Feature file updates
This commit is contained in:
parent
d7ee81202f
commit
4a82e95c3e
23 changed files with 1831 additions and 1650 deletions
|
@ -28,1105 +28,1104 @@
|
|||
//todo: consider Marlin-optimized Wire library; i.e. MarlinWire, like MarlinSerial
|
||||
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "temperature.h"
|
||||
#include "stepper.h"
|
||||
#include "I2CPositionEncoder.h"
|
||||
#include "gcode.h"
|
||||
#include "I2CPositionEncoder.h"
|
||||
|
||||
#include <Wire.h>
|
||||
#include "../module/temperature.h"
|
||||
#include "../module/stepper.h"
|
||||
#include "../gcode/parser.h"
|
||||
|
||||
#include <Wire.h>
|
||||
|
||||
void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) {
|
||||
encoderAxis = axis;
|
||||
i2cAddress = address;
|
||||
void I2CPositionEncoder::init(const uint8_t address, const AxisEnum axis) {
|
||||
encoderAxis = axis;
|
||||
i2cAddress = address;
|
||||
|
||||
initialised++;
|
||||
initialised++;
|
||||
|
||||
SERIAL_ECHOPAIR("Setting up encoder on ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPAIR(" axis, addr = ", address);
|
||||
SERIAL_ECHOPAIR("Setting up encoder on ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPAIR(" axis, addr = ", address);
|
||||
|
||||
position = get_position();
|
||||
position = get_position();
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::update() {
|
||||
if (!initialised || !homed || !active) return; //check encoder is set up and active
|
||||
|
||||
position = get_position();
|
||||
|
||||
//we don't want to stop things just because the encoder missed a message,
|
||||
//so we only care about responses that indicate bad magnetic strength
|
||||
|
||||
if (!passes_test(false)) { //check encoder data is good
|
||||
lastErrorTime = millis();
|
||||
/*
|
||||
if (trusted) { //commented out as part of the note below
|
||||
trusted = false;
|
||||
SERIAL_ECHOPGM("Fault detected on ");
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder. Disengaging error correction until module is trusted again.");
|
||||
}
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::update() {
|
||||
if (!initialised || !homed || !active) return; //check encoder is set up and active
|
||||
if (!trusted) {
|
||||
/**
|
||||
* This is commented out because it introduces error and can cause bad print quality.
|
||||
*
|
||||
* This code is intended to manage situations where the encoder has reported bad magnetic strength.
|
||||
* This indicates that the magnetic strip was too far away from the sensor to reliably track position.
|
||||
* When this happens, this code resets the offset based on where the printer thinks it is. This has been
|
||||
* shown to introduce errors in actual position which result in drifting prints and poor print quality.
|
||||
* Perhaps a better method would be to disable correction on the axis with a problem, report it to the
|
||||
* user via the status leds on the encoder module and prompt the user to re-home the axis at which point
|
||||
* the encoder would be re-enabled.
|
||||
*/
|
||||
|
||||
position = get_position();
|
||||
/*
|
||||
// If the magnetic strength has been good for a certain time, start trusting the module again
|
||||
|
||||
//we don't want to stop things just because the encoder missed a message,
|
||||
//so we only care about responses that indicate bad magnetic strength
|
||||
if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
|
||||
trusted = true;
|
||||
|
||||
if (!passes_test(false)) { //check encoder data is good
|
||||
lastErrorTime = millis();
|
||||
/*
|
||||
if (trusted) { //commented out as part of the note below
|
||||
trusted = false;
|
||||
SERIAL_ECHOPGM("Fault detected on ");
|
||||
SERIAL_ECHOPGM("Untrusted encoder module on ");
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder. Disengaging error correction until module is trusted again.");
|
||||
SERIAL_ECHOLNPGM(" axis has been fault-free for set duration, reinstating error correction.");
|
||||
|
||||
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's
|
||||
//idea of where it the axis is to re-initialise
|
||||
float position = stepper.get_axis_position_mm(encoderAxis);
|
||||
int32_t positionInTicks = position * get_ticks_unit();
|
||||
|
||||
//shift position from previous to current position
|
||||
zeroOffset -= (positionInTicks - get_position());
|
||||
|
||||
#ifdef I2CPE_DEBUG
|
||||
SERIAL_ECHOPGM("Current position is ");
|
||||
SERIAL_ECHOLN(position);
|
||||
|
||||
SERIAL_ECHOPGM("Position in encoder ticks is ");
|
||||
SERIAL_ECHOLN(positionInTicks);
|
||||
|
||||
SERIAL_ECHOPGM("New zero-offset of ");
|
||||
SERIAL_ECHOLN(zeroOffset);
|
||||
|
||||
SERIAL_ECHOPGM("New position reads as ");
|
||||
SERIAL_ECHO(get_position());
|
||||
SERIAL_ECHOPGM("(");
|
||||
SERIAL_ECHO(mm_from_count(get_position()));
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
return;
|
||||
}
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
if (!trusted) {
|
||||
/**
|
||||
* This is commented out because it introduces error and can cause bad print quality.
|
||||
*
|
||||
* This code is intended to manage situations where the encoder has reported bad magnetic strength.
|
||||
* This indicates that the magnetic strip was too far away from the sensor to reliably track position.
|
||||
* When this happens, this code resets the offset based on where the printer thinks it is. This has been
|
||||
* shown to introduce errors in actual position which result in drifting prints and poor print quality.
|
||||
* Perhaps a better method would be to disable correction on the axis with a problem, report it to the
|
||||
* user via the status leds on the encoder module and prompt the user to re-home the axis at which point
|
||||
* the encoder would be re-enabled.
|
||||
*/
|
||||
lastPosition = position;
|
||||
const millis_t positionTime = millis();
|
||||
|
||||
/*
|
||||
// If the magnetic strength has been good for a certain time, start trusting the module again
|
||||
//only do error correction if setup and enabled
|
||||
if (ec && ecMethod != I2CPE_ECM_NONE) {
|
||||
|
||||
if (millis() - lastErrorTime > I2CPE_TIME_TRUSTED) {
|
||||
trusted = true;
|
||||
#ifdef I2CPE_EC_THRESH_PROPORTIONAL
|
||||
const millis_t deltaTime = positionTime - lastPositionTime;
|
||||
const uint32_t distance = abs(position - lastPosition),
|
||||
speed = distance / deltaTime;
|
||||
const float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
|
||||
#else
|
||||
const float threshold = get_error_correct_threshold();
|
||||
#endif
|
||||
|
||||
SERIAL_ECHOPGM("Untrusted encoder module on ");
|
||||
//check error
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
float sum = 0, diffSum = 0;
|
||||
|
||||
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
|
||||
err[errIdx] = get_axis_error_steps(false);
|
||||
|
||||
LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) {
|
||||
sum += err[i];
|
||||
if (i) diffSum += abs(err[i-1] - err[i]);
|
||||
}
|
||||
|
||||
const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
|
||||
|
||||
#else
|
||||
const int32_t error = get_axis_error_steps(false);
|
||||
#endif
|
||||
|
||||
//SERIAL_ECHOPGM("Axis error steps: ");
|
||||
//SERIAL_ECHOLN(error);
|
||||
|
||||
#ifdef I2CPE_ERR_THRESH_ABORT
|
||||
if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
//kill("Significant Error");
|
||||
SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
|
||||
SERIAL_ECHOLN(error);
|
||||
safe_delay(5000);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
if (errIdx == 0) {
|
||||
// in order to correct for "error" but avoid correcting for noise and non skips
|
||||
// it must be > threshold and have a difference average of < 10 and be < 2000 steps
|
||||
if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
|
||||
diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1) && labs(error) < 2000) { //Check for persistent error (skip)
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis has been fault-free for set duration, reinstating error correction.");
|
||||
|
||||
//the encoder likely lost its place when the error occured, so we'll reset and use the printer's
|
||||
//idea of where it the axis is to re-initialise
|
||||
float position = stepper.get_axis_position_mm(encoderAxis);
|
||||
int32_t positionInTicks = position * get_ticks_unit();
|
||||
|
||||
//shift position from previous to current position
|
||||
zeroOffset -= (positionInTicks - get_position());
|
||||
|
||||
#ifdef I2CPE_DEBUG
|
||||
SERIAL_ECHOPGM("Current position is ");
|
||||
SERIAL_ECHOLN(position);
|
||||
|
||||
SERIAL_ECHOPGM("Position in encoder ticks is ");
|
||||
SERIAL_ECHOLN(positionInTicks);
|
||||
|
||||
SERIAL_ECHOPGM("New zero-offset of ");
|
||||
SERIAL_ECHOLN(zeroOffset);
|
||||
|
||||
SERIAL_ECHOPGM("New position reads as ");
|
||||
SERIAL_ECHO(get_position());
|
||||
SERIAL_ECHOPGM("(");
|
||||
SERIAL_ECHO(mm_from_count(get_position()));
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
return;
|
||||
}
|
||||
|
||||
lastPosition = position;
|
||||
const millis_t positionTime = millis();
|
||||
|
||||
//only do error correction if setup and enabled
|
||||
if (ec && ecMethod != I2CPE_ECM_NONE) {
|
||||
|
||||
#ifdef I2CPE_EC_THRESH_PROPORTIONAL
|
||||
const millis_t deltaTime = positionTime - lastPositionTime;
|
||||
const uint32_t distance = abs(position - lastPosition),
|
||||
speed = distance / deltaTime;
|
||||
const float threshold = constrain((speed / 50), 1, 50) * ecThreshold;
|
||||
#else
|
||||
const float threshold = get_error_correct_threshold();
|
||||
#endif
|
||||
|
||||
//check error
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
float sum = 0, diffSum = 0;
|
||||
|
||||
errIdx = (errIdx >= I2CPE_ERR_ARRAY_SIZE - 1) ? 0 : errIdx + 1;
|
||||
err[errIdx] = get_axis_error_steps(false);
|
||||
|
||||
LOOP_L_N(i, I2CPE_ERR_ARRAY_SIZE) {
|
||||
sum += err[i];
|
||||
if (i) diffSum += abs(err[i-1] - err[i]);
|
||||
}
|
||||
|
||||
const int32_t error = int32_t(sum / (I2CPE_ERR_ARRAY_SIZE + 1)); //calculate average for error
|
||||
|
||||
#else
|
||||
const int32_t error = get_axis_error_steps(false);
|
||||
#endif
|
||||
|
||||
//SERIAL_ECHOPGM("Axis error steps: ");
|
||||
//SERIAL_ECHOLN(error);
|
||||
|
||||
#ifdef I2CPE_ERR_THRESH_ABORT
|
||||
if (labs(error) > I2CPE_ERR_THRESH_ABORT * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
//kill("Significant Error");
|
||||
SERIAL_ECHOPGM("Axis error greater than set threshold, aborting!");
|
||||
SERIAL_ECHOLN(error);
|
||||
safe_delay(5000);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
if (errIdx == 0) {
|
||||
// in order to correct for "error" but avoid correcting for noise and non skips
|
||||
// it must be > threshold and have a difference average of < 10 and be < 2000 steps
|
||||
if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis] &&
|
||||
diffSum < 10 * (I2CPE_ERR_ARRAY_SIZE - 1) && labs(error) < 2000) { //Check for persistent error (skip)
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" diffSum: ", diffSum / (I2CPE_ERR_ARRAY_SIZE - 1));
|
||||
SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM("mm; correcting!");
|
||||
thermalManager.babystepsTodo[encoderAxis] = -LROUND(error);
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
//SERIAL_ECHOLN(error);
|
||||
//SERIAL_ECHOLN(position);
|
||||
thermalManager.babystepsTodo[encoderAxis] = -LROUND(error/2);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (labs(error) > I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
const millis_t ms = millis();
|
||||
if (ELAPSED(ms, nextErrorCountTime)) {
|
||||
SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis. error: ", (int)error);
|
||||
SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
|
||||
errorCount++;
|
||||
nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
|
||||
SERIAL_ECHOPAIR(" diffSum: ", diffSum / (I2CPE_ERR_ARRAY_SIZE - 1));
|
||||
SERIAL_ECHOPAIR(" - err detected: ", error / planner.axis_steps_per_mm[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM("mm; correcting!");
|
||||
thermalManager.babystepsTodo[encoderAxis] = -LROUND(error);
|
||||
}
|
||||
}
|
||||
}
|
||||
#else
|
||||
if (labs(error) > threshold * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
//SERIAL_ECHOLN(error);
|
||||
//SERIAL_ECHOLN(position);
|
||||
thermalManager.babystepsTodo[encoderAxis] = -LROUND(error/2);
|
||||
}
|
||||
#endif
|
||||
|
||||
lastPositionTime = positionTime;
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::set_homed() {
|
||||
if (active) {
|
||||
reset(); // Reset module's offset to zero (so current position is homed / zero)
|
||||
delay(10);
|
||||
|
||||
zeroOffset = get_raw_count();
|
||||
homed++;
|
||||
trusted++;
|
||||
|
||||
#ifdef I2CPE_DEBUG
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset);
|
||||
SERIAL_ECHOLNPGM(" ticks.");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::passes_test(const bool report) {
|
||||
if (report) {
|
||||
if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. ");
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPGM(" axis ");
|
||||
serialprintPGM(H == I2CPE_MAG_SIG_BAD ? PSTR("magnetic strip ") : PSTR("encoder "));
|
||||
switch (H) {
|
||||
case I2CPE_MAG_SIG_GOOD:
|
||||
case I2CPE_MAG_SIG_MID:
|
||||
SERIAL_ECHOLNPGM("passes test; field strength ");
|
||||
serialprintPGM(H == I2CPE_MAG_SIG_GOOD ? PSTR("good.\n") : PSTR("fair.\n"));
|
||||
break;
|
||||
default:
|
||||
SERIAL_ECHOLNPGM("not detected!");
|
||||
if (labs(error) > I2CPE_ERR_CNT_THRESH * planner.axis_steps_per_mm[encoderAxis]) {
|
||||
const millis_t ms = millis();
|
||||
if (ELAPSED(ms, nextErrorCountTime)) {
|
||||
SERIAL_ECHOPAIR("Large error on ", axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis. error: ", (int)error);
|
||||
SERIAL_ECHOLNPAIR("; diffSum: ", diffSum);
|
||||
errorCount++;
|
||||
nextErrorCountTime = ms + I2CPE_ERR_CNT_DEBOUNCE_MS;
|
||||
}
|
||||
}
|
||||
return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID);
|
||||
}
|
||||
|
||||
float I2CPositionEncoder::get_axis_error_mm(const bool report) {
|
||||
float target, actual, error;
|
||||
lastPositionTime = positionTime;
|
||||
}
|
||||
|
||||
target = stepper.get_axis_position_mm(encoderAxis);
|
||||
actual = mm_from_count(position);
|
||||
error = actual - target;
|
||||
void I2CPositionEncoder::set_homed() {
|
||||
if (active) {
|
||||
reset(); // Reset module's offset to zero (so current position is homed / zero)
|
||||
delay(10);
|
||||
|
||||
if (labs(error) > 10000) error = 0; // ?
|
||||
zeroOffset = get_raw_count();
|
||||
homed++;
|
||||
trusted++;
|
||||
|
||||
#ifdef I2CPE_DEBUG
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis encoder homed, offset of ", zeroOffset);
|
||||
SERIAL_ECHOLNPGM(" ticks.");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::passes_test(const bool report) {
|
||||
if (report) {
|
||||
if (H != I2CPE_MAG_SIG_GOOD) SERIAL_ECHOPGM("Warning. ");
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPGM(" axis ");
|
||||
serialprintPGM(H == I2CPE_MAG_SIG_BAD ? PSTR("magnetic strip ") : PSTR("encoder "));
|
||||
switch (H) {
|
||||
case I2CPE_MAG_SIG_GOOD:
|
||||
case I2CPE_MAG_SIG_MID:
|
||||
SERIAL_ECHOLNPGM("passes test; field strength ");
|
||||
serialprintPGM(H == I2CPE_MAG_SIG_GOOD ? PSTR("good.\n") : PSTR("fair.\n"));
|
||||
break;
|
||||
default:
|
||||
SERIAL_ECHOLNPGM("not detected!");
|
||||
}
|
||||
}
|
||||
return (H == I2CPE_MAG_SIG_GOOD || H == I2CPE_MAG_SIG_MID);
|
||||
}
|
||||
|
||||
float I2CPositionEncoder::get_axis_error_mm(const bool report) {
|
||||
float target, actual, error;
|
||||
|
||||
target = stepper.get_axis_position_mm(encoderAxis);
|
||||
actual = mm_from_count(position);
|
||||
error = actual - target;
|
||||
|
||||
if (labs(error) > 10000) error = 0; // ?
|
||||
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis target: ", target);
|
||||
SERIAL_ECHOPAIR(", actual: ", actual);
|
||||
SERIAL_ECHOLNPAIR(", error : ",error);
|
||||
}
|
||||
|
||||
return error;
|
||||
}
|
||||
|
||||
int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
|
||||
if (!active) {
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis target: ", target);
|
||||
SERIAL_ECHOPAIR(", actual: ", actual);
|
||||
SERIAL_ECHOLNPAIR(", error : ",error);
|
||||
SERIAL_ECHOLNPGM(" axis encoder not active!");
|
||||
}
|
||||
|
||||
return error;
|
||||
return 0;
|
||||
}
|
||||
|
||||
int32_t I2CPositionEncoder::get_axis_error_steps(const bool report) {
|
||||
if (!active) {
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder not active!");
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
float stepperTicksPerUnit;
|
||||
int32_t encoderTicks = position, encoderCountInStepperTicksScaled;
|
||||
//int32_t stepperTicks = stepper.position(encoderAxis);
|
||||
|
||||
float stepperTicksPerUnit;
|
||||
int32_t encoderTicks = position, encoderCountInStepperTicksScaled;
|
||||
//int32_t stepperTicks = stepper.position(encoderAxis);
|
||||
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
|
||||
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
|
||||
|
||||
// With a rotary encoder we're concerned with ticks/rev; whereas with a linear we're concerned with ticks/mm
|
||||
stepperTicksPerUnit = (type == I2CPE_ENC_TYPE_ROTARY) ? stepperTicks : planner.axis_steps_per_mm[encoderAxis];
|
||||
//convert both 'ticks' into same units / base
|
||||
encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
|
||||
|
||||
//convert both 'ticks' into same units / base
|
||||
encoderCountInStepperTicksScaled = LROUND((stepperTicksPerUnit * encoderTicks) / encoderTicksPerUnit);
|
||||
int32_t target = stepper.position(encoderAxis),
|
||||
error = (encoderCountInStepperTicksScaled - target);
|
||||
|
||||
int32_t target = stepper.position(encoderAxis),
|
||||
error = (encoderCountInStepperTicksScaled - target);
|
||||
//suppress discontinuities (might be caused by bad I2C readings...?)
|
||||
bool suppressOutput = (labs(error - errorPrev) > 100);
|
||||
|
||||
//suppress discontinuities (might be caused by bad I2C readings...?)
|
||||
bool suppressOutput = (labs(error - errorPrev) > 100);
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis target: ", target);
|
||||
SERIAL_ECHOPAIR(", actual: ", encoderCountInStepperTicksScaled);
|
||||
SERIAL_ECHOLNPAIR(", error : ", error);
|
||||
|
||||
if (report) {
|
||||
SERIAL_ECHO(axis_codes[encoderAxis]);
|
||||
SERIAL_ECHOPAIR(" axis target: ", target);
|
||||
SERIAL_ECHOPAIR(", actual: ", encoderCountInStepperTicksScaled);
|
||||
SERIAL_ECHOLNPAIR(", error : ", error);
|
||||
|
||||
if (suppressOutput) SERIAL_ECHOLNPGM("Discontinuity detected, suppressing error.");
|
||||
}
|
||||
|
||||
errorPrev = error;
|
||||
|
||||
return (suppressOutput ? 0 : error);
|
||||
if (suppressOutput) SERIAL_ECHOLNPGM("Discontinuity detected, suppressing error.");
|
||||
}
|
||||
|
||||
int32_t I2CPositionEncoder::get_raw_count() {
|
||||
uint8_t index = 0;
|
||||
i2cLong encoderCount;
|
||||
errorPrev = error;
|
||||
|
||||
encoderCount.val = 0x00;
|
||||
return (suppressOutput ? 0 : error);
|
||||
}
|
||||
|
||||
if (Wire.requestFrom((int)i2cAddress, 3) != 3) {
|
||||
//houston, we have a problem...
|
||||
H = I2CPE_MAG_SIG_NF;
|
||||
return 0;
|
||||
}
|
||||
int32_t I2CPositionEncoder::get_raw_count() {
|
||||
uint8_t index = 0;
|
||||
i2cLong encoderCount;
|
||||
|
||||
while (Wire.available())
|
||||
encoderCount.bval[index++] = (uint8_t)Wire.read();
|
||||
encoderCount.val = 0x00;
|
||||
|
||||
//extract the magnetic strength
|
||||
H = (B00000011 & (encoderCount.bval[2] >> 6));
|
||||
|
||||
//extract sign bit; sign = (encoderCount.bval[2] & B00100000);
|
||||
//set all upper bits to the sign value to overwrite H
|
||||
encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF);
|
||||
|
||||
if (invert) encoderCount.val *= -1;
|
||||
|
||||
return encoderCount.val;
|
||||
if (Wire.requestFrom((int)i2cAddress, 3) != 3) {
|
||||
//houston, we have a problem...
|
||||
H = I2CPE_MAG_SIG_NF;
|
||||
return 0;
|
||||
}
|
||||
|
||||
bool I2CPositionEncoder::test_axis() {
|
||||
//only works on XYZ cartesian machines for the time being
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
|
||||
while (Wire.available())
|
||||
encoderCount.bval[index++] = (uint8_t)Wire.read();
|
||||
|
||||
float startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 };
|
||||
//extract the magnetic strength
|
||||
H = (B00000011 & (encoderCount.bval[2] >> 6));
|
||||
|
||||
const float startPosition = soft_endstop_min[encoderAxis] + 10,
|
||||
endPosition = soft_endstop_max[encoderAxis] - 10,
|
||||
feedrate = FLOOR(MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY));
|
||||
//extract sign bit; sign = (encoderCount.bval[2] & B00100000);
|
||||
//set all upper bits to the sign value to overwrite H
|
||||
encoderCount.val = (encoderCount.bval[2] & B00100000) ? (encoderCount.val | 0xFFC00000) : (encoderCount.val & 0x003FFFFF);
|
||||
|
||||
ec = false;
|
||||
if (invert) encoderCount.val *= -1;
|
||||
|
||||
LOOP_NA(i) {
|
||||
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
}
|
||||
return encoderCount.val;
|
||||
}
|
||||
|
||||
startCoord[encoderAxis] = startPosition;
|
||||
endCoord[encoderAxis] = endPosition;
|
||||
bool I2CPositionEncoder::test_axis() {
|
||||
//only works on XYZ cartesian machines for the time being
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) return false;
|
||||
|
||||
float startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 };
|
||||
|
||||
const float startPosition = soft_endstop_min[encoderAxis] + 10,
|
||||
endPosition = soft_endstop_max[encoderAxis] - 10,
|
||||
feedrate = FLOOR(MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY));
|
||||
|
||||
ec = false;
|
||||
|
||||
LOOP_NA(i) {
|
||||
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
}
|
||||
|
||||
startCoord[encoderAxis] = startPosition;
|
||||
endCoord[encoderAxis] = endPosition;
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
|
||||
if (!trusted) {
|
||||
int32_t startWaitingTime = millis();
|
||||
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
|
||||
safe_delay(500);
|
||||
}
|
||||
|
||||
if (trusted) { // if trusted, commence test
|
||||
planner.buffer_line(endCoord[X_AXIS], endCoord[Y_AXIS], endCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
return trusted;
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
if (type != I2CPE_ENC_TYPE_LINEAR) {
|
||||
SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders.");
|
||||
return;
|
||||
}
|
||||
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) {
|
||||
SERIAL_ECHOLNPGM("Automatic steps / mm calibration not supported for this axis.");
|
||||
return;
|
||||
}
|
||||
|
||||
float old_steps_mm, new_steps_mm,
|
||||
startDistance, endDistance,
|
||||
travelDistance, travelledDistance, total = 0,
|
||||
startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 };
|
||||
|
||||
float feedrate;
|
||||
|
||||
int32_t startCount, stopCount;
|
||||
|
||||
feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
|
||||
|
||||
bool oldec = ec;
|
||||
ec = false;
|
||||
|
||||
startDistance = 20;
|
||||
endDistance = soft_endstop_max[encoderAxis] - 20;
|
||||
travelDistance = endDistance - startDistance;
|
||||
|
||||
LOOP_NA(i) {
|
||||
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
}
|
||||
|
||||
startCoord[encoderAxis] = startDistance;
|
||||
endCoord[encoderAxis] = endDistance;
|
||||
|
||||
LOOP_L_N(i, iter) {
|
||||
stepper.synchronize();
|
||||
|
||||
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
// if the module isn't currently trusted, wait until it is (or until it should be if things are working)
|
||||
if (!trusted) {
|
||||
int32_t startWaitingTime = millis();
|
||||
while (!trusted && millis() - startWaitingTime < I2CPE_TIME_TRUSTED)
|
||||
safe_delay(500);
|
||||
}
|
||||
delay(250);
|
||||
startCount = get_position();
|
||||
|
||||
if (trusted) { // if trusted, commence test
|
||||
planner.buffer_line(endCoord[X_AXIS], endCoord[Y_AXIS], endCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
}
|
||||
//do_blocking_move_to(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS]);
|
||||
|
||||
return trusted;
|
||||
}
|
||||
planner.buffer_line(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
void I2CPositionEncoder::calibrate_steps_mm(const uint8_t iter) {
|
||||
if (type != I2CPE_ENC_TYPE_LINEAR) {
|
||||
SERIAL_ECHOLNPGM("Steps per mm calibration is only available using linear encoders.");
|
||||
return;
|
||||
}
|
||||
//Read encoder distance
|
||||
delay(250);
|
||||
stopCount = get_position();
|
||||
|
||||
if (!(encoderAxis == X_AXIS || encoderAxis == Y_AXIS || encoderAxis == Z_AXIS)) {
|
||||
SERIAL_ECHOLNPGM("Automatic steps / mm calibration not supported for this axis.");
|
||||
return;
|
||||
}
|
||||
travelledDistance = mm_from_count(abs(stopCount - startCount));
|
||||
|
||||
float old_steps_mm, new_steps_mm,
|
||||
startDistance, endDistance,
|
||||
travelDistance, travelledDistance, total = 0,
|
||||
startCoord[NUM_AXIS] = { 0 }, endCoord[NUM_AXIS] = { 0 };
|
||||
SERIAL_ECHOPAIR("Attempted to travel: ", travelDistance);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
|
||||
float feedrate;
|
||||
SERIAL_ECHOPAIR("Actually travelled: ", travelledDistance);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
|
||||
int32_t startCount, stopCount;
|
||||
//Calculate new axis steps per unit
|
||||
old_steps_mm = planner.axis_steps_per_mm[encoderAxis];
|
||||
new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance;
|
||||
|
||||
feedrate = MMM_TO_MMS((encoderAxis == Z_AXIS) ? HOMING_FEEDRATE_Z : HOMING_FEEDRATE_XY);
|
||||
SERIAL_ECHOLNPAIR("Old steps per mm: ", old_steps_mm);
|
||||
SERIAL_ECHOLNPAIR("New steps per mm: ", new_steps_mm);
|
||||
|
||||
bool oldec = ec;
|
||||
ec = false;
|
||||
|
||||
startDistance = 20;
|
||||
endDistance = soft_endstop_max[encoderAxis] - 20;
|
||||
travelDistance = endDistance - startDistance;
|
||||
|
||||
LOOP_NA(i) {
|
||||
startCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
endCoord[i] = stepper.get_axis_position_mm((AxisEnum)i);
|
||||
}
|
||||
|
||||
startCoord[encoderAxis] = startDistance;
|
||||
endCoord[encoderAxis] = endDistance;
|
||||
|
||||
LOOP_L_N(i, iter) {
|
||||
stepper.synchronize();
|
||||
|
||||
planner.buffer_line(startCoord[X_AXIS],startCoord[Y_AXIS],startCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
delay(250);
|
||||
startCount = get_position();
|
||||
|
||||
//do_blocking_move_to(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS]);
|
||||
|
||||
planner.buffer_line(endCoord[X_AXIS],endCoord[Y_AXIS],endCoord[Z_AXIS],
|
||||
stepper.get_axis_position_mm(E_AXIS), feedrate, 0);
|
||||
stepper.synchronize();
|
||||
|
||||
//Read encoder distance
|
||||
delay(250);
|
||||
stopCount = get_position();
|
||||
|
||||
travelledDistance = mm_from_count(abs(stopCount - startCount));
|
||||
|
||||
SERIAL_ECHOPAIR("Attempted to travel: ", travelDistance);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
|
||||
SERIAL_ECHOPAIR("Actually travelled: ", travelledDistance);
|
||||
SERIAL_ECHOLNPGM("mm.");
|
||||
|
||||
//Calculate new axis steps per unit
|
||||
old_steps_mm = planner.axis_steps_per_mm[encoderAxis];
|
||||
new_steps_mm = (old_steps_mm * travelDistance) / travelledDistance;
|
||||
|
||||
SERIAL_ECHOLNPAIR("Old steps per mm: ", old_steps_mm);
|
||||
SERIAL_ECHOLNPAIR("New steps per mm: ", new_steps_mm);
|
||||
|
||||
//Save new value
|
||||
planner.axis_steps_per_mm[encoderAxis] = new_steps_mm;
|
||||
|
||||
if (iter > 1) {
|
||||
total += new_steps_mm;
|
||||
|
||||
// swap start and end points so next loop runs from current position
|
||||
float tempCoord = startCoord[encoderAxis];
|
||||
startCoord[encoderAxis] = endCoord[encoderAxis];
|
||||
endCoord[encoderAxis] = tempCoord;
|
||||
}
|
||||
}
|
||||
//Save new value
|
||||
planner.axis_steps_per_mm[encoderAxis] = new_steps_mm;
|
||||
|
||||
if (iter > 1) {
|
||||
total /= (float)iter;
|
||||
SERIAL_ECHOLNPAIR("Average steps per mm: ", total);
|
||||
total += new_steps_mm;
|
||||
|
||||
// swap start and end points so next loop runs from current position
|
||||
float tempCoord = startCoord[encoderAxis];
|
||||
startCoord[encoderAxis] = endCoord[encoderAxis];
|
||||
endCoord[encoderAxis] = tempCoord;
|
||||
}
|
||||
|
||||
ec = oldec;
|
||||
|
||||
SERIAL_ECHOLNPGM("Calculated steps per mm has been set. Please save to EEPROM (M500) if you wish to keep these values.");
|
||||
}
|
||||
|
||||
void I2CPositionEncoder::reset() {
|
||||
Wire.beginTransmission(i2cAddress);
|
||||
Wire.write(I2CPE_RESET_COUNT);
|
||||
Wire.endTransmission();
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
ZERO(err);
|
||||
#endif
|
||||
if (iter > 1) {
|
||||
total /= (float)iter;
|
||||
SERIAL_ECHOLNPAIR("Average steps per mm: ", total);
|
||||
}
|
||||
|
||||
ec = oldec;
|
||||
|
||||
bool I2CPositionEncodersMgr::I2CPE_anyaxis;
|
||||
uint8_t I2CPositionEncodersMgr::I2CPE_addr,
|
||||
I2CPositionEncodersMgr::I2CPE_idx;
|
||||
I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT];
|
||||
SERIAL_ECHOLNPGM("Calculated steps per mm has been set. Please save to EEPROM (M500) if you wish to keep these values.");
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::init() {
|
||||
Wire.begin();
|
||||
void I2CPositionEncoder::reset() {
|
||||
Wire.beginTransmission(i2cAddress);
|
||||
Wire.write(I2CPE_RESET_COUNT);
|
||||
Wire.endTransmission();
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 0
|
||||
uint8_t i = 0;
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
ZERO(err);
|
||||
#endif
|
||||
}
|
||||
|
||||
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
|
||||
|
||||
#ifdef I2CPE_ENC_1_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_1_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
|
||||
#endif
|
||||
bool I2CPositionEncodersMgr::I2CPE_anyaxis;
|
||||
uint8_t I2CPositionEncodersMgr::I2CPE_addr,
|
||||
I2CPositionEncodersMgr::I2CPE_idx;
|
||||
I2CPositionEncoder I2CPositionEncodersMgr::encoders[I2CPE_ENCODER_CNT];
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
void I2CPositionEncodersMgr::init() {
|
||||
Wire.begin();
|
||||
|
||||
#if I2CPE_ENC_1_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#if I2CPE_ENCODER_CNT > 0
|
||||
uint8_t i = 0;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_1_ADDR, I2CPE_ENC_1_AXIS);
|
||||
|
||||
#ifdef I2CPE_ENC_1_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_1_TYPE);
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 1
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
|
||||
|
||||
#ifdef I2CPE_ENC_2_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_2_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_2_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_1_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_1_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_1_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_1_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_1_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_1_EC_THRESH);
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 2
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
|
||||
|
||||
#ifdef I2CPE_ENC_3_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_3_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_3_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#if I2CPE_ENC_1_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 1
|
||||
i++;
|
||||
|
||||
encoders[i].init(I2CPE_ENC_2_ADDR, I2CPE_ENC_2_AXIS);
|
||||
|
||||
#ifdef I2CPE_ENC_2_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_2_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_2_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_2_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_2_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_2_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_2_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_2_EC_THRESH);
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 3
|
||||
i++;
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
|
||||
#if I2CPE_ENC_2_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#ifdef I2CPE_ENC_4_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_4_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
|
||||
#endif
|
||||
#if I2CPE_ENCODER_CNT > 2
|
||||
i++;
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
encoders[i].init(I2CPE_ENC_3_ADDR, I2CPE_ENC_3_AXIS);
|
||||
|
||||
#if I2CPE_ENC_4_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_3_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_3_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_3_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_3_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_3_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_3_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_3_EC_THRESH);
|
||||
#endif
|
||||
|
||||
#if I2CPE_ENCODER_CNT > 4
|
||||
i++;
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
|
||||
|
||||
#ifdef I2CPE_ENC_5_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_5_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
|
||||
#endif
|
||||
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
#if I2CPE_ENC_5_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#if I2CPE_ENC_3_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) {
|
||||
CHECK_IDX();
|
||||
#if I2CPE_ENCODER_CNT > 3
|
||||
i++;
|
||||
|
||||
if (units)
|
||||
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
|
||||
else {
|
||||
if (noOffset) {
|
||||
const int32_t raw_count = encoders[idx].get_raw_count();
|
||||
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
|
||||
SERIAL_CHAR(' ');
|
||||
encoders[i].init(I2CPE_ENC_4_ADDR, I2CPE_ENC_4_AXIS);
|
||||
|
||||
for (uint8_t j = 31; j > 0; j--)
|
||||
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
|
||||
#ifdef I2CPE_ENC_4_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_4_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_4_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_4_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_4_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_4_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_4_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_4_EC_THRESH);
|
||||
#endif
|
||||
|
||||
SERIAL_ECHO((bool)(0x00000001 & raw_count));
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHOLN(raw_count);
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOLN(encoders[idx].get_position());
|
||||
}
|
||||
}
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) {
|
||||
// First check 'new' address is not in use
|
||||
Wire.beginTransmission(newaddr);
|
||||
if (!Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?There is already a device with that address on the I2C bus! (", newaddr);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
#if I2CPE_ENC_4_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Now check that we can find the module on the oldaddr address
|
||||
Wire.beginTransmission(oldaddr);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?No module detected at this address! (", oldaddr);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
#if I2CPE_ENCODER_CNT > 4
|
||||
i++;
|
||||
|
||||
SERIAL_ECHOPAIR("Module found at ", oldaddr);
|
||||
SERIAL_ECHOLNPAIR(", changing address to ", newaddr);
|
||||
encoders[i].init(I2CPE_ENC_5_ADDR, I2CPE_ENC_5_AXIS);
|
||||
|
||||
// Change the modules address
|
||||
Wire.beginTransmission(oldaddr);
|
||||
Wire.write(I2CPE_SET_ADDR);
|
||||
Wire.write(newaddr);
|
||||
Wire.endTransmission();
|
||||
#ifdef I2CPE_ENC_5_TYPE
|
||||
encoders[i].set_type(I2CPE_ENC_5_TYPE);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_TICKS_UNIT
|
||||
encoders[i].set_ticks_unit(I2CPE_ENC_5_TICKS_UNIT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_TICKS_REV
|
||||
encoders[i].set_stepper_ticks(I2CPE_ENC_5_TICKS_REV);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_INVERT
|
||||
encoders[i].set_inverted(I2CPE_ENC_5_INVERT);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_EC_METHOD
|
||||
encoders[i].set_ec_method(I2CPE_ENC_5_EC_METHOD);
|
||||
#endif
|
||||
#ifdef I2CPE_ENC_5_EC_THRESH
|
||||
encoders[i].set_ec_threshold(I2CPE_ENC_5_EC_THRESH);
|
||||
#endif
|
||||
|
||||
SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation..");
|
||||
encoders[i].set_active(encoders[i].passes_test(true));
|
||||
|
||||
// Wait for the module to reset (can probably be improved by polling address with a timeout).
|
||||
safe_delay(I2CPE_REBOOT_TIME);
|
||||
#if I2CPE_ENC_5_AXIS == E_AXIS
|
||||
encoders[i].set_homed();
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
// Look for the module at the new address.
|
||||
Wire.beginTransmission(newaddr);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOLNPGM("Address change failed! Check encoder module.");
|
||||
return;
|
||||
}
|
||||
void I2CPositionEncodersMgr::report_position(const int8_t idx, const bool units, const bool noOffset) {
|
||||
CHECK_IDX();
|
||||
|
||||
SERIAL_ECHOLNPGM("Address change successful!");
|
||||
|
||||
// Now, if this module is configured, find which encoder instance it's supposed to correspond to
|
||||
// and enable it (it will likely have failed initialisation on power-up, before the address change).
|
||||
const int8_t idx = idx_from_addr(newaddr);
|
||||
if (idx >= 0 && !encoders[idx].get_active()) {
|
||||
if (units)
|
||||
SERIAL_ECHOLN(noOffset ? encoders[idx].mm_from_count(encoders[idx].get_raw_count()) : encoders[idx].get_position_mm());
|
||||
else {
|
||||
if (noOffset) {
|
||||
const int32_t raw_count = encoders[idx].get_raw_count();
|
||||
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
|
||||
encoders[idx].set_active(encoders[idx].passes_test(true));
|
||||
SERIAL_CHAR(' ');
|
||||
|
||||
for (uint8_t j = 31; j > 0; j--)
|
||||
SERIAL_ECHO((bool)(0x00000001 & (raw_count >> j)));
|
||||
|
||||
SERIAL_ECHO((bool)(0x00000001 & raw_count));
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHOLN(raw_count);
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOLN(encoders[idx].get_position());
|
||||
}
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::change_module_address(const uint8_t oldaddr, const uint8_t newaddr) {
|
||||
// First check 'new' address is not in use
|
||||
Wire.beginTransmission(newaddr);
|
||||
if (!Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?There is already a device with that address on the I2C bus! (", newaddr);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) {
|
||||
// First check there is a module
|
||||
Wire.beginTransmission(address);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?No module detected at this address! (", address);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
// Now check that we can find the module on the oldaddr address
|
||||
Wire.beginTransmission(oldaddr);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?No module detected at this address! (", oldaddr);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Module found at ", oldaddr);
|
||||
SERIAL_ECHOLNPAIR(", changing address to ", newaddr);
|
||||
|
||||
// Change the modules address
|
||||
Wire.beginTransmission(oldaddr);
|
||||
Wire.write(I2CPE_SET_ADDR);
|
||||
Wire.write(newaddr);
|
||||
Wire.endTransmission();
|
||||
|
||||
SERIAL_ECHOLNPGM("Address changed, resetting and waiting for confirmation..");
|
||||
|
||||
// Wait for the module to reset (can probably be improved by polling address with a timeout).
|
||||
safe_delay(I2CPE_REBOOT_TIME);
|
||||
|
||||
// Look for the module at the new address.
|
||||
Wire.beginTransmission(newaddr);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOLNPGM("Address change failed! Check encoder module.");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOLNPGM("Address change successful!");
|
||||
|
||||
// Now, if this module is configured, find which encoder instance it's supposed to correspond to
|
||||
// and enable it (it will likely have failed initialisation on power-up, before the address change).
|
||||
const int8_t idx = idx_from_addr(newaddr);
|
||||
if (idx >= 0 && !encoders[idx].get_active()) {
|
||||
SERIAL_ECHO(axis_codes[encoders[idx].get_axis()]);
|
||||
SERIAL_ECHOLNPGM(" axis encoder was not detected on printer startup. Trying again.");
|
||||
encoders[idx].set_active(encoders[idx].passes_test(true));
|
||||
}
|
||||
}
|
||||
|
||||
void I2CPositionEncodersMgr::report_module_firmware(const uint8_t address) {
|
||||
// First check there is a module
|
||||
Wire.beginTransmission(address);
|
||||
if (Wire.endTransmission()) {
|
||||
SERIAL_ECHOPAIR("?No module detected at this address! (", address);
|
||||
SERIAL_ECHOLNPGM(")");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Requesting version info from module at address ", address);
|
||||
SERIAL_ECHOLNPGM(":");
|
||||
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(I2CPE_SET_REPORT_MODE);
|
||||
Wire.write(I2CPE_REPORT_VERSION);
|
||||
Wire.endTransmission();
|
||||
|
||||
// Read value
|
||||
if (Wire.requestFrom((int)address, 32)) {
|
||||
char c;
|
||||
while (Wire.available() > 0 && (c = (char)Wire.read()) > 0)
|
||||
SERIAL_ECHO(c);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
// Set module back to normal (distance) mode
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(I2CPE_SET_REPORT_MODE);
|
||||
Wire.write(I2CPE_REPORT_DISTANCE);
|
||||
Wire.endTransmission();
|
||||
}
|
||||
|
||||
int8_t I2CPositionEncodersMgr::parse() {
|
||||
I2CPE_addr = 0;
|
||||
|
||||
if (parser.seen('A')) {
|
||||
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
};
|
||||
|
||||
I2CPE_addr = parser.value_byte();
|
||||
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
|
||||
SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
|
||||
I2CPE_idx = idx_from_addr(I2CPE_addr);
|
||||
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
|
||||
SERIAL_PROTOCOLLNPGM("?No device with this address!");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
}
|
||||
else if (parser.seenval('I')) {
|
||||
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1);
|
||||
SERIAL_PROTOCOLLNPGM("]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
};
|
||||
|
||||
I2CPE_idx = parser.value_byte();
|
||||
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
|
||||
SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1);
|
||||
SERIAL_ECHOLNPGM("]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
|
||||
I2CPE_addr = encoders[I2CPE_idx].get_address();
|
||||
}
|
||||
else
|
||||
I2CPE_idx = 0xFF;
|
||||
|
||||
I2CPE_anyaxis = parser.seen_axis();
|
||||
|
||||
return I2CPE_PARSE_OK;
|
||||
};
|
||||
|
||||
/**
|
||||
* M860: Report the position(s) of position encoder module(s).
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
* O Include homed zero-offset in returned position.
|
||||
* U Units in mm or raw step count.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M860() {
|
||||
if (parse()) return;
|
||||
|
||||
const bool hasU = parser.seen('U'), hasO = parser.seen('O');
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
report_position(I2CPE_idx, hasU, hasO);
|
||||
}
|
||||
|
||||
/**
|
||||
* M861: Report the status of position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M861() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_status(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
report_status(I2CPE_idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* M862: Perform an axis continuity test for position encoder
|
||||
* modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M862() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) test_axis(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
test_axis(I2CPE_idx);
|
||||
}
|
||||
|
||||
/**
|
||||
* M863: Perform steps-per-mm calibration for
|
||||
* position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
* P Number of rePeats/iterations.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M863() {
|
||||
if (parse()) return;
|
||||
|
||||
const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10);
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
calibrate_steps_mm(I2CPE_idx, iterations);
|
||||
}
|
||||
|
||||
/**
|
||||
* M864: Change position encoder module I2C address.
|
||||
*
|
||||
* A<addr> Module current/old I2C address. If not present,
|
||||
* assumes default address (030). [30, 200].
|
||||
* S<addr> Module new I2C address. [30, 200].
|
||||
*
|
||||
* If S is not specified:
|
||||
* X Use I2CPE_PRESET_ADDR_X (030).
|
||||
* Y Use I2CPE_PRESET_ADDR_Y (031).
|
||||
* Z Use I2CPE_PRESET_ADDR_Z (032).
|
||||
* E Use I2CPE_PRESET_ADDR_E (033).
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M864() {
|
||||
uint8_t newAddress;
|
||||
|
||||
if (parse()) return;
|
||||
|
||||
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
|
||||
|
||||
if (parser.seen('S')) {
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPGM("?S seen, but no address specified! [30-200]");
|
||||
return;
|
||||
};
|
||||
|
||||
newAddress = parser.value_byte();
|
||||
if (!WITHIN(newAddress, 30, 200)) {
|
||||
SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]");
|
||||
return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Requesting version info from module at address ", address);
|
||||
SERIAL_ECHOLNPGM(":");
|
||||
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(I2CPE_SET_REPORT_MODE);
|
||||
Wire.write(I2CPE_REPORT_VERSION);
|
||||
Wire.endTransmission();
|
||||
|
||||
// Read value
|
||||
if (Wire.requestFrom((int)address, 32)) {
|
||||
char c;
|
||||
while (Wire.available() > 0 && (c = (char)Wire.read()) > 0)
|
||||
SERIAL_ECHO(c);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
// Set module back to normal (distance) mode
|
||||
Wire.beginTransmission(address);
|
||||
Wire.write(I2CPE_SET_REPORT_MODE);
|
||||
Wire.write(I2CPE_REPORT_DISTANCE);
|
||||
Wire.endTransmission();
|
||||
}
|
||||
else if (!I2CPE_anyaxis) {
|
||||
SERIAL_PROTOCOLLNPGM("?You must specify S or [XYZE].");
|
||||
return;
|
||||
}
|
||||
else {
|
||||
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
|
||||
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
|
||||
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
|
||||
else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
|
||||
else return;
|
||||
}
|
||||
|
||||
int8_t I2CPositionEncodersMgr::parse() {
|
||||
I2CPE_addr = 0;
|
||||
SERIAL_ECHOPAIR("Changing module at address ", I2CPE_addr);
|
||||
SERIAL_ECHOLNPAIR(" to address ", newAddress);
|
||||
|
||||
if (parser.seen('A')) {
|
||||
change_module_address(I2CPE_addr, newAddress);
|
||||
}
|
||||
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPGM("?A seen, but no address specified! [30-200]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
};
|
||||
/**
|
||||
* M865: Check position encoder module firmware version.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Check X axis encoder, if present.
|
||||
* Y Check Y axis encoder, if present.
|
||||
* Z Check Z axis encoder, if present.
|
||||
* E Check E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M865() {
|
||||
if (parse()) return;
|
||||
|
||||
I2CPE_addr = parser.value_byte();
|
||||
if (!WITHIN(I2CPE_addr, 30, 200)) { // reserve the first 30 and last 55
|
||||
SERIAL_PROTOCOLLNPGM("?Address out of range. [30-200]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
|
||||
I2CPE_idx = idx_from_addr(I2CPE_addr);
|
||||
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
|
||||
SERIAL_PROTOCOLLNPGM("?No device with this address!");
|
||||
return I2CPE_PARSE_ERR;
|
||||
if (!I2CPE_addr) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
|
||||
}
|
||||
}
|
||||
else if (parser.seenval('I')) {
|
||||
}
|
||||
else
|
||||
report_module_firmware(I2CPE_addr);
|
||||
}
|
||||
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPAIR("?I seen, but no index specified! [0-", I2CPE_ENCODER_CNT - 1);
|
||||
SERIAL_PROTOCOLLNPGM("]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
};
|
||||
/**
|
||||
* M866: Report or reset position encoder module error
|
||||
* count.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* R Reset error counter.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M866() {
|
||||
if (parse()) return;
|
||||
|
||||
I2CPE_idx = parser.value_byte();
|
||||
if (I2CPE_idx >= I2CPE_ENCODER_CNT) {
|
||||
SERIAL_PROTOCOLLNPAIR("?Index out of range. [0-", I2CPE_ENCODER_CNT - 1);
|
||||
SERIAL_ECHOLNPGM("]");
|
||||
return I2CPE_PARSE_ERR;
|
||||
}
|
||||
const bool hasR = parser.seen('R');
|
||||
|
||||
I2CPE_addr = encoders[I2CPE_idx].get_address();
|
||||
}
|
||||
else
|
||||
I2CPE_idx = 0xFF;
|
||||
|
||||
I2CPE_anyaxis = parser.seen_axis();
|
||||
|
||||
return I2CPE_PARSE_OK;
|
||||
};
|
||||
|
||||
/**
|
||||
* M860: Report the position(s) of position encoder module(s).
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
* O Include homed zero-offset in returned position.
|
||||
* U Units in mm or raw step count.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M860() {
|
||||
if (parse()) return;
|
||||
|
||||
const bool hasU = parser.seen('U'), hasO = parser.seen('O');
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_position(idx, hasU, hasO);
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
if (hasR)
|
||||
reset_error_count(idx, AxisEnum(i));
|
||||
else
|
||||
report_error_count(idx, AxisEnum(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
report_position(I2CPE_idx, hasU, hasO);
|
||||
}
|
||||
else if (hasR)
|
||||
reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
else
|
||||
report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
|
||||
/**
|
||||
* M861: Report the status of position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M861() {
|
||||
if (parse()) return;
|
||||
/**
|
||||
* M867: Enable/disable or toggle error correction for position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not
|
||||
* supplied, toggle.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M867() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_status(idx);
|
||||
const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
|
||||
enable_ec(idx, ena, AxisEnum(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
report_status(I2CPE_idx);
|
||||
}
|
||||
else {
|
||||
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
|
||||
enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M862: Perform an axis continuity test for position encoder
|
||||
* modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M862() {
|
||||
if (parse()) return;
|
||||
/**
|
||||
* M868: Report or set position encoder module error correction
|
||||
* threshold.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* T New error correction threshold.
|
||||
*
|
||||
* If A not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M868() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) test_axis(idx);
|
||||
const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
if (newThreshold != -9999)
|
||||
set_ec_threshold(idx, newThreshold, encoders[idx].get_axis());
|
||||
else
|
||||
get_ec_threshold(idx, encoders[idx].get_axis());
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
test_axis(I2CPE_idx);
|
||||
}
|
||||
else if (newThreshold != -9999)
|
||||
set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
|
||||
else
|
||||
get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
|
||||
/**
|
||||
* M863: Perform steps-per-mm calibration for
|
||||
* position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1]
|
||||
* P Number of rePeats/iterations.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Report on X axis encoder, if present.
|
||||
* Y Report on Y axis encoder, if present.
|
||||
* Z Report on Z axis encoder, if present.
|
||||
* E Report on E axis encoder, if present.
|
||||
*
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M863() {
|
||||
if (parse()) return;
|
||||
/**
|
||||
* M869: Report position encoder module error.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
*
|
||||
* If A not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M869() {
|
||||
if (parse()) return;
|
||||
|
||||
const uint8_t iterations = constrain(parser.byteval('P', 1), 1, 10);
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) calibrate_steps_mm(idx, iterations);
|
||||
}
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_error(idx);
|
||||
}
|
||||
}
|
||||
else
|
||||
calibrate_steps_mm(I2CPE_idx, iterations);
|
||||
}
|
||||
|
||||
/**
|
||||
* M864: Change position encoder module I2C address.
|
||||
*
|
||||
* A<addr> Module current/old I2C address. If not present,
|
||||
* assumes default address (030). [30, 200].
|
||||
* S<addr> Module new I2C address. [30, 200].
|
||||
*
|
||||
* If S is not specified:
|
||||
* X Use I2CPE_PRESET_ADDR_X (030).
|
||||
* Y Use I2CPE_PRESET_ADDR_Y (031).
|
||||
* Z Use I2CPE_PRESET_ADDR_Z (032).
|
||||
* E Use I2CPE_PRESET_ADDR_E (033).
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M864() {
|
||||
uint8_t newAddress;
|
||||
|
||||
if (parse()) return;
|
||||
|
||||
if (!I2CPE_addr) I2CPE_addr = I2CPE_PRESET_ADDR_X;
|
||||
|
||||
if (parser.seen('S')) {
|
||||
if (!parser.has_value()) {
|
||||
SERIAL_PROTOCOLLNPGM("?S seen, but no address specified! [30-200]");
|
||||
return;
|
||||
};
|
||||
|
||||
newAddress = parser.value_byte();
|
||||
if (!WITHIN(newAddress, 30, 200)) {
|
||||
SERIAL_PROTOCOLLNPGM("?New address out of range. [30-200]");
|
||||
return;
|
||||
}
|
||||
}
|
||||
else if (!I2CPE_anyaxis) {
|
||||
SERIAL_PROTOCOLLNPGM("?You must specify S or [XYZE].");
|
||||
return;
|
||||
}
|
||||
else {
|
||||
if (parser.seen('X')) newAddress = I2CPE_PRESET_ADDR_X;
|
||||
else if (parser.seen('Y')) newAddress = I2CPE_PRESET_ADDR_Y;
|
||||
else if (parser.seen('Z')) newAddress = I2CPE_PRESET_ADDR_Z;
|
||||
else if (parser.seen('E')) newAddress = I2CPE_PRESET_ADDR_E;
|
||||
else return;
|
||||
}
|
||||
|
||||
SERIAL_ECHOPAIR("Changing module at address ", I2CPE_addr);
|
||||
SERIAL_ECHOLNPAIR(" to address ", newAddress);
|
||||
|
||||
change_module_address(I2CPE_addr, newAddress);
|
||||
}
|
||||
|
||||
/**
|
||||
* M865: Check position encoder module firmware version.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Check X axis encoder, if present.
|
||||
* Y Check Y axis encoder, if present.
|
||||
* Z Check Z axis encoder, if present.
|
||||
* E Check E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M865() {
|
||||
if (parse()) return;
|
||||
|
||||
if (!I2CPE_addr) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_module_firmware(encoders[idx].get_address());
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
report_module_firmware(I2CPE_addr);
|
||||
}
|
||||
|
||||
/**
|
||||
* M866: Report or reset position encoder module error
|
||||
* count.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* R Reset error counter.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M866() {
|
||||
if (parse()) return;
|
||||
|
||||
const bool hasR = parser.seen('R');
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
if (hasR)
|
||||
reset_error_count(idx, AxisEnum(i));
|
||||
else
|
||||
report_error_count(idx, AxisEnum(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (hasR)
|
||||
reset_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
else
|
||||
report_error_count(I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
|
||||
/**
|
||||
* M867: Enable/disable or toggle error correction for position encoder modules.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* S<1|0> Enable/disable error correction. 1 enables, 0 disables. If not
|
||||
* supplied, toggle.
|
||||
*
|
||||
* If A or I not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M867() {
|
||||
if (parse()) return;
|
||||
|
||||
const int8_t onoff = parser.seenval('S') ? parser.value_int() : -1;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
|
||||
enable_ec(idx, ena, AxisEnum(i));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
const bool ena = onoff == -1 ? !encoders[I2CPE_idx].get_ec_enabled() : !!onoff;
|
||||
enable_ec(I2CPE_idx, ena, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M868: Report or set position encoder module error correction
|
||||
* threshold.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
* T New error correction threshold.
|
||||
*
|
||||
* If A not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M868() {
|
||||
if (parse()) return;
|
||||
|
||||
const float newThreshold = parser.seenval('T') ? parser.value_float() : -9999;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) {
|
||||
if (newThreshold != -9999)
|
||||
set_ec_threshold(idx, newThreshold, encoders[idx].get_axis());
|
||||
else
|
||||
get_ec_threshold(idx, encoders[idx].get_axis());
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (newThreshold != -9999)
|
||||
set_ec_threshold(I2CPE_idx, newThreshold, encoders[I2CPE_idx].get_axis());
|
||||
else
|
||||
get_ec_threshold(I2CPE_idx, encoders[I2CPE_idx].get_axis());
|
||||
}
|
||||
|
||||
/**
|
||||
* M869: Report position encoder module error.
|
||||
*
|
||||
* A<addr> Module I2C address. [30, 200].
|
||||
* I<index> Module index. [0, I2CPE_ENCODER_CNT - 1].
|
||||
*
|
||||
* If A not specified:
|
||||
* X Act on X axis encoder, if present.
|
||||
* Y Act on Y axis encoder, if present.
|
||||
* Z Act on Z axis encoder, if present.
|
||||
* E Act on E axis encoder, if present.
|
||||
*/
|
||||
void I2CPositionEncodersMgr::M869() {
|
||||
if (parse()) return;
|
||||
|
||||
if (I2CPE_idx == 0xFF) {
|
||||
LOOP_XYZE(i) {
|
||||
if (!I2CPE_anyaxis || parser.seen(axis_codes[i])) {
|
||||
const uint8_t idx = idx_from_axis(AxisEnum(i));
|
||||
if ((int8_t)idx >= 0) report_error(idx);
|
||||
}
|
||||
}
|
||||
}
|
||||
else
|
||||
report_error(I2CPE_idx);
|
||||
}
|
||||
else
|
||||
report_error(I2CPE_idx);
|
||||
}
|
||||
|
||||
#endif // I2C_POSITION_ENCODERS
|
||||
|
|
|
@ -23,88 +23,85 @@
|
|||
#ifndef I2CPOSENC_H
|
||||
#define I2CPOSENC_H
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
#include "../module/planner.h"
|
||||
|
||||
#include "enum.h"
|
||||
#include "macros.h"
|
||||
#include "types.h"
|
||||
#include <Wire.h>
|
||||
#include <Wire.h>
|
||||
|
||||
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
|
||||
//=========== Advanced / Less-Common Encoder Configuration Settings ==========
|
||||
|
||||
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
|
||||
// proportional to the current speed of the axis allows
|
||||
// for very small error margin at low speeds without
|
||||
// stuttering due to reading latency at high speeds
|
||||
#define I2CPE_EC_THRESH_PROPORTIONAL // if enabled adjusts the error correction threshold
|
||||
// proportional to the current speed of the axis allows
|
||||
// for very small error margin at low speeds without
|
||||
// stuttering due to reading latency at high speeds
|
||||
|
||||
#define I2CPE_DEBUG // enable encoder-related debug serial echos
|
||||
#define I2CPE_DEBUG // enable encoder-related debug serial echos
|
||||
|
||||
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
|
||||
// after changing address.
|
||||
#define I2CPE_REBOOT_TIME 5000 // time we wait for an encoder module to reboot
|
||||
// after changing address.
|
||||
|
||||
#define I2CPE_MAG_SIG_GOOD 0
|
||||
#define I2CPE_MAG_SIG_MID 1
|
||||
#define I2CPE_MAG_SIG_BAD 2
|
||||
#define I2CPE_MAG_SIG_NF 255
|
||||
#define I2CPE_MAG_SIG_GOOD 0
|
||||
#define I2CPE_MAG_SIG_MID 1
|
||||
#define I2CPE_MAG_SIG_BAD 2
|
||||
#define I2CPE_MAG_SIG_NF 255
|
||||
|
||||
#define I2CPE_REQ_REPORT 0
|
||||
#define I2CPE_RESET_COUNT 1
|
||||
#define I2CPE_SET_ADDR 2
|
||||
#define I2CPE_SET_REPORT_MODE 3
|
||||
#define I2CPE_CLEAR_EEPROM 4
|
||||
#define I2CPE_REQ_REPORT 0
|
||||
#define I2CPE_RESET_COUNT 1
|
||||
#define I2CPE_SET_ADDR 2
|
||||
#define I2CPE_SET_REPORT_MODE 3
|
||||
#define I2CPE_CLEAR_EEPROM 4
|
||||
|
||||
#define I2CPE_LED_PAR_MODE 10
|
||||
#define I2CPE_LED_PAR_BRT 11
|
||||
#define I2CPE_LED_PAR_RATE 14
|
||||
#define I2CPE_LED_PAR_MODE 10
|
||||
#define I2CPE_LED_PAR_BRT 11
|
||||
#define I2CPE_LED_PAR_RATE 14
|
||||
|
||||
#define I2CPE_REPORT_DISTANCE 0
|
||||
#define I2CPE_REPORT_STRENGTH 1
|
||||
#define I2CPE_REPORT_VERSION 2
|
||||
#define I2CPE_REPORT_DISTANCE 0
|
||||
#define I2CPE_REPORT_STRENGTH 1
|
||||
#define I2CPE_REPORT_VERSION 2
|
||||
|
||||
// Default I2C addresses
|
||||
#define I2CPE_PRESET_ADDR_X 30
|
||||
#define I2CPE_PRESET_ADDR_Y 31
|
||||
#define I2CPE_PRESET_ADDR_Z 32
|
||||
#define I2CPE_PRESET_ADDR_E 33
|
||||
// Default I2C addresses
|
||||
#define I2CPE_PRESET_ADDR_X 30
|
||||
#define I2CPE_PRESET_ADDR_Y 31
|
||||
#define I2CPE_PRESET_ADDR_Z 32
|
||||
#define I2CPE_PRESET_ADDR_E 33
|
||||
|
||||
#define I2CPE_DEF_AXIS X_AXIS
|
||||
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
|
||||
#define I2CPE_DEF_AXIS X_AXIS
|
||||
#define I2CPE_DEF_ADDR I2CPE_PRESET_ADDR_X
|
||||
|
||||
// Error event counter; tracks how many times there is an error exceeding a certain threshold
|
||||
#define I2CPE_ERR_CNT_THRESH 3.00
|
||||
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
|
||||
// Error event counter; tracks how many times there is an error exceeding a certain threshold
|
||||
#define I2CPE_ERR_CNT_THRESH 3.00
|
||||
#define I2CPE_ERR_CNT_DEBOUNCE_MS 2000
|
||||
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
#define I2CPE_ERR_ARRAY_SIZE 32
|
||||
#endif
|
||||
#if ENABLED(I2CPE_ERR_ROLLING_AVERAGE)
|
||||
#define I2CPE_ERR_ARRAY_SIZE 32
|
||||
#endif
|
||||
|
||||
// Error Correction Methods
|
||||
#define I2CPE_ECM_NONE 0
|
||||
#define I2CPE_ECM_MICROSTEP 1
|
||||
#define I2CPE_ECM_PLANNER 2
|
||||
#define I2CPE_ECM_STALLDETECT 3
|
||||
// Error Correction Methods
|
||||
#define I2CPE_ECM_NONE 0
|
||||
#define I2CPE_ECM_MICROSTEP 1
|
||||
#define I2CPE_ECM_PLANNER 2
|
||||
#define I2CPE_ECM_STALLDETECT 3
|
||||
|
||||
// Encoder types
|
||||
#define I2CPE_ENC_TYPE_ROTARY 0
|
||||
#define I2CPE_ENC_TYPE_LINEAR 1
|
||||
// Encoder types
|
||||
#define I2CPE_ENC_TYPE_ROTARY 0
|
||||
#define I2CPE_ENC_TYPE_LINEAR 1
|
||||
|
||||
// Parser
|
||||
#define I2CPE_PARSE_ERR 1
|
||||
#define I2CPE_PARSE_OK 0
|
||||
// Parser
|
||||
#define I2CPE_PARSE_ERR 1
|
||||
#define I2CPE_PARSE_OK 0
|
||||
|
||||
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
|
||||
#define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
|
||||
#define LOOP_PE(VAR) LOOP_L_N(VAR, I2CPE_ENCODER_CNT)
|
||||
#define CHECK_IDX() do{ if (!WITHIN(idx, 0, I2CPE_ENCODER_CNT - 1)) return; }while(0)
|
||||
|
||||
extern const char axis_codes[XYZE];
|
||||
extern const char axis_codes[XYZE];
|
||||
|
||||
typedef union {
|
||||
volatile int32_t val = 0;
|
||||
uint8_t bval[4];
|
||||
} i2cLong;
|
||||
typedef union {
|
||||
volatile int32_t val = 0;
|
||||
uint8_t bval[4];
|
||||
} i2cLong;
|
||||
|
||||
class I2CPositionEncoder {
|
||||
class I2CPositionEncoder {
|
||||
private:
|
||||
AxisEnum encoderAxis = I2CPE_DEF_AXIS;
|
||||
|
||||
|
@ -229,9 +226,9 @@
|
|||
FORCE_INLINE void set_current_position(const float newPositionMm) {
|
||||
set_axis_offset(get_position_mm() - newPositionMm + axisOffset);
|
||||
}
|
||||
};
|
||||
};
|
||||
|
||||
class I2CPositionEncodersMgr {
|
||||
class I2CPositionEncodersMgr {
|
||||
private:
|
||||
static bool I2CPE_anyaxis;
|
||||
static uint8_t I2CPE_addr, I2CPE_idx;
|
||||
|
@ -252,7 +249,7 @@
|
|||
|
||||
static void report_status(const int8_t idx) {
|
||||
CHECK_IDX();
|
||||
SERIAL_ECHOPAIR("Encoder ",idx);
|
||||
SERIAL_ECHOPAIR("Encoder ", idx);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
encoders[idx].get_raw_count();
|
||||
encoders[idx].passes_test(true);
|
||||
|
@ -340,20 +337,19 @@
|
|||
static void M869();
|
||||
|
||||
static I2CPositionEncoder encoders[I2CPE_ENCODER_CNT];
|
||||
};
|
||||
};
|
||||
|
||||
extern I2CPositionEncodersMgr I2CPEM;
|
||||
extern I2CPositionEncodersMgr I2CPEM;
|
||||
|
||||
FORCE_INLINE static void gcode_M860() { I2CPEM.M860(); }
|
||||
FORCE_INLINE static void gcode_M861() { I2CPEM.M861(); }
|
||||
FORCE_INLINE static void gcode_M862() { I2CPEM.M862(); }
|
||||
FORCE_INLINE static void gcode_M863() { I2CPEM.M863(); }
|
||||
FORCE_INLINE static void gcode_M864() { I2CPEM.M864(); }
|
||||
FORCE_INLINE static void gcode_M865() { I2CPEM.M865(); }
|
||||
FORCE_INLINE static void gcode_M866() { I2CPEM.M866(); }
|
||||
FORCE_INLINE static void gcode_M867() { I2CPEM.M867(); }
|
||||
FORCE_INLINE static void gcode_M868() { I2CPEM.M868(); }
|
||||
FORCE_INLINE static void gcode_M869() { I2CPEM.M869(); }
|
||||
FORCE_INLINE static void gcode_M860() { I2CPEM.M860(); }
|
||||
FORCE_INLINE static void gcode_M861() { I2CPEM.M861(); }
|
||||
FORCE_INLINE static void gcode_M862() { I2CPEM.M862(); }
|
||||
FORCE_INLINE static void gcode_M863() { I2CPEM.M863(); }
|
||||
FORCE_INLINE static void gcode_M864() { I2CPEM.M864(); }
|
||||
FORCE_INLINE static void gcode_M865() { I2CPEM.M865(); }
|
||||
FORCE_INLINE static void gcode_M866() { I2CPEM.M866(); }
|
||||
FORCE_INLINE static void gcode_M867() { I2CPEM.M867(); }
|
||||
FORCE_INLINE static void gcode_M868() { I2CPEM.M868(); }
|
||||
FORCE_INLINE static void gcode_M869() { I2CPEM.M869(); }
|
||||
|
||||
#endif //I2C_POSITION_ENCODERS
|
||||
#endif //I2CPOSENC_H
|
||||
|
|
|
@ -3,106 +3,110 @@
|
|||
* External DAC for Alligator Board
|
||||
*
|
||||
****************************************************************/
|
||||
#include "Marlin.h"
|
||||
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if MB(ALLIGATOR)
|
||||
#include "stepper.h"
|
||||
#include "dac_dac084s085.h"
|
||||
|
||||
dac084s085::dac084s085() {
|
||||
return ;
|
||||
}
|
||||
#include "dac_dac084s085.h"
|
||||
|
||||
void dac084s085::begin() {
|
||||
uint8_t externalDac_buf[2] = {0x20,0x00};//all off
|
||||
#include "../../Marlin.h"
|
||||
#include "../../module/stepper.h"
|
||||
|
||||
// All SPI chip-select HIGH
|
||||
pinMode(DAC0_SYNC, OUTPUT);
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
#if EXTRUDERS > 1
|
||||
pinMode(DAC1_SYNC, OUTPUT);
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
#endif
|
||||
digitalWrite( SPI_EEPROM1_CS , HIGH );
|
||||
digitalWrite( SPI_EEPROM2_CS , HIGH );
|
||||
digitalWrite( SPI_FLASH_CS , HIGH );
|
||||
digitalWrite( SS_PIN , HIGH );
|
||||
spiBegin();
|
||||
dac084s085::dac084s085() {
|
||||
return ;
|
||||
}
|
||||
|
||||
//init onboard DAC
|
||||
void dac084s085::begin() {
|
||||
uint8_t externalDac_buf[2] = {0x20,0x00};//all off
|
||||
|
||||
// All SPI chip-select HIGH
|
||||
pinMode(DAC0_SYNC, OUTPUT);
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
#if EXTRUDERS > 1
|
||||
pinMode(DAC1_SYNC, OUTPUT);
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
#endif
|
||||
digitalWrite( SPI_EEPROM1_CS , HIGH );
|
||||
digitalWrite( SPI_EEPROM2_CS , HIGH );
|
||||
digitalWrite( SPI_FLASH_CS , HIGH );
|
||||
digitalWrite( SS_PIN , HIGH );
|
||||
spiBegin();
|
||||
|
||||
//init onboard DAC
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC0_SYNC , LOW );
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC0_SYNC , LOW );
|
||||
|
||||
spiSend(SPI_CHAN_DAC,externalDac_buf , 2);
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
//init Piggy DAC
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC0_SYNC , LOW );
|
||||
digitalWrite( DAC1_SYNC , LOW );
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC0_SYNC , LOW );
|
||||
digitalWrite( DAC1_SYNC , LOW );
|
||||
|
||||
spiSend(SPI_CHAN_DAC,externalDac_buf , 2);
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
//init Piggy DAC
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC1_SYNC , LOW );
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite( DAC1_SYNC , LOW );
|
||||
|
||||
spiSend(SPI_CHAN_DAC,externalDac_buf , 2);
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
|
||||
void dac084s085::setValue(uint8_t channel, uint8_t value) {
|
||||
if(channel >= 7) // max channel (X,Y,Z,E0,E1,E2,E3)
|
||||
return;
|
||||
}
|
||||
if(value > 255) value = 255;
|
||||
|
||||
void dac084s085::setValue(uint8_t channel, uint8_t value) {
|
||||
if(channel >= 7) // max channel (X,Y,Z,E0,E1,E2,E3)
|
||||
return;
|
||||
if(value > 255) value = 255;
|
||||
uint8_t externalDac_buf[2] = {0x10,0x00};
|
||||
|
||||
uint8_t externalDac_buf[2] = {0x10,0x00};
|
||||
if(channel > 3)
|
||||
externalDac_buf[0] |= (7 - channel << 6);
|
||||
else
|
||||
externalDac_buf[0] |= (3 - channel << 6);
|
||||
|
||||
if(channel > 3)
|
||||
externalDac_buf[0] |= (7 - channel << 6);
|
||||
else
|
||||
externalDac_buf[0] |= (3 - channel << 6);
|
||||
externalDac_buf[0] |= (value >> 4);
|
||||
externalDac_buf[1] |= (value << 4);
|
||||
|
||||
externalDac_buf[0] |= (value >> 4);
|
||||
externalDac_buf[1] |= (value << 4);
|
||||
// All SPI chip-select HIGH
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
#if EXTRUDERS > 1
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
#endif
|
||||
digitalWrite( SPI_EEPROM1_CS , HIGH );
|
||||
digitalWrite( SPI_EEPROM2_CS , HIGH );
|
||||
digitalWrite( SPI_FLASH_CS , HIGH );
|
||||
digitalWrite( SS_PIN , HIGH );
|
||||
|
||||
// All SPI chip-select HIGH
|
||||
digitalWrite( DAC0_SYNC , HIGH );
|
||||
#if EXTRUDERS > 1
|
||||
digitalWrite( DAC1_SYNC , HIGH );
|
||||
#endif
|
||||
digitalWrite( SPI_EEPROM1_CS , HIGH );
|
||||
digitalWrite( SPI_EEPROM2_CS , HIGH );
|
||||
digitalWrite( SPI_FLASH_CS , HIGH );
|
||||
digitalWrite( SS_PIN , HIGH );
|
||||
|
||||
if(channel > 3) { // DAC Piggy E1,E2,E3
|
||||
|
||||
digitalWrite(DAC1_SYNC , LOW);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC1_SYNC , HIGH);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC1_SYNC , LOW);
|
||||
}
|
||||
|
||||
else { // DAC onboard X,Y,Z,E0
|
||||
|
||||
digitalWrite(DAC0_SYNC , LOW);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC0_SYNC , HIGH);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC0_SYNC , LOW);
|
||||
}
|
||||
if(channel > 3) { // DAC Piggy E1,E2,E3
|
||||
|
||||
digitalWrite(DAC1_SYNC , LOW);
|
||||
delayMicroseconds(2U);
|
||||
spiSend(SPI_CHAN_DAC,externalDac_buf , 2);
|
||||
|
||||
return;
|
||||
digitalWrite(DAC1_SYNC , HIGH);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC1_SYNC , LOW);
|
||||
}
|
||||
|
||||
#endif
|
||||
else { // DAC onboard X,Y,Z,E0
|
||||
|
||||
digitalWrite(DAC0_SYNC , LOW);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC0_SYNC , HIGH);
|
||||
delayMicroseconds(2U);
|
||||
digitalWrite(DAC0_SYNC , LOW);
|
||||
}
|
||||
|
||||
delayMicroseconds(2U);
|
||||
spiSend(SPI_CHAN_DAC,externalDac_buf , 2);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
#endif // MB(ALLIGATOR)
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
#ifndef dac084s085_h
|
||||
#define dac084s085_h
|
||||
#ifndef DAC084S085_H
|
||||
#define DAC084S085_H
|
||||
|
||||
class dac084s085 {
|
||||
public:
|
||||
|
@ -8,4 +8,4 @@ class dac084s085 {
|
|||
static void setValue(uint8_t channel, uint8_t value);
|
||||
};
|
||||
|
||||
#endif //dac084s085_h
|
||||
#endif // DAC084S085_H
|
||||
|
|
|
@ -30,11 +30,12 @@
|
|||
* http://arduino.cc/forum/index.php/topic,51842.0.html
|
||||
*/
|
||||
|
||||
#include "dac_mcp4728.h"
|
||||
#include "enum.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(DAC_STEPPER_CURRENT)
|
||||
|
||||
#include "dac_mcp4728.h"
|
||||
|
||||
uint16_t mcp4728_values[XYZE];
|
||||
|
||||
/**
|
||||
|
|
|
@ -27,10 +27,7 @@
|
|||
#ifndef DAC_MCP4728_H
|
||||
#define DAC_MCP4728_H
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(DAC_STEPPER_CURRENT)
|
||||
#include "Wire.h"
|
||||
#include <Wire.h>
|
||||
|
||||
#define defaultVDD DAC_STEPPER_MAX //was 5000 but differs with internal Vref
|
||||
#define BASE_ADDR 0x60
|
||||
|
@ -50,7 +47,6 @@
|
|||
// DAC_OR_ADDRESS defined in pins_BOARD.h file
|
||||
#define DAC_DEV_ADDRESS (BASE_ADDR | DAC_OR_ADDRESS)
|
||||
|
||||
|
||||
void mcp4728_init();
|
||||
uint8_t mcp4728_analogWrite(uint8_t channel, uint16_t value);
|
||||
uint8_t mcp4728_eepromWrite();
|
||||
|
@ -62,5 +58,4 @@ uint8_t mcp4728_simpleCommand(byte simpleCommand);
|
|||
uint8_t mcp4728_getDrvPct(uint8_t channel);
|
||||
void mcp4728_setDrvPct(uint8_t pct[XYZE]);
|
||||
|
||||
#endif
|
||||
#endif // DAC_MCP4728_H
|
||||
|
|
|
@ -41,85 +41,85 @@
|
|||
along with Marlin. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(DAC_STEPPER_CURRENT)
|
||||
|
||||
#include "stepper_dac.h"
|
||||
#include "stepper_dac.h"
|
||||
|
||||
bool dac_present = false;
|
||||
const uint8_t dac_order[NUM_AXIS] = DAC_STEPPER_ORDER;
|
||||
uint8_t dac_channel_pct[XYZE] = DAC_MOTOR_CURRENT_DEFAULT;
|
||||
bool dac_present = false;
|
||||
const uint8_t dac_order[NUM_AXIS] = DAC_STEPPER_ORDER;
|
||||
uint8_t dac_channel_pct[XYZE] = DAC_MOTOR_CURRENT_DEFAULT;
|
||||
|
||||
int dac_init() {
|
||||
#if PIN_EXISTS(DAC_DISABLE)
|
||||
OUT_WRITE(DAC_DISABLE_PIN, LOW); // set pin low to enable DAC
|
||||
#endif
|
||||
int dac_init() {
|
||||
#if PIN_EXISTS(DAC_DISABLE)
|
||||
OUT_WRITE(DAC_DISABLE_PIN, LOW); // set pin low to enable DAC
|
||||
#endif
|
||||
|
||||
mcp4728_init();
|
||||
mcp4728_init();
|
||||
|
||||
if (mcp4728_simpleCommand(RESET)) return -1;
|
||||
if (mcp4728_simpleCommand(RESET)) return -1;
|
||||
|
||||
dac_present = true;
|
||||
dac_present = true;
|
||||
|
||||
mcp4728_setVref_all(DAC_STEPPER_VREF);
|
||||
mcp4728_setGain_all(DAC_STEPPER_GAIN);
|
||||
mcp4728_setVref_all(DAC_STEPPER_VREF);
|
||||
mcp4728_setGain_all(DAC_STEPPER_GAIN);
|
||||
|
||||
if (mcp4728_getDrvPct(0) < 1 || mcp4728_getDrvPct(1) < 1 || mcp4728_getDrvPct(2) < 1 || mcp4728_getDrvPct(3) < 1 ) {
|
||||
mcp4728_setDrvPct(dac_channel_pct);
|
||||
mcp4728_eepromWrite();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void dac_current_percent(uint8_t channel, float val) {
|
||||
if (!dac_present) return;
|
||||
|
||||
NOMORE(val, 100);
|
||||
|
||||
mcp4728_analogWrite(dac_order[channel], val * 0.01 * (DAC_STEPPER_MAX));
|
||||
mcp4728_simpleCommand(UPDATE);
|
||||
}
|
||||
|
||||
void dac_current_raw(uint8_t channel, uint16_t val) {
|
||||
if (!dac_present) return;
|
||||
|
||||
NOMORE(val, DAC_STEPPER_MAX);
|
||||
|
||||
mcp4728_analogWrite(dac_order[channel], val);
|
||||
mcp4728_simpleCommand(UPDATE);
|
||||
}
|
||||
|
||||
static float dac_perc(int8_t n) { return 100.0 * mcp4728_getValue(dac_order[n]) * (1.0 / (DAC_STEPPER_MAX)); }
|
||||
static float dac_amps(int8_t n) { return mcp4728_getDrvPct(dac_order[n]) * (DAC_STEPPER_MAX) * 0.125 * (1.0 / (DAC_STEPPER_SENSE)); }
|
||||
|
||||
uint8_t dac_current_get_percent(AxisEnum axis) { return mcp4728_getDrvPct(dac_order[axis]); }
|
||||
void dac_current_set_percents(const uint8_t pct[XYZE]) {
|
||||
LOOP_XYZE(i) dac_channel_pct[i] = pct[dac_order[i]];
|
||||
if (mcp4728_getDrvPct(0) < 1 || mcp4728_getDrvPct(1) < 1 || mcp4728_getDrvPct(2) < 1 || mcp4728_getDrvPct(3) < 1 ) {
|
||||
mcp4728_setDrvPct(dac_channel_pct);
|
||||
}
|
||||
|
||||
void dac_print_values() {
|
||||
if (!dac_present) return;
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM("Stepper current values in % (Amps):");
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPAIR(" X:", dac_perc(X_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(X_AXIS));
|
||||
SERIAL_ECHOPAIR(") Y:", dac_perc(Y_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(Y_AXIS));
|
||||
SERIAL_ECHOPAIR(") Z:", dac_perc(Z_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(Z_AXIS));
|
||||
SERIAL_ECHOPAIR(") E:", dac_perc(E_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(E_AXIS));
|
||||
SERIAL_ECHOLN(")");
|
||||
}
|
||||
|
||||
void dac_commit_eeprom() {
|
||||
if (!dac_present) return;
|
||||
mcp4728_eepromWrite();
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
void dac_current_percent(uint8_t channel, float val) {
|
||||
if (!dac_present) return;
|
||||
|
||||
NOMORE(val, 100);
|
||||
|
||||
mcp4728_analogWrite(dac_order[channel], val * 0.01 * (DAC_STEPPER_MAX));
|
||||
mcp4728_simpleCommand(UPDATE);
|
||||
}
|
||||
|
||||
void dac_current_raw(uint8_t channel, uint16_t val) {
|
||||
if (!dac_present) return;
|
||||
|
||||
NOMORE(val, DAC_STEPPER_MAX);
|
||||
|
||||
mcp4728_analogWrite(dac_order[channel], val);
|
||||
mcp4728_simpleCommand(UPDATE);
|
||||
}
|
||||
|
||||
static float dac_perc(int8_t n) { return 100.0 * mcp4728_getValue(dac_order[n]) * (1.0 / (DAC_STEPPER_MAX)); }
|
||||
static float dac_amps(int8_t n) { return mcp4728_getDrvPct(dac_order[n]) * (DAC_STEPPER_MAX) * 0.125 * (1.0 / (DAC_STEPPER_SENSE)); }
|
||||
|
||||
uint8_t dac_current_get_percent(AxisEnum axis) { return mcp4728_getDrvPct(dac_order[axis]); }
|
||||
void dac_current_set_percents(const uint8_t pct[XYZE]) {
|
||||
LOOP_XYZE(i) dac_channel_pct[i] = pct[dac_order[i]];
|
||||
mcp4728_setDrvPct(dac_channel_pct);
|
||||
}
|
||||
|
||||
void dac_print_values() {
|
||||
if (!dac_present) return;
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM("Stepper current values in % (Amps):");
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPAIR(" X:", dac_perc(X_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(X_AXIS));
|
||||
SERIAL_ECHOPAIR(") Y:", dac_perc(Y_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(Y_AXIS));
|
||||
SERIAL_ECHOPAIR(") Z:", dac_perc(Z_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(Z_AXIS));
|
||||
SERIAL_ECHOPAIR(") E:", dac_perc(E_AXIS));
|
||||
SERIAL_ECHOPAIR(" (", dac_amps(E_AXIS));
|
||||
SERIAL_ECHOLN(")");
|
||||
}
|
||||
|
||||
void dac_commit_eeprom() {
|
||||
if (!dac_present) return;
|
||||
mcp4728_eepromWrite();
|
||||
}
|
||||
|
||||
#endif // DAC_STEPPER_CURRENT
|
||||
|
|
|
@ -20,11 +20,11 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(DIGIPOT_I2C) && ENABLED(DIGIPOT_MCP4018)
|
||||
|
||||
#include "enum.h"
|
||||
#include "../core/enum.h"
|
||||
#include "Stream.h"
|
||||
#include "utility/twi.h"
|
||||
#include <SlowSoftI2CMaster.h> //https://github.com/stawel/SlowSoftI2CMaster
|
||||
|
|
|
@ -20,7 +20,7 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(DIGIPOT_I2C) && DISABLED(DIGIPOT_MCP4018)
|
||||
|
||||
|
|
|
@ -49,15 +49,16 @@
|
|||
* void Max7219_idle_tasks();
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(MAX7219_DEBUG)
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
#include "Max7219_Debug_LEDs.h"
|
||||
|
||||
#include "../../module/planner.h"
|
||||
#include "../../module/stepper.h"
|
||||
#include "../../Marlin.h"
|
||||
|
||||
static uint8_t LEDs[8] = { 0 };
|
||||
|
||||
void Max7219_PutByte(uint8_t data) {
|
||||
|
|
|
@ -25,7 +25,7 @@
|
|||
* Created by Tim Koster, August 21 2013.
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "../../Marlin.h"
|
||||
|
||||
#if ENABLED(BLINKM)
|
||||
|
||||
|
|
|
@ -20,12 +20,12 @@
|
|||
*
|
||||
*/
|
||||
|
||||
/*
|
||||
/**
|
||||
* Driver for the Philips PCA9632 LED driver.
|
||||
* Written by Robert Mendon Feb 2017.
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(PCA9632)
|
||||
|
||||
|
|
|
@ -20,10 +20,12 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "mesh_bed_leveling.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
#include "mesh_bed_leveling.h"
|
||||
|
||||
mesh_bed_leveling mbl;
|
||||
|
||||
uint8_t mesh_bed_leveling::status;
|
||||
|
|
|
@ -20,103 +20,104 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#ifndef _MESH_BED_LEVELING_H_
|
||||
#define _MESH_BED_LEVELING_H_
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
#include "../../Marlin.h"
|
||||
|
||||
enum MeshLevelingState {
|
||||
MeshReport,
|
||||
MeshStart,
|
||||
MeshNext,
|
||||
MeshSet,
|
||||
MeshSetZOffset,
|
||||
MeshReset
|
||||
};
|
||||
enum MeshLevelingState {
|
||||
MeshReport,
|
||||
MeshStart,
|
||||
MeshNext,
|
||||
MeshSet,
|
||||
MeshSetZOffset,
|
||||
MeshReset
|
||||
};
|
||||
|
||||
enum MBLStatus {
|
||||
MBL_STATUS_NONE = 0,
|
||||
MBL_STATUS_HAS_MESH_BIT = 0,
|
||||
MBL_STATUS_ACTIVE_BIT = 1
|
||||
};
|
||||
enum MBLStatus {
|
||||
MBL_STATUS_NONE = 0,
|
||||
MBL_STATUS_HAS_MESH_BIT = 0,
|
||||
MBL_STATUS_ACTIVE_BIT = 1
|
||||
};
|
||||
|
||||
#define MESH_X_DIST ((MESH_MAX_X - (MESH_MIN_X)) / (GRID_MAX_POINTS_X - 1))
|
||||
#define MESH_Y_DIST ((MESH_MAX_Y - (MESH_MIN_Y)) / (GRID_MAX_POINTS_Y - 1))
|
||||
#define MESH_X_DIST ((MESH_MAX_X - (MESH_MIN_X)) / (GRID_MAX_POINTS_X - 1))
|
||||
#define MESH_Y_DIST ((MESH_MAX_Y - (MESH_MIN_Y)) / (GRID_MAX_POINTS_Y - 1))
|
||||
|
||||
class mesh_bed_leveling {
|
||||
public:
|
||||
static uint8_t status; // Has Mesh and Is Active bits
|
||||
static float z_offset,
|
||||
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
|
||||
index_to_xpos[GRID_MAX_POINTS_X],
|
||||
index_to_ypos[GRID_MAX_POINTS_Y];
|
||||
class mesh_bed_leveling {
|
||||
public:
|
||||
static uint8_t status; // Has Mesh and Is Active bits
|
||||
static float z_offset,
|
||||
z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y],
|
||||
index_to_xpos[GRID_MAX_POINTS_X],
|
||||
index_to_ypos[GRID_MAX_POINTS_Y];
|
||||
|
||||
mesh_bed_leveling();
|
||||
mesh_bed_leveling();
|
||||
|
||||
static void reset();
|
||||
static void reset();
|
||||
|
||||
static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
static bool active() { return TEST(status, MBL_STATUS_ACTIVE_BIT); }
|
||||
static void set_active(const bool onOff) { onOff ? SBI(status, MBL_STATUS_ACTIVE_BIT) : CBI(status, MBL_STATUS_ACTIVE_BIT); }
|
||||
static bool has_mesh() { return TEST(status, MBL_STATUS_HAS_MESH_BIT); }
|
||||
static void set_has_mesh(const bool onOff) { onOff ? SBI(status, MBL_STATUS_HAS_MESH_BIT) : CBI(status, MBL_STATUS_HAS_MESH_BIT); }
|
||||
static bool active() { return TEST(status, MBL_STATUS_ACTIVE_BIT); }
|
||||
static void set_active(const bool onOff) { onOff ? SBI(status, MBL_STATUS_ACTIVE_BIT) : CBI(status, MBL_STATUS_ACTIVE_BIT); }
|
||||
static bool has_mesh() { return TEST(status, MBL_STATUS_HAS_MESH_BIT); }
|
||||
static void set_has_mesh(const bool onOff) { onOff ? SBI(status, MBL_STATUS_HAS_MESH_BIT) : CBI(status, MBL_STATUS_HAS_MESH_BIT); }
|
||||
|
||||
static inline void zigzag(const int8_t index, int8_t &px, int8_t &py) {
|
||||
px = index % (GRID_MAX_POINTS_X);
|
||||
py = index / (GRID_MAX_POINTS_X);
|
||||
if (py & 1) px = (GRID_MAX_POINTS_X - 1) - px; // Zig zag
|
||||
}
|
||||
static inline void zigzag(const int8_t index, int8_t &px, int8_t &py) {
|
||||
px = index % (GRID_MAX_POINTS_X);
|
||||
py = index / (GRID_MAX_POINTS_X);
|
||||
if (py & 1) px = (GRID_MAX_POINTS_X - 1) - px; // Zig zag
|
||||
}
|
||||
|
||||
static void set_zigzag_z(const int8_t index, const float &z) {
|
||||
int8_t px, py;
|
||||
zigzag(index, px, py);
|
||||
set_z(px, py, z);
|
||||
}
|
||||
static void set_zigzag_z(const int8_t index, const float &z) {
|
||||
int8_t px, py;
|
||||
zigzag(index, px, py);
|
||||
set_z(px, py, z);
|
||||
}
|
||||
|
||||
static int8_t cell_index_x(const float &x) {
|
||||
int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 2);
|
||||
}
|
||||
static int8_t cell_index_x(const float &x) {
|
||||
int8_t cx = (x - (MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 2);
|
||||
}
|
||||
|
||||
static int8_t cell_index_y(const float &y) {
|
||||
int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 2);
|
||||
}
|
||||
static int8_t cell_index_y(const float &y) {
|
||||
int8_t cy = (y - (MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 2);
|
||||
}
|
||||
|
||||
static int8_t probe_index_x(const float &x) {
|
||||
int8_t px = (x - (MESH_MIN_X) + 0.5 * (MESH_X_DIST)) * (1.0 / (MESH_X_DIST));
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
static int8_t probe_index_x(const float &x) {
|
||||
int8_t px = (x - (MESH_MIN_X) + 0.5 * (MESH_X_DIST)) * (1.0 / (MESH_X_DIST));
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
|
||||
static int8_t probe_index_y(const float &y) {
|
||||
int8_t py = (y - (MESH_MIN_Y) + 0.5 * (MESH_Y_DIST)) * (1.0 / (MESH_Y_DIST));
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
static int8_t probe_index_y(const float &y) {
|
||||
int8_t py = (y - (MESH_MIN_Y) + 0.5 * (MESH_Y_DIST)) * (1.0 / (MESH_Y_DIST));
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
|
||||
static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1) / (a2 - a1),
|
||||
delta_a = a0 - a1;
|
||||
return z1 + delta_a * delta_z;
|
||||
}
|
||||
static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1) / (a2 - a1),
|
||||
delta_a = a0 - a1;
|
||||
return z1 + delta_a * delta_z;
|
||||
}
|
||||
|
||||
static float get_z(const float &x0, const float &y0
|
||||
static float get_z(const float &x0, const float &y0
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, const float &factor
|
||||
#endif
|
||||
) {
|
||||
const int8_t cx = cell_index_x(x0), cy = cell_index_y(y0);
|
||||
const float z1 = calc_z0(x0, index_to_xpos[cx], z_values[cx][cy], index_to_xpos[cx + 1], z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(x0, index_to_xpos[cx], z_values[cx][cy + 1], index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]),
|
||||
z0 = calc_z0(y0, index_to_ypos[cy], z1, index_to_ypos[cy + 1], z2);
|
||||
|
||||
return z_offset + z0
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
, const float &factor
|
||||
* factor
|
||||
#endif
|
||||
) {
|
||||
const int8_t cx = cell_index_x(x0), cy = cell_index_y(y0);
|
||||
const float z1 = calc_z0(x0, index_to_xpos[cx], z_values[cx][cy], index_to_xpos[cx + 1], z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(x0, index_to_xpos[cx], z_values[cx][cy + 1], index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]),
|
||||
z0 = calc_z0(y0, index_to_ypos[cy], z1, index_to_ypos[cy + 1], z2);
|
||||
;
|
||||
}
|
||||
};
|
||||
|
||||
return z_offset + z0
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
* factor
|
||||
#endif
|
||||
;
|
||||
}
|
||||
};
|
||||
extern mesh_bed_leveling mbl;
|
||||
|
||||
extern mesh_bed_leveling mbl;
|
||||
|
||||
#endif // MESH_BED_LEVELING
|
||||
#endif // _MESH_BED_LEVELING_H_
|
||||
|
|
157
Marlin/src/feature/tmc2130.cpp
Normal file
157
Marlin/src/feature/tmc2130.cpp
Normal file
|
@ -0,0 +1,157 @@
|
|||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
|
||||
#include "tmc2130.h"
|
||||
#include "../Marlin.h"
|
||||
|
||||
#include "../libs/duration_t.h"
|
||||
#include "../module/stepper_indirection.h"
|
||||
|
||||
#include <TMC2130Stepper.h>
|
||||
|
||||
#ifdef AUTOMATIC_CURRENT_CONTROL
|
||||
bool auto_current_control = 0;
|
||||
#endif
|
||||
|
||||
void automatic_current_control(TMC2130Stepper &st, String axisID) {
|
||||
// Check otpw even if we don't use automatic control. Allows for flag inspection.
|
||||
const bool is_otpw = st.checkOT();
|
||||
|
||||
// Report if a warning was triggered
|
||||
static bool previous_otpw = false;
|
||||
if (is_otpw && !previous_otpw) {
|
||||
char timestamp[10];
|
||||
duration_t elapsed = print_job_timer.duration();
|
||||
const bool has_days = (elapsed.value > 60*60*24L);
|
||||
(void)elapsed.toDigital(timestamp, has_days);
|
||||
SERIAL_ECHO(timestamp);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOLNPGM(" driver overtemperature warning!");
|
||||
}
|
||||
previous_otpw = is_otpw;
|
||||
|
||||
#if ENABLED(AUTOMATIC_CURRENT_CONTROL) && CURRENT_STEP > 0
|
||||
// Return if user has not enabled current control start with M906 S1.
|
||||
if (!auto_current_control) return;
|
||||
|
||||
/**
|
||||
* Decrease current if is_otpw is true.
|
||||
* Bail out if driver is disabled.
|
||||
* Increase current if OTPW has not been triggered yet.
|
||||
*/
|
||||
uint16_t current = st.getCurrent();
|
||||
if (is_otpw) {
|
||||
st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
|
||||
#if ENABLED(REPORT_CURRENT_CHANGE)
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
|
||||
#endif
|
||||
}
|
||||
|
||||
else if (!st.isEnabled())
|
||||
return;
|
||||
|
||||
else if (!is_otpw && !st.getOTPW()) {
|
||||
current += CURRENT_STEP;
|
||||
if (current <= AUTO_ADJUST_MAX) {
|
||||
st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
|
||||
#if ENABLED(REPORT_CURRENT_CHANGE)
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
|
||||
#endif
|
||||
}
|
||||
}
|
||||
SERIAL_EOL();
|
||||
#endif
|
||||
}
|
||||
|
||||
void tmc2130_checkOverTemp(void) {
|
||||
static millis_t next_cOT = 0;
|
||||
if (ELAPSED(millis(), next_cOT)) {
|
||||
next_cOT = millis() + 5000;
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
automatic_current_control(stepperX, "X");
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
automatic_current_control(stepperY, "Y");
|
||||
#endif
|
||||
#if ENABLED(Z_IS_TMC2130)
|
||||
automatic_current_control(stepperZ, "Z");
|
||||
#endif
|
||||
#if ENABLED(X2_IS_TMC2130)
|
||||
automatic_current_control(stepperX2, "X2");
|
||||
#endif
|
||||
#if ENABLED(Y2_IS_TMC2130)
|
||||
automatic_current_control(stepperY2, "Y2");
|
||||
#endif
|
||||
#if ENABLED(Z2_IS_TMC2130)
|
||||
automatic_current_control(stepperZ2, "Z2");
|
||||
#endif
|
||||
#if ENABLED(E0_IS_TMC2130)
|
||||
automatic_current_control(stepperE0, "E0");
|
||||
#endif
|
||||
#if ENABLED(E1_IS_TMC2130)
|
||||
automatic_current_control(stepperE1, "E1");
|
||||
#endif
|
||||
#if ENABLED(E2_IS_TMC2130)
|
||||
automatic_current_control(stepperE2, "E2");
|
||||
#endif
|
||||
#if ENABLED(E3_IS_TMC2130)
|
||||
automatic_current_control(stepperE3, "E3");
|
||||
#endif
|
||||
#if ENABLED(E4_IS_TMC2130)
|
||||
automatic_current_control(stepperE4, "E4");
|
||||
#endif
|
||||
#if ENABLED(E4_IS_TMC2130)
|
||||
automatic_current_control(stepperE4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* TMC2130 specific sensorless homing using stallGuard2.
|
||||
* stallGuard2 only works when in spreadCycle mode.
|
||||
* spreadCycle and stealthChop are mutually exclusive.
|
||||
*/
|
||||
#if ENABLED(SENSORLESS_HOMING)
|
||||
void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable/*=true*/) {
|
||||
#if ENABLED(STEALTHCHOP)
|
||||
if (enable) {
|
||||
st.coolstep_min_speed(1024UL * 1024UL - 1UL);
|
||||
st.stealthChop(0);
|
||||
}
|
||||
else {
|
||||
st.coolstep_min_speed(0);
|
||||
st.stealthChop(1);
|
||||
}
|
||||
#endif
|
||||
|
||||
st.diag1_stall(enable ? 1 : 0);
|
||||
}
|
||||
#endif // SENSORLESS_HOMING
|
||||
|
||||
#endif // HAVE_TMC2130
|
30
Marlin/src/feature/tmc2130.h
Normal file
30
Marlin/src/feature/tmc2130.h
Normal file
|
@ -0,0 +1,30 @@
|
|||
/**
|
||||
* Marlin 3D Printer Firmware
|
||||
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
||||
*
|
||||
* Based on Sprinter and grbl.
|
||||
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
|
||||
#ifndef _TMC2130_H_
|
||||
#define _TMC2130_H_
|
||||
|
||||
extern bool auto_current_control;
|
||||
|
||||
void tmc2130_checkOverTemp(void);
|
||||
|
||||
#endif // _TMC2130_H_
|
|
@ -20,11 +20,12 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
||||
|
||||
#include "twibus.h"
|
||||
|
||||
#include <Wire.h>
|
||||
|
||||
TWIBus::TWIBus() {
|
||||
|
|
|
@ -23,7 +23,7 @@
|
|||
#ifndef TWIBUS_H
|
||||
#define TWIBUS_H
|
||||
|
||||
#include "macros.h"
|
||||
#include "../core/macros.h"
|
||||
|
||||
#include <Wire.h>
|
||||
|
||||
|
|
|
@ -24,17 +24,18 @@
|
|||
* Marlin Firmware -- G26 - Mesh Validation Tool
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
|
||||
#include "ubl.h"
|
||||
#include "Marlin.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
#include "temperature.h"
|
||||
#include "ultralcd.h"
|
||||
#include "gcode.h"
|
||||
|
||||
#include "../../Marlin.h"
|
||||
#include "../../module/planner.h"
|
||||
#include "../../module/stepper.h"
|
||||
#include "../../module/temperature.h"
|
||||
#include "../../lcd/ultralcd.h"
|
||||
#include "../../gcode/parser.h"
|
||||
|
||||
#define EXTRUSION_MULTIPLIER 1.0
|
||||
#define RETRACTION_MULTIPLIER 1.0
|
||||
|
@ -140,8 +141,8 @@
|
|||
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
|
||||
inline void set_current_to_destination() { COPY(current_position, destination); }
|
||||
#else
|
||||
extern void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
|
||||
extern void set_current_to_destination() { COPY(current_position, destination); }
|
||||
extern void sync_plan_position_e();
|
||||
extern void set_current_to_destination();
|
||||
#endif
|
||||
#if ENABLED(NEWPANEL)
|
||||
void lcd_setstatusPGM(const char* const message, const int8_t level);
|
||||
|
|
|
@ -20,16 +20,18 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "math.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#include "ubl.h"
|
||||
#include "hex_print_routines.h"
|
||||
#include "temperature.h"
|
||||
unified_bed_leveling ubl;
|
||||
|
||||
extern Planner planner;
|
||||
#include "../../module/configuration_store.h"
|
||||
#include "../../core/serial.h"
|
||||
#include "../../module/planner.h"
|
||||
|
||||
#include "math.h"
|
||||
|
||||
/**
|
||||
* These support functions allow the use of large bit arrays of flags that take very
|
||||
|
@ -37,9 +39,9 @@
|
|||
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
|
||||
* in the future.
|
||||
*/
|
||||
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y) { CBI(bits[y], x); }
|
||||
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { SBI(bits[y], x); }
|
||||
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y) { return TEST(bits[y], x); }
|
||||
void bit_clear(uint16_t bits[16], const uint8_t x, const uint8_t y) { CBI(bits[y], x); }
|
||||
void bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { SBI(bits[y], x); }
|
||||
bool is_bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { return TEST(bits[y], x); }
|
||||
|
||||
uint8_t ubl_cnt = 0;
|
||||
|
||||
|
|
|
@ -23,387 +23,375 @@
|
|||
#ifndef UNIFIED_BED_LEVELING_H
|
||||
#define UNIFIED_BED_LEVELING_H
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../../Marlin.h"
|
||||
#include "../../core/serial.h"
|
||||
#include "../../module/planner.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#include "Marlin.h"
|
||||
#include "planner.h"
|
||||
#include "math.h"
|
||||
#include "vector_3.h"
|
||||
#include "configuration_store.h"
|
||||
#define UBL_VERSION "1.01"
|
||||
#define UBL_OK false
|
||||
#define UBL_ERR true
|
||||
|
||||
#define UBL_VERSION "1.01"
|
||||
#define UBL_OK false
|
||||
#define UBL_ERR true
|
||||
#define USE_NOZZLE_AS_REFERENCE 0
|
||||
#define USE_PROBE_AS_REFERENCE 1
|
||||
|
||||
#define USE_NOZZLE_AS_REFERENCE 0
|
||||
#define USE_PROBE_AS_REFERENCE 1
|
||||
typedef struct {
|
||||
int8_t x_index, y_index;
|
||||
float distance; // When populated, the distance from the search location
|
||||
} mesh_index_pair;
|
||||
|
||||
typedef struct {
|
||||
int8_t x_index, y_index;
|
||||
float distance; // When populated, the distance from the search location
|
||||
} mesh_index_pair;
|
||||
// ubl.cpp
|
||||
|
||||
// ubl.cpp
|
||||
void bit_clear(uint16_t bits[16], const uint8_t x, const uint8_t y);
|
||||
void bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y);
|
||||
bool is_bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y);
|
||||
|
||||
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
|
||||
// ubl_motion.cpp
|
||||
|
||||
// ubl_motion.cpp
|
||||
void debug_current_and_destination(const char * const title);
|
||||
|
||||
void debug_current_and_destination(const char * const title);
|
||||
// ubl_G29.cpp
|
||||
|
||||
// ubl_G29.cpp
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
||||
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
||||
// External references
|
||||
|
||||
// External references
|
||||
char *ftostr43sign(const float&, char);
|
||||
bool ubl_lcd_clicked();
|
||||
void home_all_axes();
|
||||
|
||||
char *ftostr43sign(const float&, char);
|
||||
bool ubl_lcd_clicked();
|
||||
void home_all_axes();
|
||||
extern uint8_t ubl_cnt;
|
||||
|
||||
extern uint8_t ubl_cnt;
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
|
||||
///////////////////////////////////////////////////////////////////////////////////////////////////////
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
extern char lcd_status_message[];
|
||||
void lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
extern char lcd_status_message[];
|
||||
void lcd_quick_feedback();
|
||||
#endif
|
||||
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
|
||||
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
|
||||
|
||||
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
|
||||
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
|
||||
typedef struct {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int8_t storage_slot = -1;
|
||||
} ubl_state;
|
||||
|
||||
typedef struct {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int8_t storage_slot = -1;
|
||||
} ubl_state;
|
||||
class unified_bed_leveling {
|
||||
private:
|
||||
|
||||
class unified_bed_leveling {
|
||||
private:
|
||||
static float last_specified_z;
|
||||
|
||||
static float last_specified_z;
|
||||
static int g29_verbose_level,
|
||||
g29_phase_value,
|
||||
g29_repetition_cnt,
|
||||
g29_storage_slot,
|
||||
g29_map_type,
|
||||
g29_grid_size;
|
||||
static bool g29_c_flag, g29_x_flag, g29_y_flag;
|
||||
static float g29_x_pos, g29_y_pos,
|
||||
g29_card_thickness,
|
||||
g29_constant;
|
||||
|
||||
static int g29_verbose_level,
|
||||
g29_phase_value,
|
||||
g29_repetition_cnt,
|
||||
g29_storage_slot,
|
||||
g29_map_type,
|
||||
g29_grid_size;
|
||||
static bool g29_c_flag, g29_x_flag, g29_y_flag;
|
||||
static float g29_x_pos, g29_y_pos,
|
||||
g29_card_thickness,
|
||||
g29_constant;
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static float g26_extrusion_multiplier,
|
||||
g26_retraction_multiplier,
|
||||
g26_nozzle,
|
||||
g26_filament_diameter,
|
||||
g26_prime_length,
|
||||
g26_x_pos, g26_y_pos,
|
||||
g26_ooze_amount,
|
||||
g26_layer_height;
|
||||
static int16_t g26_bed_temp,
|
||||
g26_hotend_temp,
|
||||
g26_repeats;
|
||||
static int8_t g26_prime_flag;
|
||||
static bool g26_continue_with_closest, g26_keep_heaters_on;
|
||||
#endif
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static float g26_extrusion_multiplier,
|
||||
g26_retraction_multiplier,
|
||||
g26_nozzle,
|
||||
g26_filament_diameter,
|
||||
g26_prime_length,
|
||||
g26_x_pos, g26_y_pos,
|
||||
g26_ooze_amount,
|
||||
g26_layer_height;
|
||||
static int16_t g26_bed_temp,
|
||||
g26_hotend_temp,
|
||||
g26_repeats;
|
||||
static int8_t g26_prime_flag;
|
||||
static bool g26_continue_with_closest, g26_keep_heaters_on;
|
||||
static float measure_point_with_encoder();
|
||||
static float measure_business_card_thickness(float);
|
||||
static bool g29_parameter_parsing();
|
||||
static void find_mean_mesh_height();
|
||||
static void shift_mesh_height();
|
||||
static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
|
||||
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
|
||||
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
||||
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
||||
static void g29_what_command();
|
||||
static void g29_eeprom_dump();
|
||||
static void g29_compare_current_mesh_to_stored_mesh();
|
||||
static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
|
||||
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
||||
static void smart_fill_mesh();
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static bool exit_from_g26();
|
||||
static bool parse_G26_parameters();
|
||||
static void G26_line_to_destination(const float &feed_rate);
|
||||
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
||||
static bool look_for_lines_to_connect();
|
||||
static bool turn_on_heaters();
|
||||
static bool prime_nozzle();
|
||||
static void retract_filament(const float where[XYZE]);
|
||||
static void recover_filament(const float where[XYZE]);
|
||||
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
||||
static void move_to(const float&, const float&, const float&, const float&);
|
||||
inline static void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
static void echo_name();
|
||||
static void report_state();
|
||||
static void save_ubl_active_state_and_disable();
|
||||
static void restore_ubl_active_state_and_leave();
|
||||
static void display_map(const int);
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16], bool);
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
static void set_all_mesh_points_to_value(float);
|
||||
static bool sanity_check();
|
||||
|
||||
static void G29() _O0; // O0 for no optimization
|
||||
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static void G26();
|
||||
#endif
|
||||
|
||||
static ubl_state state;
|
||||
|
||||
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
||||
|
||||
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
|
||||
// until determinism prevails
|
||||
constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
|
||||
UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
|
||||
};
|
||||
|
||||
constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
|
||||
UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
|
||||
};
|
||||
|
||||
static bool g26_debug_flag, has_control_of_lcd_panel;
|
||||
|
||||
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
||||
|
||||
unified_bed_leveling();
|
||||
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* z2 --|
|
||||
* z0 | |
|
||||
* | | + (z2-z1)
|
||||
* z1 | | |
|
||||
* ---+-------------+--------+-- --|
|
||||
* a1 a0 a2
|
||||
* |<---delta_a---------->|
|
||||
*
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||
* find the expected Z Height at a position between two known Z-Height locations.
|
||||
*
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
||||
}
|
||||
|
||||
/**
|
||||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
|
||||
*/
|
||||
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
|
||||
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi];
|
||||
|
||||
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 2)) {
|
||||
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
|
||||
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
|
||||
SERIAL_ECHOPAIR(", xi=", xi);
|
||||
SERIAL_ECHOPAIR(", y1_i=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i];
|
||||
|
||||
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const float &lx0, const float &ly0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
|
||||
|
||||
if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 2)) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
|
||||
SERIAL_ECHOPAIR(", ly0=", ly0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
return NAN; // this used to return state.z_offset
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(lx0),
|
||||
mesh_index_to_xpos(cx), z_values[cx][cy],
|
||||
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
|
||||
|
||||
const float z2 = calc_z0(RAW_X_POSITION(lx0),
|
||||
mesh_index_to_xpos(cx), z_values[cx][cy + 1],
|
||||
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
|
||||
|
||||
float z0 = calc_z0(RAW_Y_POSITION(ly0),
|
||||
mesh_index_to_ypos(cy), z1,
|
||||
mesh_index_to_ypos(cy + 1), z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(ly0);
|
||||
SERIAL_ECHOPGM(") = ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
|
||||
static float measure_point_with_encoder();
|
||||
static float measure_business_card_thickness(float);
|
||||
static bool g29_parameter_parsing();
|
||||
static void find_mean_mesh_height();
|
||||
static void shift_mesh_height();
|
||||
static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
|
||||
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
|
||||
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
|
||||
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
|
||||
static void g29_what_command();
|
||||
static void g29_eeprom_dump();
|
||||
static void g29_compare_current_mesh_to_stored_mesh();
|
||||
static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
|
||||
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
|
||||
static void smart_fill_mesh();
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static bool exit_from_g26();
|
||||
static bool parse_G26_parameters();
|
||||
static void G26_line_to_destination(const float &feed_rate);
|
||||
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
|
||||
static bool look_for_lines_to_connect();
|
||||
static bool turn_on_heaters();
|
||||
static bool prime_nozzle();
|
||||
static void retract_filament(const float where[XYZE]);
|
||||
static void recover_filament(const float where[XYZE]);
|
||||
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
|
||||
static void move_to(const float&, const float&, const float&, const float&);
|
||||
inline static void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#endif
|
||||
|
||||
public:
|
||||
|
||||
static void echo_name();
|
||||
static void report_state();
|
||||
static void save_ubl_active_state_and_disable();
|
||||
static void restore_ubl_active_state_and_leave();
|
||||
static void display_map(const int);
|
||||
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16], bool);
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
static void set_all_mesh_points_to_value(float);
|
||||
static bool sanity_check();
|
||||
|
||||
static void G29() _O0; // O0 for no optimization
|
||||
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
static void G26();
|
||||
#endif
|
||||
|
||||
static ubl_state state;
|
||||
|
||||
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
||||
|
||||
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
|
||||
// until determinism prevails
|
||||
constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
|
||||
UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
|
||||
UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
|
||||
};
|
||||
|
||||
constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
|
||||
UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
|
||||
UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
|
||||
};
|
||||
|
||||
static bool g26_debug_flag, has_control_of_lcd_panel;
|
||||
|
||||
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
||||
|
||||
unified_bed_leveling();
|
||||
|
||||
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
|
||||
}
|
||||
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
|
||||
}
|
||||
|
||||
/**
|
||||
* z2 --|
|
||||
* z0 | |
|
||||
* | | + (z2-z1)
|
||||
* z1 | | |
|
||||
* ---+-------------+--------+-- --|
|
||||
* a1 a0 a2
|
||||
* |<---delta_a---------->|
|
||||
*
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||
* find the expected Z Height at a position between two known Z-Height locations.
|
||||
*
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
|
||||
}
|
||||
|
||||
/**
|
||||
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
|
||||
* the case where the printer is making a vertical line that only crosses horizontal mesh lines.
|
||||
*/
|
||||
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
|
||||
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
|
||||
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi];
|
||||
|
||||
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for z_correction_for_x_on_horizontal_mesh_line
|
||||
//
|
||||
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
|
||||
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 2)) {
|
||||
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
|
||||
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
|
||||
SERIAL_ECHOPAIR(", xi=", xi);
|
||||
SERIAL_ECHOPAIR(", y1_i=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i];
|
||||
|
||||
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const float &lx0, const float &ly0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
|
||||
|
||||
if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 2)) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
|
||||
SERIAL_ECHOPAIR(", ly0=", ly0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
return NAN; // this used to return state.z_offset
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(lx0),
|
||||
mesh_index_to_xpos(cx), z_values[cx][cy],
|
||||
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
|
||||
|
||||
const float z2 = calc_z0(RAW_X_POSITION(lx0),
|
||||
mesh_index_to_xpos(cx), z_values[cx][cy + 1],
|
||||
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
|
||||
|
||||
float z0 = calc_z0(RAW_Y_POSITION(ly0),
|
||||
mesh_index_to_ypos(cy), z1,
|
||||
mesh_index_to_ypos(cy + 1), z2);
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(ly0);
|
||||
SERIAL_ECHOPGM(") = ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return z0; // there used to be a +state.z_offset on this line
|
||||
}
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(ly0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#endif
|
||||
/**
|
||||
* This function sets the Z leveling fade factor based on the given Z height,
|
||||
* only re-calculating when necessary.
|
||||
*
|
||||
* Returns 1.0 if planner.z_fade_height is 0.0.
|
||||
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
static inline float fade_scaling_factor_for_z(const float &lz) {
|
||||
if (planner.z_fade_height == 0.0) return 1.0;
|
||||
static float fade_scaling_factor = 1.0;
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
fade_scaling_factor =
|
||||
rz < planner.z_fade_height
|
||||
? 1.0 - (rz * planner.inverse_z_fade_height)
|
||||
: 0.0;
|
||||
}
|
||||
return z0; // there used to be a +state.z_offset on this line
|
||||
return fade_scaling_factor;
|
||||
}
|
||||
#else
|
||||
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
|
||||
#endif
|
||||
|
||||
/**
|
||||
* This function sets the Z leveling fade factor based on the given Z height,
|
||||
* only re-calculating when necessary.
|
||||
*
|
||||
* Returns 1.0 if planner.z_fade_height is 0.0.
|
||||
* Returns 0.0 if Z is past the specified 'Fade Height'.
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
static inline float fade_scaling_factor_for_z(const float &lz) {
|
||||
if (planner.z_fade_height == 0.0) return 1.0;
|
||||
static float fade_scaling_factor = 1.0;
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
fade_scaling_factor =
|
||||
rz < planner.z_fade_height
|
||||
? 1.0 - (rz * planner.inverse_z_fade_height)
|
||||
: 0.0;
|
||||
}
|
||||
return fade_scaling_factor;
|
||||
}
|
||||
#else
|
||||
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
|
||||
#endif
|
||||
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
|
||||
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : UBL_MESH_MIN_X + i * (MESH_X_DIST);
|
||||
}
|
||||
|
||||
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
|
||||
return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : UBL_MESH_MIN_X + i * (MESH_X_DIST);
|
||||
}
|
||||
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
|
||||
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
|
||||
}
|
||||
|
||||
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
|
||||
return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
|
||||
}
|
||||
static bool prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate);
|
||||
static void line_to_destination_cartesian(const float &fr, uint8_t e);
|
||||
|
||||
static bool prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate);
|
||||
static void line_to_destination_cartesian(const float &fr, uint8_t e);
|
||||
}; // class unified_bed_leveling
|
||||
|
||||
}; // class unified_bed_leveling
|
||||
extern unified_bed_leveling ubl;
|
||||
|
||||
extern unified_bed_leveling ubl;
|
||||
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
FORCE_INLINE void gcode_G26() { ubl.G26(); }
|
||||
#endif
|
||||
|
||||
FORCE_INLINE void gcode_G29() { ubl.G29(); }
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
#endif // UNIFIED_BED_LEVELING_H
|
||||
|
|
|
@ -20,21 +20,22 @@
|
|||
*
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#include "ubl.h"
|
||||
#include "Marlin.h"
|
||||
#include "hex_print_routines.h"
|
||||
#include "configuration_store.h"
|
||||
#include "ultralcd.h"
|
||||
#include "stepper.h"
|
||||
#include "planner.h"
|
||||
#include "gcode.h"
|
||||
|
||||
#include "../../Marlin.h"
|
||||
#include "../../libs/hex_print_routines.h"
|
||||
#include "../../module/configuration_store.h"
|
||||
#include "../../lcd/ultralcd.h"
|
||||
#include "../../module/stepper.h"
|
||||
#include "../../module/planner.h"
|
||||
#include "../../gcode/parser.h"
|
||||
#include "../../libs/least_squares_fit.h"
|
||||
|
||||
#include <math.h>
|
||||
#include "least_squares_fit.h"
|
||||
|
||||
#define UBL_G29_P31
|
||||
|
||||
|
|
|
@ -19,14 +19,16 @@
|
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#include "MarlinConfig.h"
|
||||
#include "../../inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "ubl.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
|
||||
#include "../../Marlin.h"
|
||||
#include "../../module/planner.h"
|
||||
#include "../../module/stepper.h"
|
||||
|
||||
#include <math.h>
|
||||
|
||||
extern float destination[XYZE];
|
||||
|
|
Reference in a new issue