {
#endif
target_temperature_bed = 0;
bed_max_temp_error();
}
#endif
}
#ifdef BABYSTEPPING
for(uint8_t axis=0;axis<3;axis++)
{
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if(curTodo>0)
{
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
}
else
if(curTodo<0)
{
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
}
}
#endif //BABYSTEPPING
} }
#ifdef PIDTEMP #ifdef PIDTEMP
// Apply the scale factors to the PID values // Apply the scale factors to the PID values
float scalePID_i(float i) { return i * PID_dT; }
float unscalePID_i(float i) { return i / PID_dT; }
float scalePID_i(float i) float scalePID_d(float d) { return d / PID_dT; }
{ float unscalePID_d(float d) { return d * PID_dT; }
return i*PID_dT;
}
float unscalePID_i(float i)
{
return i/PID_dT;
}
float scalePID_d(float d)
{
return d/PID_dT;
}
float unscalePID_d(float d)
{
return d*PID_dT;
}
#endif //PIDTEMP #endif //PIDTEMP

View file

@ -85,55 +85,25 @@ extern float current_temperature_bed;
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) { FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
return current_temperature[extruder]; FORCE_INLINE float degBed() { return current_temperature_bed; }
};
#ifdef SHOW_TEMP_ADC_VALUES #ifdef SHOW_TEMP_ADC_VALUES
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
return current_temperature_raw[extruder]; FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
};
FORCE_INLINE float rawBedTemp() {
return current_temperature_bed_raw;
};
#endif #endif
FORCE_INLINE float degBed() { FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
return current_temperature_bed; FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) { FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }
return target_temperature[extruder]; FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
};
FORCE_INLINE float degTargetBed() { FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
return target_temperature_bed; FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
target_temperature[extruder] = celsius; FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_temperature_bed = celsius;
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_temperature[extruder] > current_temperature[extruder];
};
FORCE_INLINE bool isHeatingBed() {
return target_temperature_bed > current_temperature_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_temperature[extruder] < current_temperature[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_temperature_bed < current_temperature_bed;
};
#define degHotend0() degHotend(0) #define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0) #define degTargetHotend0() degTargetHotend(0)
@ -141,38 +111,36 @@ FORCE_INLINE bool isCoolingBed() {
#define isHeatingHotend0() isHeatingHotend(0) #define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0) #define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#define degHotend1() degHotend(1) #define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1) #define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1) #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1) #define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1) #define isCoolingHotend1() isCoolingHotend(1)
#else #else
#define setTargetHotend1(_celsius) do{}while(0) #define setTargetHotend1(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#define degHotend2() degHotend(2) #define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2) #define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2) #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2) #define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2) #define isCoolingHotend2() isCoolingHotend(2)
#else #else
#define setTargetHotend2(_celsius) do{}while(0) #define setTargetHotend2(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#define degHotend3() degHotend(3) #define degHotend3() degHotend(3)
#define degTargetHotend3() degTargetHotend(3) #define degTargetHotend3() degTargetHotend(3)
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3) #define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
#define isHeatingHotend3() isHeatingHotend(3) #define isHeatingHotend3() isHeatingHotend(3)
#define isCoolingHotend3() isCoolingHotend(3) #define isCoolingHotend3() isCoolingHotend(3)
#else #else
#define setTargetHotend3(_celsius) do{}while(0) #define setTargetHotend3(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 4 #if EXTRUDERS > 4
#error Invalid number of extruders #error Invalid number of extruders
#endif #endif
int getHeaterPower(int heater); int getHeaterPower(int heater);
void disable_heater(); void disable_heater();
void setWatch(); void setWatch();
@ -189,15 +157,14 @@ static bool thermal_runaway = false;
#endif #endif
#endif #endif
FORCE_INLINE void autotempShutdown(){ FORCE_INLINE void autotempShutdown() {
#ifdef AUTOTEMP #ifdef AUTOTEMP
if(autotemp_enabled) if (autotemp_enabled) {
{ autotemp_enabled = false;
autotemp_enabled=false; if (degTargetHotend(active_extruder) > autotemp_min)
if(degTargetHotend(active_extruder)>autotemp_min) setTargetHotend(0, active_extruder);
setTargetHotend(0,active_extruder); }
} #endif
#endif
} }
void PID_autotune(float temp, int extruder, int ncycles); void PID_autotune(float temp, int extruder, int ncycles);

View file

@ -1096,13 +1096,26 @@ const short temptable_1047[][2] PROGMEM = {
#endif #endif
#if (THERMISTORHEATER_0 == 999) || (THERMISTORHEATER_1 == 999) || (THERMISTORHEATER_2 == 999) || (THERMISTORHEATER_3 == 999) || (THERMISTORBED == 999) //User defined table #if (THERMISTORHEATER_0 == 999) || (THERMISTORHEATER_1 == 999) || (THERMISTORHEATER_2 == 999) || (THERMISTORHEATER_3 == 999) || (THERMISTORBED == 999) //User defined table
// Dummy Thermistor table.. It will ALWAYS read 25C. // Dummy Thermistor table.. It will ALWAYS read a fixed value.
const short temptable_999[][2] PROGMEM = { #ifndef DUMMY_THERMISTOR_999_VALUE
{1*OVERSAMPLENR, 25}, #define DUMMY_THERMISTOR_999_VALUE 25
{1023*OVERSAMPLENR, 25} #endif
const short temptable_999[][2] PROGMEM = {
{1*OVERSAMPLENR, DUMMY_THERMISTOR_999_VALUE},
{1023*OVERSAMPLENR, DUMMY_THERMISTOR_999_VALUE}
}; };
#endif #endif
#if (THERMISTORHEATER_0 == 998) || (THERMISTORHEATER_1 == 998) || (THERMISTORHEATER_2 == 998) || (THERMISTORHEATER_3 == 998) || (THERMISTORBED == 998) //User defined table
// Dummy Thermistor table.. It will ALWAYS read a fixed value.
#ifndef DUMMY_THERMISTOR_998_VALUE
#define DUMMY_THERMISTOR_998_VALUE 25
#endif
const short temptable_998[][2] PROGMEM = {
{1*OVERSAMPLENR, DUMMY_THERMISTOR_998_VALUE},
{1023*OVERSAMPLENR, DUMMY_THERMISTOR_998_VALUE}
};
#endif
#define _TT_NAME(_N) temptable_ ## _N #define _TT_NAME(_N) temptable_ ## _N

View file

@ -262,15 +262,15 @@ static void lcd_status_screen()
#endif #endif
#endif //LCD_PROGRESS_BAR #endif //LCD_PROGRESS_BAR
if (lcd_status_update_delay) if (lcd_status_update_delay)
lcd_status_update_delay--; lcd_status_update_delay--;
else else
lcdDrawUpdate = 1; lcdDrawUpdate = 1;
if (lcdDrawUpdate) { if (lcdDrawUpdate) {
lcd_implementation_status_screen(); lcd_implementation_status_screen();
lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */ lcd_status_update_delay = 10; /* redraw the main screen every second. This is easier then trying keep track of all things that change on the screen */
} }
#ifdef ULTIPANEL #ifdef ULTIPANEL
@ -346,86 +346,82 @@ static void lcd_sdcard_pause() { card.pauseSDPrint(); }
static void lcd_sdcard_resume() { card.startFileprint(); } static void lcd_sdcard_resume() { card.startFileprint(); }
static void lcd_sdcard_stop() static void lcd_sdcard_stop() {
{ card.sdprinting = false;
card.sdprinting = false; card.closefile();
card.closefile(); quickStop();
quickStop(); if (SD_FINISHED_STEPPERRELEASE) {
if(SD_FINISHED_STEPPERRELEASE) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
{ }
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); autotempShutdown();
}
autotempShutdown();
cancel_heatup = true; cancel_heatup = true;
lcd_setstatus(MSG_PRINT_ABORTED); lcd_setstatus(MSG_PRINT_ABORTED);
} }
/* Menu implementation */ /* Menu implementation */
static void lcd_main_menu() static void lcd_main_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
MENU_ITEM(back, MSG_WATCH, lcd_status_screen); if (movesplanned() || IS_SD_PRINTING) {
if (movesplanned() || IS_SD_PRINTING) MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
{ }
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu); else {
}else{ MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu); #ifdef DELTA_CALIBRATION_MENU
#ifdef DELTA_CALIBRATION_MENU MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu);
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu); #endif
#endif // DELTA_CALIBRATION_MENU }
} MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu);
/*JFR TEST*/ MENU_ITEM(gcode, "test multiline", PSTR("G4 S3\nM104 S50\nG4 S1\nM104 S200\nG4 S2\nM104 S0")); // SD-card changed by user
MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu);
#ifdef SDSUPPORT
if (card.cardOK)
{
if (card.isFileOpen())
{
if (card.sdprinting)
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
else
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop);
}else{
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}else{
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif
END_MENU();
}
#ifdef SDSUPPORT #ifdef SDSUPPORT
static void lcd_autostart_sd() if (card.cardOK) {
{ if (card.isFileOpen()) {
card.autostart_index=0; if (card.sdprinting)
card.setroot(); MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
card.checkautostart(true); else
} MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
#endif MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop);
}
void lcd_set_home_offsets() else {
{ MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
for(int8_t i=0; i < NUM_AXIS; i++) { #if SDCARDDETECT < 1
if (i != E_AXIS) { MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
add_homing[i] -= current_position[i]; #endif
current_position[i] = 0.0;
} }
} }
plan_set_position(0.0, 0.0, 0.0, current_position[E_AXIS]); else {
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif //SDSUPPORT
// Audio feedback END_MENU();
enquecommands_P(PSTR("M300 S659 P200\nM300 S698 P200")); }
lcd_return_to_status();
#ifdef SDSUPPORT
static void lcd_autostart_sd() {
card.autostart_index = 0;
card.setroot();
card.checkautostart(true);
}
#endif
void lcd_set_home_offsets() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if (i != E_AXIS) {
add_homing[i] -= current_position[i];
current_position[i] = 0.0;
}
}
plan_set_position(0.0, 0.0, 0.0, current_position[E_AXIS]);
// Audio feedback
enquecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
lcd_return_to_status();
} }
@ -446,274 +442,181 @@ void lcd_set_home_offsets()
#endif //BABYSTEPPING #endif //BABYSTEPPING
static void lcd_tune_menu() static void lcd_tune_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999); #if TEMP_SENSOR_0 != 0
#if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif #endif
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif #endif
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif #endif
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif #endif
#if TEMP_SENSOR_BED != 0
#if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif #endif
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW " 0", &extruder_multiply[0], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F0, &extruder_multiply[0], 10, 999);
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW " 1", &extruder_multiply[1], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F1, &extruder_multiply[1], 10, 999);
#endif #endif
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW " 2", &extruder_multiply[2], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F2, &extruder_multiply[2], 10, 999);
#endif #endif
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW " 3", &extruder_multiply[3], 10, 999); MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F3, &extruder_multiply[3], 10, 999);
#endif #endif
#ifdef BABYSTEPPING
#ifdef BABYSTEPPING
#ifdef BABYSTEP_XY #ifdef BABYSTEP_XY
MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x); MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x);
MENU_ITEM(submenu, MSG_BABYSTEP_Y, lcd_babystep_y); MENU_ITEM(submenu, MSG_BABYSTEP_Y, lcd_babystep_y);
#endif //BABYSTEP_XY #endif //BABYSTEP_XY
MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z); MENU_ITEM(submenu, MSG_BABYSTEP_Z, lcd_babystep_z);
#endif #endif
#ifdef FILAMENTCHANGEENABLE #ifdef FILAMENTCHANGEENABLE
MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600")); MENU_ITEM(gcode, MSG_FILAMENTCHANGE, PSTR("M600"));
#endif #endif
END_MENU(); END_MENU();
} }
void lcd_preheat_pla0() void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) {
{ if (temph > 0) setTargetHotend(temph, endnum);
setTargetHotend0(plaPreheatHotendTemp); setTargetBed(tempb);
setTargetBed(plaPreheatHPBTemp); fanSpeed = fan;
fanSpeed = plaPreheatFanSpeed; lcd_return_to_status();
lcd_return_to_status(); setWatch(); // heater sanity check timer
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs0()
{
setTargetHotend0(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
} }
void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#if TEMP_SENSOR_1 != 0 //2nd extruder preheat #if TEMP_SENSOR_1 != 0 //2nd extruder preheat
void lcd_preheat_pla1() void lcd_preheat_pla1() { _lcd_preheat(1, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
{ void lcd_preheat_abs1() { _lcd_preheat(1, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
setTargetHotend1(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs1()
{
setTargetHotend1(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
#endif //2nd extruder preheat #endif //2nd extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0 //3 extruder preheat
void lcd_preheat_pla2() void lcd_preheat_pla2() { _lcd_preheat(2, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
{ void lcd_preheat_abs2() { _lcd_preheat(2, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
setTargetHotend2(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs2()
{
setTargetHotend2(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
#endif //3 extruder preheat #endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0 //4 extruder preheat
void lcd_preheat_pla3() void lcd_preheat_pla3() { _lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
{ void lcd_preheat_abs3() { _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
setTargetHotend3(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs3()
{
setTargetHotend3(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
#endif //4 extruder preheat #endif //4 extruder preheat
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //more than one extruder present #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //more than one extruder present
void lcd_preheat_pla0123() void lcd_preheat_pla0123() {
{
setTargetHotend0(plaPreheatHotendTemp); setTargetHotend0(plaPreheatHotendTemp);
setTargetHotend1(plaPreheatHotendTemp); setTargetHotend1(plaPreheatHotendTemp);
setTargetHotend2(plaPreheatHotendTemp); setTargetHotend2(plaPreheatHotendTemp);
setTargetHotend3(plaPreheatHotendTemp); _lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed);
setTargetBed(plaPreheatHPBTemp); }
fanSpeed = plaPreheatFanSpeed; void lcd_preheat_abs0123() {
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs0123()
{
setTargetHotend0(absPreheatHotendTemp); setTargetHotend0(absPreheatHotendTemp);
setTargetHotend1(absPreheatHotendTemp); setTargetHotend1(absPreheatHotendTemp);
setTargetHotend2(absPreheatHotendTemp); setTargetHotend2(absPreheatHotendTemp);
setTargetHotend3(absPreheatHotendTemp); _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed);
setTargetBed(absPreheatHPBTemp); }
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
#endif //more than one extruder present #endif //more than one extruder present
void lcd_preheat_pla_bedonly() void lcd_preheat_pla_bedonly() { _lcd_preheat(0, 0, plaPreheatHPBTemp, plaPreheatFanSpeed); }
{ void lcd_preheat_abs_bedonly() { _lcd_preheat(0, 0, absPreheatHPBTemp, absPreheatFanSpeed); }
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs_bedonly() static void lcd_preheat_pla_menu() {
{
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
static void lcd_preheat_pla_menu()
{
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_PLA_N "1", lcd_preheat_pla0); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H1, lcd_preheat_pla0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_N "2", lcd_preheat_pla1); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H2, lcd_preheat_pla1);
#endif //2 extruder preheat #endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_N "3", lcd_preheat_pla2); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H3, lcd_preheat_pla2);
#endif //3 extruder preheat #endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_N "4", lcd_preheat_pla3); MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H4, lcd_preheat_pla3);
#endif //4 extruder preheat #endif //4 extruder preheat
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123); MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123);
#endif //all extruder preheat #endif //all extruder preheat
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_PLA_BEDONLY, lcd_preheat_pla_bedonly); MENU_ITEM(function, MSG_PREHEAT_PLA_BEDONLY, lcd_preheat_pla_bedonly);
#endif #endif
END_MENU(); END_MENU();
} }
static void lcd_preheat_abs_menu() static void lcd_preheat_abs_menu() {
{
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_ABS_N "1", lcd_preheat_abs0); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H1, lcd_preheat_abs0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat #if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_N "2", lcd_preheat_abs1); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H2, lcd_preheat_abs1);
#endif //2 extruder preheat #endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat #if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_N "3", lcd_preheat_abs2); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H3, lcd_preheat_abs2);
#endif //3 extruder preheat #endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat #if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_N "4", lcd_preheat_abs3); MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H4, lcd_preheat_abs3);
#endif //4 extruder preheat #endif //4 extruder preheat
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123); MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123);
#endif //all extruder preheat #endif //all extruder preheat
#if TEMP_SENSOR_BED != 0
#if TEMP_SENSOR_BED != 0 MENU_ITEM(function, MSG_PREHEAT_ABS_BEDONLY, lcd_preheat_abs_bedonly);
MENU_ITEM(function, MSG_PREHEAT_ABS_BEDONLY, lcd_preheat_abs_bedonly); #endif
#endif
END_MENU(); END_MENU();
} }
void lcd_cooldown() void lcd_cooldown() {
{ setTargetHotend0(0);
setTargetHotend0(0); setTargetHotend1(0);
setTargetHotend1(0); setTargetHotend2(0);
setTargetHotend2(0); setTargetHotend3(0);
setTargetHotend3(0); setTargetBed(0);
setTargetBed(0); fanSpeed = 0;
fanSpeed = 0; lcd_return_to_status();
lcd_return_to_status();
} }
static void lcd_prepare_menu() static void lcd_prepare_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); #ifdef SDSUPPORT
#ifdef SDSUPPORT
#ifdef MENU_ADDAUTOSTART #ifdef MENU_ADDAUTOSTART
MENU_ITEM(function, MSG_AUTOSTART, lcd_autostart_sd); MENU_ITEM(function, MSG_AUTOSTART, lcd_autostart_sd);
#endif #endif
#endif
MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
//MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
#if TEMP_SENSOR_0 != 0
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_BED != 0
MENU_ITEM(submenu, MSG_PREHEAT_PLA, lcd_preheat_pla_menu);
MENU_ITEM(submenu, MSG_PREHEAT_ABS, lcd_preheat_abs_menu);
#else
MENU_ITEM(function, MSG_PREHEAT_PLA, lcd_preheat_pla0);
MENU_ITEM(function, MSG_PREHEAT_ABS, lcd_preheat_abs0);
#endif #endif
#endif MENU_ITEM(gcode, MSG_DISABLE_STEPPERS, PSTR("M84"));
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown); MENU_ITEM(gcode, MSG_AUTO_HOME, PSTR("G28"));
#if PS_ON_PIN > -1 MENU_ITEM(function, MSG_SET_HOME_OFFSETS, lcd_set_home_offsets);
if (powersupply) //MENU_ITEM(gcode, MSG_SET_ORIGIN, PSTR("G92 X0 Y0 Z0"));
{ #if TEMP_SENSOR_0 != 0
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81")); #if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_BED != 0
}else{ MENU_ITEM(submenu, MSG_PREHEAT_PLA, lcd_preheat_pla_menu);
MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80")); MENU_ITEM(submenu, MSG_PREHEAT_ABS, lcd_preheat_abs_menu);
#else
MENU_ITEM(function, MSG_PREHEAT_PLA, lcd_preheat_pla0);
MENU_ITEM(function, MSG_PREHEAT_ABS, lcd_preheat_abs0);
#endif
#endif
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
#if defined(POWER_SUPPLY) && POWER_SUPPLY > 0 && defined(PS_ON_PIN) && PS_ON_PIN > -1
if (powersupply) {
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81"));
} }
#endif else {
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu); MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80"));
}
// JFR for RMud delta printer #endif
MENU_ITEM(gcode, "Calibrate bed", PSTR("M702\nG28\nG1 X-77.94 Y-45 Z36 F8000\nG4 S3\nM701 P0\nG1 X77.94 Y-45 Z36\nG4 S3\nM701 P1\nG1 X0 Y90 Z36\nG4 S3\nM701 P2\nM700\nG1 X0 Y0 Z100 F8000")); MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
MENU_ITEM(gcode, "Check level", PSTR("G28\nG1 X0 Y0 Z1 F4000\nG1 X-77.94 Y-45 Z1\nG1 X77.94 Y-45\nG1 X0 Y90\nG1 X-77.94 Y-45\nG4 S2\nG1 X-77.94 Y-45 Z0.3 F2000\nG1 X-77.94 Y-45\nG1 X77.94 Y-45\nG1 X0 Y90\nG1 X-77.94 Y-45\nG1 X0 Y0 Z0"));
MENU_ITEM(gcode, "Retract filament", PSTR("M302\nM82\nG92 E0\nG1 F4000 E-800")); END_MENU();
MENU_ITEM(gcode, "Insert filament", PSTR("M302\nM82\nG92 E0\nG1 F4000 E60"));
MENU_ITEM(gcode, "Finalize filament", PSTR("G1 F4000 E790"));
END_MENU();
} }
#ifdef DELTA_CALIBRATION_MENU #ifdef DELTA_CALIBRATION_MENU
@ -755,89 +658,77 @@ static void lcd_move_x() { _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS); }
static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); } static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); }
static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); } static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); }
static void lcd_move_e() static void lcd_move_e() {
{ if (encoderPosition != 0) {
if (encoderPosition != 0) current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale;
{ encoderPosition = 0;
current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale; #ifdef DELTA
encoderPosition = 0; calculate_delta(current_position);
#ifdef DELTA plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS]/60, active_extruder);
calculate_delta(current_position); #else
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS]/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS]/60, active_extruder);
#else #endif
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], manual_feedrate[E_AXIS]/60, active_extruder); lcdDrawUpdate = 1;
#endif }
lcdDrawUpdate = 1; if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
} if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
}
if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
} }
static void lcd_move_menu_axis() static void lcd_move_menu_axis() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_MOVE_AXIS, lcd_move_menu);
MENU_ITEM(back, MSG_MOVE_AXIS, lcd_move_menu); MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x); MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y); if (move_menu_scale < 10.0) {
if (move_menu_scale < 10.0) MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
{ MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z); }
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e); END_MENU();
}
END_MENU();
} }
static void lcd_move_menu_10mm() static void lcd_move_menu_10mm() {
{ move_menu_scale = 10.0;
move_menu_scale = 10.0; lcd_move_menu_axis();
lcd_move_menu_axis();
} }
static void lcd_move_menu_1mm() static void lcd_move_menu_1mm() {
{ move_menu_scale = 1.0;
move_menu_scale = 1.0; lcd_move_menu_axis();
lcd_move_menu_axis();
} }
static void lcd_move_menu_01mm() static void lcd_move_menu_01mm() {
{ move_menu_scale = 0.1;
move_menu_scale = 0.1; lcd_move_menu_axis();
lcd_move_menu_axis();
} }
static void lcd_move_menu() static void lcd_move_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu); MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm);
MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm); MENU_ITEM(submenu, MSG_MOVE_1MM, lcd_move_menu_1mm);
MENU_ITEM(submenu, MSG_MOVE_1MM, lcd_move_menu_1mm); MENU_ITEM(submenu, MSG_MOVE_01MM, lcd_move_menu_01mm);
MENU_ITEM(submenu, MSG_MOVE_01MM, lcd_move_menu_01mm); //TODO:X,Y,Z,E
//TODO:X,Y,Z,E END_MENU();
END_MENU();
} }
static void lcd_control_menu() static void lcd_control_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu);
MENU_ITEM(submenu, MSG_MOTION, lcd_control_motion_menu); MENU_ITEM(submenu, MSG_VOLUMETRIC, lcd_control_volumetric_menu);
MENU_ITEM(submenu, MSG_VOLUMETRIC, lcd_control_volumetric_menu);
#ifdef DOGLCD #ifdef DOGLCD
// MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63); //MENU_ITEM_EDIT(int3, MSG_CONTRAST, &lcd_contrast, 0, 63);
MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast); MENU_ITEM(submenu, MSG_CONTRAST, lcd_set_contrast);
#endif #endif
#ifdef FWRETRACT #ifdef FWRETRACT
MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu); MENU_ITEM(submenu, MSG_RETRACT, lcd_control_retract_menu);
#endif #endif
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings); MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings);
MENU_ITEM(function, MSG_LOAD_EPROM, Config_RetrieveSettings); MENU_ITEM(function, MSG_LOAD_EPROM, Config_RetrieveSettings);
#endif #endif
MENU_ITEM(function, MSG_RESTORE_FAILSAFE, Config_ResetDefault); MENU_ITEM(function, MSG_RESTORE_FAILSAFE, Config_ResetDefault);
END_MENU(); END_MENU();
} }
#ifdef PIDTEMP #ifdef PIDTEMP
@ -871,8 +762,7 @@ static void lcd_control_menu()
#endif //PIDTEMP #endif //PIDTEMP
static void lcd_control_temperature_menu() static void lcd_control_temperature_menu() {
{
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
@ -880,19 +770,19 @@ static void lcd_control_temperature_menu()
#endif #endif
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif #endif
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif #endif
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif #endif
#endif #endif // EXTRUDERS > 3
#endif #endif // EXTRUDERS > 2
#endif #endif // EXTRUDERS > 1
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif #endif
@ -919,36 +809,36 @@ static void lcd_control_temperature_menu()
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,1)); raw_Ki = unscalePID_i(PID_PARAM(Ki,1));
raw_Kd = unscalePID_d(PID_PARAM(Kd,1)); raw_Kd = unscalePID_d(PID_PARAM(Kd,1));
MENU_ITEM_EDIT(float52, MSG_PID_P " E2", &PID_PARAM(Kp,1), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E2, &PID_PARAM(Kp,1), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E2", &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E2); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E2, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E2);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E2", &raw_Kd, 1, 9990, copy_and_scalePID_d_E2); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E2, &raw_Kd, 1, 9990, copy_and_scalePID_d_E2);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C " E2", &PID_PARAM(Kc,1), 1, 9990); MENU_ITEM_EDIT(float3, MSG_PID_C MSG_E2, &PID_PARAM(Kc,1), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
#if EXTRUDERS > 2 #if EXTRUDERS > 2
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,2)); raw_Ki = unscalePID_i(PID_PARAM(Ki,2));
raw_Kd = unscalePID_d(PID_PARAM(Kd,2)); raw_Kd = unscalePID_d(PID_PARAM(Kd,2));
MENU_ITEM_EDIT(float52, MSG_PID_P " E3", &PID_PARAM(Kp,2), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E3, &PID_PARAM(Kp,2), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E3", &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E3); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E3, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E3);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E3", &raw_Kd, 1, 9990, copy_and_scalePID_d_E3); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E3, &raw_Kd, 1, 9990, copy_and_scalePID_d_E3);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C " E3", &PID_PARAM(Kc,2), 1, 9990); MENU_ITEM_EDIT(float3, MSG_PID_C MSG_E3, &PID_PARAM(Kc,2), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
#if EXTRUDERS > 3 #if EXTRUDERS > 3
// set up temp variables - undo the default scaling // set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,3)); raw_Ki = unscalePID_i(PID_PARAM(Ki,3));
raw_Kd = unscalePID_d(PID_PARAM(Kd,3)); raw_Kd = unscalePID_d(PID_PARAM(Kd,3));
MENU_ITEM_EDIT(float52, MSG_PID_P " E4", &PID_PARAM(Kp,3), 1, 9990); MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E4, &PID_PARAM(Kp,3), 1, 9990);
// i is typically a small value so allows values below 1 // i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E4", &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E4); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E4, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E4);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E4", &raw_Kd, 1, 9990, copy_and_scalePID_d_E4); MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E4, &raw_Kd, 1, 9990, copy_and_scalePID_d_E4);
#ifdef PID_ADD_EXTRUSION_RATE #ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C " E4", &PID_PARAM(Kc,3), 1, 9990); MENU_ITEM_EDIT(float3, MSG_PID_C MSG_E4, &PID_PARAM(Kc,3), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE #endif//PID_ADD_EXTRUSION_RATE
#endif//EXTRUDERS > 3 #endif//EXTRUDERS > 3
#endif//EXTRUDERS > 2 #endif//EXTRUDERS > 2
@ -960,84 +850,80 @@ static void lcd_control_temperature_menu()
END_MENU(); END_MENU();
} }
static void lcd_control_temperature_preheat_pla_settings_menu() static void lcd_control_temperature_preheat_pla_settings_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &plaPreheatFanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &plaPreheatFanSpeed, 0, 255); #if TEMP_SENSOR_0 != 0
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &plaPreheatHotendTemp, 0, HEATER_0_MAXTEMP - 15); MENU_ITEM_EDIT(int3, MSG_NOZZLE, &plaPreheatHotendTemp, 0, HEATER_0_MAXTEMP - 15);
#endif #endif
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &plaPreheatHPBTemp, 0, BED_MAXTEMP - 15); MENU_ITEM_EDIT(int3, MSG_BED, &plaPreheatHPBTemp, 0, BED_MAXTEMP - 15);
#endif #endif
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings); MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings);
#endif #endif
END_MENU(); END_MENU();
} }
static void lcd_control_temperature_preheat_abs_settings_menu() static void lcd_control_temperature_preheat_abs_settings_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu); MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &absPreheatFanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &absPreheatFanSpeed, 0, 255); #if TEMP_SENSOR_0 != 0
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &absPreheatHotendTemp, 0, HEATER_0_MAXTEMP - 15); MENU_ITEM_EDIT(int3, MSG_NOZZLE, &absPreheatHotendTemp, 0, HEATER_0_MAXTEMP - 15);
#endif #endif
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &absPreheatHPBTemp, 0, BED_MAXTEMP - 15); MENU_ITEM_EDIT(int3, MSG_BED, &absPreheatHPBTemp, 0, BED_MAXTEMP - 15);
#endif #endif
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings); MENU_ITEM(function, MSG_STORE_EPROM, Config_StoreSettings);
#endif #endif
END_MENU(); END_MENU();
} }
static void lcd_control_motion_menu() static void lcd_control_motion_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); #ifdef ENABLE_AUTO_BED_LEVELING
#ifdef ENABLE_AUTO_BED_LEVELING
MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, 0.5, 50); MENU_ITEM_EDIT(float32, MSG_ZPROBE_ZOFFSET, &zprobe_zoffset, 0.5, 50);
#endif #endif
MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 500, 99000); MENU_ITEM_EDIT(float5, MSG_ACC, &acceleration, 500, 99000);
MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990); MENU_ITEM_EDIT(float3, MSG_VXY_JERK, &max_xy_jerk, 1, 990);
MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990); MENU_ITEM_EDIT(float52, MSG_VZ_JERK, &max_z_jerk, 0.1, 990);
MENU_ITEM_EDIT(float3, MSG_VE_JERK, &max_e_jerk, 1, 990); MENU_ITEM_EDIT(float3, MSG_VE_JERK, &max_e_jerk, 1, 990);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &max_feedrate[X_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_X, &max_feedrate[X_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &max_feedrate[Y_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Y, &max_feedrate[Y_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &max_feedrate[Z_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_Z, &max_feedrate[Z_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &max_feedrate[E_AXIS], 1, 999); MENU_ITEM_EDIT(float3, MSG_VMAX MSG_E, &max_feedrate[E_AXIS], 1, 999);
MENU_ITEM_EDIT(float3, MSG_VMIN, &minimumfeedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VMIN, &minimumfeedrate, 0, 999);
MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &mintravelfeedrate, 0, 999); MENU_ITEM_EDIT(float3, MSG_VTRAV_MIN, &mintravelfeedrate, 0, 999);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_X, &max_acceleration_units_per_sq_second[X_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Y, &max_acceleration_units_per_sq_second[Y_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &max_acceleration_units_per_sq_second[Z_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_Z, &max_acceleration_units_per_sq_second[Z_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &max_acceleration_units_per_sq_second[E_AXIS], 100, 99000, reset_acceleration_rates);
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &retract_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_XSTEPS, &axis_steps_per_unit[X_AXIS], 5, 9999);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999); MENU_ITEM_EDIT(float52, MSG_YSTEPS, &axis_steps_per_unit[Y_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &axis_steps_per_unit[Z_AXIS], 5, 9999);
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999); MENU_ITEM_EDIT(float51, MSG_ESTEPS, &axis_steps_per_unit[E_AXIS], 5, 9999);
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit); MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &abort_on_endstop_hit);
#endif #endif
#ifdef SCARA #ifdef SCARA
MENU_ITEM_EDIT(float74, MSG_XSCALE, &axis_scaling[X_AXIS],0.5,2); MENU_ITEM_EDIT(float74, MSG_XSCALE, &axis_scaling[X_AXIS],0.5,2);
MENU_ITEM_EDIT(float74, MSG_YSCALE, &axis_scaling[Y_AXIS],0.5,2); MENU_ITEM_EDIT(float74, MSG_YSCALE, &axis_scaling[Y_AXIS],0.5,2);
#endif #endif
END_MENU(); END_MENU();
} }
static void lcd_control_volumetric_menu() static void lcd_control_volumetric_menu() {
{ START_MENU();
START_MENU(); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers); MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
if (volumetric_enabled) { if (volumetric_enabled) {
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_0, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_0, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_1, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_1, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers);
@ -1048,149 +934,133 @@ static void lcd_control_volumetric_menu()
#endif //EXTRUDERS > 3 #endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2 #endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1 #endif //EXTRUDERS > 1
} }
END_MENU(); END_MENU();
} }
#ifdef DOGLCD #ifdef DOGLCD
static void lcd_set_contrast()
{ static void lcd_set_contrast() {
if (encoderPosition != 0) if (encoderPosition != 0) {
{ lcd_contrast -= encoderPosition;
lcd_contrast -= encoderPosition; if (lcd_contrast < 0) lcd_contrast = 0;
if (lcd_contrast < 0) lcd_contrast = 0; else if (lcd_contrast > 63) lcd_contrast = 63;
else if (lcd_contrast > 63) lcd_contrast = 63; encoderPosition = 0;
encoderPosition = 0; lcdDrawUpdate = 1;
lcdDrawUpdate = 1; u8g.setContrast(lcd_contrast);
u8g.setContrast(lcd_contrast); }
} if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_CONTRAST), itostr2(lcd_contrast));
if (lcdDrawUpdate) if (LCD_CLICKED) lcd_goto_menu(lcd_control_menu);
{
lcd_implementation_drawedit(PSTR(MSG_CONTRAST), itostr2(lcd_contrast));
}
if (LCD_CLICKED) lcd_goto_menu(lcd_control_menu);
} }
#endif
#endif //DOGLCD
#ifdef FWRETRACT #ifdef FWRETRACT
static void lcd_control_retract_menu()
{ static void lcd_control_retract_menu() {
START_MENU(); START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu); MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled); MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT, &retract_length, 0, 100); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT, &retract_length, 0, 100);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_SWAP, &retract_length_swap, 0, 100); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_SWAP, &retract_length_swap, 0, 100);
#endif #endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACTF, &retract_feedrate, 1, 999); MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACTF, &retract_feedrate, 1, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_ZLIFT, &retract_zlift, 0, 999); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_ZLIFT, &retract_zlift, 0, 999);
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER, &retract_recover_length, 0, 100); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER, &retract_recover_length, 0, 100);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100); MENU_ITEM_EDIT(float52, MSG_CONTROL_RETRACT_RECOVER_SWAP, &retract_recover_length_swap, 0, 100);
#endif #endif
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999); MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999);
END_MENU(); END_MENU();
} }
#endif //FWRETRACT #endif //FWRETRACT
#if SDCARDDETECT == -1 #if SDCARDDETECT == -1
static void lcd_sd_refresh() static void lcd_sd_refresh() {
{
card.initsd(); card.initsd();
currentMenuViewOffset = 0; currentMenuViewOffset = 0;
} }
#endif #endif
static void lcd_sd_updir()
{ static void lcd_sd_updir() {
card.updir(); card.updir();
currentMenuViewOffset = 0; currentMenuViewOffset = 0;
} }
void lcd_sdcard_menu() void lcd_sdcard_menu() {
{ if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) return; // nothing to do (so don't thrash the SD card)
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) uint16_t fileCnt = card.getnrfilenames();
return; // nothing to do (so don't thrash the SD card) START_MENU();
uint16_t fileCnt = card.getnrfilenames(); MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
START_MENU(); card.getWorkDirName();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu); if (card.filename[0] == '/') {
card.getWorkDirName(); #if SDCARDDETECT == -1
if(card.filename[0]=='/') MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh);
{ #endif
#if SDCARDDETECT == -1 }
MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh); else {
#endif MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}else{ }
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}
for(uint16_t i=0;i<fileCnt;i++) for(uint16_t i = 0; i < fileCnt; i++) {
{ if (_menuItemNr == _lineNr) {
if (_menuItemNr == _lineNr) #ifndef SDCARD_RATHERRECENTFIRST
{ card.getfilename(i);
#ifndef SDCARD_RATHERRECENTFIRST #else
card.getfilename(i); card.getfilename(fileCnt-1-i);
#else #endif
card.getfilename(fileCnt-1-i); if (card.filenameIsDir)
#endif MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
if (card.filenameIsDir) else
{ MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
}else{
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
}else{
MENU_ITEM_DUMMY();
}
} }
END_MENU(); else {
MENU_ITEM_DUMMY();
}
}
END_MENU();
} }
#define menu_edit_type(_type, _name, _strFunc, scale) \ #define menu_edit_type(_type, _name, _strFunc, scale) \
void menu_edit_ ## _name () \ bool _menu_edit_ ## _name () { \
{ \ bool isClicked = LCD_CLICKED; \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \ if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \ if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \
if (lcdDrawUpdate) \ if (lcdDrawUpdate) \
lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \ lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \
if (LCD_CLICKED) \ if (isClicked) { \
{ \ *((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \
*((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \ lcd_goto_menu(prevMenu, prevEncoderPosition); \
lcd_goto_menu(prevMenu, prevEncoderPosition); \
} \
} \ } \
void menu_edit_callback_ ## _name () { \ return isClicked; \
menu_edit_ ## _name (); \ } \
if (LCD_CLICKED) (*callbackFunc)(); \ void menu_edit_ ## _name () { _menu_edit_ ## _name(); } \
} \ void menu_edit_callback_ ## _name () { if (_menu_edit_ ## _name ()) (*callbackFunc)(); } \
static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \ static void _menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \
{ \ prevMenu = currentMenu; \
prevMenu = currentMenu; \ prevEncoderPosition = encoderPosition; \
prevEncoderPosition = encoderPosition; \ \
\ lcdDrawUpdate = 2; \
lcdDrawUpdate = 2; \ currentMenu = menu_edit_ ## _name; \
currentMenu = menu_edit_ ## _name; \ \
\ editLabel = pstr; \
editLabel = pstr; \ editValue = ptr; \
editValue = ptr; \ minEditValue = minValue * scale; \
minEditValue = minValue * scale; \ maxEditValue = maxValue * scale - minEditValue; \
maxEditValue = maxValue * scale - minEditValue; \ encoderPosition = (*ptr) * scale - minEditValue; \
encoderPosition = (*ptr) * scale - minEditValue; \ } \
}\ static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \
static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \ _menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
{ \ currentMenu = menu_edit_ ## _name; \
prevMenu = currentMenu; \ }\
prevEncoderPosition = encoderPosition; \ static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) { \
\ _menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
lcdDrawUpdate = 2; \ currentMenu = menu_edit_callback_ ## _name; \
currentMenu = menu_edit_callback_ ## _name; \ callbackFunc = callback; \
\ }
editLabel = pstr; \
editValue = ptr; \
minEditValue = minValue * scale; \
maxEditValue = maxValue * scale - minEditValue; \
encoderPosition = (*ptr) * scale - minEditValue; \
callbackFunc = callback;\
}
menu_edit_type(int, int3, itostr3, 1) menu_edit_type(int, int3, itostr3, 1)
menu_edit_type(float, float3, ftostr3, 1) menu_edit_type(float, float3, ftostr3, 1)
menu_edit_type(float, float32, ftostr32, 100) menu_edit_type(float, float32, ftostr32, 100)
@ -1201,94 +1071,81 @@ menu_edit_type(float, float52, ftostr52, 100)
menu_edit_type(unsigned long, long5, ftostr5, 0.01) menu_edit_type(unsigned long, long5, ftostr5, 0.01)
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
static void reprapworld_keypad_move_z_up() { static void reprapworld_keypad_move_z_up() {
encoderPosition = 1; encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z(); lcd_move_z();
} }
static void reprapworld_keypad_move_z_down() { static void reprapworld_keypad_move_z_down() {
encoderPosition = -1; encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_z(); lcd_move_z();
} }
static void reprapworld_keypad_move_x_left() { static void reprapworld_keypad_move_x_left() {
encoderPosition = -1; encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x(); lcd_move_x();
} }
static void reprapworld_keypad_move_x_right() { static void reprapworld_keypad_move_x_right() {
encoderPosition = 1; encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_x(); lcd_move_x();
} }
static void reprapworld_keypad_move_y_down() { static void reprapworld_keypad_move_y_down() {
encoderPosition = 1; encoderPosition = 1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP; move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y();
}
static void reprapworld_keypad_move_y_up() {
encoderPosition = -1;
move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
lcd_move_y(); lcd_move_y();
} }
static void reprapworld_keypad_move_home() { static void reprapworld_keypad_move_y_up() {
enquecommands_P((PSTR("G28"))); // move all axis home encoderPosition = -1;
} move_menu_scale = REPRAPWORLD_KEYPAD_MOVE_STEP;
#endif lcd_move_y();
}
static void reprapworld_keypad_move_home() {
enquecommands_P((PSTR("G28"))); // move all axis home
}
#endif //REPRAPWORLD_KEYPAD
/** End of menus **/ /** End of menus **/
static void lcd_quick_feedback() static void lcd_quick_feedback() {
{ lcdDrawUpdate = 2;
lcdDrawUpdate = 2; blocking_enc = millis() + 500;
blocking_enc = millis() + 500; lcd_implementation_quick_feedback();
lcd_implementation_quick_feedback();
} }
/** Menu action functions **/ /** Menu action functions **/
static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); }
static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); } static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); }
static void menu_action_gcode(const char* pgcode) { enquecommands_P(pgcode); }
static void menu_action_gcode(const char* pgcode)
{
enquecommands_P(pgcode);
}
static void menu_action_function(menuFunc_t data) { (*data)(); } static void menu_action_function(menuFunc_t data) { (*data)(); }
static void menu_action_sdfile(const char* filename, char* longFilename) static void menu_action_sdfile(const char* filename, char* longFilename) {
{ char cmd[30];
char cmd[30]; char* c;
char* c; sprintf_P(cmd, PSTR("M23 %s"), filename);
sprintf_P(cmd, PSTR("M23 %s"), filename); for(c = &cmd[4]; *c; c++) *c = tolower(*c);
for(c = &cmd[4]; *c; c++) enquecommand(cmd);
*c = tolower(*c); enquecommands_P(PSTR("M24"));
enquecommand(cmd); lcd_return_to_status();
enquecommands_P(PSTR("M24"));
lcd_return_to_status();
} }
static void menu_action_sddirectory(const char* filename, char* longFilename) static void menu_action_sddirectory(const char* filename, char* longFilename) {
{ card.chdir(filename);
card.chdir(filename); encoderPosition = 0;
encoderPosition = 0;
} }
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) { *ptr = !(*ptr); }
{ static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback) {
*ptr = !(*ptr); menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
} }
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback)
{ #endif //ULTIPANEL
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
#endif//ULTIPANEL
/** LCD API **/ /** LCD API **/
void lcd_init() void lcd_init() {
{ lcd_implementation_init();
lcd_implementation_init();
#ifdef NEWPANEL
#ifdef NEWPANEL
SET_INPUT(BTN_EN1); SET_INPUT(BTN_EN1);
SET_INPUT(BTN_EN2); SET_INPUT(BTN_EN2);
WRITE(BTN_EN1,HIGH); WRITE(BTN_EN1,HIGH);
@ -1323,182 +1180,166 @@ void lcd_init()
#endif // SR_LCD_2W_NL #endif // SR_LCD_2W_NL
#endif//!NEWPANEL #endif//!NEWPANEL
#if defined (SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0) #if defined(SDSUPPORT) && defined(SDCARDDETECT) && (SDCARDDETECT > 0)
pinMode(SDCARDDETECT,INPUT); pinMode(SDCARDDETECT, INPUT);
WRITE(SDCARDDETECT, HIGH); WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED; lcd_oldcardstatus = IS_SD_INSERTED;
#endif//(SDCARDDETECT > 0) #endif //(SDCARDDETECT > 0)
#ifdef LCD_HAS_SLOW_BUTTONS
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = 0; slow_buttons = 0;
#endif #endif
lcd_buttons_update();
#ifdef ULTIPANEL lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0; encoderDiff = 0;
#endif #endif
} }
int lcd_strlen(char *s) { int lcd_strlen(char *s) {
int i = 0, j = 0; int i = 0, j = 0;
while (s[i]) { while (s[i]) {
if ((s[i] & 0xc0) != 0x80) j++; if ((s[i] & 0xc0) != 0x80) j++;
i++; i++;
} }
return j; return j;
} }
int lcd_strlen_P(const char *s) { int lcd_strlen_P(const char *s) {
int j = 0; int j = 0;
while (pgm_read_byte(s)) { while (pgm_read_byte(s)) {
if ((pgm_read_byte(s) & 0xc0) != 0x80) j++; if ((pgm_read_byte(s) & 0xc0) != 0x80) j++;
s++; s++;
} }
return j; return j;
} }
void lcd_update() {
static unsigned long timeoutToStatus = 0;
#ifdef LCD_HAS_SLOW_BUTTONS
void lcd_update()
{
static unsigned long timeoutToStatus = 0;
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context slow_buttons = lcd_implementation_read_slow_buttons(); // buttons which take too long to read in interrupt context
#endif #endif
lcd_buttons_update(); lcd_buttons_update();
#if (SDCARDDETECT > 0) #if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected())) if (IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()) {
{ lcdDrawUpdate = 2;
lcdDrawUpdate = 2; lcd_oldcardstatus = IS_SD_INSERTED;
lcd_oldcardstatus = IS_SD_INSERTED; lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it. #if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) && !defined(DOGLCD)
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) && !defined(DOGLCD) currentMenu == lcd_status_screen
currentMenu == lcd_status_screen #endif
#endif );
);
if(lcd_oldcardstatus) if (lcd_oldcardstatus) {
{ card.initsd();
card.initsd(); LCD_MESSAGEPGM(MSG_SD_INSERTED);
LCD_MESSAGEPGM(MSG_SD_INSERTED); }
} else {
else card.release();
{ LCD_MESSAGEPGM(MSG_SD_REMOVED);
card.release(); }
LCD_MESSAGEPGM(MSG_SD_REMOVED);
}
} }
#endif//CARDINSERTED #endif//CARDINSERTED
if (lcd_next_update_millis < millis()) long ms = millis();
{ if (ms > lcd_next_update_millis) {
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
reprapworld_keypad_move_z_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
reprapworld_keypad_move_z_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
reprapworld_keypad_move_x_left();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
reprapworld_keypad_move_x_right();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
reprapworld_keypad_move_y_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
reprapworld_keypad_move_home();
}
#endif
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP)
{
int32_t encoderMultiplier = 1;
#ifdef ENCODER_RATE_MULTIPLIER #ifdef ULTIPANEL
if (encoderRateMultiplierEnabled) { #ifdef REPRAPWORLD_KEYPAD
int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP; if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) reprapworld_keypad_move_z_down();
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) reprapworld_keypad_move_x_left();
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) reprapworld_keypad_move_x_right();
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) reprapworld_keypad_move_y_down();
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) reprapworld_keypad_move_y_up();
if (REPRAPWORLD_KEYPAD_MOVE_HOME) reprapworld_keypad_move_home();
#endif
if (lastEncoderMovementMillis != 0) { bool encoderPastThreshold = (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP);
// Note that the rate is always calculated between to passes through the if (encoderPastThreshold || LCD_CLICKED) {
// loop and that the abs of the encoderDiff value is tracked. if (encoderPastThreshold) {
float encoderStepRate = int32_t encoderMultiplier = 1;
(float)(encoderMovementSteps) / ((float)(millis() - lastEncoderMovementMillis)) * 1000.0;
if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100; #ifdef ENCODER_RATE_MULTIPLIER
else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#ifdef ENCODER_RATE_MULTIPLIER_DEBUG if (encoderRateMultiplierEnabled) {
SERIAL_ECHO_START; int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP;
SERIAL_ECHO("Enc Step Rate: ");
SERIAL_ECHO(encoderStepRate); if (lastEncoderMovementMillis != 0) {
SERIAL_ECHO(" Multiplier: "); // Note that the rate is always calculated between to passes through the
SERIAL_ECHO(encoderMultiplier); // loop and that the abs of the encoderDiff value is tracked.
SERIAL_ECHO(" ENCODER_10X_STEPS_PER_SEC: "); float encoderStepRate = (float)(encoderMovementSteps) / ((float)(ms - lastEncoderMovementMillis)) * 1000.0;
SERIAL_ECHO(ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHO(" ENCODER_100X_STEPS_PER_SEC: "); if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100;
SERIAL_ECHOLN(ENCODER_100X_STEPS_PER_SEC); else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#endif //ENCODER_RATE_MULTIPLIER_DEBUG
#ifdef ENCODER_RATE_MULTIPLIER_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO("Enc Step Rate: ");
SERIAL_ECHO(encoderStepRate);
SERIAL_ECHO(" Multiplier: ");
SERIAL_ECHO(encoderMultiplier);
SERIAL_ECHO(" ENCODER_10X_STEPS_PER_SEC: ");
SERIAL_ECHO(ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHO(" ENCODER_100X_STEPS_PER_SEC: ");
SERIAL_ECHOLN(ENCODER_100X_STEPS_PER_SEC);
#endif //ENCODER_RATE_MULTIPLIER_DEBUG
}
lastEncoderMovementMillis = ms;
}
#endif //ENCODER_RATE_MULTIPLIER
lcdDrawUpdate = 1;
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
}
timeoutToStatus = ms + LCD_TIMEOUT_TO_STATUS;
} }
lastEncoderMovementMillis = millis(); #endif //ULTIPANEL
}
#endif //ENCODER_RATE_MULTIPLIER
lcdDrawUpdate = 1; #ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP; blink++; // Variable for fan animation and alive dot
encoderDiff = 0; u8g.firstPage();
timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; do {
} u8g.setFont(FONT_MENU);
if (LCD_CLICKED) u8g.setPrintPos(125, 0);
timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS; if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
#endif//ULTIPANEL u8g.drawPixel(127, 63); // draw alive dot
u8g.setColorIndex(1); // black on white
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot
u8g.firstPage();
do
{
u8g.setFont(FONT_MENU);
u8g.setPrintPos(125,0);
if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
u8g.drawPixel(127,63); // draw alive dot
u8g.setColorIndex(1); // black on white
(*currentMenu)();
if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while( u8g.nextPage() );
#else
(*currentMenu)(); (*currentMenu)();
#endif if (!lcdDrawUpdate) break; // Terminate display update, when nothing new to draw. This must be done before the last dogm.next()
} while( u8g.nextPage() );
#else
(*currentMenu)();
#endif
#ifdef LCD_HAS_STATUS_INDICATORS #ifdef LCD_HAS_STATUS_INDICATORS
lcd_implementation_update_indicators(); lcd_implementation_update_indicators();
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
if(timeoutToStatus < millis() && currentMenu != lcd_status_screen) if (currentMenu != lcd_status_screen && millis() > timeoutToStatus) {
{ lcd_return_to_status();
lcd_return_to_status(); lcdDrawUpdate = 2;
lcdDrawUpdate = 2; }
} #endif //ULTIPANEL
#endif//ULTIPANEL
if (lcdDrawUpdate == 2) lcd_implementation_clear(); if (lcdDrawUpdate == 2) lcd_implementation_clear();
if (lcdDrawUpdate) lcdDrawUpdate--; if (lcdDrawUpdate) lcdDrawUpdate--;
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL; lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
} }
} }
void lcd_ignore_click(bool b) void lcd_ignore_click(bool b) {
{ ignore_click = b;
ignore_click = b; wait_for_unclick = false;
wait_for_unclick = false;
} }
void lcd_finishstatus() { void lcd_finishstatus() {
@ -1521,145 +1362,122 @@ void lcd_finishstatus() {
message_millis = millis(); //get status message to show up for a while message_millis = millis(); //get status message to show up for a while
#endif #endif
} }
void lcd_setstatus(const char* message)
{ void lcd_setstatus(const char* message) {
if (lcd_status_message_level > 0) if (lcd_status_message_level > 0) return;
return; strncpy(lcd_status_message, message, LCD_WIDTH);
strncpy(lcd_status_message, message, LCD_WIDTH); lcd_finishstatus();
lcd_finishstatus();
}
void lcd_setstatuspgm(const char* message)
{
if (lcd_status_message_level > 0)
return;
strncpy_P(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setalertstatuspgm(const char* message)
{
lcd_setstatuspgm(message);
lcd_status_message_level = 1;
#ifdef ULTIPANEL
lcd_return_to_status();
#endif//ULTIPANEL
}
void lcd_reset_alert_level()
{
lcd_status_message_level = 0;
} }
void lcd_setstatuspgm(const char* message) {
if (lcd_status_message_level > 0) return;
strncpy_P(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setalertstatuspgm(const char* message) {
lcd_setstatuspgm(message);
lcd_status_message_level = 1;
#ifdef ULTIPANEL
lcd_return_to_status();
#endif
}
void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#ifdef DOGLCD #ifdef DOGLCD
void lcd_setcontrast(uint8_t value) void lcd_setcontrast(uint8_t value) {
{
lcd_contrast = value & 63; lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast); u8g.setContrast(lcd_contrast);
} }
#endif #endif
#ifdef ULTIPANEL #ifdef ULTIPANEL
/* Warning: This function is called from interrupt context */ /* Warning: This function is called from interrupt context */
void lcd_buttons_update() void lcd_buttons_update() {
{ #ifdef NEWPANEL
#ifdef NEWPANEL uint8_t newbutton = 0;
uint8_t newbutton=0; if (READ(BTN_EN1) == 0) newbutton |= EN_A;
if(READ(BTN_EN1)==0) newbutton|=EN_A; if (READ(BTN_EN2) == 0) newbutton |= EN_B;
if(READ(BTN_EN2)==0) newbutton|=EN_B; #if BTN_ENC > 0
#if BTN_ENC > 0 if (millis() > blocking_enc && READ(BTN_ENC) == 0) newbutton |= EN_C;
if((blocking_enc<millis()) && (READ(BTN_ENC)==0)) #endif
newbutton |= EN_C;
#endif
buttons = newbutton; buttons = newbutton;
#ifdef LCD_HAS_SLOW_BUTTONS #ifdef LCD_HAS_SLOW_BUTTONS
buttons |= slow_buttons; buttons |= slow_buttons;
#endif #endif
#ifdef REPRAPWORLD_KEYPAD #ifdef REPRAPWORLD_KEYPAD
// for the reprapworld_keypad // for the reprapworld_keypad
uint8_t newbutton_reprapworld_keypad=0; uint8_t newbutton_reprapworld_keypad=0;
WRITE(SHIFT_LD,LOW); WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD, HIGH);
for(int8_t i=0;i<8;i++) { for(int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad = newbutton_reprapworld_keypad>>1; newbutton_reprapworld_keypad >>= 1;
if(READ(SHIFT_OUT)) if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7);
newbutton_reprapworld_keypad|=(1<<7); WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK,HIGH); WRITE(SHIFT_CLK, LOW);
WRITE(SHIFT_CLK,LOW);
} }
buttons_reprapworld_keypad=~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0 buttons_reprapworld_keypad=~newbutton_reprapworld_keypad; //invert it, because a pressed switch produces a logical 0
#endif #endif
#else //read it from the shift register #else //read it from the shift register
uint8_t newbutton=0; uint8_t newbutton = 0;
WRITE(SHIFT_LD,LOW); WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD,HIGH); WRITE(SHIFT_LD, HIGH);
unsigned char tmp_buttons=0; unsigned char tmp_buttons = 0;
for(int8_t i=0;i<8;i++) for(int8_t i=0; i<8; i++) {
{ newbutton >>= 1;
newbutton = newbutton>>1; if (READ(SHIFT_OUT)) newbutton |= (1 << 7);
if(READ(SHIFT_OUT)) WRITE(SHIFT_CLK, HIGH);
newbutton|=(1<<7); WRITE(SHIFT_CLK, LOW);
WRITE(SHIFT_CLK,HIGH);
WRITE(SHIFT_CLK,LOW);
} }
buttons=~newbutton; //invert it, because a pressed switch produces a logical 0 buttons = ~newbutton; //invert it, because a pressed switch produces a logical 0
#endif//!NEWPANEL #endif //!NEWPANEL
//manage encoder rotation //manage encoder rotation
uint8_t enc=0; uint8_t enc=0;
if (buttons & EN_A) enc |= B01; if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10; if (buttons & EN_B) enc |= B10;
if(enc != lastEncoderBits) if (enc != lastEncoderBits) {
{ switch(enc) {
switch(enc) case encrot0:
{ if (lastEncoderBits==encrot3) encoderDiff++;
case encrot0: else if (lastEncoderBits==encrot1) encoderDiff--;
if(lastEncoderBits==encrot3) break;
encoderDiff++; case encrot1:
else if(lastEncoderBits==encrot1) if (lastEncoderBits==encrot0) encoderDiff++;
encoderDiff--; else if (lastEncoderBits==encrot2) encoderDiff--;
break; break;
case encrot1: case encrot2:
if(lastEncoderBits==encrot0) if (lastEncoderBits==encrot1) encoderDiff++;
encoderDiff++; else if (lastEncoderBits==encrot3) encoderDiff--;
else if(lastEncoderBits==encrot2) break;
encoderDiff--; case encrot3:
break; if (lastEncoderBits==encrot2) encoderDiff++;
case encrot2: else if (lastEncoderBits==encrot0) encoderDiff--;
if(lastEncoderBits==encrot1) break;
encoderDiff++;
else if(lastEncoderBits==encrot3)
encoderDiff--;
break;
case encrot3:
if(lastEncoderBits==encrot2)
encoderDiff++;
else if(lastEncoderBits==encrot0)
encoderDiff--;
break;
}
} }
lastEncoderBits = enc; }
lastEncoderBits = enc;
} }
bool lcd_detected(void) bool lcd_detected(void) {
{ #if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
#if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE) return lcd.LcdDetected() == 1;
return lcd.LcdDetected() == 1; #else
#else return true;
return true; #endif
#endif
} }
void lcd_buzz(long duration, uint16_t freq) void lcd_buzz(long duration, uint16_t freq) {
{ #ifdef LCD_USE_I2C_BUZZER
#ifdef LCD_USE_I2C_BUZZER lcd.buzz(duration,freq);
lcd.buzz(duration,freq); #endif
#endif
} }
bool lcd_clicked() bool lcd_clicked() { return LCD_CLICKED; }
{
return LCD_CLICKED; #endif //ULTIPANEL
}
#endif//ULTIPANEL
/********************************/ /********************************/
/** Float conversion utilities **/ /** Float conversion utilities **/