Merge pull request #8853 from ejtagle/bugfix-2.0.x

USB Mass Storage Implementation / CDC with HW flow control and misc fixes and improvements for Arduino DUE/RE-ARM based boards
This commit is contained in:
Scott Lahteine 2017-12-24 18:50:28 -06:00 committed by GitHub
commit 4a8fd8ae92
Signed by: GitHub
GPG key ID: 4AEE18F83AFDEB23
50 changed files with 16597 additions and 138 deletions

View file

@ -40,15 +40,13 @@
//
// Defines
//
#if SERIAL_PORT == -1
#define MYSERIAL SerialUSB
#elif SERIAL_PORT >= 0 && SERIAL_PORT <= 4
#if SERIAL_PORT >= -1 && SERIAL_PORT <= 4
#define MYSERIAL customizedSerial
#endif
// We need the previous define before the include, or compilation bombs...
#include "MarlinSerial_Due.h"
#include "MarlinSerialUSB_Due.h"
#ifndef analogInputToDigitalPin
#define analogInputToDigitalPin(p) ((p < 12u) ? (p) + 54u : -1)
@ -153,4 +151,16 @@ void HAL_enable_AdcFreerun(void);
#define GET_PIN_MAP_INDEX(pin) pin
#define PARSED_PIN_INDEX(code, dval) parser.intval(code, dval)
// Enable hooks into idle and setup for USB stack
#define HAL_IDLETASK 1
#define HAL_INIT 1
#ifdef __cplusplus
extern "C" {
#endif
void HAL_idletask(void);
void HAL_init(void);
#ifdef __cplusplus
}
#endif
#endif // _HAL_DUE_H

View file

@ -23,6 +23,10 @@
/**
* Software SPI functions originally from Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
*
* Completely rewritten and tuned by Eduardo José Tagle in 2017/2018
* in ARM thumb2 inline assembler and tuned for maximum speed and performance
* allowing SPI clocks of up to 12 Mhz to increase SD card read/write performance
*/
/**
@ -53,6 +57,9 @@
// software SPI
// --------------------------------------------------------------------------
// set optimization so ARDUINO optimizes this file
#pragma GCC optimize (3)
/* ---------------- Delay Cycles routine -------------- */
/* https://blueprints.launchpad.net/gcc-arm-embedded/+spec/delay-cycles */
@ -105,27 +112,171 @@
typedef uint8_t (*pfnSpiTransfer) (uint8_t b);
// bitbanging transfer
#define SWSPI_BIT_XFER(n) \
WRITE(MOSI_PIN, bout & (1 << n)); \
WRITE(SCK_PIN, HIGH); /* Sampling point */\
/* (implicit by overhead) DELAY_NS(63); 5.3 cycles @ 84mhz */ \
bin |= (READ(MISO_PIN) != 0) << n; \
WRITE(SCK_PIN, LOW); /* Toggling point*/ \
/* (implicit by overhead) DELAY_NS(63); 5.3 cycles @ 84mhz */
/* ---------------- Macros to be able to access definitions from asm */
// run at ~8 .. ~10Mhz
static uint8_t spiTransfer0(uint8_t bout) { // using Mode 0
volatile uint8_t bin = 0; /* volatile to disable deferred processing */
SWSPI_BIT_XFER(7);
SWSPI_BIT_XFER(6);
SWSPI_BIT_XFER(5);
SWSPI_BIT_XFER(4);
SWSPI_BIT_XFER(3);
SWSPI_BIT_XFER(2);
SWSPI_BIT_XFER(1);
SWSPI_BIT_XFER(0);
return bin;
#define _PORT(IO) DIO ## IO ## _WPORT
#define _PIN_MASK(IO) MASK(DIO ## IO ## _PIN)
#define _PIN_SHIFT(IO) DIO ## IO ## _PIN
#define PORT(IO) _PORT(IO)
#define PIN_MASK(IO) _PIN_MASK(IO)
#define PIN_SHIFT(IO) _PIN_SHIFT(IO)
// run at ~8 .. ~10Mhz - Tx version (Rx data discarded)
static uint8_t spiTransferTx0(uint8_t bout) { // using Mode 0
register uint32_t MOSI_PORT_PLUS30 = ((uint32_t) PORT(MOSI_PIN)) + 0x30; /* SODR of port */
register uint32_t MOSI_MASK = PIN_MASK(MOSI_PIN);
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
register uint32_t idx;
/* Negate bout, as the assembler requires a negated value */
bout = ~bout;
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
/* Bit 7 */
" ubfx %[idx],%[txval],#7,#1" "\n\t" /* Place bit 7 in bit 0 of idx*/
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#6,#1" "\n\t" /* Place bit 6 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 6 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#5,#1" "\n\t" /* Place bit 5 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 5 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#4,#1" "\n\t" /* Place bit 4 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 4 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#3,#1" "\n\t" /* Place bit 3 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 3 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#2,#1" "\n\t" /* Place bit 2 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 2 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#1,#1" "\n\t" /* Place bit 1 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 1 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ubfx %[idx],%[txval],#0,#1" "\n\t" /* Place bit 0 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
/* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" nop" "\n\t"
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
: [mosi_mask]"+r"( MOSI_MASK ),
[mosi_port]"+r"( MOSI_PORT_PLUS30 ),
[sck_mask]"+r"( SCK_MASK ),
[sck_port]"+r"( SCK_PORT_PLUS30 ),
[idx]"+r"( idx ),
[txval]"+r"( bout )
:
: "cc"
);
return 0;
}
// run at ~8 .. ~10Mhz - Rx version (Tx line not altered)
static uint8_t spiTransferRx0(uint8_t bout) { // using Mode 0
int bin = 0, work = 0;
register uint32_t MISO_PORT_PLUS3C = ((uint32_t) PORT(MISO_PIN)) + 0x3C; /* PDSR of port */
register uint32_t SCK_PORT_PLUS30 = ((uint32_t) PORT(SCK_PIN)) + 0x30; /* SODR of port */
register uint32_t SCK_MASK = PIN_MASK(SCK_PIN);
UNUSED(bout);
/* The software SPI routine */
__asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
/* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
/* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */
" ldr %[work],[%[miso_port]]" "\n\t" /* PDSR */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */
" lsrs %[work],%[work],%[miso_shift]" "\n\t" /* Isolate input into carry */
" adc %[bin],%[bin],%[bin]" "\n\t" /* Shift left result and add the carry */
: [miso_port]"+r"( MISO_PORT_PLUS3C ),
[sck_mask]"+r"( SCK_MASK ),
[sck_port]"+r"( SCK_PORT_PLUS30 ),
[bin]"+r"(bin),
[work]"+r"(work)
: [miso_shift]"M"( PIN_SHIFT(MISO_PIN) + 1 ) /* So we move to the carry */
: "cc"
);
return (uint8_t)bin;
}
// run at ~4Mhz
@ -133,15 +284,15 @@
int bits = 8;
do {
WRITE(MOSI_PIN, b & 0x80);
b <<= 1; // little setup time
b <<= 1; // little setup time
WRITE(SCK_PIN, HIGH);
DELAY_NS(125); // 10 cycles @ 84mhz
DELAY_NS(125); // 10 cycles @ 84mhz
b |= (READ(MISO_PIN) != 0);
WRITE(SCK_PIN, LOW);
DELAY_NS(125); // 10 cycles @ 84mhz
DELAY_NS(125); // 10 cycles @ 84mhz
} while (--bits);
return b;
}
@ -166,8 +317,9 @@
return b;
}
// Use the generic one
static pfnSpiTransfer spiTransfer = spiTransferX;
// Pointers to generic functions
static pfnSpiTransfer spiTransferTx = spiTransferX;
static pfnSpiTransfer spiTransferRx = spiTransferX;
void spiBegin() {
SET_OUTPUT(SS_PIN);
@ -190,14 +342,17 @@
void spiInit(uint8_t spiRate) {
switch (spiRate) {
case 0:
spiTransfer = spiTransfer0;
spiTransferTx = spiTransferTx0;
spiTransferRx = spiTransferRx0;
break;
case 1:
spiTransfer = spiTransfer1;
spiTransferTx = spiTransfer1;
spiTransferRx = spiTransfer1;
break;
default:
spiDelayCyclesX4 = (F_CPU/1000000) >> (6 - spiRate);
spiTransfer = spiTransferX;
spiTransferTx = spiTransferX;
spiTransferRx = spiTransferX;
break;
}
@ -208,48 +363,36 @@
uint8_t spiRec() {
WRITE(SS_PIN, LOW);
uint8_t b = spiTransfer(0xff);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
uint8_t b = spiTransferRx(0xFF);
WRITE(SS_PIN, HIGH);
return b;
}
void spiRead(uint8_t*buf, uint16_t nbyte) {
void spiRead(uint8_t* buf, uint16_t nbyte) {
if (nbyte == 0) return;
WRITE(SS_PIN, LOW);
WRITE(MOSI_PIN, 1); /* Output 1s 1*/
for (int i = 0; i < nbyte; i++) {
buf[i] = spiTransfer(0xff);
buf[i] = spiTransferRx(0xff);
}
WRITE(SS_PIN, HIGH);
}
void spiSend(uint8_t b) {
WRITE(SS_PIN, LOW);
uint8_t response = spiTransfer(b);
UNUSED(response);
WRITE(SS_PIN, HIGH);
}
static void spiSend(const uint8_t* buf, size_t n) {
uint8_t response;
if (n == 0) return;
WRITE(SS_PIN, LOW);
for (uint16_t i = 0; i < n; i++) {
response = spiTransfer(buf[i]);
}
UNUSED(response);
(void) spiTransferTx(b);
WRITE(SS_PIN, HIGH);
}
void spiSendBlock(uint8_t token, const uint8_t* buf) {
uint8_t response;
WRITE(SS_PIN, LOW);
response = spiTransfer(token);
(void) spiTransferTx(token);
for (uint16_t i = 0; i < 512; i++) {
response = spiTransfer(buf[i]);
(void) spiTransferTx(buf[i]);
}
UNUSED(response);
WRITE(SS_PIN, HIGH);
}

View file

@ -0,0 +1,254 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerial_Due.cpp - Hardware serial library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
* Based on MarlinSerial for AVR, copyright (c) 2006 Nicholas Zambetti. All right reserved.
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../inc/MarlinConfig.h"
#if SERIAL_PORT == -1
#include "MarlinSerialUSB_Due.h"
// Imports from Atmel USB Stack/CDC implementation
extern "C" {
bool usb_task_cdc_isenabled(void);
bool udi_cdc_is_rx_ready(void);
int udi_cdc_getc(void);
bool udi_cdc_is_tx_ready(void);
int udi_cdc_putc(int value);
};
// Pending character
static int pending_char = -1;
// Public Methods
void MarlinSerialUSB::begin(const long baud_setting) {
}
void MarlinSerialUSB::end() {
}
int MarlinSerialUSB::peek(void) {
if (pending_char >= 0)
return pending_char;
if (!usb_task_cdc_isenabled())
return -1;
if (!udi_cdc_is_rx_ready())
return -1;
pending_char = udi_cdc_getc();
return pending_char;
}
int MarlinSerialUSB::read(void) {
if (pending_char >= 0) {
int ret = pending_char;
pending_char = -1;
return ret;
}
if (!usb_task_cdc_isenabled())
return -1;
if (!udi_cdc_is_rx_ready())
return -1;
return udi_cdc_getc();
}
bool MarlinSerialUSB::available(void) {
return pending_char >= 0 ||
(usb_task_cdc_isenabled() && udi_cdc_is_rx_ready());
}
void MarlinSerialUSB::flush(void) {
}
void MarlinSerialUSB::write(const uint8_t c) {
while (usb_task_cdc_isenabled() &&
!udi_cdc_is_tx_ready()) {
};
if (!usb_task_cdc_isenabled())
return;
// Fifo full
// udi_cdc_signal_overrun();
udi_cdc_putc(c);
}
/**
* Imports from print.h
*/
void MarlinSerialUSB::print(char c, int base) {
print((long)c, base);
}
void MarlinSerialUSB::print(unsigned char b, int base) {
print((unsigned long)b, base);
}
void MarlinSerialUSB::print(int n, int base) {
print((long)n, base);
}
void MarlinSerialUSB::print(unsigned int n, int base) {
print((unsigned long)n, base);
}
void MarlinSerialUSB::print(long n, int base) {
if (base == 0)
write(n);
else if (base == 10) {
if (n < 0) {
print('-');
n = -n;
}
printNumber(n, 10);
}
else
printNumber(n, base);
}
void MarlinSerialUSB::print(unsigned long n, int base) {
if (base == 0) write(n);
else printNumber(n, base);
}
void MarlinSerialUSB::print(double n, int digits) {
printFloat(n, digits);
}
void MarlinSerialUSB::println(void) {
print('\r');
print('\n');
}
void MarlinSerialUSB::println(const String& s) {
print(s);
println();
}
void MarlinSerialUSB::println(const char c[]) {
print(c);
println();
}
void MarlinSerialUSB::println(char c, int base) {
print(c, base);
println();
}
void MarlinSerialUSB::println(unsigned char b, int base) {
print(b, base);
println();
}
void MarlinSerialUSB::println(int n, int base) {
print(n, base);
println();
}
void MarlinSerialUSB::println(unsigned int n, int base) {
print(n, base);
println();
}
void MarlinSerialUSB::println(long n, int base) {
print(n, base);
println();
}
void MarlinSerialUSB::println(unsigned long n, int base) {
print(n, base);
println();
}
void MarlinSerialUSB::println(double n, int digits) {
print(n, digits);
println();
}
// Private Methods
void MarlinSerialUSB::printNumber(unsigned long n, uint8_t base) {
if (n) {
unsigned char buf[8 * sizeof(long)]; // Enough space for base 2
int8_t i = 0;
while (n) {
buf[i++] = n % base;
n /= base;
}
while (i--)
print((char)(buf[i] + (buf[i] < 10 ? '0' : 'A' - 10)));
}
else
print('0');
}
void MarlinSerialUSB::printFloat(double number, uint8_t digits) {
// Handle negative numbers
if (number < 0.0) {
print('-');
number = -number;
}
// Round correctly so that print(1.999, 2) prints as "2.00"
double rounding = 0.5;
for (uint8_t i = 0; i < digits; ++i)
rounding *= 0.1;
number += rounding;
// Extract the integer part of the number and print it
unsigned long int_part = (unsigned long)number;
double remainder = number - (double)int_part;
print(int_part);
// Print the decimal point, but only if there are digits beyond
if (digits) {
print('.');
// Extract digits from the remainder one at a time
while (digits--) {
remainder *= 10.0;
int toPrint = int(remainder);
print(toPrint);
remainder -= toPrint;
}
}
}
// Preinstantiate
MarlinSerialUSB customizedSerial;
#endif // SERIAL_PORT == -1
#endif // ARDUINO_ARCH_SAM

View file

@ -0,0 +1,96 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* MarlinSerialUSB_Due.h - Hardware Serial over USB (CDC) library for Arduino DUE
* Copyright (c) 2017 Eduardo José Tagle. All right reserved
*/
#ifndef MARLINSERIALUSB_DUE_H
#define MARLINSERIALUSB_DUE_H
#include "../../inc/MarlinConfig.h"
#if SERIAL_PORT == -1
#include <WString.h>
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
#define BYTE 0
class MarlinSerialUSB {
public:
MarlinSerialUSB() {};
static void begin(const long);
static void end();
static int peek(void);
static int read(void);
static void flush(void);
static bool available(void);
static void write(const uint8_t c);
#if ENABLED(SERIAL_STATS_DROPPED_RX)
FORCE_INLINE static uint32_t dropped() { return 0; }
#endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
FORCE_INLINE static int rxMaxEnqueued() { return 0; }
#endif
static FORCE_INLINE void write(const char* str) { while (*str) write(*str++); }
static FORCE_INLINE void write(const uint8_t* buffer, size_t size) { while (size--) write(*buffer++); }
static FORCE_INLINE void print(const String& s) { for (int i = 0; i < (int)s.length(); i++) write(s[i]); }
static FORCE_INLINE void print(const char* str) { write(str); }
static void print(char, int = BYTE);
static void print(unsigned char, int = BYTE);
static void print(int, int = DEC);
static void print(unsigned int, int = DEC);
static void print(long, int = DEC);
static void print(unsigned long, int = DEC);
static void print(double, int = 2);
static void println(const String& s);
static void println(const char[]);
static void println(char, int = BYTE);
static void println(unsigned char, int = BYTE);
static void println(int, int = DEC);
static void println(unsigned int, int = DEC);
static void println(long, int = DEC);
static void println(unsigned long, int = DEC);
static void println(double, int = 2);
static void println(void);
operator bool() { return true; }
private:
static void printNumber(unsigned long, const uint8_t);
static void printFloat(double, uint8_t);
};
extern MarlinSerialUSB customizedSerial;
#endif // SERIAL_PORT == -1
#endif // MARLINSERIAL_DUE_H

View file

@ -31,11 +31,9 @@
#include "../../inc/MarlinConfig.h"
#include <WString.h>
#if SERIAL_PORT >= 0
#ifndef SERIAL_PORT
#define SERIAL_PORT 0
#endif
#include <WString.h>
#define DEC 10
#define HEX 16
@ -135,4 +133,6 @@ private:
extern MarlinSerial customizedSerial;
#endif // SERIAL_PORT >= 0
#endif // MARLINSERIAL_DUE_H

View file

@ -0,0 +1,103 @@
/**
* \file
*
* \brief Arduino Due/X Board Definition.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef ARDUINO_DUE_X_H_INCLUDED
#define ARDUINO_DUE_X_H_INCLUDED
/* ------------------------------------------------------------------------ */
/**
* \page arduino_due_x_opfreq "Arduino Due/X - Operating frequencies"
* This page lists several definition related to the board operating frequency
*
* \section Definitions
* - \ref BOARD_FREQ_*
* - \ref BOARD_MCK
*/
/*! Board oscillator settings */
#define BOARD_FREQ_SLCK_XTAL (32768U)
#define BOARD_FREQ_SLCK_BYPASS (32768U)
#define BOARD_FREQ_MAINCK_XTAL (12000000U)
#define BOARD_FREQ_MAINCK_BYPASS (12000000U)
/*! Master clock frequency */
#define BOARD_MCK CHIP_FREQ_CPU_MAX
#define BOARD_NO_32K_XTAL
/** board main clock xtal startup time */
#define BOARD_OSC_STARTUP_US 15625
/* ------------------------------------------------------------------------ */
/**
* \page arduino_due_x_board_info "Arduino Due/X - Board informations"
* This page lists several definition related to the board description.
*
*/
/* ------------------------------------------------------------------------ */
/* USB */
/* ------------------------------------------------------------------------ */
/*! USB OTG VBus On/Off: Bus Power Control Port. */
#define PIN_UOTGHS_VBOF { PIO_PB10, PIOB, ID_PIOB, PIO_PERIPH_A, PIO_PULLUP }
/*! USB OTG Identification: Mini Connector Identification Port. */
#define PIN_UOTGHS_ID { PIO_PB11, PIOB, ID_PIOB, PIO_PERIPH_A, PIO_PULLUP }
/*! Multiplexed pin used for USB_ID: */
#define USB_ID PIO_PB11_IDX
#define USB_ID_GPIO (PIO_PB11_IDX)
#define USB_ID_FLAGS (PIO_PERIPH_A | PIO_DEFAULT)
/*! Multiplexed pin used for USB_VBOF: */
#define USB_VBOF PIO_PB10_IDX
#define USB_VBOF_GPIO (PIO_PB10_IDX)
#define USB_VBOF_FLAGS (PIO_PERIPH_A | PIO_DEFAULT)
/*! Active level of the USB_VBOF output pin. */
#define USB_VBOF_ACTIVE_LEVEL LOW
/* ------------------------------------------------------------------------ */
#endif /* ARDUINO_DUE_X_H_INCLUDED */

View file

@ -0,0 +1,1224 @@
/**
* \file
*
* \brief Commonly used includes, types and macros.
*
* Copyright (c) 2010-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef UTILS_COMPILER_H
#define UTILS_COMPILER_H
#include <sam.h>
#include <chip.h>
#include "arduino_due_x.h"
#include "conf_clock.h"
#ifdef SAM3XA_SERIES
#define SAM3XA 1
#endif
#define UDD_NO_SLEEP_MGR 1
#define pmc_is_wakeup_clocks_restored() true
#undef udd_get_endpoint_size_max
#define UDD_USB_INT_FUN USBD_ISR
/**
* \defgroup group_sam_utils Compiler abstraction layer and code utilities
*
* Compiler abstraction layer and code utilities for AT91SAM.
* This module provides various abstraction layers and utilities to make code compatible between different compilers.
*
* \{
*/
#include <stddef.h>
#if (defined __ICCARM__)
# include <intrinsics.h>
#endif
#include <sam.h>
#include "preprocessor.h"
//_____ D E C L A R A T I O N S ____________________________________________
#ifndef __ASSEMBLY__ // Not defined for assembling.
#include <stdio.h>
#include <stdbool.h>
#include <stdint.h>
#include <stdlib.h>
#ifdef __ICCARM__
/*! \name Compiler Keywords
*
* Port of some keywords from GCC to IAR Embedded Workbench.
*/
//! @{
#define __asm__ asm
#define __inline__ inline
#define __volatile__
//! @}
#endif
#define FUNC_PTR void *
/**
* \def UNUSED
* \brief Marking \a v as a unused parameter or value.
*/
#ifndef UNUSED
#define UNUSED(v) (void)(v)
#endif
/**
* \def unused
* \brief Marking \a v as a unused parameter or value.
*/
#define unused(v) do { (void)(v); } while(0)
/**
* \def barrier
* \brief Memory barrier
*/
#define barrier() __DMB()
/**
* \brief Emit the compiler pragma \a arg.
*
* \param arg The pragma directive as it would appear after \e \#pragma
* (i.e. not stringified).
*/
#define COMPILER_PRAGMA(arg) _Pragma(#arg)
/**
* \def COMPILER_PACK_SET(alignment)
* \brief Set maximum alignment for subsequent struct and union
* definitions to \a alignment.
*/
#define COMPILER_PACK_SET(alignment) COMPILER_PRAGMA(pack(alignment))
/**
* \def COMPILER_PACK_RESET()
* \brief Set default alignment for subsequent struct and union
* definitions.
*/
#define COMPILER_PACK_RESET() COMPILER_PRAGMA(pack())
/**
* \brief Set aligned boundary.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define COMPILER_ALIGNED(a) __attribute__((__aligned__(a)))
#elif (defined __ICCARM__)
# define COMPILER_ALIGNED(a) COMPILER_PRAGMA(data_alignment = a)
#endif
/**
* \brief Set word-aligned boundary.
*/
#if (defined __GNUC__) || defined(__CC_ARM)
#define COMPILER_WORD_ALIGNED __attribute__((__aligned__(4)))
#elif (defined __ICCARM__)
#define COMPILER_WORD_ALIGNED COMPILER_PRAGMA(data_alignment = 4)
#endif
/**
* \def __always_inline
* \brief The function should always be inlined.
*
* This annotation instructs the compiler to ignore its inlining
* heuristics and inline the function no matter how big it thinks it
* becomes.
*/
#if defined(__CC_ARM)
# define __always_inline __forceinline
#elif (defined __GNUC__)
#ifdef __always_inline
# undef __always_inline
#endif
# define __always_inline inline __attribute__((__always_inline__))
#elif (defined __ICCARM__)
# define __always_inline _Pragma("inline=forced")
#endif
/**
* \def __no_inline
* \brief The function should not be inlined.
*
* This annotation instructs the compiler to ignore its inlining
* heuristics and not inline the function.
*/
#if defined(__CC_ARM)
# define __no_inline __attribute__((noinline))
#elif (defined __GNUC__)
# define __no_inline __attribute__((__noinline__))
#elif (defined __ICCARM__)
# define __no_inline _Pragma("inline=never")
#endif
/*! \brief This macro is used to test fatal errors.
*
* The macro tests if the expression is false. If it is, a fatal error is
* detected and the application hangs up. If TEST_SUITE_DEFINE_ASSERT_MACRO
* is defined, a unit test version of the macro is used, to allow execution
* of further tests after a false expression.
*
* \param expr Expression to evaluate and supposed to be nonzero.
*/
#if defined(_ASSERT_ENABLE_)
# if defined(TEST_SUITE_DEFINE_ASSERT_MACRO)
// Assert() is defined in unit_test/suite.h
# include "unit_test/suite.h"
# else
#undef TEST_SUITE_DEFINE_ASSERT_MACRO
# define Assert(expr) \
{\
if (!(expr)) while (true);\
}
# endif
#else
# define Assert(expr) ((void) 0)
#endif
/* Define WEAK attribute */
#if defined ( __CC_ARM ) /* Keil µVision 4 */
# define WEAK __attribute__ ((weak))
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define WEAK __weak
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define WEAK __attribute__ ((weak))
#endif
/* Define NO_INIT attribute */
#if 0 //ndef NO_INIT
#if defined ( __CC_ARM )
# define NO_INIT __attribute__((zero_init))
#elif defined ( __ICCARM__ )
# define NO_INIT __no_init
#elif defined ( __GNUC__ )
# define NO_INIT __attribute__((section(".no_init")))
#endif
#endif
/* Define RAMFUNC attribute */
#if defined ( __CC_ARM ) /* Keil µVision 4 */
# define RAMFUNC __attribute__ ((section(".ramfunc")))
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define RAMFUNC __ramfunc
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define RAMFUNC __attribute__ ((section(".ramfunc")))
#endif
/* Define OPTIMIZE_HIGH attribute */
#if defined ( __CC_ARM ) /* Keil µVision 4 */
# define OPTIMIZE_HIGH _Pragma("O3")
#elif defined ( __ICCARM__ ) /* IAR Ewarm 5.41+ */
# define OPTIMIZE_HIGH _Pragma("optimize=high")
#elif defined ( __GNUC__ ) /* GCC CS3 2009q3-68 */
# define OPTIMIZE_HIGH __attribute__((optimize("s")))
#endif
/*! \name Usual Types
*/
//! @{
typedef unsigned char Bool; //!< Boolean.
#ifndef __cplusplus
#if !defined(__bool_true_false_are_defined)
typedef unsigned char bool; //!< Boolean.
#endif
#endif
typedef int8_t S8 ; //!< 8-bit signed integer.
typedef uint8_t U8 ; //!< 8-bit unsigned integer.
typedef int16_t S16; //!< 16-bit signed integer.
typedef uint16_t U16; //!< 16-bit unsigned integer.
typedef uint16_t le16_t;
typedef uint16_t be16_t;
typedef int32_t S32; //!< 32-bit signed integer.
typedef uint32_t U32; //!< 32-bit unsigned integer.
typedef uint32_t le32_t;
typedef uint32_t be32_t;
typedef int64_t S64; //!< 64-bit signed integer.
typedef uint64_t U64; //!< 64-bit unsigned integer.
typedef float F32; //!< 32-bit floating-point number.
typedef double F64; //!< 64-bit floating-point number.
typedef uint32_t iram_size_t;
//! @}
/*! \name Status Types
*/
//! @{
typedef bool Status_bool_t; //!< Boolean status.
typedef U8 Status_t; //!< 8-bit-coded status.
//! @}
/*! \name Aliasing Aggregate Types
*/
//! @{
//! 16-bit union.
typedef union
{
S16 s16 ;
U16 u16 ;
S8 s8 [2];
U8 u8 [2];
} Union16;
//! 32-bit union.
typedef union
{
S32 s32 ;
U32 u32 ;
S16 s16[2];
U16 u16[2];
S8 s8 [4];
U8 u8 [4];
} Union32;
//! 64-bit union.
typedef union
{
S64 s64 ;
U64 u64 ;
S32 s32[2];
U32 u32[2];
S16 s16[4];
U16 u16[4];
S8 s8 [8];
U8 u8 [8];
} Union64;
//! Union of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
S64 *s64ptr;
U64 *u64ptr;
S32 *s32ptr;
U32 *u32ptr;
S16 *s16ptr;
U16 *u16ptr;
S8 *s8ptr ;
U8 *u8ptr ;
} UnionPtr;
//! Union of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
volatile S64 *s64ptr;
volatile U64 *u64ptr;
volatile S32 *s32ptr;
volatile U32 *u32ptr;
volatile S16 *s16ptr;
volatile U16 *u16ptr;
volatile S8 *s8ptr ;
volatile U8 *u8ptr ;
} UnionVPtr;
//! Union of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
const S64 *s64ptr;
const U64 *u64ptr;
const S32 *s32ptr;
const U32 *u32ptr;
const S16 *s16ptr;
const U16 *u16ptr;
const S8 *s8ptr ;
const U8 *u8ptr ;
} UnionCPtr;
//! Union of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef union
{
const volatile S64 *s64ptr;
const volatile U64 *u64ptr;
const volatile S32 *s32ptr;
const volatile U32 *u32ptr;
const volatile S16 *s16ptr;
const volatile U16 *u16ptr;
const volatile S8 *s8ptr ;
const volatile U8 *u8ptr ;
} UnionCVPtr;
//! Structure of pointers to 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
S64 *s64ptr;
U64 *u64ptr;
S32 *s32ptr;
U32 *u32ptr;
S16 *s16ptr;
U16 *u16ptr;
S8 *s8ptr ;
U8 *u8ptr ;
} StructPtr;
//! Structure of pointers to volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
volatile S64 *s64ptr;
volatile U64 *u64ptr;
volatile S32 *s32ptr;
volatile U32 *u32ptr;
volatile S16 *s16ptr;
volatile U16 *u16ptr;
volatile S8 *s8ptr ;
volatile U8 *u8ptr ;
} StructVPtr;
//! Structure of pointers to constant 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
const S64 *s64ptr;
const U64 *u64ptr;
const S32 *s32ptr;
const U32 *u32ptr;
const S16 *s16ptr;
const U16 *u16ptr;
const S8 *s8ptr ;
const U8 *u8ptr ;
} StructCPtr;
//! Structure of pointers to constant volatile 64-, 32-, 16- and 8-bit unsigned integers.
typedef struct
{
const volatile S64 *s64ptr;
const volatile U64 *u64ptr;
const volatile S32 *s32ptr;
const volatile U32 *u32ptr;
const volatile S16 *s16ptr;
const volatile U16 *u16ptr;
const volatile S8 *s8ptr ;
const volatile U8 *u8ptr ;
} StructCVPtr;
//! @}
#endif // #ifndef __ASSEMBLY__
/*! \name Usual Constants
*/
//! @{
#define DISABLE 0
#define ENABLE 1
#ifndef __cplusplus
#if !defined(__bool_true_false_are_defined)
#define false 0
#define true 1
#endif
#endif
#ifndef PASS
#define PASS 0
#endif
#ifndef FAIL
#define FAIL 1
#endif
#ifndef LOW
#define LOW 0
#endif
#ifndef HIGH
#define HIGH 1
#endif
//! @}
#ifndef __ASSEMBLY__ // not for assembling.
//! \name Optimization Control
//@{
/**
* \def likely(exp)
* \brief The expression \a exp is likely to be true
*/
#ifndef likely
# define likely(exp) (exp)
#endif
/**
* \def unlikely(exp)
* \brief The expression \a exp is unlikely to be true
*/
#ifndef unlikely
# define unlikely(exp) (exp)
#endif
/**
* \def is_constant(exp)
* \brief Determine if an expression evaluates to a constant value.
*
* \param exp Any expression
*
* \return true if \a exp is constant, false otherwise.
*/
#if (defined __GNUC__) || (defined __CC_ARM)
# define is_constant(exp) __builtin_constant_p(exp)
#else
# define is_constant(exp) (0)
#endif
//! @}
/*! \name Bit-Field Handling
*/
//! @{
/*! \brief Reads the bits of a value specified by a given bit-mask.
*
* \param value Value to read bits from.
* \param mask Bit-mask indicating bits to read.
*
* \return Read bits.
*/
#define Rd_bits( value, mask) ((value) & (mask))
/*! \brief Writes the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue to write bits to.
* \param mask Bit-mask indicating bits to write.
* \param bits Bits to write.
*
* \return Resulting value with written bits.
*/
#define Wr_bits(lvalue, mask, bits) ((lvalue) = ((lvalue) & ~(mask)) |\
((bits ) & (mask)))
/*! \brief Tests the bits of a value specified by a given bit-mask.
*
* \param value Value of which to test bits.
* \param mask Bit-mask indicating bits to test.
*
* \return \c 1 if at least one of the tested bits is set, else \c 0.
*/
#define Tst_bits( value, mask) (Rd_bits(value, mask) != 0)
/*! \brief Clears the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue of which to clear bits.
* \param mask Bit-mask indicating bits to clear.
*
* \return Resulting value with cleared bits.
*/
#define Clr_bits(lvalue, mask) ((lvalue) &= ~(mask))
/*! \brief Sets the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue of which to set bits.
* \param mask Bit-mask indicating bits to set.
*
* \return Resulting value with set bits.
*/
#define Set_bits(lvalue, mask) ((lvalue) |= (mask))
/*! \brief Toggles the bits of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue of which to toggle bits.
* \param mask Bit-mask indicating bits to toggle.
*
* \return Resulting value with toggled bits.
*/
#define Tgl_bits(lvalue, mask) ((lvalue) ^= (mask))
/*! \brief Reads the bit-field of a value specified by a given bit-mask.
*
* \param value Value to read a bit-field from.
* \param mask Bit-mask indicating the bit-field to read.
*
* \return Read bit-field.
*/
#define Rd_bitfield( value, mask) (Rd_bits( value, mask) >> ctz(mask))
/*! \brief Writes the bit-field of a C lvalue specified by a given bit-mask.
*
* \param lvalue C lvalue to write a bit-field to.
* \param mask Bit-mask indicating the bit-field to write.
* \param bitfield Bit-field to write.
*
* \return Resulting value with written bit-field.
*/
#define Wr_bitfield(lvalue, mask, bitfield) (Wr_bits(lvalue, mask, (U32)(bitfield) << ctz(mask)))
//! @}
/*! \name Zero-Bit Counting
*
* Under GCC, __builtin_clz and __builtin_ctz behave like macros when
* applied to constant expressions (values known at compile time), so they are
* more optimized than the use of the corresponding assembly instructions and
* they can be used as constant expressions e.g. to initialize objects having
* static storage duration, and like the corresponding assembly instructions
* when applied to non-constant expressions (values unknown at compile time), so
* they are more optimized than an assembly periphrasis. Hence, clz and ctz
* ensure a possible and optimized behavior for both constant and non-constant
* expressions.
*/
//! @{
/*! \brief Counts the leading zero bits of the given value considered as a 32-bit integer.
*
* \param u Value of which to count the leading zero bits.
*
* \return The count of leading zero bits in \a u.
*/
#ifndef clz
#if (defined __GNUC__) || (defined __CC_ARM)
# define clz(u) ((u) ? __builtin_clz(u) : 32)
#elif (defined __ICCARM__)
# define clz(u) ((u) ? __CLZ(u) : 32)
#else
# define clz(u) (((u) == 0) ? 32 : \
((u) & (1ul << 31)) ? 0 : \
((u) & (1ul << 30)) ? 1 : \
((u) & (1ul << 29)) ? 2 : \
((u) & (1ul << 28)) ? 3 : \
((u) & (1ul << 27)) ? 4 : \
((u) & (1ul << 26)) ? 5 : \
((u) & (1ul << 25)) ? 6 : \
((u) & (1ul << 24)) ? 7 : \
((u) & (1ul << 23)) ? 8 : \
((u) & (1ul << 22)) ? 9 : \
((u) & (1ul << 21)) ? 10 : \
((u) & (1ul << 20)) ? 11 : \
((u) & (1ul << 19)) ? 12 : \
((u) & (1ul << 18)) ? 13 : \
((u) & (1ul << 17)) ? 14 : \
((u) & (1ul << 16)) ? 15 : \
((u) & (1ul << 15)) ? 16 : \
((u) & (1ul << 14)) ? 17 : \
((u) & (1ul << 13)) ? 18 : \
((u) & (1ul << 12)) ? 19 : \
((u) & (1ul << 11)) ? 20 : \
((u) & (1ul << 10)) ? 21 : \
((u) & (1ul << 9)) ? 22 : \
((u) & (1ul << 8)) ? 23 : \
((u) & (1ul << 7)) ? 24 : \
((u) & (1ul << 6)) ? 25 : \
((u) & (1ul << 5)) ? 26 : \
((u) & (1ul << 4)) ? 27 : \
((u) & (1ul << 3)) ? 28 : \
((u) & (1ul << 2)) ? 29 : \
((u) & (1ul << 1)) ? 30 : \
31)
#endif
#endif
/*! \brief Counts the trailing zero bits of the given value considered as a 32-bit integer.
*
* \param u Value of which to count the trailing zero bits.
*
* \return The count of trailing zero bits in \a u.
*/
#ifndef ctz
#if (defined __GNUC__) || (defined __CC_ARM)
# define ctz(u) ((u) ? __builtin_ctz(u) : 32)
#else
# define ctz(u) ((u) & (1ul << 0) ? 0 : \
(u) & (1ul << 1) ? 1 : \
(u) & (1ul << 2) ? 2 : \
(u) & (1ul << 3) ? 3 : \
(u) & (1ul << 4) ? 4 : \
(u) & (1ul << 5) ? 5 : \
(u) & (1ul << 6) ? 6 : \
(u) & (1ul << 7) ? 7 : \
(u) & (1ul << 8) ? 8 : \
(u) & (1ul << 9) ? 9 : \
(u) & (1ul << 10) ? 10 : \
(u) & (1ul << 11) ? 11 : \
(u) & (1ul << 12) ? 12 : \
(u) & (1ul << 13) ? 13 : \
(u) & (1ul << 14) ? 14 : \
(u) & (1ul << 15) ? 15 : \
(u) & (1ul << 16) ? 16 : \
(u) & (1ul << 17) ? 17 : \
(u) & (1ul << 18) ? 18 : \
(u) & (1ul << 19) ? 19 : \
(u) & (1ul << 20) ? 20 : \
(u) & (1ul << 21) ? 21 : \
(u) & (1ul << 22) ? 22 : \
(u) & (1ul << 23) ? 23 : \
(u) & (1ul << 24) ? 24 : \
(u) & (1ul << 25) ? 25 : \
(u) & (1ul << 26) ? 26 : \
(u) & (1ul << 27) ? 27 : \
(u) & (1ul << 28) ? 28 : \
(u) & (1ul << 29) ? 29 : \
(u) & (1ul << 30) ? 30 : \
(u) & (1ul << 31) ? 31 : \
32)
#endif
#endif
//! @}
/*! \name Bit Reversing
*/
//! @{
/*! \brief Reverses the bits of \a u8.
*
* \param u8 U8 of which to reverse the bits.
*
* \return Value resulting from \a u8 with reversed bits.
*/
#define bit_reverse8(u8) ((U8)(bit_reverse32((U8)(u8)) >> 24))
/*! \brief Reverses the bits of \a u16.
*
* \param u16 U16 of which to reverse the bits.
*
* \return Value resulting from \a u16 with reversed bits.
*/
#define bit_reverse16(u16) ((U16)(bit_reverse32((U16)(u16)) >> 16))
/*! \brief Reverses the bits of \a u32.
*
* \param u32 U32 of which to reverse the bits.
*
* \return Value resulting from \a u32 with reversed bits.
*/
#define bit_reverse32(u32) __RBIT(u32)
/*! \brief Reverses the bits of \a u64.
*
* \param u64 U64 of which to reverse the bits.
*
* \return Value resulting from \a u64 with reversed bits.
*/
#define bit_reverse64(u64) ((U64)(((U64)bit_reverse32((U64)(u64) >> 32)) |\
((U64)bit_reverse32((U64)(u64)) << 32)))
//! @}
/*! \name Alignment
*/
//! @{
/*! \brief Tests alignment of the number \a val with the \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return \c 1 if the number \a val is aligned with the \a n boundary, else \c 0.
*/
#define Test_align(val, n ) (!Tst_bits( val, (n) - 1 ) )
/*! \brief Gets alignment of the number \a val with respect to the \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return Alignment of the number \a val with respect to the \a n boundary.
*/
#define Get_align( val, n ) ( Rd_bits( val, (n) - 1 ) )
/*! \brief Sets alignment of the lvalue number \a lval to \a alg with respect to the \a n boundary.
*
* \param lval Input/output lvalue.
* \param n Boundary.
* \param alg Alignment.
*
* \return New value of \a lval resulting from its alignment set to \a alg with respect to the \a n boundary.
*/
#define Set_align(lval, n, alg) ( Wr_bits(lval, (n) - 1, alg) )
/*! \brief Aligns the number \a val with the upper \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return Value resulting from the number \a val aligned with the upper \a n boundary.
*/
#define Align_up( val, n ) (((val) + ((n) - 1)) & ~((n) - 1))
/*! \brief Aligns the number \a val with the lower \a n boundary.
*
* \param val Input value.
* \param n Boundary.
*
* \return Value resulting from the number \a val aligned with the lower \a n boundary.
*/
#define Align_down(val, n ) ( (val) & ~((n) - 1))
//! @}
/*! \name Mathematics
*
* The same considerations as for clz and ctz apply here but GCC does not
* provide built-in functions to access the assembly instructions abs, min and
* max and it does not produce them by itself in most cases, so two sets of
* macros are defined here:
* - Abs, Min and Max to apply to constant expressions (values known at
* compile time);
* - abs, min and max to apply to non-constant expressions (values unknown at
* compile time), abs is found in stdlib.h.
*/
//! @{
/*! \brief Takes the absolute value of \a a.
*
* \param a Input value.
*
* \return Absolute value of \a a.
*
* \note More optimized if only used with values known at compile time.
*/
#define Abs(a) (((a) < 0 ) ? -(a) : (a))
/*! \brief Takes the minimal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Min(a, b) (((a) < (b)) ? (a) : (b))
/*! \brief Takes the maximal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values known at compile time.
*/
#define Max(a, b) (((a) > (b)) ? (a) : (b))
// abs() is already defined by stdlib.h
/*! \brief Takes the minimal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Minimal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define min(a, b) Min(a, b)
/*! \brief Takes the maximal value of \a a and \a b.
*
* \param a Input value.
* \param b Input value.
*
* \return Maximal value of \a a and \a b.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define max(a, b) Max(a, b)
//! @}
/*! \brief Calls the routine at address \a addr.
*
* It generates a long call opcode.
*
* For example, `Long_call(0x80000000)' generates a software reset on a UC3 if
* it is invoked from the CPU supervisor mode.
*
* \param addr Address of the routine to call.
*
* \note It may be used as a long jump opcode in some special cases.
*/
#define Long_call(addr) ((*(void (*)(void))(addr))())
/*! \name MCU Endianism Handling
* ARM is MCU little endianism.
*/
//! @{
#define MSB(u16) (((U8 *)&(u16))[1]) //!< Most significant byte of \a u16.
#define LSB(u16) (((U8 *)&(u16))[0]) //!< Least significant byte of \a u16.
#define MSH(u32) (((U16 *)&(u32))[1]) //!< Most significant half-word of \a u32.
#define LSH(u32) (((U16 *)&(u32))[0]) //!< Least significant half-word of \a u32.
#define MSB0W(u32) (((U8 *)&(u32))[3]) //!< Most significant byte of 1st rank of \a u32.
#define MSB1W(u32) (((U8 *)&(u32))[2]) //!< Most significant byte of 2nd rank of \a u32.
#define MSB2W(u32) (((U8 *)&(u32))[1]) //!< Most significant byte of 3rd rank of \a u32.
#define MSB3W(u32) (((U8 *)&(u32))[0]) //!< Most significant byte of 4th rank of \a u32.
#define LSB3W(u32) MSB0W(u32) //!< Least significant byte of 4th rank of \a u32.
#define LSB2W(u32) MSB1W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB1W(u32) MSB2W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB0W(u32) MSB3W(u32) //!< Least significant byte of 1st rank of \a u32.
#define MSW(u64) (((U32 *)&(u64))[1]) //!< Most significant word of \a u64.
#define LSW(u64) (((U32 *)&(u64))[0]) //!< Least significant word of \a u64.
#define MSH0(u64) (((U16 *)&(u64))[3]) //!< Most significant half-word of 1st rank of \a u64.
#define MSH1(u64) (((U16 *)&(u64))[2]) //!< Most significant half-word of 2nd rank of \a u64.
#define MSH2(u64) (((U16 *)&(u64))[1]) //!< Most significant half-word of 3rd rank of \a u64.
#define MSH3(u64) (((U16 *)&(u64))[0]) //!< Most significant half-word of 4th rank of \a u64.
#define LSH3(u64) MSH0(u64) //!< Least significant half-word of 4th rank of \a u64.
#define LSH2(u64) MSH1(u64) //!< Least significant half-word of 3rd rank of \a u64.
#define LSH1(u64) MSH2(u64) //!< Least significant half-word of 2nd rank of \a u64.
#define LSH0(u64) MSH3(u64) //!< Least significant half-word of 1st rank of \a u64.
#define MSB0D(u64) (((U8 *)&(u64))[7]) //!< Most significant byte of 1st rank of \a u64.
#define MSB1D(u64) (((U8 *)&(u64))[6]) //!< Most significant byte of 2nd rank of \a u64.
#define MSB2D(u64) (((U8 *)&(u64))[5]) //!< Most significant byte of 3rd rank of \a u64.
#define MSB3D(u64) (((U8 *)&(u64))[4]) //!< Most significant byte of 4th rank of \a u64.
#define MSB4D(u64) (((U8 *)&(u64))[3]) //!< Most significant byte of 5th rank of \a u64.
#define MSB5D(u64) (((U8 *)&(u64))[2]) //!< Most significant byte of 6th rank of \a u64.
#define MSB6D(u64) (((U8 *)&(u64))[1]) //!< Most significant byte of 7th rank of \a u64.
#define MSB7D(u64) (((U8 *)&(u64))[0]) //!< Most significant byte of 8th rank of \a u64.
#define LSB7D(u64) MSB0D(u64) //!< Least significant byte of 8th rank of \a u64.
#define LSB6D(u64) MSB1D(u64) //!< Least significant byte of 7th rank of \a u64.
#define LSB5D(u64) MSB2D(u64) //!< Least significant byte of 6th rank of \a u64.
#define LSB4D(u64) MSB3D(u64) //!< Least significant byte of 5th rank of \a u64.
#define LSB3D(u64) MSB4D(u64) //!< Least significant byte of 4th rank of \a u64.
#define LSB2D(u64) MSB5D(u64) //!< Least significant byte of 3rd rank of \a u64.
#define LSB1D(u64) MSB6D(u64) //!< Least significant byte of 2nd rank of \a u64.
#define LSB0D(u64) MSB7D(u64) //!< Least significant byte of 1st rank of \a u64.
#define BE16(x) swap16(x)
#define LE16(x) (x)
#define le16_to_cpu(x) (x)
#define cpu_to_le16(x) (x)
#define LE16_TO_CPU(x) (x)
#define CPU_TO_LE16(x) (x)
#define be16_to_cpu(x) swap16(x)
#define cpu_to_be16(x) swap16(x)
#define BE16_TO_CPU(x) swap16(x)
#define CPU_TO_BE16(x) swap16(x)
#define le32_to_cpu(x) (x)
#define cpu_to_le32(x) (x)
#define LE32_TO_CPU(x) (x)
#define CPU_TO_LE32(x) (x)
#define be32_to_cpu(x) swap32(x)
#define cpu_to_be32(x) swap32(x)
#define BE32_TO_CPU(x) swap32(x)
#define CPU_TO_BE32(x) swap32(x)
//! @}
/*! \name Endianism Conversion
*
* The same considerations as for clz and ctz apply here but GCC's
* __builtin_bswap_32 and __builtin_bswap_64 do not behave like macros when
* applied to constant expressions, so two sets of macros are defined here:
* - Swap16, Swap32 and Swap64 to apply to constant expressions (values known
* at compile time);
* - swap16, swap32 and swap64 to apply to non-constant expressions (values
* unknown at compile time).
*/
//! @{
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap16(u16) ((U16)(((U16)(u16) >> 8) |\
((U16)(u16) << 8)))
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap32(u32) ((U32)(((U32)Swap16((U32)(u32) >> 16)) |\
((U32)Swap16((U32)(u32)) << 16)))
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values known at compile time.
*/
#define Swap64(u64) ((U64)(((U64)Swap32((U64)(u64) >> 32)) |\
((U64)Swap32((U64)(u64)) << 32)))
/*! \brief Toggles the endianism of \a u16 (by swapping its bytes).
*
* \param u16 U16 of which to toggle the endianism.
*
* \return Value resulting from \a u16 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#define swap16(u16) Swap16(u16)
/*! \brief Toggles the endianism of \a u32 (by swapping its bytes).
*
* \param u32 U32 of which to toggle the endianism.
*
* \return Value resulting from \a u32 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if (defined __GNUC__)
# define swap32(u32) ((U32)__builtin_bswap32((U32)(u32)))
#else
# define swap32(u32) Swap32(u32)
#endif
/*! \brief Toggles the endianism of \a u64 (by swapping its bytes).
*
* \param u64 U64 of which to toggle the endianism.
*
* \return Value resulting from \a u64 with toggled endianism.
*
* \note More optimized if only used with values unknown at compile time.
*/
#if (defined __GNUC__)
# define swap64(u64) ((U64)__builtin_bswap64((U64)(u64)))
#else
# define swap64(u64) ((U64)(((U64)swap32((U64)(u64) >> 32)) |\
((U64)swap32((U64)(u64)) << 32)))
#endif
//! @}
/*! \name Target Abstraction
*/
//! @{
#define _GLOBEXT_ extern //!< extern storage-class specifier.
#define _CONST_TYPE_ const //!< const type qualifier.
#define _MEM_TYPE_SLOW_ //!< Slow memory type.
#define _MEM_TYPE_MEDFAST_ //!< Fairly fast memory type.
#define _MEM_TYPE_FAST_ //!< Fast memory type.
typedef U8 Byte; //!< 8-bit unsigned integer.
#define memcmp_ram2ram memcmp //!< Target-specific memcmp of RAM to RAM.
#define memcmp_code2ram memcmp //!< Target-specific memcmp of RAM to NVRAM.
#define memcpy_ram2ram memcpy //!< Target-specific memcpy from RAM to RAM.
#define memcpy_code2ram memcpy //!< Target-specific memcpy from NVRAM to RAM.
#define LSB0(u32) LSB0W(u32) //!< Least significant byte of 1st rank of \a u32.
#define LSB1(u32) LSB1W(u32) //!< Least significant byte of 2nd rank of \a u32.
#define LSB2(u32) LSB2W(u32) //!< Least significant byte of 3rd rank of \a u32.
#define LSB3(u32) LSB3W(u32) //!< Least significant byte of 4th rank of \a u32.
#define MSB3(u32) MSB3W(u32) //!< Most significant byte of 4th rank of \a u32.
#define MSB2(u32) MSB2W(u32) //!< Most significant byte of 3rd rank of \a u32.
#define MSB1(u32) MSB1W(u32) //!< Most significant byte of 2nd rank of \a u32.
#define MSB0(u32) MSB0W(u32) //!< Most significant byte of 1st rank of \a u32.
//! @}
/**
* \brief Calculate \f$ \left\lceil \frac{a}{b} \right\rceil \f$ using
* integer arithmetic.
*
* \param a An integer
* \param b Another integer
*
* \return (\a a / \a b) rounded up to the nearest integer.
*/
#define div_ceil(a, b) (((a) + (b) - 1) / (b))
#endif // #ifndef __ASSEMBLY__
#if defined(__ICCARM__)
#define SHORTENUM __packed
#elif defined(__GNUC__)
#define SHORTENUM __attribute__((packed))
#endif
/* No operation */
#if defined(__ICCARM__)
#define nop() __no_operation()
#elif defined(__GNUC__)
#define nop() (__NOP())
#endif
#define FLASH_DECLARE(x) const x
#define FLASH_EXTERN(x) extern const x
#define PGM_READ_BYTE(x) *(x)
#define PGM_READ_WORD(x) *(x)
#define PGM_READ_DWORD(x) *(x)
#define MEMCPY_ENDIAN memcpy
#define PGM_READ_BLOCK(dst, src, len) memcpy((dst), (src), (len))
/*Defines the Flash Storage for the request and response of MAC*/
#define CMD_ID_OCTET (0)
/* Converting of values from CPU endian to little endian. */
#define CPU_ENDIAN_TO_LE16(x) (x)
#define CPU_ENDIAN_TO_LE32(x) (x)
#define CPU_ENDIAN_TO_LE64(x) (x)
/* Converting of values from little endian to CPU endian. */
#define LE16_TO_CPU_ENDIAN(x) (x)
#define LE32_TO_CPU_ENDIAN(x) (x)
#define LE64_TO_CPU_ENDIAN(x) (x)
/* Converting of constants from little endian to CPU endian. */
#define CLE16_TO_CPU_ENDIAN(x) (x)
#define CLE32_TO_CPU_ENDIAN(x) (x)
#define CLE64_TO_CPU_ENDIAN(x) (x)
/* Converting of constants from CPU endian to little endian. */
#define CCPU_ENDIAN_TO_LE16(x) (x)
#define CCPU_ENDIAN_TO_LE32(x) (x)
#define CCPU_ENDIAN_TO_LE64(x) (x)
#define ADDR_COPY_DST_SRC_16(dst, src) ((dst) = (src))
#define ADDR_COPY_DST_SRC_64(dst, src) ((dst) = (src))
/**
* @brief Converts a 64-Bit value into a 8 Byte array
*
* @param[in] value 64-Bit value
* @param[out] data Pointer to the 8 Byte array to be updated with 64-Bit value
* @ingroup apiPalApi
*/
static inline void convert_64_bit_to_byte_array(uint64_t value, uint8_t *data)
{
uint8_t val_index = 0;
while (val_index < 8)
{
data[val_index++] = value & 0xFF;
value = value >> 8;
}
}
/**
* @brief Converts a 16-Bit value into a 2 Byte array
*
* @param[in] value 16-Bit value
* @param[out] data Pointer to the 2 Byte array to be updated with 16-Bit value
* @ingroup apiPalApi
*/
static inline void convert_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_spec_16_bit_to_byte_array(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/* Converts a 16-Bit value into a 2 Byte array */
static inline void convert_16_bit_to_byte_address(uint16_t value, uint8_t *data)
{
data[0] = value & 0xFF;
data[1] = (value >> 8) & 0xFF;
}
/*
* @brief Converts a 2 Byte array into a 16-Bit value
*
* @param data Specifies the pointer to the 2 Byte array
*
* @return 16-Bit value
* @ingroup apiPalApi
*/
static inline uint16_t convert_byte_array_to_16_bit(uint8_t *data)
{
return (data[0] | ((uint16_t)data[1] << 8));
}
/* Converts a 8 Byte array into a 32-Bit value */
static inline uint32_t convert_byte_array_to_32_bit(uint8_t *data)
{
union
{
uint32_t u32;
uint8_t u8[8];
}long_addr;
uint8_t index;
for (index = 0; index < 4; index++)
{
long_addr.u8[index] = *data++;
}
return long_addr.u32;
}
/**
* @brief Converts a 8 Byte array into a 64-Bit value
*
* @param data Specifies the pointer to the 8 Byte array
*
* @return 64-Bit value
* @ingroup apiPalApi
*/
static inline uint64_t convert_byte_array_to_64_bit(uint8_t *data)
{
union
{
uint64_t u64;
uint8_t u8[8];
} long_addr;
uint8_t val_index;
for (val_index = 0; val_index < 8; val_index++)
{
long_addr.u8[val_index] = *data++;
}
return long_addr.u64;
}
/**
* \}
*/
#endif /* UTILS_COMPILER_H */

View file

@ -0,0 +1,115 @@
/**
* \file
*
* \brief Memory access control configuration file.
*
* Copyright (c) 2012-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _CONF_ACCESS_H_
#define _CONF_ACCESS_H_
#include "compiler.h"
/*! \name Activation of Logical Unit Numbers
*/
//! @{
#define LUN_0 ENABLE //!< SD/MMC Card over MCI Slot 0.
#define LUN_1 DISABLE
#define LUN_2 DISABLE
#define LUN_3 DISABLE
#define LUN_4 DISABLE
#define LUN_5 DISABLE
#define LUN_6 DISABLE
#define LUN_7 DISABLE
#define LUN_USB DISABLE
//! @}
/*! \name LUN 0 Definitions
*/
//! @{
#define SD_MMC_SPI_MEM LUN_0
#define LUN_ID_SD_MMC_SPI_MEM LUN_ID_0
#define LUN_0_INCLUDE "sd_mmc_spi_mem.h"
#define Lun_0_test_unit_ready sd_mmc_spi_test_unit_ready
#define Lun_0_read_capacity sd_mmc_spi_read_capacity
#define Lun_0_unload sd_mmc_spi_unload
#define Lun_0_wr_protect sd_mmc_spi_wr_protect
#define Lun_0_removal sd_mmc_spi_removal
#define Lun_0_usb_read_10 sd_mmc_spi_usb_read_10
#define Lun_0_usb_write_10 sd_mmc_spi_usb_write_10
#define LUN_0_NAME "\"SD/MMC Card\""
//! @}
/*! \name Actions Associated with Memory Accesses
*
* Write here the action to associate with each memory access.
*
* \warning Be careful not to waste time in order not to disturb the functions.
*/
//! @{
#define memory_start_read_action(nb_sectors)
#define memory_stop_read_action()
#define memory_start_write_action(nb_sectors)
#define memory_stop_write_action()
//! @}
/*! \name Activation of Interface Features
*/
//! @{
#define ACCESS_USB true //!< MEM <-> USB interface.
#define ACCESS_MEM_TO_RAM false //!< MEM <-> RAM interface.
#define ACCESS_STREAM false //!< Streaming MEM <-> MEM interface.
#define ACCESS_STREAM_RECORD false //!< Streaming MEM <-> MEM interface in record mode.
#define ACCESS_MEM_TO_MEM false //!< MEM <-> MEM interface.
#define ACCESS_CODEC false //!< Codec interface.
//! @}
/*! \name Specific Options for Access Control
*/
//! @{
#define GLOBAL_WR_PROTECT false //!< Management of a global write protection.
//! @}
#endif // _CONF_ACCESS_H_

View file

@ -0,0 +1,100 @@
/**
* \file
*
* \brief SAM3X clock configuration.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef CONF_CLOCK_H_INCLUDED
#define CONF_CLOCK_H_INCLUDED
// ===== System Clock (MCK) Source Options
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_RC
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_XTAL
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_SLCK_BYPASS
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_4M_RC
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_8M_RC
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_12M_RC
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_XTAL
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_BYPASS
#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK
//#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_UPLLCK
// ===== System Clock (MCK) Prescaler Options (Fmck = Fsys / (SYSCLK_PRES))
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_1
#define CONFIG_SYSCLK_PRES SYSCLK_PRES_2
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_4
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_8
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_16
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_32
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_64
//#define CONFIG_SYSCLK_PRES SYSCLK_PRES_3
// ===== PLL0 (A) Options (Fpll = (Fclk * PLL_mul) / PLL_div)
// Use mul and div effective values here.
#define CONFIG_PLL0_SOURCE PLL_SRC_MAINCK_XTAL
#define CONFIG_PLL0_MUL 14
#define CONFIG_PLL0_DIV 1
// ===== UPLL (UTMI) Hardware fixed at 480MHz.
// ===== USB Clock Source Options (Fusb = FpllX / USB_div)
// Use div effective value here.
//#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL0
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_UPLL
#define CONFIG_USBCLK_DIV 1
// ===== Target frequency (System clock)
// - XTAL frequency: 12MHz
// - System clock source: PLLA
// - System clock prescaler: 2 (divided by 2)
// - PLLA source: XTAL
// - PLLA output: XTAL * 14 / 1
// - System clock is: 12 * 14 / 1 /2 = 84MHz
// ===== Target frequency (USB Clock)
// - USB clock source: UPLL
// - USB clock divider: 1 (not divided)
// - UPLL frequency: 480MHz
// - USB clock: 480 / 1 = 480MHz
#endif /* CONF_CLOCK_H_INCLUDED */

View file

@ -0,0 +1,287 @@
/**
* \file
*
* \brief USB configuration file
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _CONF_USB_H_
#define _CONF_USB_H_
#include "compiler.h"
/**
* USB Device Configuration
* @{
*/
//! Device definition (mandatory)
#define USB_DEVICE_VENDOR_ID 0x03EB /* ATMEL VID */
#define USB_DEVICE_PRODUCT_ID 0x2424 /* MSC / CDC */
#define USB_DEVICE_MAJOR_VERSION 1
#define USB_DEVICE_MINOR_VERSION 0
#define USB_DEVICE_POWER 100 // Consumption on Vbus line (mA)
#define USB_DEVICE_ATTR \
(USB_CONFIG_ATTR_SELF_POWERED)
// (USB_CONFIG_ATTR_BUS_POWERED)
// (USB_CONFIG_ATTR_REMOTE_WAKEUP|USB_CONFIG_ATTR_SELF_POWERED)
// (USB_CONFIG_ATTR_REMOTE_WAKEUP|USB_CONFIG_ATTR_BUS_POWERED)
//! USB Device string definitions (Optional)
#define USB_DEVICE_MANUFACTURE_NAME "MARLIN 3D"
#define USB_DEVICE_PRODUCT_NAME "CDC and MSC"
#define USB_DEVICE_SERIAL_NAME "123985739853" // Disk SN for MSC
/**
* Device speeds support
* Low speed not supported by CDC and MSC
* @{
*/
//! To define a Low speed device
//#define USB_DEVICE_LOW_SPEED
//! To authorize the High speed
#if (UC3A3||UC3A4)
# define USB_DEVICE_HS_SUPPORT
#elif (SAM3XA||SAM3U)
# define USB_DEVICE_HS_SUPPORT
#endif
//@}
/**
* USB Device Callbacks definitions (Optional)
* @{
*/
#define UDC_VBUS_EVENT(b_vbus_high)
#define UDC_SOF_EVENT()
#define UDC_SUSPEND_EVENT()
#define UDC_RESUME_EVENT()
#define UDC_GET_EXTRA_STRING() usb_task_extra_string()
//@}
/**
* USB Device low level configuration
* When only one interface is used, these configurations are defined by the class module.
* For composite device, these configuration must be defined here
* @{
*/
//! Control endpoint size
#define USB_DEVICE_EP_CTRL_SIZE 64
//! Two interfaces for this device (CDC COM + CDC DATA + MSC)
#define USB_DEVICE_NB_INTERFACE 3
//! 5 endpoints used by CDC and MSC interfaces
#if SAM3U
// (3 | USB_EP_DIR_IN) // CDC Notify endpoint
// (6 | USB_EP_DIR_IN) // CDC TX
// (5 | USB_EP_DIR_OUT) // CDC RX
// (1 | USB_EP_DIR_IN) // MSC IN
// (2 | USB_EP_DIR_OUT) // MSC OUT
# define USB_DEVICE_MAX_EP 6
# if defined(USB_DEVICE_HS_SUPPORT)
// In HS mode, size of bulk endpoints are 512
// If CDC and MSC endpoints all uses 2 banks, DPRAM is not enough: 4 bulk
// endpoints requires 4K bytes. So reduce the number of banks of CDC bulk
// endpoints to use less DPRAM. Keep MSC setting to keep MSC performance.
# define UDD_BULK_NB_BANK(ep) ((ep == 5 || ep== 6) ? 1 : 2)
#endif
#else
// (3 | USB_EP_DIR_IN) // CDC Notify endpoint
// (4 | USB_EP_DIR_IN) // CDC TX
// (5 | USB_EP_DIR_OUT) // CDC RX
// (1 | USB_EP_DIR_IN) // MSC IN
// (2 | USB_EP_DIR_OUT) // MSC OUT
# define USB_DEVICE_MAX_EP 5
# if SAM3XA && defined(USB_DEVICE_HS_SUPPORT)
// In HS mode, size of bulk endpoints are 512
// If CDC and MSC endpoints all uses 2 banks, DPRAM is not enough: 4 bulk
// endpoints requires 4K bytes. So reduce the number of banks of CDC bulk
// endpoints to use less DPRAM. Keep MSC setting to keep MSC performance.
# define UDD_BULK_NB_BANK(ep) ((ep == 4 || ep== 5) ? 1 : 2)
# endif
#endif
//@}
//@}
/**
* USB Interface Configuration
* @{
*/
/**
* Configuration of CDC interface
* @{
*/
//! Define one USB communication ports
#define UDI_CDC_PORT_NB 1
//! Interface callback definition
#define UDI_CDC_ENABLE_EXT(port) usb_task_cdc_enable(port)
#define UDI_CDC_DISABLE_EXT(port) usb_task_cdc_disable(port)
#define UDI_CDC_RX_NOTIFY(port) usb_task_cdc_rx_notify(port)
#define UDI_CDC_TX_EMPTY_NOTIFY(port)
#define UDI_CDC_SET_CODING_EXT(port,cfg) usb_task_cdc_config(port,cfg)
#define UDI_CDC_SET_DTR_EXT(port,set) usb_task_cdc_set_dtr(port,set)
#define UDI_CDC_SET_RTS_EXT(port,set)
//! Define it when the transfer CDC Device to Host is a low rate (<512000 bauds)
//! to reduce CDC buffers size
//#define UDI_CDC_LOW_RATE
//! Default configuration of communication port
#define UDI_CDC_DEFAULT_RATE 115200
#define UDI_CDC_DEFAULT_STOPBITS CDC_STOP_BITS_1
#define UDI_CDC_DEFAULT_PARITY CDC_PAR_NONE
#define UDI_CDC_DEFAULT_DATABITS 8
//! Enable id string of interface to add an extra USB string
#define UDI_CDC_IAD_STRING_ID 4
/**
* USB CDC low level configuration
* In standalone these configurations are defined by the CDC module.
* For composite device, these configuration must be defined here
* @{
*/
//! Endpoint numbers definition
#if SAM3U
# define UDI_CDC_COMM_EP_0 (3 | USB_EP_DIR_IN) // Notify endpoint
# define UDI_CDC_DATA_EP_IN_0 (6 | USB_EP_DIR_IN) // TX
# define UDI_CDC_DATA_EP_OUT_0 (5 | USB_EP_DIR_OUT)// RX
#else
# define UDI_CDC_COMM_EP_0 (3 | USB_EP_DIR_IN) // Notify endpoint
# define UDI_CDC_DATA_EP_IN_0 (4 | USB_EP_DIR_IN) // TX
# define UDI_CDC_DATA_EP_OUT_0 (5 | USB_EP_DIR_OUT)// RX
#endif
//! Interface numbers
#define UDI_CDC_COMM_IFACE_NUMBER_0 0
#define UDI_CDC_DATA_IFACE_NUMBER_0 1
//@}
//@}
/**
* Configuration of MSC interface
* @{
*/
//! Vendor name and Product version of MSC interface
#define UDI_MSC_GLOBAL_VENDOR_ID \
'M', 'A', 'R', 'L', 'I', 'N', '3', 'D'
#define UDI_MSC_GLOBAL_PRODUCT_VERSION \
'1', '.', '0', '0'
//! Interface callback definition
#define UDI_MSC_ENABLE_EXT() usb_task_msc_enable()
#define UDI_MSC_DISABLE_EXT() usb_task_msc_disable()
//! Enable id string of interface to add an extra USB string
#define UDI_MSC_STRING_ID 5
/**
* USB MSC low level configuration
* In standalone these configurations are defined by the MSC module.
* For composite device, these configuration must be defined here
* @{
*/
//! Endpoint numbers definition
#define UDI_MSC_EP_IN (1 | USB_EP_DIR_IN)
#define UDI_MSC_EP_OUT (2 | USB_EP_DIR_OUT)
//! Interface number
#define UDI_MSC_IFACE_NUMBER 2
//@}
//@}
//@}
/**
* Description of Composite Device
* @{
*/
//! USB Interfaces descriptor structure
#define UDI_COMPOSITE_DESC_T \
usb_iad_desc_t udi_cdc_iad; \
udi_cdc_comm_desc_t udi_cdc_comm; \
udi_cdc_data_desc_t udi_cdc_data; \
udi_msc_desc_t udi_msc
//! USB Interfaces descriptor value for Full Speed
#define UDI_COMPOSITE_DESC_FS \
.udi_cdc_iad = UDI_CDC_IAD_DESC_0, \
.udi_cdc_comm = UDI_CDC_COMM_DESC_0, \
.udi_cdc_data = UDI_CDC_DATA_DESC_0_FS, \
.udi_msc = UDI_MSC_DESC_FS
//! USB Interfaces descriptor value for High Speed
#define UDI_COMPOSITE_DESC_HS \
.udi_cdc_iad = UDI_CDC_IAD_DESC_0, \
.udi_cdc_comm = UDI_CDC_COMM_DESC_0, \
.udi_cdc_data = UDI_CDC_DATA_DESC_0_HS, \
.udi_msc = UDI_MSC_DESC_HS
//! USB Interface APIs
#define UDI_COMPOSITE_API \
&udi_api_cdc_comm, \
&udi_api_cdc_data, \
&udi_api_msc
//@}
/**
* USB Device Driver Configuration
* @{
*/
//@}
//! The includes of classes and other headers must be done at the end of this file to avoid compile error
#include "udi_cdc.h"
#include "udi_msc.h"
#include "usb_task.h"
#endif // _CONF_USB_H_

View file

@ -0,0 +1,646 @@
/*****************************************************************************
*
* \file
*
* \brief Abstraction layer for memory interfaces.
*
* This module contains the interfaces:
* - MEM <-> USB;
* - MEM <-> RAM;
* - MEM <-> MEM.
*
* This module may be configured and expanded to support the following features:
* - write-protected globals;
* - password-protected data;
* - specific features;
* - etc.
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
******************************************************************************/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
//_____ I N C L U D E S ____________________________________________________
#include "compiler.h"
#include "preprocessor.h"
#ifdef FREERTOS_USED
#include "FreeRTOS.h"
#include "semphr.h"
#endif
#include "ctrl_access.h"
//_____ D E F I N I T I O N S ______________________________________________
#ifdef FREERTOS_USED
/*! \name LUN Access Protection Macros
*/
//! @{
/*! \brief Locks accesses to LUNs.
*
* \return \c true if the access was successfully locked, else \c false.
*/
#define Ctrl_access_lock() ctrl_access_lock()
/*! \brief Unlocks accesses to LUNs.
*/
#define Ctrl_access_unlock() xSemaphoreGive(ctrl_access_semphr)
//! @}
//! Handle to the semaphore protecting accesses to LUNs.
static xSemaphoreHandle ctrl_access_semphr = NULL;
#else
/*! \name LUN Access Protection Macros
*/
//! @{
/*! \brief Locks accesses to LUNs.
*
* \return \c true if the access was successfully locked, else \c false.
*/
#define Ctrl_access_lock() true
/*! \brief Unlocks accesses to LUNs.
*/
#define Ctrl_access_unlock()
//! @}
#endif // FREERTOS_USED
#if MAX_LUN
/*! \brief Initializes an entry of the LUN descriptor table.
*
* \param lun Logical Unit Number.
*
* \return LUN descriptor table entry initializer.
*/
#if ACCESS_USB == true && ACCESS_MEM_TO_RAM == true
#define Lun_desc_entry(lun) \
{\
TPASTE3(Lun_, lun, _test_unit_ready),\
TPASTE3(Lun_, lun, _read_capacity),\
TPASTE3(Lun_, lun, _unload),\
TPASTE3(Lun_, lun, _wr_protect),\
TPASTE3(Lun_, lun, _removal),\
TPASTE3(Lun_, lun, _usb_read_10),\
TPASTE3(Lun_, lun, _usb_write_10),\
TPASTE3(Lun_, lun, _mem_2_ram),\
TPASTE3(Lun_, lun, _ram_2_mem),\
TPASTE3(LUN_, lun, _NAME)\
}
#elif ACCESS_USB == true
#define Lun_desc_entry(lun) \
{\
TPASTE3(Lun_, lun, _test_unit_ready),\
TPASTE3(Lun_, lun, _read_capacity),\
TPASTE3(Lun_, lun, _unload),\
TPASTE3(Lun_, lun, _wr_protect),\
TPASTE3(Lun_, lun, _removal),\
TPASTE3(Lun_, lun, _usb_read_10),\
TPASTE3(Lun_, lun, _usb_write_10),\
TPASTE3(LUN_, lun, _NAME)\
}
#elif ACCESS_MEM_TO_RAM == true
#define Lun_desc_entry(lun) \
{\
TPASTE3(Lun_, lun, _test_unit_ready),\
TPASTE3(Lun_, lun, _read_capacity),\
TPASTE3(Lun_, lun, _unload),\
TPASTE3(Lun_, lun, _wr_protect),\
TPASTE3(Lun_, lun, _removal),\
TPASTE3(Lun_, lun, _mem_2_ram),\
TPASTE3(Lun_, lun, _ram_2_mem),\
TPASTE3(LUN_, lun, _NAME)\
}
#else
#define Lun_desc_entry(lun) \
{\
TPASTE3(Lun_, lun, _test_unit_ready),\
TPASTE3(Lun_, lun, _read_capacity),\
TPASTE3(Lun_, lun, _unload),\
TPASTE3(Lun_, lun, _wr_protect),\
TPASTE3(Lun_, lun, _removal),\
TPASTE3(LUN_, lun, _NAME)\
}
#endif
//! LUN descriptor table.
static const struct
{
Ctrl_status (*test_unit_ready)(void);
Ctrl_status (*read_capacity)(U32 *);
bool (*unload)(bool);
bool (*wr_protect)(void);
bool (*removal)(void);
#if ACCESS_USB == true
Ctrl_status (*usb_read_10)(U32, U16);
Ctrl_status (*usb_write_10)(U32, U16);
#endif
#if ACCESS_MEM_TO_RAM == true
Ctrl_status (*mem_2_ram)(U32, void *);
Ctrl_status (*ram_2_mem)(U32, const void *);
#endif
const char *name;
} lun_desc[MAX_LUN] =
{
#if LUN_0 == ENABLE
# ifndef Lun_0_unload
# define Lun_0_unload NULL
# endif
Lun_desc_entry(0),
#endif
#if LUN_1 == ENABLE
# ifndef Lun_1_unload
# define Lun_1_unload NULL
# endif
Lun_desc_entry(1),
#endif
#if LUN_2 == ENABLE
# ifndef Lun_2_unload
# define Lun_2_unload NULL
# endif
Lun_desc_entry(2),
#endif
#if LUN_3 == ENABLE
# ifndef Lun_3_unload
# define Lun_3_unload NULL
# endif
Lun_desc_entry(3),
#endif
#if LUN_4 == ENABLE
# ifndef Lun_4_unload
# define Lun_4_unload NULL
# endif
Lun_desc_entry(4),
#endif
#if LUN_5 == ENABLE
# ifndef Lun_5_unload
# define Lun_5_unload NULL
# endif
Lun_desc_entry(5),
#endif
#if LUN_6 == ENABLE
# ifndef Lun_6_unload
# define Lun_6_unload NULL
# endif
Lun_desc_entry(6),
#endif
#if LUN_7 == ENABLE
# ifndef Lun_7_unload
# define Lun_7_unload NULL
# endif
Lun_desc_entry(7)
#endif
};
#endif
#if GLOBAL_WR_PROTECT == true
bool g_wr_protect;
#endif
/*! \name Control Interface
*/
//! @{
#ifdef FREERTOS_USED
bool ctrl_access_init(void)
{
// If the handle to the protecting semaphore is not valid,
if (!ctrl_access_semphr)
{
// try to create the semaphore.
vSemaphoreCreateBinary(ctrl_access_semphr);
// If the semaphore could not be created, there is no backup solution.
if (!ctrl_access_semphr) return false;
}
return true;
}
/*! \brief Locks accesses to LUNs.
*
* \return \c true if the access was successfully locked, else \c false.
*/
static bool ctrl_access_lock(void)
{
// If the semaphore could not be created, there is no backup solution.
if (!ctrl_access_semphr) return false;
// Wait for the semaphore.
while (!xSemaphoreTake(ctrl_access_semphr, portMAX_DELAY));
return true;
}
#endif // FREERTOS_USED
U8 get_nb_lun(void)
{
#if MEM_USB == ENABLE
# ifndef Lun_usb_get_lun
# define Lun_usb_get_lun() host_get_lun()
# endif
U8 nb_lun;
if (!Ctrl_access_lock()) return MAX_LUN;
nb_lun = MAX_LUN + Lun_usb_get_lun();
Ctrl_access_unlock();
return nb_lun;
#else
return MAX_LUN;
#endif
}
U8 get_cur_lun(void)
{
return LUN_ID_0;
}
Ctrl_status mem_test_unit_ready(U8 lun)
{
Ctrl_status status;
if (!Ctrl_access_lock()) return CTRL_FAIL;
status =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].test_unit_ready() :
#endif
#if LUN_USB == ENABLE
Lun_usb_test_unit_ready(lun - LUN_ID_USB);
#else
CTRL_FAIL;
#endif
Ctrl_access_unlock();
return status;
}
Ctrl_status mem_read_capacity(U8 lun, U32 *u32_nb_sector)
{
Ctrl_status status;
if (!Ctrl_access_lock()) return CTRL_FAIL;
status =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].read_capacity(u32_nb_sector) :
#endif
#if LUN_USB == ENABLE
Lun_usb_read_capacity(lun - LUN_ID_USB, u32_nb_sector);
#else
CTRL_FAIL;
#endif
Ctrl_access_unlock();
return status;
}
U8 mem_sector_size(U8 lun)
{
U8 sector_size;
if (!Ctrl_access_lock()) return 0;
sector_size =
#if MAX_LUN
(lun < MAX_LUN) ? 1 :
#endif
#if LUN_USB == ENABLE
Lun_usb_read_sector_size(lun - LUN_ID_USB);
#else
0;
#endif
Ctrl_access_unlock();
return sector_size;
}
bool mem_unload(U8 lun, bool unload)
{
bool unloaded;
#if !MAX_LUN || !defined(Lun_usb_unload)
UNUSED(lun);
#endif
if (!Ctrl_access_lock()) return false;
unloaded =
#if MAX_LUN
(lun < MAX_LUN) ?
(lun_desc[lun].unload ?
lun_desc[lun].unload(unload) : !unload) :
#endif
#if LUN_USB == ENABLE
# if defined(Lun_usb_unload)
Lun_usb_unload(lun - LUN_ID_USB, unload);
# else
!unload; /* Can not unload: load success, unload fail */
# endif
#else
false; /* No mem, unload/load fail */
#endif
Ctrl_access_unlock();
return unloaded;
}
bool mem_wr_protect(U8 lun)
{
bool wr_protect;
if (!Ctrl_access_lock()) return true;
wr_protect =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].wr_protect() :
#endif
#if LUN_USB == ENABLE
Lun_usb_wr_protect(lun - LUN_ID_USB);
#else
true;
#endif
Ctrl_access_unlock();
return wr_protect;
}
bool mem_removal(U8 lun)
{
bool removal;
#if MAX_LUN==0
UNUSED(lun);
#endif
if (!Ctrl_access_lock()) return true;
removal =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].removal() :
#endif
#if LUN_USB == ENABLE
Lun_usb_removal();
#else
true;
#endif
Ctrl_access_unlock();
return removal;
}
const char *mem_name(U8 lun)
{
#if MAX_LUN==0
UNUSED(lun);
#endif
return
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].name :
#endif
#if LUN_USB == ENABLE
LUN_USB_NAME;
#else
NULL;
#endif
}
//! @}
#if ACCESS_USB == true
/*! \name MEM <-> USB Interface
*/
//! @{
Ctrl_status memory_2_usb(U8 lun, U32 addr, U16 nb_sector)
{
Ctrl_status status;
if (!Ctrl_access_lock()) return CTRL_FAIL;
memory_start_read_action(nb_sector);
status =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].usb_read_10(addr, nb_sector) :
#endif
CTRL_FAIL;
memory_stop_read_action();
Ctrl_access_unlock();
return status;
}
Ctrl_status usb_2_memory(U8 lun, U32 addr, U16 nb_sector)
{
Ctrl_status status;
if (!Ctrl_access_lock()) return CTRL_FAIL;
memory_start_write_action(nb_sector);
status =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].usb_write_10(addr, nb_sector) :
#endif
CTRL_FAIL;
memory_stop_write_action();
Ctrl_access_unlock();
return status;
}
//! @}
#endif // ACCESS_USB == true
#if ACCESS_MEM_TO_RAM == true
/*! \name MEM <-> RAM Interface
*/
//! @{
Ctrl_status memory_2_ram(U8 lun, U32 addr, void *ram)
{
Ctrl_status status;
#if MAX_LUN==0
UNUSED(lun);
#endif
if (!Ctrl_access_lock()) return CTRL_FAIL;
memory_start_read_action(1);
status =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].mem_2_ram(addr, ram) :
#endif
#if LUN_USB == ENABLE
Lun_usb_mem_2_ram(addr, ram);
#else
CTRL_FAIL;
#endif
memory_stop_read_action();
Ctrl_access_unlock();
return status;
}
Ctrl_status ram_2_memory(U8 lun, U32 addr, const void *ram)
{
Ctrl_status status;
#if MAX_LUN==0
UNUSED(lun);
#endif
if (!Ctrl_access_lock()) return CTRL_FAIL;
memory_start_write_action(1);
status =
#if MAX_LUN
(lun < MAX_LUN) ? lun_desc[lun].ram_2_mem(addr, ram) :
#endif
#if LUN_USB == ENABLE
Lun_usb_ram_2_mem(addr, ram);
#else
CTRL_FAIL;
#endif
memory_stop_write_action();
Ctrl_access_unlock();
return status;
}
//! @}
#endif // ACCESS_MEM_TO_RAM == true
#if ACCESS_STREAM == true
/*! \name Streaming MEM <-> MEM Interface
*/
//! @{
#if ACCESS_MEM_TO_MEM == true
#include "fat.h"
Ctrl_status stream_mem_to_mem(U8 src_lun, U32 src_addr, U8 dest_lun, U32 dest_addr, U16 nb_sector)
{
COMPILER_ALIGNED(4)
static U8 sector_buf[FS_512B];
Ctrl_status status = CTRL_GOOD;
while (nb_sector--)
{
if ((status = memory_2_ram(src_lun, src_addr++, sector_buf)) != CTRL_GOOD) break;
if ((status = ram_2_memory(dest_lun, dest_addr++, sector_buf)) != CTRL_GOOD) break;
}
return status;
}
#endif // ACCESS_MEM_TO_MEM == true
Ctrl_status stream_state(U8 id)
{
UNUSED(id);
return CTRL_GOOD;
}
U16 stream_stop(U8 id)
{
UNUSED(id);
return 0;
}
//! @}
#endif // ACCESS_STREAM == true
#endif

View file

@ -0,0 +1,402 @@
/*****************************************************************************
*
* \file
*
* \brief Abstraction layer for memory interfaces.
*
* This module contains the interfaces:
* - MEM <-> USB;
* - MEM <-> RAM;
* - MEM <-> MEM.
*
* This module may be configured and expanded to support the following features:
* - write-protected globals;
* - password-protected data;
* - specific features;
* - etc.
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
******************************************************************************/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _CTRL_ACCESS_H_
#define _CTRL_ACCESS_H_
#ifdef __cplusplus
extern "C" {
#endif
/**
* \defgroup group_common_services_storage_ctrl_access Memory Control Access
*
* Common abstraction layer for memory interfaces. It provides interfaces between:
* Memory and USB, Memory and RAM, Memory and Memory. Common API for XMEGA and UC3.
*
* \{
*/
#include "compiler.h"
#include "conf_access.h"
#ifndef SECTOR_SIZE
#define SECTOR_SIZE 512
#endif
//! Status returned by CTRL_ACCESS interfaces.
typedef enum
{
CTRL_GOOD = PASS, //!< Success, memory ready.
CTRL_FAIL = FAIL, //!< An error occurred.
CTRL_NO_PRESENT = FAIL + 1, //!< Memory unplugged.
CTRL_BUSY = FAIL + 2 //!< Memory not initialized or changed.
} Ctrl_status;
// FYI: Each Logical Unit Number (LUN) corresponds to a memory.
// Check LUN defines.
#ifndef LUN_0
#error LUN_0 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_1
#error LUN_1 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_2
#error LUN_2 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_3
#error LUN_3 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_4
#error LUN_4 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_5
#error LUN_5 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_6
#error LUN_6 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_7
#error LUN_7 must be defined as ENABLE or DISABLE in conf_access.h
#endif
#ifndef LUN_USB
#error LUN_USB must be defined as ENABLE or DISABLE in conf_access.h
#endif
/*! \name LUN IDs
*/
//! @{
#define LUN_ID_0 (0) //!< First static LUN.
#define LUN_ID_1 (LUN_ID_0 + LUN_0)
#define LUN_ID_2 (LUN_ID_1 + LUN_1)
#define LUN_ID_3 (LUN_ID_2 + LUN_2)
#define LUN_ID_4 (LUN_ID_3 + LUN_3)
#define LUN_ID_5 (LUN_ID_4 + LUN_4)
#define LUN_ID_6 (LUN_ID_5 + LUN_5)
#define LUN_ID_7 (LUN_ID_6 + LUN_6)
#define MAX_LUN (LUN_ID_7 + LUN_7) //!< Number of static LUNs.
#define LUN_ID_USB (MAX_LUN) //!< First dynamic LUN (USB host mass storage).
//! @}
// Include LUN header files.
#if LUN_0 == ENABLE
#include LUN_0_INCLUDE
#endif
#if LUN_1 == ENABLE
#include LUN_1_INCLUDE
#endif
#if LUN_2 == ENABLE
#include LUN_2_INCLUDE
#endif
#if LUN_3 == ENABLE
#include LUN_3_INCLUDE
#endif
#if LUN_4 == ENABLE
#include LUN_4_INCLUDE
#endif
#if LUN_5 == ENABLE
#include LUN_5_INCLUDE
#endif
#if LUN_6 == ENABLE
#include LUN_6_INCLUDE
#endif
#if LUN_7 == ENABLE
#include LUN_7_INCLUDE
#endif
#if LUN_USB == ENABLE
#include LUN_USB_INCLUDE
#endif
// Check the configuration of write protection in conf_access.h.
#ifndef GLOBAL_WR_PROTECT
#error GLOBAL_WR_PROTECT must be defined as true or false in conf_access.h
#endif
#if GLOBAL_WR_PROTECT == true
//! Write protect.
extern bool g_wr_protect;
#endif
/*! \name Control Interface
*/
//! @{
#ifdef FREERTOS_USED
/*! \brief Initializes the LUN access locker.
*
* \return \c true if the locker was successfully initialized, else \c false.
*/
extern bool ctrl_access_init(void);
#endif // FREERTOS_USED
/*! \brief Returns the number of LUNs.
*
* \return Number of LUNs in the system.
*/
extern U8 get_nb_lun(void);
/*! \brief Returns the current LUN.
*
* \return Current LUN.
*
* \todo Implement.
*/
extern U8 get_cur_lun(void);
/*! \brief Tests the memory state and initializes the memory if required.
*
* The TEST UNIT READY SCSI primary command allows an application client to poll
* a LUN until it is ready without having to allocate memory for returned data.
*
* This command may be used to check the media status of LUNs with removable
* media.
*
* \param lun Logical Unit Number.
*
* \return Status.
*/
extern Ctrl_status mem_test_unit_ready(U8 lun);
/*! \brief Returns the address of the last valid sector (512 bytes) in the
* memory.
*
* \param lun Logical Unit Number.
* \param u32_nb_sector Pointer to the address of the last valid sector.
*
* \return Status.
*/
extern Ctrl_status mem_read_capacity(U8 lun, U32 *u32_nb_sector);
/*! \brief Returns the size of the physical sector.
*
* \param lun Logical Unit Number.
*
* \return Sector size (unit: 512 bytes).
*/
extern U8 mem_sector_size(U8 lun);
/*! \brief Unload/load the medium.
*
* \param lun Logical Unit Number.
* \param unload \c true to unload the medium, \c false to load the medium.
*
* \return \c true if unload/load success, else \c false.
*/
extern bool mem_unload(U8 lun, bool unload);
/*! \brief Returns the write-protection state of the memory.
*
* \param lun Logical Unit Number.
*
* \return \c true if the memory is write-protected, else \c false.
*
* \note Only used by removable memories with hardware-specific write
* protection.
*/
extern bool mem_wr_protect(U8 lun);
/*! \brief Tells whether the memory is removable.
*
* \param lun Logical Unit Number.
*
* \return \c true if the memory is removable, else \c false.
*/
extern bool mem_removal(U8 lun);
/*! \brief Returns a pointer to the LUN name.
*
* \param lun Logical Unit Number.
*
* \return Pointer to the LUN name string.
*/
extern const char *mem_name(U8 lun);
//! @}
#if ACCESS_USB == true
/*! \name MEM <-> USB Interface
*/
//! @{
/*! \brief Transfers data from the memory to USB.
*
* \param lun Logical Unit Number.
* \param addr Address of first memory sector to read.
* \param nb_sector Number of sectors to transfer.
*
* \return Status.
*/
extern Ctrl_status memory_2_usb(U8 lun, U32 addr, U16 nb_sector);
/*! \brief Transfers data from USB to the memory.
*
* \param lun Logical Unit Number.
* \param addr Address of first memory sector to write.
* \param nb_sector Number of sectors to transfer.
*
* \return Status.
*/
extern Ctrl_status usb_2_memory(U8 lun, U32 addr, U16 nb_sector);
//! @}
#endif // ACCESS_USB == true
#if ACCESS_MEM_TO_RAM == true
/*! \name MEM <-> RAM Interface
*/
//! @{
/*! \brief Copies 1 data sector from the memory to RAM.
*
* \param lun Logical Unit Number.
* \param addr Address of first memory sector to read.
* \param ram Pointer to RAM buffer to write.
*
* \return Status.
*/
extern Ctrl_status memory_2_ram(U8 lun, U32 addr, void *ram);
/*! \brief Copies 1 data sector from RAM to the memory.
*
* \param lun Logical Unit Number.
* \param addr Address of first memory sector to write.
* \param ram Pointer to RAM buffer to read.
*
* \return Status.
*/
extern Ctrl_status ram_2_memory(U8 lun, U32 addr, const void *ram);
//! @}
#endif // ACCESS_MEM_TO_RAM == true
#if ACCESS_STREAM == true
/*! \name Streaming MEM <-> MEM Interface
*/
//! @{
//! Erroneous streaming data transfer ID.
#define ID_STREAM_ERR 0xFF
#if ACCESS_MEM_TO_MEM == true
/*! \brief Copies data from one memory to another.
*
* \param src_lun Source Logical Unit Number.
* \param src_addr Source address of first memory sector to read.
* \param dest_lun Destination Logical Unit Number.
* \param dest_addr Destination address of first memory sector to write.
* \param nb_sector Number of sectors to copy.
*
* \return Status.
*/
extern Ctrl_status stream_mem_to_mem(U8 src_lun, U32 src_addr, U8 dest_lun, U32 dest_addr, U16 nb_sector);
#endif // ACCESS_MEM_TO_MEM == true
/*! \brief Returns the state of a streaming data transfer.
*
* \param id Transfer ID.
*
* \return Status.
*
* \todo Implement.
*/
extern Ctrl_status stream_state(U8 id);
/*! \brief Stops a streaming data transfer.
*
* \param id Transfer ID.
*
* \return Number of remaining sectors.
*
* \todo Implement.
*/
extern U16 stream_stop(U8 id);
//! @}
#endif // ACCESS_STREAM == true
/**
* \}
*/
#ifdef __cplusplus
}
#endif
#endif // _CTRL_ACCESS_H_

View file

@ -0,0 +1,278 @@
/**
* \file
*
* \brief Chip-specific generic clock management.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef CHIP_GENCLK_H_INCLUDED
#define CHIP_GENCLK_H_INCLUDED
#include <osc.h>
#include <pll.h>
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \weakgroup genclk_group
* @{
*/
//! \name Programmable Clock Identifiers (PCK)
//@{
#define GENCLK_PCK_0 0 //!< PCK0 ID
#define GENCLK_PCK_1 1 //!< PCK1 ID
#define GENCLK_PCK_2 2 //!< PCK2 ID
//@}
//! \name Programmable Clock Sources (PCK)
//@{
enum genclk_source {
GENCLK_PCK_SRC_SLCK_RC = 0, //!< Internal 32kHz RC oscillator as PCK source clock
GENCLK_PCK_SRC_SLCK_XTAL = 1, //!< External 32kHz crystal oscillator as PCK source clock
GENCLK_PCK_SRC_SLCK_BYPASS = 2, //!< External 32kHz bypass oscillator as PCK source clock
GENCLK_PCK_SRC_MAINCK_4M_RC = 3, //!< Internal 4MHz RC oscillator as PCK source clock
GENCLK_PCK_SRC_MAINCK_8M_RC = 4, //!< Internal 8MHz RC oscillator as PCK source clock
GENCLK_PCK_SRC_MAINCK_12M_RC = 5, //!< Internal 12MHz RC oscillator as PCK source clock
GENCLK_PCK_SRC_MAINCK_XTAL = 6, //!< External crystal oscillator as PCK source clock
GENCLK_PCK_SRC_MAINCK_BYPASS = 7, //!< External bypass oscillator as PCK source clock
GENCLK_PCK_SRC_PLLACK = 8, //!< Use PLLACK as PCK source clock
GENCLK_PCK_SRC_PLLBCK = 9, //!< Use PLLBCK as PCK source clock
GENCLK_PCK_SRC_MCK = 10, //!< Use Master Clk as PCK source clock
};
//@}
//! \name Programmable Clock Prescalers (PCK)
//@{
enum genclk_divider {
GENCLK_PCK_PRES_1 = PMC_PCK_PRES_CLK_1, //!< Set PCK clock prescaler to 1
GENCLK_PCK_PRES_2 = PMC_PCK_PRES_CLK_2, //!< Set PCK clock prescaler to 2
GENCLK_PCK_PRES_4 = PMC_PCK_PRES_CLK_4, //!< Set PCK clock prescaler to 4
GENCLK_PCK_PRES_8 = PMC_PCK_PRES_CLK_8, //!< Set PCK clock prescaler to 8
GENCLK_PCK_PRES_16 = PMC_PCK_PRES_CLK_16, //!< Set PCK clock prescaler to 16
GENCLK_PCK_PRES_32 = PMC_PCK_PRES_CLK_32, //!< Set PCK clock prescaler to 32
GENCLK_PCK_PRES_64 = PMC_PCK_PRES_CLK_64, //!< Set PCK clock prescaler to 64
};
//@}
struct genclk_config {
uint32_t ctrl;
};
static inline void genclk_config_defaults(struct genclk_config *p_cfg,
uint32_t ul_id)
{
ul_id = ul_id;
p_cfg->ctrl = 0;
}
static inline void genclk_config_read(struct genclk_config *p_cfg,
uint32_t ul_id)
{
p_cfg->ctrl = PMC->PMC_PCK[ul_id];
}
static inline void genclk_config_write(const struct genclk_config *p_cfg,
uint32_t ul_id)
{
PMC->PMC_PCK[ul_id] = p_cfg->ctrl;
}
//! \name Programmable Clock Source and Prescaler configuration
//@{
static inline void genclk_config_set_source(struct genclk_config *p_cfg,
enum genclk_source e_src)
{
p_cfg->ctrl &= (~PMC_PCK_CSS_Msk);
switch (e_src) {
case GENCLK_PCK_SRC_SLCK_RC:
case GENCLK_PCK_SRC_SLCK_XTAL:
case GENCLK_PCK_SRC_SLCK_BYPASS:
p_cfg->ctrl |= (PMC_PCK_CSS_SLOW_CLK);
break;
case GENCLK_PCK_SRC_MAINCK_4M_RC:
case GENCLK_PCK_SRC_MAINCK_8M_RC:
case GENCLK_PCK_SRC_MAINCK_12M_RC:
case GENCLK_PCK_SRC_MAINCK_XTAL:
case GENCLK_PCK_SRC_MAINCK_BYPASS:
p_cfg->ctrl |= (PMC_PCK_CSS_MAIN_CLK);
break;
case GENCLK_PCK_SRC_PLLACK:
p_cfg->ctrl |= (PMC_PCK_CSS_PLLA_CLK);
break;
case GENCLK_PCK_SRC_PLLBCK:
p_cfg->ctrl |= (PMC_PCK_CSS_UPLL_CLK);
break;
case GENCLK_PCK_SRC_MCK:
p_cfg->ctrl |= (PMC_PCK_CSS_MCK);
break;
}
}
static inline void genclk_config_set_divider(struct genclk_config *p_cfg,
uint32_t e_divider)
{
p_cfg->ctrl &= ~PMC_PCK_PRES_Msk;
p_cfg->ctrl |= e_divider;
}
//@}
static inline void genclk_enable(const struct genclk_config *p_cfg,
uint32_t ul_id)
{
PMC->PMC_PCK[ul_id] = p_cfg->ctrl;
pmc_enable_pck(ul_id);
}
static inline void genclk_disable(uint32_t ul_id)
{
pmc_disable_pck(ul_id);
}
static inline void genclk_enable_source(enum genclk_source e_src)
{
switch (e_src) {
case GENCLK_PCK_SRC_SLCK_RC:
if (!osc_is_ready(OSC_SLCK_32K_RC)) {
osc_enable(OSC_SLCK_32K_RC);
osc_wait_ready(OSC_SLCK_32K_RC);
}
break;
case GENCLK_PCK_SRC_SLCK_XTAL:
if (!osc_is_ready(OSC_SLCK_32K_XTAL)) {
osc_enable(OSC_SLCK_32K_XTAL);
osc_wait_ready(OSC_SLCK_32K_XTAL);
}
break;
case GENCLK_PCK_SRC_SLCK_BYPASS:
if (!osc_is_ready(OSC_SLCK_32K_BYPASS)) {
osc_enable(OSC_SLCK_32K_BYPASS);
osc_wait_ready(OSC_SLCK_32K_BYPASS);
}
break;
case GENCLK_PCK_SRC_MAINCK_4M_RC:
if (!osc_is_ready(OSC_MAINCK_4M_RC)) {
osc_enable(OSC_MAINCK_4M_RC);
osc_wait_ready(OSC_MAINCK_4M_RC);
}
break;
case GENCLK_PCK_SRC_MAINCK_8M_RC:
if (!osc_is_ready(OSC_MAINCK_8M_RC)) {
osc_enable(OSC_MAINCK_8M_RC);
osc_wait_ready(OSC_MAINCK_8M_RC);
}
break;
case GENCLK_PCK_SRC_MAINCK_12M_RC:
if (!osc_is_ready(OSC_MAINCK_12M_RC)) {
osc_enable(OSC_MAINCK_12M_RC);
osc_wait_ready(OSC_MAINCK_12M_RC);
}
break;
case GENCLK_PCK_SRC_MAINCK_XTAL:
if (!osc_is_ready(OSC_MAINCK_XTAL)) {
osc_enable(OSC_MAINCK_XTAL);
osc_wait_ready(OSC_MAINCK_XTAL);
}
break;
case GENCLK_PCK_SRC_MAINCK_BYPASS:
if (!osc_is_ready(OSC_MAINCK_BYPASS)) {
osc_enable(OSC_MAINCK_BYPASS);
osc_wait_ready(OSC_MAINCK_BYPASS);
}
break;
#ifdef CONFIG_PLL0_SOURCE
case GENCLK_PCK_SRC_PLLACK:
pll_enable_config_defaults(0);
break;
#endif
#ifdef CONFIG_PLL1_SOURCE
case GENCLK_PCK_SRC_PLLBCK:
pll_enable_config_defaults(1);
break;
#endif
case GENCLK_PCK_SRC_MCK:
break;
default:
Assert(false);
break;
}
}
//! @}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* CHIP_GENCLK_H_INCLUDED */

View file

@ -0,0 +1,339 @@
/**
* \file
*
* \brief Preprocessor macro repeating utils.
*
* Copyright (c) 2010-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _MREPEAT_H_
#define _MREPEAT_H_
/**
* \defgroup group_sam_utils_mrepeat Preprocessor - Macro Repeat
*
* \ingroup group_sam_utils
*
* \{
*/
#include "preprocessor.h"
//! Maximal number of repetitions supported by MREPEAT.
#define MREPEAT_LIMIT 256
/*! \brief Macro repeat.
*
* This macro represents a horizontal repetition construct.
*
* \param count The number of repetitious calls to macro. Valid values range from 0 to MREPEAT_LIMIT.
* \param macro A binary operation of the form macro(n, data). This macro is expanded by MREPEAT with
* the current repetition number and the auxiliary data argument.
* \param data Auxiliary data passed to macro.
*
* \return <tt>macro(0, data) macro(1, data) ... macro(count - 1, data)</tt>
*/
#define MREPEAT(count, macro, data) TPASTE2(MREPEAT, count)(macro, data)
#define MREPEAT0( macro, data)
#define MREPEAT1( macro, data) MREPEAT0( macro, data) macro( 0, data)
#define MREPEAT2( macro, data) MREPEAT1( macro, data) macro( 1, data)
#define MREPEAT3( macro, data) MREPEAT2( macro, data) macro( 2, data)
#define MREPEAT4( macro, data) MREPEAT3( macro, data) macro( 3, data)
#define MREPEAT5( macro, data) MREPEAT4( macro, data) macro( 4, data)
#define MREPEAT6( macro, data) MREPEAT5( macro, data) macro( 5, data)
#define MREPEAT7( macro, data) MREPEAT6( macro, data) macro( 6, data)
#define MREPEAT8( macro, data) MREPEAT7( macro, data) macro( 7, data)
#define MREPEAT9( macro, data) MREPEAT8( macro, data) macro( 8, data)
#define MREPEAT10( macro, data) MREPEAT9( macro, data) macro( 9, data)
#define MREPEAT11( macro, data) MREPEAT10( macro, data) macro( 10, data)
#define MREPEAT12( macro, data) MREPEAT11( macro, data) macro( 11, data)
#define MREPEAT13( macro, data) MREPEAT12( macro, data) macro( 12, data)
#define MREPEAT14( macro, data) MREPEAT13( macro, data) macro( 13, data)
#define MREPEAT15( macro, data) MREPEAT14( macro, data) macro( 14, data)
#define MREPEAT16( macro, data) MREPEAT15( macro, data) macro( 15, data)
#define MREPEAT17( macro, data) MREPEAT16( macro, data) macro( 16, data)
#define MREPEAT18( macro, data) MREPEAT17( macro, data) macro( 17, data)
#define MREPEAT19( macro, data) MREPEAT18( macro, data) macro( 18, data)
#define MREPEAT20( macro, data) MREPEAT19( macro, data) macro( 19, data)
#define MREPEAT21( macro, data) MREPEAT20( macro, data) macro( 20, data)
#define MREPEAT22( macro, data) MREPEAT21( macro, data) macro( 21, data)
#define MREPEAT23( macro, data) MREPEAT22( macro, data) macro( 22, data)
#define MREPEAT24( macro, data) MREPEAT23( macro, data) macro( 23, data)
#define MREPEAT25( macro, data) MREPEAT24( macro, data) macro( 24, data)
#define MREPEAT26( macro, data) MREPEAT25( macro, data) macro( 25, data)
#define MREPEAT27( macro, data) MREPEAT26( macro, data) macro( 26, data)
#define MREPEAT28( macro, data) MREPEAT27( macro, data) macro( 27, data)
#define MREPEAT29( macro, data) MREPEAT28( macro, data) macro( 28, data)
#define MREPEAT30( macro, data) MREPEAT29( macro, data) macro( 29, data)
#define MREPEAT31( macro, data) MREPEAT30( macro, data) macro( 30, data)
#define MREPEAT32( macro, data) MREPEAT31( macro, data) macro( 31, data)
#define MREPEAT33( macro, data) MREPEAT32( macro, data) macro( 32, data)
#define MREPEAT34( macro, data) MREPEAT33( macro, data) macro( 33, data)
#define MREPEAT35( macro, data) MREPEAT34( macro, data) macro( 34, data)
#define MREPEAT36( macro, data) MREPEAT35( macro, data) macro( 35, data)
#define MREPEAT37( macro, data) MREPEAT36( macro, data) macro( 36, data)
#define MREPEAT38( macro, data) MREPEAT37( macro, data) macro( 37, data)
#define MREPEAT39( macro, data) MREPEAT38( macro, data) macro( 38, data)
#define MREPEAT40( macro, data) MREPEAT39( macro, data) macro( 39, data)
#define MREPEAT41( macro, data) MREPEAT40( macro, data) macro( 40, data)
#define MREPEAT42( macro, data) MREPEAT41( macro, data) macro( 41, data)
#define MREPEAT43( macro, data) MREPEAT42( macro, data) macro( 42, data)
#define MREPEAT44( macro, data) MREPEAT43( macro, data) macro( 43, data)
#define MREPEAT45( macro, data) MREPEAT44( macro, data) macro( 44, data)
#define MREPEAT46( macro, data) MREPEAT45( macro, data) macro( 45, data)
#define MREPEAT47( macro, data) MREPEAT46( macro, data) macro( 46, data)
#define MREPEAT48( macro, data) MREPEAT47( macro, data) macro( 47, data)
#define MREPEAT49( macro, data) MREPEAT48( macro, data) macro( 48, data)
#define MREPEAT50( macro, data) MREPEAT49( macro, data) macro( 49, data)
#define MREPEAT51( macro, data) MREPEAT50( macro, data) macro( 50, data)
#define MREPEAT52( macro, data) MREPEAT51( macro, data) macro( 51, data)
#define MREPEAT53( macro, data) MREPEAT52( macro, data) macro( 52, data)
#define MREPEAT54( macro, data) MREPEAT53( macro, data) macro( 53, data)
#define MREPEAT55( macro, data) MREPEAT54( macro, data) macro( 54, data)
#define MREPEAT56( macro, data) MREPEAT55( macro, data) macro( 55, data)
#define MREPEAT57( macro, data) MREPEAT56( macro, data) macro( 56, data)
#define MREPEAT58( macro, data) MREPEAT57( macro, data) macro( 57, data)
#define MREPEAT59( macro, data) MREPEAT58( macro, data) macro( 58, data)
#define MREPEAT60( macro, data) MREPEAT59( macro, data) macro( 59, data)
#define MREPEAT61( macro, data) MREPEAT60( macro, data) macro( 60, data)
#define MREPEAT62( macro, data) MREPEAT61( macro, data) macro( 61, data)
#define MREPEAT63( macro, data) MREPEAT62( macro, data) macro( 62, data)
#define MREPEAT64( macro, data) MREPEAT63( macro, data) macro( 63, data)
#define MREPEAT65( macro, data) MREPEAT64( macro, data) macro( 64, data)
#define MREPEAT66( macro, data) MREPEAT65( macro, data) macro( 65, data)
#define MREPEAT67( macro, data) MREPEAT66( macro, data) macro( 66, data)
#define MREPEAT68( macro, data) MREPEAT67( macro, data) macro( 67, data)
#define MREPEAT69( macro, data) MREPEAT68( macro, data) macro( 68, data)
#define MREPEAT70( macro, data) MREPEAT69( macro, data) macro( 69, data)
#define MREPEAT71( macro, data) MREPEAT70( macro, data) macro( 70, data)
#define MREPEAT72( macro, data) MREPEAT71( macro, data) macro( 71, data)
#define MREPEAT73( macro, data) MREPEAT72( macro, data) macro( 72, data)
#define MREPEAT74( macro, data) MREPEAT73( macro, data) macro( 73, data)
#define MREPEAT75( macro, data) MREPEAT74( macro, data) macro( 74, data)
#define MREPEAT76( macro, data) MREPEAT75( macro, data) macro( 75, data)
#define MREPEAT77( macro, data) MREPEAT76( macro, data) macro( 76, data)
#define MREPEAT78( macro, data) MREPEAT77( macro, data) macro( 77, data)
#define MREPEAT79( macro, data) MREPEAT78( macro, data) macro( 78, data)
#define MREPEAT80( macro, data) MREPEAT79( macro, data) macro( 79, data)
#define MREPEAT81( macro, data) MREPEAT80( macro, data) macro( 80, data)
#define MREPEAT82( macro, data) MREPEAT81( macro, data) macro( 81, data)
#define MREPEAT83( macro, data) MREPEAT82( macro, data) macro( 82, data)
#define MREPEAT84( macro, data) MREPEAT83( macro, data) macro( 83, data)
#define MREPEAT85( macro, data) MREPEAT84( macro, data) macro( 84, data)
#define MREPEAT86( macro, data) MREPEAT85( macro, data) macro( 85, data)
#define MREPEAT87( macro, data) MREPEAT86( macro, data) macro( 86, data)
#define MREPEAT88( macro, data) MREPEAT87( macro, data) macro( 87, data)
#define MREPEAT89( macro, data) MREPEAT88( macro, data) macro( 88, data)
#define MREPEAT90( macro, data) MREPEAT89( macro, data) macro( 89, data)
#define MREPEAT91( macro, data) MREPEAT90( macro, data) macro( 90, data)
#define MREPEAT92( macro, data) MREPEAT91( macro, data) macro( 91, data)
#define MREPEAT93( macro, data) MREPEAT92( macro, data) macro( 92, data)
#define MREPEAT94( macro, data) MREPEAT93( macro, data) macro( 93, data)
#define MREPEAT95( macro, data) MREPEAT94( macro, data) macro( 94, data)
#define MREPEAT96( macro, data) MREPEAT95( macro, data) macro( 95, data)
#define MREPEAT97( macro, data) MREPEAT96( macro, data) macro( 96, data)
#define MREPEAT98( macro, data) MREPEAT97( macro, data) macro( 97, data)
#define MREPEAT99( macro, data) MREPEAT98( macro, data) macro( 98, data)
#define MREPEAT100(macro, data) MREPEAT99( macro, data) macro( 99, data)
#define MREPEAT101(macro, data) MREPEAT100(macro, data) macro(100, data)
#define MREPEAT102(macro, data) MREPEAT101(macro, data) macro(101, data)
#define MREPEAT103(macro, data) MREPEAT102(macro, data) macro(102, data)
#define MREPEAT104(macro, data) MREPEAT103(macro, data) macro(103, data)
#define MREPEAT105(macro, data) MREPEAT104(macro, data) macro(104, data)
#define MREPEAT106(macro, data) MREPEAT105(macro, data) macro(105, data)
#define MREPEAT107(macro, data) MREPEAT106(macro, data) macro(106, data)
#define MREPEAT108(macro, data) MREPEAT107(macro, data) macro(107, data)
#define MREPEAT109(macro, data) MREPEAT108(macro, data) macro(108, data)
#define MREPEAT110(macro, data) MREPEAT109(macro, data) macro(109, data)
#define MREPEAT111(macro, data) MREPEAT110(macro, data) macro(110, data)
#define MREPEAT112(macro, data) MREPEAT111(macro, data) macro(111, data)
#define MREPEAT113(macro, data) MREPEAT112(macro, data) macro(112, data)
#define MREPEAT114(macro, data) MREPEAT113(macro, data) macro(113, data)
#define MREPEAT115(macro, data) MREPEAT114(macro, data) macro(114, data)
#define MREPEAT116(macro, data) MREPEAT115(macro, data) macro(115, data)
#define MREPEAT117(macro, data) MREPEAT116(macro, data) macro(116, data)
#define MREPEAT118(macro, data) MREPEAT117(macro, data) macro(117, data)
#define MREPEAT119(macro, data) MREPEAT118(macro, data) macro(118, data)
#define MREPEAT120(macro, data) MREPEAT119(macro, data) macro(119, data)
#define MREPEAT121(macro, data) MREPEAT120(macro, data) macro(120, data)
#define MREPEAT122(macro, data) MREPEAT121(macro, data) macro(121, data)
#define MREPEAT123(macro, data) MREPEAT122(macro, data) macro(122, data)
#define MREPEAT124(macro, data) MREPEAT123(macro, data) macro(123, data)
#define MREPEAT125(macro, data) MREPEAT124(macro, data) macro(124, data)
#define MREPEAT126(macro, data) MREPEAT125(macro, data) macro(125, data)
#define MREPEAT127(macro, data) MREPEAT126(macro, data) macro(126, data)
#define MREPEAT128(macro, data) MREPEAT127(macro, data) macro(127, data)
#define MREPEAT129(macro, data) MREPEAT128(macro, data) macro(128, data)
#define MREPEAT130(macro, data) MREPEAT129(macro, data) macro(129, data)
#define MREPEAT131(macro, data) MREPEAT130(macro, data) macro(130, data)
#define MREPEAT132(macro, data) MREPEAT131(macro, data) macro(131, data)
#define MREPEAT133(macro, data) MREPEAT132(macro, data) macro(132, data)
#define MREPEAT134(macro, data) MREPEAT133(macro, data) macro(133, data)
#define MREPEAT135(macro, data) MREPEAT134(macro, data) macro(134, data)
#define MREPEAT136(macro, data) MREPEAT135(macro, data) macro(135, data)
#define MREPEAT137(macro, data) MREPEAT136(macro, data) macro(136, data)
#define MREPEAT138(macro, data) MREPEAT137(macro, data) macro(137, data)
#define MREPEAT139(macro, data) MREPEAT138(macro, data) macro(138, data)
#define MREPEAT140(macro, data) MREPEAT139(macro, data) macro(139, data)
#define MREPEAT141(macro, data) MREPEAT140(macro, data) macro(140, data)
#define MREPEAT142(macro, data) MREPEAT141(macro, data) macro(141, data)
#define MREPEAT143(macro, data) MREPEAT142(macro, data) macro(142, data)
#define MREPEAT144(macro, data) MREPEAT143(macro, data) macro(143, data)
#define MREPEAT145(macro, data) MREPEAT144(macro, data) macro(144, data)
#define MREPEAT146(macro, data) MREPEAT145(macro, data) macro(145, data)
#define MREPEAT147(macro, data) MREPEAT146(macro, data) macro(146, data)
#define MREPEAT148(macro, data) MREPEAT147(macro, data) macro(147, data)
#define MREPEAT149(macro, data) MREPEAT148(macro, data) macro(148, data)
#define MREPEAT150(macro, data) MREPEAT149(macro, data) macro(149, data)
#define MREPEAT151(macro, data) MREPEAT150(macro, data) macro(150, data)
#define MREPEAT152(macro, data) MREPEAT151(macro, data) macro(151, data)
#define MREPEAT153(macro, data) MREPEAT152(macro, data) macro(152, data)
#define MREPEAT154(macro, data) MREPEAT153(macro, data) macro(153, data)
#define MREPEAT155(macro, data) MREPEAT154(macro, data) macro(154, data)
#define MREPEAT156(macro, data) MREPEAT155(macro, data) macro(155, data)
#define MREPEAT157(macro, data) MREPEAT156(macro, data) macro(156, data)
#define MREPEAT158(macro, data) MREPEAT157(macro, data) macro(157, data)
#define MREPEAT159(macro, data) MREPEAT158(macro, data) macro(158, data)
#define MREPEAT160(macro, data) MREPEAT159(macro, data) macro(159, data)
#define MREPEAT161(macro, data) MREPEAT160(macro, data) macro(160, data)
#define MREPEAT162(macro, data) MREPEAT161(macro, data) macro(161, data)
#define MREPEAT163(macro, data) MREPEAT162(macro, data) macro(162, data)
#define MREPEAT164(macro, data) MREPEAT163(macro, data) macro(163, data)
#define MREPEAT165(macro, data) MREPEAT164(macro, data) macro(164, data)
#define MREPEAT166(macro, data) MREPEAT165(macro, data) macro(165, data)
#define MREPEAT167(macro, data) MREPEAT166(macro, data) macro(166, data)
#define MREPEAT168(macro, data) MREPEAT167(macro, data) macro(167, data)
#define MREPEAT169(macro, data) MREPEAT168(macro, data) macro(168, data)
#define MREPEAT170(macro, data) MREPEAT169(macro, data) macro(169, data)
#define MREPEAT171(macro, data) MREPEAT170(macro, data) macro(170, data)
#define MREPEAT172(macro, data) MREPEAT171(macro, data) macro(171, data)
#define MREPEAT173(macro, data) MREPEAT172(macro, data) macro(172, data)
#define MREPEAT174(macro, data) MREPEAT173(macro, data) macro(173, data)
#define MREPEAT175(macro, data) MREPEAT174(macro, data) macro(174, data)
#define MREPEAT176(macro, data) MREPEAT175(macro, data) macro(175, data)
#define MREPEAT177(macro, data) MREPEAT176(macro, data) macro(176, data)
#define MREPEAT178(macro, data) MREPEAT177(macro, data) macro(177, data)
#define MREPEAT179(macro, data) MREPEAT178(macro, data) macro(178, data)
#define MREPEAT180(macro, data) MREPEAT179(macro, data) macro(179, data)
#define MREPEAT181(macro, data) MREPEAT180(macro, data) macro(180, data)
#define MREPEAT182(macro, data) MREPEAT181(macro, data) macro(181, data)
#define MREPEAT183(macro, data) MREPEAT182(macro, data) macro(182, data)
#define MREPEAT184(macro, data) MREPEAT183(macro, data) macro(183, data)
#define MREPEAT185(macro, data) MREPEAT184(macro, data) macro(184, data)
#define MREPEAT186(macro, data) MREPEAT185(macro, data) macro(185, data)
#define MREPEAT187(macro, data) MREPEAT186(macro, data) macro(186, data)
#define MREPEAT188(macro, data) MREPEAT187(macro, data) macro(187, data)
#define MREPEAT189(macro, data) MREPEAT188(macro, data) macro(188, data)
#define MREPEAT190(macro, data) MREPEAT189(macro, data) macro(189, data)
#define MREPEAT191(macro, data) MREPEAT190(macro, data) macro(190, data)
#define MREPEAT192(macro, data) MREPEAT191(macro, data) macro(191, data)
#define MREPEAT193(macro, data) MREPEAT192(macro, data) macro(192, data)
#define MREPEAT194(macro, data) MREPEAT193(macro, data) macro(193, data)
#define MREPEAT195(macro, data) MREPEAT194(macro, data) macro(194, data)
#define MREPEAT196(macro, data) MREPEAT195(macro, data) macro(195, data)
#define MREPEAT197(macro, data) MREPEAT196(macro, data) macro(196, data)
#define MREPEAT198(macro, data) MREPEAT197(macro, data) macro(197, data)
#define MREPEAT199(macro, data) MREPEAT198(macro, data) macro(198, data)
#define MREPEAT200(macro, data) MREPEAT199(macro, data) macro(199, data)
#define MREPEAT201(macro, data) MREPEAT200(macro, data) macro(200, data)
#define MREPEAT202(macro, data) MREPEAT201(macro, data) macro(201, data)
#define MREPEAT203(macro, data) MREPEAT202(macro, data) macro(202, data)
#define MREPEAT204(macro, data) MREPEAT203(macro, data) macro(203, data)
#define MREPEAT205(macro, data) MREPEAT204(macro, data) macro(204, data)
#define MREPEAT206(macro, data) MREPEAT205(macro, data) macro(205, data)
#define MREPEAT207(macro, data) MREPEAT206(macro, data) macro(206, data)
#define MREPEAT208(macro, data) MREPEAT207(macro, data) macro(207, data)
#define MREPEAT209(macro, data) MREPEAT208(macro, data) macro(208, data)
#define MREPEAT210(macro, data) MREPEAT209(macro, data) macro(209, data)
#define MREPEAT211(macro, data) MREPEAT210(macro, data) macro(210, data)
#define MREPEAT212(macro, data) MREPEAT211(macro, data) macro(211, data)
#define MREPEAT213(macro, data) MREPEAT212(macro, data) macro(212, data)
#define MREPEAT214(macro, data) MREPEAT213(macro, data) macro(213, data)
#define MREPEAT215(macro, data) MREPEAT214(macro, data) macro(214, data)
#define MREPEAT216(macro, data) MREPEAT215(macro, data) macro(215, data)
#define MREPEAT217(macro, data) MREPEAT216(macro, data) macro(216, data)
#define MREPEAT218(macro, data) MREPEAT217(macro, data) macro(217, data)
#define MREPEAT219(macro, data) MREPEAT218(macro, data) macro(218, data)
#define MREPEAT220(macro, data) MREPEAT219(macro, data) macro(219, data)
#define MREPEAT221(macro, data) MREPEAT220(macro, data) macro(220, data)
#define MREPEAT222(macro, data) MREPEAT221(macro, data) macro(221, data)
#define MREPEAT223(macro, data) MREPEAT222(macro, data) macro(222, data)
#define MREPEAT224(macro, data) MREPEAT223(macro, data) macro(223, data)
#define MREPEAT225(macro, data) MREPEAT224(macro, data) macro(224, data)
#define MREPEAT226(macro, data) MREPEAT225(macro, data) macro(225, data)
#define MREPEAT227(macro, data) MREPEAT226(macro, data) macro(226, data)
#define MREPEAT228(macro, data) MREPEAT227(macro, data) macro(227, data)
#define MREPEAT229(macro, data) MREPEAT228(macro, data) macro(228, data)
#define MREPEAT230(macro, data) MREPEAT229(macro, data) macro(229, data)
#define MREPEAT231(macro, data) MREPEAT230(macro, data) macro(230, data)
#define MREPEAT232(macro, data) MREPEAT231(macro, data) macro(231, data)
#define MREPEAT233(macro, data) MREPEAT232(macro, data) macro(232, data)
#define MREPEAT234(macro, data) MREPEAT233(macro, data) macro(233, data)
#define MREPEAT235(macro, data) MREPEAT234(macro, data) macro(234, data)
#define MREPEAT236(macro, data) MREPEAT235(macro, data) macro(235, data)
#define MREPEAT237(macro, data) MREPEAT236(macro, data) macro(236, data)
#define MREPEAT238(macro, data) MREPEAT237(macro, data) macro(237, data)
#define MREPEAT239(macro, data) MREPEAT238(macro, data) macro(238, data)
#define MREPEAT240(macro, data) MREPEAT239(macro, data) macro(239, data)
#define MREPEAT241(macro, data) MREPEAT240(macro, data) macro(240, data)
#define MREPEAT242(macro, data) MREPEAT241(macro, data) macro(241, data)
#define MREPEAT243(macro, data) MREPEAT242(macro, data) macro(242, data)
#define MREPEAT244(macro, data) MREPEAT243(macro, data) macro(243, data)
#define MREPEAT245(macro, data) MREPEAT244(macro, data) macro(244, data)
#define MREPEAT246(macro, data) MREPEAT245(macro, data) macro(245, data)
#define MREPEAT247(macro, data) MREPEAT246(macro, data) macro(246, data)
#define MREPEAT248(macro, data) MREPEAT247(macro, data) macro(247, data)
#define MREPEAT249(macro, data) MREPEAT248(macro, data) macro(248, data)
#define MREPEAT250(macro, data) MREPEAT249(macro, data) macro(249, data)
#define MREPEAT251(macro, data) MREPEAT250(macro, data) macro(250, data)
#define MREPEAT252(macro, data) MREPEAT251(macro, data) macro(251, data)
#define MREPEAT253(macro, data) MREPEAT252(macro, data) macro(252, data)
#define MREPEAT254(macro, data) MREPEAT253(macro, data) macro(253, data)
#define MREPEAT255(macro, data) MREPEAT254(macro, data) macro(254, data)
#define MREPEAT256(macro, data) MREPEAT255(macro, data) macro(255, data)
/**
* \}
*/
#endif // _MREPEAT_H_

View file

@ -0,0 +1,261 @@
/**
* \file
*
* \brief Chip-specific oscillator management functions.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef CHIP_OSC_H_INCLUDED
#define CHIP_OSC_H_INCLUDED
#include "compiler.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/*
* Below BOARD_XXX macros are related to the specific board, and
* should be defined by the board code, otherwise default value are used.
*/
#if !defined(BOARD_FREQ_SLCK_XTAL)
# warning The board slow clock xtal frequency has not been defined.
# define BOARD_FREQ_SLCK_XTAL (32768UL)
#endif
#if !defined(BOARD_FREQ_SLCK_BYPASS)
# warning The board slow clock bypass frequency has not been defined.
# define BOARD_FREQ_SLCK_BYPASS (32768UL)
#endif
#if !defined(BOARD_FREQ_MAINCK_XTAL)
# warning The board main clock xtal frequency has not been defined.
# define BOARD_FREQ_MAINCK_XTAL (12000000UL)
#endif
#if !defined(BOARD_FREQ_MAINCK_BYPASS)
# warning The board main clock bypass frequency has not been defined.
# define BOARD_FREQ_MAINCK_BYPASS (12000000UL)
#endif
#if !defined(BOARD_OSC_STARTUP_US)
# warning The board main clock xtal startup time has not been defined.
# define BOARD_OSC_STARTUP_US (15625UL)
#endif
/**
* \weakgroup osc_group
* @{
*/
//! \name Oscillator identifiers
//@{
#define OSC_SLCK_32K_RC 0 //!< Internal 32kHz RC oscillator.
#define OSC_SLCK_32K_XTAL 1 //!< External 32kHz crystal oscillator.
#define OSC_SLCK_32K_BYPASS 2 //!< External 32kHz bypass oscillator.
#define OSC_MAINCK_4M_RC 3 //!< Internal 4MHz RC oscillator.
#define OSC_MAINCK_8M_RC 4 //!< Internal 8MHz RC oscillator.
#define OSC_MAINCK_12M_RC 5 //!< Internal 12MHz RC oscillator.
#define OSC_MAINCK_XTAL 6 //!< External crystal oscillator.
#define OSC_MAINCK_BYPASS 7 //!< External bypass oscillator.
//@}
//! \name Oscillator clock speed in hertz
//@{
#define OSC_SLCK_32K_RC_HZ CHIP_FREQ_SLCK_RC //!< Internal 32kHz RC oscillator.
#define OSC_SLCK_32K_XTAL_HZ BOARD_FREQ_SLCK_XTAL //!< External 32kHz crystal oscillator.
#define OSC_SLCK_32K_BYPASS_HZ BOARD_FREQ_SLCK_BYPASS //!< External 32kHz bypass oscillator.
#define OSC_MAINCK_4M_RC_HZ CHIP_FREQ_MAINCK_RC_4MHZ //!< Internal 4MHz RC oscillator.
#define OSC_MAINCK_8M_RC_HZ CHIP_FREQ_MAINCK_RC_8MHZ //!< Internal 8MHz RC oscillator.
#define OSC_MAINCK_12M_RC_HZ CHIP_FREQ_MAINCK_RC_12MHZ //!< Internal 12MHz RC oscillator.
#define OSC_MAINCK_XTAL_HZ BOARD_FREQ_MAINCK_XTAL //!< External crystal oscillator.
#define OSC_MAINCK_BYPASS_HZ BOARD_FREQ_MAINCK_BYPASS //!< External bypass oscillator.
//@}
static inline void osc_enable(uint32_t ul_id)
{
switch (ul_id) {
case OSC_SLCK_32K_RC:
break;
case OSC_SLCK_32K_XTAL:
pmc_switch_sclk_to_32kxtal(PMC_OSC_XTAL);
break;
case OSC_SLCK_32K_BYPASS:
pmc_switch_sclk_to_32kxtal(PMC_OSC_BYPASS);
break;
case OSC_MAINCK_4M_RC:
pmc_switch_mainck_to_fastrc(CKGR_MOR_MOSCRCF_4_MHz);
break;
case OSC_MAINCK_8M_RC:
pmc_switch_mainck_to_fastrc(CKGR_MOR_MOSCRCF_8_MHz);
break;
case OSC_MAINCK_12M_RC:
pmc_switch_mainck_to_fastrc(CKGR_MOR_MOSCRCF_12_MHz);
break;
case OSC_MAINCK_XTAL:
pmc_switch_mainck_to_xtal(PMC_OSC_XTAL/*,
pmc_us_to_moscxtst(BOARD_OSC_STARTUP_US,
OSC_SLCK_32K_RC_HZ)*/);
break;
case OSC_MAINCK_BYPASS:
pmc_switch_mainck_to_xtal(PMC_OSC_BYPASS/*,
pmc_us_to_moscxtst(BOARD_OSC_STARTUP_US,
OSC_SLCK_32K_RC_HZ)*/);
break;
}
}
static inline void osc_disable(uint32_t ul_id)
{
switch (ul_id) {
case OSC_SLCK_32K_RC:
case OSC_SLCK_32K_XTAL:
case OSC_SLCK_32K_BYPASS:
break;
case OSC_MAINCK_4M_RC:
case OSC_MAINCK_8M_RC:
case OSC_MAINCK_12M_RC:
pmc_osc_disable_fastrc();
break;
case OSC_MAINCK_XTAL:
pmc_osc_disable_xtal(PMC_OSC_XTAL);
break;
case OSC_MAINCK_BYPASS:
pmc_osc_disable_xtal(PMC_OSC_BYPASS);
break;
}
}
static inline bool osc_is_ready(uint32_t ul_id)
{
switch (ul_id) {
case OSC_SLCK_32K_RC:
return 1;
case OSC_SLCK_32K_XTAL:
case OSC_SLCK_32K_BYPASS:
return pmc_osc_is_ready_32kxtal();
case OSC_MAINCK_4M_RC:
case OSC_MAINCK_8M_RC:
case OSC_MAINCK_12M_RC:
case OSC_MAINCK_XTAL:
case OSC_MAINCK_BYPASS:
return pmc_osc_is_ready_mainck();
}
return 0;
}
static inline uint32_t osc_get_rate(uint32_t ul_id)
{
switch (ul_id) {
case OSC_SLCK_32K_RC:
return OSC_SLCK_32K_RC_HZ;
case OSC_SLCK_32K_XTAL:
return BOARD_FREQ_SLCK_XTAL;
case OSC_SLCK_32K_BYPASS:
return BOARD_FREQ_SLCK_BYPASS;
case OSC_MAINCK_4M_RC:
return OSC_MAINCK_4M_RC_HZ;
case OSC_MAINCK_8M_RC:
return OSC_MAINCK_8M_RC_HZ;
case OSC_MAINCK_12M_RC:
return OSC_MAINCK_12M_RC_HZ;
case OSC_MAINCK_XTAL:
return BOARD_FREQ_MAINCK_XTAL;
case OSC_MAINCK_BYPASS:
return BOARD_FREQ_MAINCK_BYPASS;
}
return 0;
}
/**
* \brief Wait until the oscillator identified by \a id is ready
*
* This function will busy-wait for the oscillator identified by \a id
* to become stable and ready to use as a clock source.
*
* \param id A number identifying the oscillator to wait for.
*/
static inline void osc_wait_ready(uint8_t id)
{
while (!osc_is_ready(id)) {
/* Do nothing */
}
}
//! @}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* CHIP_OSC_H_INCLUDED */

View file

@ -0,0 +1,288 @@
/**
* \file
*
* \brief Chip-specific PLL definitions.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef CHIP_PLL_H_INCLUDED
#define CHIP_PLL_H_INCLUDED
#include "osc.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \weakgroup pll_group
* @{
*/
#define PLL_OUTPUT_MIN_HZ 84000000
#define PLL_OUTPUT_MAX_HZ 192000000
#define PLL_INPUT_MIN_HZ 8000000
#define PLL_INPUT_MAX_HZ 16000000
#define NR_PLLS 2
#define PLLA_ID 0
#define UPLL_ID 1 //!< USB UTMI PLL.
#define PLL_UPLL_HZ 480000000
#define PLL_COUNT 0x3fU
enum pll_source {
PLL_SRC_MAINCK_4M_RC = OSC_MAINCK_4M_RC, //!< Internal 4MHz RC oscillator.
PLL_SRC_MAINCK_8M_RC = OSC_MAINCK_8M_RC, //!< Internal 8MHz RC oscillator.
PLL_SRC_MAINCK_12M_RC = OSC_MAINCK_12M_RC, //!< Internal 12MHz RC oscillator.
PLL_SRC_MAINCK_XTAL = OSC_MAINCK_XTAL, //!< External crystal oscillator.
PLL_SRC_MAINCK_BYPASS = OSC_MAINCK_BYPASS, //!< External bypass oscillator.
PLL_NR_SOURCES, //!< Number of PLL sources.
};
struct pll_config {
uint32_t ctrl;
};
#define pll_get_default_rate(pll_id) \
((osc_get_rate(CONFIG_PLL##pll_id##_SOURCE) \
* CONFIG_PLL##pll_id##_MUL) \
/ CONFIG_PLL##pll_id##_DIV)
/* Force UTMI PLL parameters (Hardware defined) */
#ifdef CONFIG_PLL1_SOURCE
# undef CONFIG_PLL1_SOURCE
#endif
#ifdef CONFIG_PLL1_MUL
# undef CONFIG_PLL1_MUL
#endif
#ifdef CONFIG_PLL1_DIV
# undef CONFIG_PLL1_DIV
#endif
#define CONFIG_PLL1_SOURCE PLL_SRC_MAINCK_XTAL
#define CONFIG_PLL1_MUL 0
#define CONFIG_PLL1_DIV 0
/**
* \note The SAM3X PLL hardware interprets mul as mul+1. For readability the hardware mul+1
* is hidden in this implementation. Use mul as mul effective value.
*/
static inline void pll_config_init(struct pll_config *p_cfg,
enum pll_source e_src, uint32_t ul_div, uint32_t ul_mul)
{
uint32_t vco_hz;
Assert(e_src < PLL_NR_SOURCES);
if (ul_div == 0 && ul_mul == 0) { /* Must only be true for UTMI PLL */
p_cfg->ctrl = CKGR_UCKR_UPLLCOUNT(PLL_COUNT);
} else { /* PLLA */
/* Calculate internal VCO frequency */
vco_hz = osc_get_rate(e_src) / ul_div;
Assert(vco_hz >= PLL_INPUT_MIN_HZ);
Assert(vco_hz <= PLL_INPUT_MAX_HZ);
vco_hz *= ul_mul;
Assert(vco_hz >= PLL_OUTPUT_MIN_HZ);
Assert(vco_hz <= PLL_OUTPUT_MAX_HZ);
/* PMC hardware will automatically make it mul+1 */
p_cfg->ctrl = CKGR_PLLAR_MULA(ul_mul - 1) | CKGR_PLLAR_DIVA(ul_div) | CKGR_PLLAR_PLLACOUNT(PLL_COUNT);
}
}
#define pll_config_defaults(cfg, pll_id) \
pll_config_init(cfg, \
CONFIG_PLL##pll_id##_SOURCE, \
CONFIG_PLL##pll_id##_DIV, \
CONFIG_PLL##pll_id##_MUL)
static inline void pll_config_read(struct pll_config *p_cfg, uint32_t ul_pll_id)
{
Assert(ul_pll_id < NR_PLLS);
if (ul_pll_id == PLLA_ID) {
p_cfg->ctrl = PMC->CKGR_PLLAR;
} else {
p_cfg->ctrl = PMC->CKGR_UCKR;
}
}
static inline void pll_config_write(const struct pll_config *p_cfg, uint32_t ul_pll_id)
{
Assert(ul_pll_id < NR_PLLS);
if (ul_pll_id == PLLA_ID) {
pmc_disable_pllack(); // Always stop PLL first!
PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | p_cfg->ctrl;
} else {
PMC->CKGR_UCKR = p_cfg->ctrl;
}
}
static inline void pll_enable(const struct pll_config *p_cfg, uint32_t ul_pll_id)
{
Assert(ul_pll_id < NR_PLLS);
if (ul_pll_id == PLLA_ID) {
pmc_disable_pllack(); // Always stop PLL first!
PMC->CKGR_PLLAR = CKGR_PLLAR_ONE | p_cfg->ctrl;
} else {
PMC->CKGR_UCKR = p_cfg->ctrl | CKGR_UCKR_UPLLEN;
}
}
/**
* \note This will only disable the selected PLL, not the underlying oscillator (mainck).
*/
static inline void pll_disable(uint32_t ul_pll_id)
{
Assert(ul_pll_id < NR_PLLS);
if (ul_pll_id == PLLA_ID) {
pmc_disable_pllack();
} else {
PMC->CKGR_UCKR &= ~CKGR_UCKR_UPLLEN;
}
}
static inline uint32_t pll_is_locked(uint32_t ul_pll_id)
{
Assert(ul_pll_id < NR_PLLS);
if (ul_pll_id == PLLA_ID) {
return pmc_is_locked_pllack();
} else {
return pmc_is_locked_upll();
}
}
static inline void pll_enable_source(enum pll_source e_src)
{
switch (e_src) {
case PLL_SRC_MAINCK_4M_RC:
case PLL_SRC_MAINCK_8M_RC:
case PLL_SRC_MAINCK_12M_RC:
case PLL_SRC_MAINCK_XTAL:
case PLL_SRC_MAINCK_BYPASS:
osc_enable(e_src);
osc_wait_ready(e_src);
break;
default:
Assert(false);
break;
}
}
static inline void pll_enable_config_defaults(unsigned int ul_pll_id)
{
struct pll_config pllcfg;
if (pll_is_locked(ul_pll_id)) {
return; // Pll already running
}
switch (ul_pll_id) {
#ifdef CONFIG_PLL0_SOURCE
case 0:
pll_enable_source(CONFIG_PLL0_SOURCE);
pll_config_init(&pllcfg,
CONFIG_PLL0_SOURCE,
CONFIG_PLL0_DIV,
CONFIG_PLL0_MUL);
break;
#endif
#ifdef CONFIG_PLL1_SOURCE
case 1:
pll_enable_source(CONFIG_PLL1_SOURCE);
pll_config_init(&pllcfg,
CONFIG_PLL1_SOURCE,
CONFIG_PLL1_DIV,
CONFIG_PLL1_MUL);
break;
#endif
default:
Assert(false);
break;
}
pll_enable(&pllcfg, ul_pll_id);
while (!pll_is_locked(ul_pll_id));
}
/**
* \brief Wait for PLL \a pll_id to become locked
*
* \todo Use a timeout to avoid waiting forever and hanging the system
*
* \param pll_id The ID of the PLL to wait for.
*
* \retval STATUS_OK The PLL is now locked.
* \retval ERR_TIMEOUT Timed out waiting for PLL to become locked.
*/
static inline int pll_wait_for_lock(unsigned int pll_id)
{
Assert(pll_id < NR_PLLS);
while (!pll_is_locked(pll_id)) {
/* Do nothing */
}
return 0;
}
//! @}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* CHIP_PLL_H_INCLUDED */

View file

@ -0,0 +1,55 @@
/**
* \file
*
* \brief Preprocessor utils.
*
* Copyright (c) 2010-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _PREPROCESSOR_H_
#define _PREPROCESSOR_H_
#include "tpaste.h"
#include "stringz.h"
#include "mrepeat.h"
#endif // _PREPROCESSOR_H_

View file

@ -0,0 +1,173 @@
/**
* \file
*
* \brief SCSI Block Commands
*
* This file contains definitions of some of the commands found in the
* SCSI SBC-2 standard.
*
* Note that the SBC specification depends on several commands defined
* by the SCSI Primary Commands (SPC) standard. Each version of the SBC
* standard is meant to be used in conjunction with a specific version
* of the SPC standard, as follows:
* - SBC depends on SPC
* - SBC-2 depends on SPC-3
* - SBC-3 depends on SPC-4
*
* Copyright (c) 2014-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _SBC_PROTOCOL_H_
#define _SBC_PROTOCOL_H_
/**
* \ingroup usb_msc_protocol
* \defgroup usb_sbc_protocol SCSI Block Commands protocol definitions
*
* @{
*/
//! \name SCSI commands defined by SBC-2
//@{
#define SBC_FORMAT_UNIT 0x04
#define SBC_READ6 0x08
#define SBC_WRITE6 0x0A
#define SBC_START_STOP_UNIT 0x1B
#define SBC_READ_CAPACITY10 0x25
#define SBC_READ10 0x28
#define SBC_WRITE10 0x2A
#define SBC_VERIFY10 0x2F
//@}
//! \name SBC-2 Mode page definitions
//@{
enum scsi_sbc_mode {
SCSI_MS_MODE_RW_ERR_RECOV = 0x01, //!< Read-Write Error Recovery mode page
SCSI_MS_MODE_FORMAT_DEVICE = 0x03, //!< Format Device mode page
SCSI_MS_MODE_FLEXIBLE_DISK = 0x05, //!< Flexible Disk mode page
SCSI_MS_MODE_CACHING = 0x08, //!< Caching mode page
};
//! \name SBC-2 Device-Specific Parameter
//@{
#define SCSI_MS_SBC_WP 0x80 //!< Write Protected
#define SCSI_MS_SBC_DPOFUA 0x10 //!< DPO and FUA supported
//@}
/**
* \brief SBC-2 Short LBA mode parameter block descriptor
*/
struct sbc_slba_block_desc {
be32_t nr_blocks; //!< Number of Blocks
be32_t block_len; //!< Block Length
#define SBC_SLBA_BLOCK_LEN_MASK 0x00FFFFFFU //!< Mask reserved bits
};
/**
* \brief SBC-2 Caching mode page
*/
struct sbc_caching_mode_page {
uint8_t page_code;
uint8_t page_length;
uint8_t flags2;
#define SBC_MP_CACHE_IC (1 << 7) //!< Initiator Control
#define SBC_MP_CACHE_ABPF (1 << 6) //!< Abort Pre-Fetch
#define SBC_MP_CACHE_CAP (1 << 5) //!< Catching Analysis Permitted
#define SBC_MP_CACHE_DISC (1 << 4) //!< Discontinuity
#define SBC_MP_CACHE_SIZE (1 << 3) //!< Size enable
#define SBC_MP_CACHE_WCE (1 << 2) //!< Write back Cache Enable
#define SBC_MP_CACHE_MF (1 << 1) //!< Multiplication Factor
#define SBC_MP_CACHE_RCD (1 << 0) //!< Read Cache Disable
uint8_t retention;
be16_t dis_pf_transfer_len;
be16_t min_prefetch;
be16_t max_prefetch;
be16_t max_prefetch_ceil;
uint8_t flags12;
#define SBC_MP_CACHE_FSW (1 << 7) //!< Force Sequential Write
#define SBC_MP_CACHE_LBCSS (1 << 6) //!< Logical Blk Cache Seg Sz
#define SBC_MP_CACHE_DRA (1 << 5) //!< Disable Read-Ahead
#define SBC_MP_CACHE_NV_DIS (1 << 0) //!< Non-Volatile Cache Disable
uint8_t nr_cache_segments;
be16_t cache_segment_size;
uint8_t reserved[4];
};
/**
* \brief SBC-2 Read-Write Error Recovery mode page
*/
struct sbc_rdwr_error_recovery_mode_page {
uint8_t page_code;
uint8_t page_length;
#define SPC_MP_RW_ERR_RECOV_PAGE_LENGTH 0x0A
uint8_t flags1;
#define SBC_MP_RW_ERR_RECOV_AWRE (1 << 7)
#define SBC_MP_RW_ERR_RECOV_ARRE (1 << 6)
#define SBC_MP_RW_ERR_RECOV_TB (1 << 5)
#define SBC_MP_RW_ERR_RECOV_RC (1 << 4)
#define SBC_MP_RW_ERR_RECOV_ERR (1 << 3)
#define SBC_MP_RW_ERR_RECOV_PER (1 << 2)
#define SBC_MP_RW_ERR_RECOV_DTE (1 << 1)
#define SBC_MP_RW_ERR_RECOV_DCR (1 << 0)
uint8_t read_retry_count;
uint8_t correction_span;
uint8_t head_offset_count;
uint8_t data_strobe_offset_count;
uint8_t flags2;
uint8_t write_retry_count;
uint8_t flags3;
be16_t recovery_time_limit;
};
//@}
/**
* \brief SBC-2 READ CAPACITY (10) parameter data
*/
struct sbc_read_capacity10_data {
be32_t max_lba; //!< LBA of last logical block
be32_t block_len; //!< Number of bytes in the last logical block
};
//@}
#endif // _SBC_PROTOCOL_H_

View file

@ -0,0 +1,135 @@
/**
* Interface from Atmel USB MSD to Marlin SD card
*/
#ifdef ARDUINO_ARCH_SAM
#include "../../../inc/MarlinConfig.h"
#include "../../../sd/cardreader.h"
extern "C" {
#include "sd_mmc_spi_mem.h"
}
#define SD_MMC_BLOCK_SIZE 512
void sd_mmc_spi_mem_init(void)
{
}
Ctrl_status sd_mmc_spi_test_unit_ready(void)
{
if (!IS_SD_INSERTED || IS_SD_PRINTING || IS_SD_FILE_OPEN || !card.cardOK)
return CTRL_NO_PRESENT;
return CTRL_GOOD;
}
Ctrl_status sd_mmc_spi_read_capacity(uint32_t *nb_sector)
{
if (!IS_SD_INSERTED || IS_SD_PRINTING || IS_SD_FILE_OPEN || !card.cardOK)
return CTRL_NO_PRESENT;
*nb_sector = card.getSd2Card().cardSize();
return CTRL_GOOD;
}
bool sd_mmc_spi_unload(bool unload)
{
return true;
}
bool sd_mmc_spi_wr_protect(void)
{
return false;
}
bool sd_mmc_spi_removal(void)
{
if (!IS_SD_INSERTED || IS_SD_PRINTING || IS_SD_FILE_OPEN || !card.cardOK)
return true;
return false;
}
#if ACCESS_USB == true
/**
* \name MEM <-> USB Interface
* @{
*/
#include "udi_msc.h"
COMPILER_WORD_ALIGNED
uint8_t sector_buf[SD_MMC_BLOCK_SIZE];
// #define DEBUG_MMC
Ctrl_status sd_mmc_spi_usb_read_10(uint32_t addr, uint16_t nb_sector)
{
if (!IS_SD_INSERTED || IS_SD_PRINTING || IS_SD_FILE_OPEN || !card.cardOK)
return CTRL_NO_PRESENT;
#ifdef DEBUG_MMC
char buffer[80];
sprintf(buffer, "SDRD: %d @ 0x%08x\n", nb_sector, addr);
MYSERIAL.print(buffer);
#endif
// Start reading
if (!card.getSd2Card().readStart(addr))
return CTRL_FAIL;
// For each specified sector
while (nb_sector--) {
// Read a sector
card.getSd2Card().readData(sector_buf);
// RAM -> USB
if (!udi_msc_trans_block(true, sector_buf, SD_MMC_BLOCK_SIZE, NULL)) {
card.getSd2Card().readStop();
return CTRL_FAIL;
}
}
// Stop reading
card.getSd2Card().readStop();
// Done
return CTRL_GOOD;
}
Ctrl_status sd_mmc_spi_usb_write_10(uint32_t addr, uint16_t nb_sector)
{
if (!IS_SD_INSERTED || IS_SD_PRINTING || IS_SD_FILE_OPEN || !card.cardOK)
return CTRL_NO_PRESENT;
#ifdef DEBUG_MMC
char buffer[80];
sprintf(buffer, "SDWR: %d @ 0x%08x\n", nb_sector, addr);
MYSERIAL.print(buffer);
#endif
if (!card.getSd2Card().writeStart(addr, nb_sector))
return CTRL_FAIL;
// For each specified sector
while (nb_sector--) {
// USB -> RAM
if (!udi_msc_trans_block(false, sector_buf, SD_MMC_BLOCK_SIZE, NULL)) {
card.getSd2Card().writeStop();
return CTRL_FAIL;
}
// Write a sector
card.getSd2Card().writeData(sector_buf);
}
// Stop writing
card.getSd2Card().writeStop();
// Done
return CTRL_GOOD;
}
#endif // ACCESS_USB == true
#endif

View file

@ -0,0 +1,177 @@
/*****************************************************************************
*
* \file
*
* \brief CTRL_ACCESS interface for SD/MMC card.
*
* Copyright (c) 2014-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
******************************************************************************/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _SD_MMC_SPI_MEM_H_
#define _SD_MMC_SPI_MEM_H_
/**
* \defgroup group_avr32_components_memory_sd_mmc_sd_mmc_spi_mem SD/MMC SPI Memory
*
* \ingroup group_avr32_components_memory_sd_mmc_sd_mmc_spi
*
* \{
*/
#include "conf_access.h"
#if SD_MMC_SPI_MEM == DISABLE
#error sd_mmc_spi_mem.h is #included although SD_MMC_SPI_MEM is disabled
#endif
#include "ctrl_access.h"
//_____ D E F I N I T I O N S ______________________________________________
#define SD_MMC_REMOVED 0
#define SD_MMC_INSERTED 1
#define SD_MMC_REMOVING 2
//---- CONTROL FONCTIONS ----
//!
//! @brief This function initializes the hw/sw resources required to drive the SD_MMC_SPI.
//!/
extern void sd_mmc_spi_mem_init(void);
//!
//! @brief This function tests the state of the SD_MMC memory and sends it to the Host.
//! For a PC, this device is seen as a removable media
//! Before indicating any modification of the status of the media (GOOD->NO_PRESENT or vice-versa),
//! the function must return the BUSY data to make the PC accepting the change
//!
//! @return Ctrl_status
//! Media is ready -> CTRL_GOOD
//! Media not present -> CTRL_NO_PRESENT
//! Media has changed -> CTRL_BUSY
//!/
extern Ctrl_status sd_mmc_spi_test_unit_ready(void);
//!
//! @brief This function gives the address of the last valid sector.
//!
//! @param *nb_sector number of sector (sector = 512B). OUT
//!
//! @return Ctrl_status
//! Media ready -> CTRL_GOOD
//! Media not present -> CTRL_NO_PRESENT
//!/
extern Ctrl_status sd_mmc_spi_read_capacity(uint32_t *nb_sector);
/*! \brief Unload/Load the SD/MMC card selected
*
* The START STOP UNIT SCSI optional command allows an application client to
* eject the removable medium on a LUN.
*
* \param unload \c true to unload the medium, \c false to load the medium.
*
* \return \c true if unload/load done success.
*/
extern bool sd_mmc_spi_unload(bool unload);
//!
//! @brief This function returns the write protected status of the memory.
//!
//! Only used by memory removal with a HARDWARE SPECIFIC write protected detection
//! ! The user must unplug the memory to change this write protected status,
//! which cannot be for a SD_MMC.
//!
//! @return false -> the memory is not write-protected (always)
//!/
extern bool sd_mmc_spi_wr_protect(void);
//!
//! @brief This function tells if the memory has been removed or not.
//!
//! @return false -> The memory isn't removed
//!
extern bool sd_mmc_spi_removal(void);
//---- ACCESS DATA FONCTIONS ----
#if ACCESS_USB == true
// Standard functions for open in read/write mode the device
//!
//! @brief This function performs a read operation of n sectors from a given address on.
//! (sector = 512B)
//!
//! DATA FLOW is: SD_MMC => USB
//!
//! @param addr Sector address to start the read from
//! @param nb_sector Number of sectors to transfer
//!
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! A error occur -> CTRL_FAIL
//!
extern Ctrl_status sd_mmc_spi_usb_read_10(uint32_t addr, uint16_t nb_sector);
//! This function initializes the SD/MMC memory for a write operation
//!
//! DATA FLOW is: USB => SD_MMC
//!
//! (sector = 512B)
//! @param addr Sector address to start write
//! @param nb_sector Number of sectors to transfer
//!
//! @return Ctrl_status
//! It is ready -> CTRL_GOOD
//! An error occurs -> CTRL_FAIL
//!
extern Ctrl_status sd_mmc_spi_usb_write_10(uint32_t addr, uint16_t nb_sector);
#endif // #if ACCESS_USB == true
/**
* \}
*/
#endif // _SD_MMC_SPI_MEM_H_

View file

@ -0,0 +1,337 @@
/**
* \file
*
* \brief SCSI Primary Commands
*
* This file contains definitions of some of the commands found in the
* SPC-2 standard.
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _SPC_PROTOCOL_H_
#define _SPC_PROTOCOL_H_
/**
* \ingroup usb_msc_protocol
* \defgroup usb_spc_protocol SCSI Primary Commands protocol definitions
*
* @{
*/
//! \name SCSI commands defined by SPC-2
//@{
#define SPC_TEST_UNIT_READY 0x00
#define SPC_REQUEST_SENSE 0x03
#define SPC_INQUIRY 0x12
#define SPC_MODE_SELECT6 0x15
#define SPC_MODE_SENSE6 0x1A
#define SPC_SEND_DIAGNOSTIC 0x1D
#define SPC_PREVENT_ALLOW_MEDIUM_REMOVAL 0x1E
#define SPC_MODE_SENSE10 0x5A
#define SPC_REPORT_LUNS 0xA0
//@}
//! \brief May be set in byte 0 of the INQUIRY CDB
//@{
//! Enable Vital Product Data
#define SCSI_INQ_REQ_EVPD 0x01
//! Command Support Data specified by the PAGE OR OPERATION CODE field
#define SCSI_INQ_REQ_CMDT 0x02
//@}
COMPILER_PACK_SET(1)
/**
* \brief SCSI Standard Inquiry data structure
*/
struct scsi_inquiry_data {
uint8_t pq_pdt; //!< Peripheral Qual / Peripheral Dev Type
#define SCSI_INQ_PQ_CONNECTED 0x00 //!< Peripheral connected
#define SCSI_INQ_PQ_NOT_CONN 0x20 //!< Peripheral not connected
#define SCSI_INQ_PQ_NOT_SUPP 0x60 //!< Peripheral not supported
#define SCSI_INQ_DT_DIR_ACCESS 0x00 //!< Direct Access (SBC)
#define SCSI_INQ_DT_SEQ_ACCESS 0x01 //!< Sequential Access
#define SCSI_INQ_DT_PRINTER 0x02 //!< Printer
#define SCSI_INQ_DT_PROCESSOR 0x03 //!< Processor device
#define SCSI_INQ_DT_WRITE_ONCE 0x04 //!< Write-once device
#define SCSI_INQ_DT_CD_DVD 0x05 //!< CD/DVD device
#define SCSI_INQ_DT_OPTICAL 0x07 //!< Optical Memory
#define SCSI_INQ_DT_MC 0x08 //!< Medium Changer
#define SCSI_INQ_DT_ARRAY 0x0c //!< Storage Array Controller
#define SCSI_INQ_DT_ENCLOSURE 0x0d //!< Enclosure Services
#define SCSI_INQ_DT_RBC 0x0e //!< Simplified Direct Access
#define SCSI_INQ_DT_OCRW 0x0f //!< Optical card reader/writer
#define SCSI_INQ_DT_BCC 0x10 //!< Bridge Controller Commands
#define SCSI_INQ_DT_OSD 0x11 //!< Object-based Storage
#define SCSI_INQ_DT_NONE 0x1f //!< No Peripheral
uint8_t flags1; //!< Flags (byte 1)
#define SCSI_INQ_RMB 0x80 //!< Removable Medium
uint8_t version; //!< Version
#define SCSI_INQ_VER_NONE 0x00 //!< No standards conformance
#define SCSI_INQ_VER_SPC 0x03 //!< SCSI Primary Commands (link to SBC)
#define SCSI_INQ_VER_SPC2 0x04 //!< SCSI Primary Commands - 2 (link to SBC-2)
#define SCSI_INQ_VER_SPC3 0x05 //!< SCSI Primary Commands - 3 (link to SBC-2)
#define SCSI_INQ_VER_SPC4 0x06 //!< SCSI Primary Commands - 4 (link to SBC-3)
uint8_t flags3; //!< Flags (byte 3)
#define SCSI_INQ_NORMACA 0x20 //!< Normal ACA Supported
#define SCSI_INQ_HISUP 0x10 //!< Hierarchal LUN addressing
#define SCSI_INQ_RSP_SPC2 0x02 //!< SPC-2 / SPC-3 response format
uint8_t addl_len; //!< Additional Length (n-4)
#define SCSI_INQ_ADDL_LEN(tot) ((tot)-5) //!< Total length is \a tot
uint8_t flags5; //!< Flags (byte 5)
#define SCSI_INQ_SCCS 0x80
uint8_t flags6; //!< Flags (byte 6)
#define SCSI_INQ_BQUE 0x80
#define SCSI_INQ_ENCSERV 0x40
#define SCSI_INQ_MULTIP 0x10
#define SCSI_INQ_MCHGR 0x08
#define SCSI_INQ_ADDR16 0x01
uint8_t flags7; //!< Flags (byte 7)
#define SCSI_INQ_WBUS16 0x20
#define SCSI_INQ_SYNC 0x10
#define SCSI_INQ_LINKED 0x08
#define SCSI_INQ_CMDQUE 0x02
uint8_t vendor_id[8]; //!< T10 Vendor Identification
uint8_t product_id[16]; //!< Product Identification
uint8_t product_rev[4]; //!< Product Revision Level
};
/**
* \brief SCSI Standard Request sense data structure
*/
struct scsi_request_sense_data {
/* 1st byte: REQUEST SENSE response flags*/
uint8_t valid_reponse_code;
#define SCSI_SENSE_VALID 0x80 //!< Indicates the INFORMATION field contains valid information
#define SCSI_SENSE_RESPONSE_CODE_MASK 0x7F
#define SCSI_SENSE_CURRENT 0x70 //!< Response code 70h (current errors)
#define SCSI_SENSE_DEFERRED 0x71
/* 2nd byte */
uint8_t obsolete;
/* 3rd byte */
uint8_t sense_flag_key;
#define SCSI_SENSE_FILEMARK 0x80 //!< Indicates that the current command has read a filemark or setmark.
#define SCSI_SENSE_EOM 0x40 //!< Indicates that an end-of-medium condition exists.
#define SCSI_SENSE_ILI 0x20 //!< Indicates that the requested logical block length did not match the logical block length of the data on the medium.
#define SCSI_SENSE_RESERVED 0x10 //!< Reserved
#define SCSI_SENSE_KEY(x) (x&0x0F) //!< Sense Key
/* 4th to 7th bytes - INFORMATION field */
uint8_t information[4];
/* 8th byte - ADDITIONAL SENSE LENGTH field */
uint8_t AddSenseLen;
#define SCSI_SENSE_ADDL_LEN(total_len) ((total_len) - 8)
/* 9th to 12th byte - COMMAND-SPECIFIC INFORMATION field */
uint8_t CmdSpecINFO[4];
/* 13th byte - ADDITIONAL SENSE CODE field */
uint8_t AddSenseCode;
/* 14th byte - ADDITIONAL SENSE CODE QUALIFIER field */
uint8_t AddSnsCodeQlfr;
/* 15th byte - FIELD REPLACEABLE UNIT CODE field */
uint8_t FldReplUnitCode;
/* 16th byte */
uint8_t SenseKeySpec[3];
#define SCSI_SENSE_SKSV 0x80 //!< Indicates the SENSE-KEY SPECIFIC field contains valid information
};
COMPILER_PACK_RESET()
/* Vital Product Data page codes */
enum scsi_vpd_page_code {
SCSI_VPD_SUPPORTED_PAGES = 0x00,
SCSI_VPD_UNIT_SERIAL_NUMBER = 0x80,
SCSI_VPD_DEVICE_IDENTIFICATION = 0x83,
};
#define SCSI_VPD_HEADER_SIZE 4
/* Constants associated with the Device Identification VPD page */
#define SCSI_VPD_ID_HEADER_SIZE 4
#define SCSI_VPD_CODE_SET_BINARY 1
#define SCSI_VPD_CODE_SET_ASCII 2
#define SCSI_VPD_CODE_SET_UTF8 3
#define SCSI_VPD_ID_TYPE_T10 1
/* Sense keys */
enum scsi_sense_key {
SCSI_SK_NO_SENSE = 0x0,
SCSI_SK_RECOVERED_ERROR = 0x1,
SCSI_SK_NOT_READY = 0x2,
SCSI_SK_MEDIUM_ERROR = 0x3,
SCSI_SK_HARDWARE_ERROR = 0x4,
SCSI_SK_ILLEGAL_REQUEST = 0x5,
SCSI_SK_UNIT_ATTENTION = 0x6,
SCSI_SK_DATA_PROTECT = 0x7,
SCSI_SK_BLANK_CHECK = 0x8,
SCSI_SK_VENDOR_SPECIFIC = 0x9,
SCSI_SK_COPY_ABORTED = 0xa,
SCSI_SK_ABORTED_COMMAND = 0xb,
SCSI_SK_VOLUME_OVERFLOW = 0xd,
SCSI_SK_MISCOMPARE = 0xe,
};
/* Additional Sense Code / Additional Sense Code Qualifier pairs */
enum scsi_asc_ascq {
SCSI_ASC_NO_ADDITIONAL_SENSE_INFO = 0x0000,
SCSI_ASC_LU_NOT_READY_REBUILD_IN_PROGRESS = 0x0405,
SCSI_ASC_WRITE_ERROR = 0x0c00,
SCSI_ASC_UNRECOVERED_READ_ERROR = 0x1100,
SCSI_ASC_INVALID_COMMAND_OPERATION_CODE = 0x2000,
SCSI_ASC_INVALID_FIELD_IN_CDB = 0x2400,
SCSI_ASC_WRITE_PROTECTED = 0x2700,
SCSI_ASC_NOT_READY_TO_READY_CHANGE = 0x2800,
SCSI_ASC_MEDIUM_NOT_PRESENT = 0x3A00,
SCSI_ASC_INTERNAL_TARGET_FAILURE = 0x4400,
};
/**
* \brief SPC-2 Mode parameter
* This subclause describes the block descriptors and the pages
* used with MODE SELECT and MODE SENSE commands
* that are applicable to all SCSI devices.
*/
enum scsi_spc_mode {
SCSI_MS_MODE_VENDOR_SPEC = 0x00,
SCSI_MS_MODE_INFEXP = 0x1C, // Informational exceptions control page
SCSI_MS_MODE_ALL = 0x3f,
};
/**
* \brief SPC-2 Informational exceptions control page
* See chapter 8.3.8
*/
struct spc_control_page_info_execpt {
uint8_t page_code;
uint8_t page_length;
#define SPC_MP_INFEXP_PAGE_LENGTH 0x0A
uint8_t flags1;
#define SPC_MP_INFEXP_PERF (1<<7) //!< Initiator Control
#define SPC_MP_INFEXP_EBF (1<<5) //!< Caching Analysis Permitted
#define SPC_MP_INFEXP_EWASC (1<<4) //!< Discontinuity
#define SPC_MP_INFEXP_DEXCPT (1<<3) //!< Size enable
#define SPC_MP_INFEXP_TEST (1<<2) //!< Writeback Cache Enable
#define SPC_MP_INFEXP_LOGERR (1<<0) //!< Log errors bit
uint8_t mrie;
#define SPC_MP_INFEXP_MRIE_NO_REPORT 0x00
#define SPC_MP_INFEXP_MRIE_ASYNC_EVENT 0x01
#define SPC_MP_INFEXP_MRIE_GEN_UNIT 0x02
#define SPC_MP_INFEXP_MRIE_COND_RECOV_ERROR 0x03
#define SPC_MP_INFEXP_MRIE_UNCOND_RECOV_ERROR 0x04
#define SPC_MP_INFEXP_MRIE_NO_SENSE 0x05
#define SPC_MP_INFEXP_MRIE_ONLY_REPORT 0x06
be32_t interval_timer;
be32_t report_count;
};
enum scsi_spc_mode_sense_pc {
SCSI_MS_SENSE_PC_CURRENT = 0,
SCSI_MS_SENSE_PC_CHANGEABLE = 1,
SCSI_MS_SENSE_PC_DEFAULT = 2,
SCSI_MS_SENSE_PC_SAVED = 3,
};
static inline bool scsi_mode_sense_dbd_is_set(const uint8_t * cdb)
{
return (cdb[1] >> 3) & 1;
}
static inline uint8_t scsi_mode_sense_get_page_code(const uint8_t * cdb)
{
return cdb[2] & 0x3f;
}
static inline uint8_t scsi_mode_sense_get_pc(const uint8_t * cdb)
{
return cdb[2] >> 6;
}
/**
* \brief SCSI Mode Parameter Header used by MODE SELECT(6) and MODE
* SENSE(6)
*/
struct scsi_mode_param_header6 {
uint8_t mode_data_length; //!< Number of bytes after this
uint8_t medium_type; //!< Medium Type
uint8_t device_specific_parameter; //!< Defined by command set
uint8_t block_descriptor_length; //!< Length of block descriptors
};
/**
* \brief SCSI Mode Parameter Header used by MODE SELECT(10) and MODE
* SENSE(10)
*/
struct scsi_mode_param_header10 {
be16_t mode_data_length; //!< Number of bytes after this
uint8_t medium_type; //!< Medium Type
uint8_t device_specific_parameter; //!< Defined by command set
uint8_t flags4; //!< LONGLBA in bit 0
uint8_t reserved;
be16_t block_descriptor_length; //!< Length of block descriptors
};
/**
* \brief SCSI Page_0 Mode Page header (SPF not set)
*/
struct scsi_mode_page_0_header {
uint8_t page_code;
#define SCSI_PAGE_CODE_PS (1 << 7) //!< Parameters Saveable
#define SCSI_PAGE_CODE_SPF (1 << 6) //!< SubPage Format
uint8_t page_length; //!< Number of bytes after this
#define SCSI_MS_PAGE_LEN(total) ((total) - 2)
};
//@}
#endif // SPC_PROTOCOL_H_

View file

@ -0,0 +1,85 @@
/**
* \file
*
* \brief Preprocessor stringizing utils.
*
* Copyright (c) 2010-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _STRINGZ_H_
#define _STRINGZ_H_
/**
* \defgroup group_sam_utils_stringz Preprocessor - Stringize
*
* \ingroup group_sam_utils
*
* \{
*/
/*! \brief Stringize.
*
* Stringize a preprocessing token, this token being allowed to be \#defined.
*
* May be used only within macros with the token passed as an argument if the token is \#defined.
*
* For example, writing STRINGZ(PIN) within a macro \#defined by PIN_NAME(PIN)
* and invoked as PIN_NAME(PIN0) with PIN0 \#defined as A0 is equivalent to
* writing "A0".
*/
#define STRINGZ(x) #x
/*! \brief Absolute stringize.
*
* Stringize a preprocessing token, this token being allowed to be \#defined.
*
* No restriction of use if the token is \#defined.
*
* For example, writing ASTRINGZ(PIN0) anywhere with PIN0 \#defined as A0 is
* equivalent to writing "A0".
*/
#define ASTRINGZ(x) STRINGZ(x)
/**
* \}
*/
#endif // _STRINGZ_H_

View file

@ -0,0 +1,122 @@
/**
* \file
*
* \brief Chip-specific system clock management functions.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "sysclk.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \weakgroup sysclk_group
* @{
*/
#if defined(CONFIG_USBCLK_SOURCE) || defined(__DOXYGEN__)
/**
* \brief Enable full speed USB clock.
*
* \note The SAM3X PMC hardware interprets div as div+1. For readability the hardware div+1
* is hidden in this implementation. Use div as div effective value.
*
* \param pll_id Source of the USB clock.
* \param div Actual clock divisor. Must be superior to 0.
*/
void sysclk_enable_usb(void)
{
Assert(CONFIG_USBCLK_DIV > 0);
#ifdef CONFIG_PLL0_SOURCE
if (CONFIG_USBCLK_SOURCE == USBCLK_SRC_PLL0) {
struct pll_config pllcfg;
pll_enable_source(CONFIG_PLL0_SOURCE);
pll_config_defaults(&pllcfg, 0);
pll_enable(&pllcfg, 0);
pll_wait_for_lock(0);
pmc_switch_udpck_to_pllack(CONFIG_USBCLK_DIV - 1);
pmc_enable_udpck();
return;
}
#endif
if (CONFIG_USBCLK_SOURCE == USBCLK_SRC_UPLL) {
pmc_enable_upll_clock();
pmc_switch_udpck_to_upllck(CONFIG_USBCLK_DIV - 1);
pmc_enable_udpck();
return;
}
}
/**
* \brief Disable full speed USB clock.
*
* \note This implementation does not switch off the PLL, it just turns off the USB clock.
*/
void sysclk_disable_usb(void)
{
pmc_disable_udpck();
}
#endif // CONFIG_USBCLK_SOURCE
//! @}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif

View file

@ -0,0 +1,229 @@
/**
* \file
*
* \brief Chip-specific system clock management functions.
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef CHIP_SYSCLK_H_INCLUDED
#define CHIP_SYSCLK_H_INCLUDED
#include "osc.h"
#include "pll.h"
/**
* \page sysclk_quickstart Quick Start Guide for the System Clock Management service (SAM3A)
*
* This is the quick start guide for the \ref sysclk_group "System Clock Management"
* service, with step-by-step instructions on how to configure and use the service for
* specific use cases.
*
* \section sysclk_quickstart_usecases System Clock Management use cases
* - \ref sysclk_quickstart_basic
*
* \section sysclk_quickstart_basic Basic usage of the System Clock Management service
* This section will present a basic use case for the System Clock Management service.
* This use case will configure the main system clock to 84MHz, using an internal PLL
* module to multiply the frequency of a crystal attached to the microcontroller.
*
* \subsection sysclk_quickstart_use_case_1_prereq Prerequisites
* - None
*
* \subsection sysclk_quickstart_use_case_1_setup_steps Initialization code
* Add to the application initialization code:
* \code
sysclk_init();
\endcode
*
* \subsection sysclk_quickstart_use_case_1_setup_steps_workflow Workflow
* -# Configure the system clocks according to the settings in conf_clock.h:
* \code sysclk_init(); \endcode
*
* \subsection sysclk_quickstart_use_case_1_example_code Example code
* Add or uncomment the following in your conf_clock.h header file, commenting out all other
* definitions of the same symbol(s):
* \code
#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK
// Fpll0 = (Fclk * PLL_mul) / PLL_div
#define CONFIG_PLL0_SOURCE PLL_SRC_MAINCK_XTAL
#define CONFIG_PLL0_MUL (84000000UL / BOARD_FREQ_MAINCK_XTAL)
#define CONFIG_PLL0_DIV 1
// Fbus = Fsys / BUS_div
#define CONFIG_SYSCLK_PRES SYSCLK_PRES_1
\endcode
*
* \subsection sysclk_quickstart_use_case_1_example_workflow Workflow
* -# Configure the main system clock to use the output of the PLL module as its source:
* \code #define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLLACK \endcode
* -# Configure the PLL module to use the fast external fast crystal oscillator as its source:
* \code #define CONFIG_PLL0_SOURCE PLL_SRC_MAINCK_XTAL \endcode
* -# Configure the PLL module to multiply the external fast crystal oscillator frequency up to 84MHz:
* \code
#define CONFIG_PLL0_MUL (84000000UL / BOARD_FREQ_MAINCK_XTAL)
#define CONFIG_PLL0_DIV 1
\endcode
* \note For user boards, \c BOARD_FREQ_MAINCK_XTAL should be defined in the board \c conf_board.h configuration
* file as the frequency of the fast crystal attached to the microcontroller.
* -# Configure the main clock to run at the full 84MHz, disable scaling of the main system clock speed:
* \code
#define CONFIG_SYSCLK_PRES SYSCLK_PRES_1
\endcode
* \note Some dividers are powers of two, while others are integer division factors. Refer to the
* formulas in the conf_clock.h template commented above each division define.
*/
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
/**
* \weakgroup sysclk_group
* @{
*/
//! \name Configuration Symbols
//@{
/**
* \def CONFIG_SYSCLK_SOURCE
* \brief Initial/static main system clock source
*
* The main system clock will be configured to use this clock during
* initialization.
*/
#ifndef CONFIG_SYSCLK_SOURCE
# define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_MAINCK_4M_RC
#endif
/**
* \def CONFIG_SYSCLK_PRES
* \brief Initial CPU clock divider (mck)
*
* The MCK will run at
* \f[
* f_{MCK} = \frac{f_{sys}}{\mathrm{CONFIG\_SYSCLK\_PRES}}\,\mbox{Hz}
* \f]
* after initialization.
*/
#ifndef CONFIG_SYSCLK_PRES
# define CONFIG_SYSCLK_PRES 0
#endif
//@}
//! \name Master Clock Sources (MCK)
//@{
#define SYSCLK_SRC_SLCK_RC 0 //!< Internal 32kHz RC oscillator as master source clock
#define SYSCLK_SRC_SLCK_XTAL 1 //!< External 32kHz crystal oscillator as master source clock
#define SYSCLK_SRC_SLCK_BYPASS 2 //!< External 32kHz bypass oscillator as master source clock
#define SYSCLK_SRC_MAINCK_4M_RC 3 //!< Internal 4MHz RC oscillator as master source clock
#define SYSCLK_SRC_MAINCK_8M_RC 4 //!< Internal 8MHz RC oscillator as master source clock
#define SYSCLK_SRC_MAINCK_12M_RC 5 //!< Internal 12MHz RC oscillator as master source clock
#define SYSCLK_SRC_MAINCK_XTAL 6 //!< External crystal oscillator as master source clock
#define SYSCLK_SRC_MAINCK_BYPASS 7 //!< External bypass oscillator as master source clock
#define SYSCLK_SRC_PLLACK 8 //!< Use PLLACK as master source clock
#define SYSCLK_SRC_UPLLCK 9 //!< Use UPLLCK as master source clock
//@}
//! \name Master Clock Prescalers (MCK)
//@{
#define SYSCLK_PRES_1 PMC_MCKR_PRES_CLK_1 //!< Set master clock prescaler to 1
#define SYSCLK_PRES_2 PMC_MCKR_PRES_CLK_2 //!< Set master clock prescaler to 2
#define SYSCLK_PRES_4 PMC_MCKR_PRES_CLK_4 //!< Set master clock prescaler to 4
#define SYSCLK_PRES_8 PMC_MCKR_PRES_CLK_8 //!< Set master clock prescaler to 8
#define SYSCLK_PRES_16 PMC_MCKR_PRES_CLK_16 //!< Set master clock prescaler to 16
#define SYSCLK_PRES_32 PMC_MCKR_PRES_CLK_32 //!< Set master clock prescaler to 32
#define SYSCLK_PRES_64 PMC_MCKR_PRES_CLK_64 //!< Set master clock prescaler to 64
#define SYSCLK_PRES_3 PMC_MCKR_PRES_CLK_3 //!< Set master clock prescaler to 3
//@}
//! \name USB Clock Sources
//@{
#define USBCLK_SRC_PLL0 0 //!< Use PLLA
#define USBCLK_SRC_UPLL 1 //!< Use UPLL
//@}
/**
* \def CONFIG_USBCLK_SOURCE
* \brief Configuration symbol for the USB generic clock source
*
* Sets the clock source to use for the USB. The source must also be properly
* configured.
*
* Define this to one of the \c USBCLK_SRC_xxx settings. Leave it undefined if
* USB is not required.
*/
#ifdef __DOXYGEN__
# define CONFIG_USBCLK_SOURCE
#endif
/**
* \def CONFIG_USBCLK_DIV
* \brief Configuration symbol for the USB generic clock divider setting
*
* Sets the clock division for the USB generic clock. If a USB clock source is
* selected with CONFIG_USBCLK_SOURCE, this configuration symbol must also be
* defined.
*/
#ifdef __DOXYGEN__
# define CONFIG_USBCLK_DIV
#endif
extern void sysclk_enable_usb(void);
extern void sysclk_disable_usb(void);
//! @}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* CHIP_SYSCLK_H_INCLUDED */

View file

@ -0,0 +1,105 @@
/**
* \file
*
* \brief Preprocessor token pasting utils.
*
* Copyright (c) 2010-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _TPASTE_H_
#define _TPASTE_H_
/**
* \defgroup group_sam_utils_tpaste Preprocessor - Token Paste
*
* \ingroup group_sam_utils
*
* \{
*/
/*! \name Token Paste
*
* Paste N preprocessing tokens together, these tokens being allowed to be \#defined.
*
* May be used only within macros with the tokens passed as arguments if the tokens are \#defined.
*
* For example, writing TPASTE2(U, WIDTH) within a macro \#defined by
* UTYPE(WIDTH) and invoked as UTYPE(UL_WIDTH) with UL_WIDTH \#defined as 32 is
* equivalent to writing U32.
*/
//! @{
#define TPASTE2( a, b) a##b
#define TPASTE3( a, b, c) a##b##c
#define TPASTE4( a, b, c, d) a##b##c##d
#define TPASTE5( a, b, c, d, e) a##b##c##d##e
#define TPASTE6( a, b, c, d, e, f) a##b##c##d##e##f
#define TPASTE7( a, b, c, d, e, f, g) a##b##c##d##e##f##g
#define TPASTE8( a, b, c, d, e, f, g, h) a##b##c##d##e##f##g##h
#define TPASTE9( a, b, c, d, e, f, g, h, i) a##b##c##d##e##f##g##h##i
#define TPASTE10(a, b, c, d, e, f, g, h, i, j) a##b##c##d##e##f##g##h##i##j
//! @}
/*! \name Absolute Token Paste
*
* Paste N preprocessing tokens together, these tokens being allowed to be \#defined.
*
* No restriction of use if the tokens are \#defined.
*
* For example, writing ATPASTE2(U, UL_WIDTH) anywhere with UL_WIDTH \#defined
* as 32 is equivalent to writing U32.
*/
//! @{
#define ATPASTE2( a, b) TPASTE2( a, b)
#define ATPASTE3( a, b, c) TPASTE3( a, b, c)
#define ATPASTE4( a, b, c, d) TPASTE4( a, b, c, d)
#define ATPASTE5( a, b, c, d, e) TPASTE5( a, b, c, d, e)
#define ATPASTE6( a, b, c, d, e, f) TPASTE6( a, b, c, d, e, f)
#define ATPASTE7( a, b, c, d, e, f, g) TPASTE7( a, b, c, d, e, f, g)
#define ATPASTE8( a, b, c, d, e, f, g, h) TPASTE8( a, b, c, d, e, f, g, h)
#define ATPASTE9( a, b, c, d, e, f, g, h, i) TPASTE9( a, b, c, d, e, f, g, h, i)
#define ATPASTE10(a, b, c, d, e, f, g, h, i, j) TPASTE10(a, b, c, d, e, f, g, h, i, j)
//! @}
/**
* \}
*/
#endif // _TPASTE_H_

View file

@ -0,0 +1,1149 @@
/**
* \file
*
* \brief USB Device Controller (UDC)
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "conf_usb.h"
#include "usb_protocol.h"
#include "udd.h"
#include "udc_desc.h"
#include "udi.h"
#include "udc.h"
/**
* \ingroup udc_group
* \defgroup udc_group_interne Implementation of UDC
*
* Internal implementation
* @{
*/
//! \name Internal variables to manage the USB device
//! @{
//! Device status state (see enum usb_device_status in usb_protocol.h)
static le16_t udc_device_status;
COMPILER_WORD_ALIGNED
//! Device interface setting value
static uint8_t udc_iface_setting = 0;
//! Device Configuration number selected by the USB host
COMPILER_WORD_ALIGNED
static uint8_t udc_num_configuration = 0;
//! Pointer on the selected speed device configuration
static udc_config_speed_t UDC_DESC_STORAGE *udc_ptr_conf;
//! Pointer on interface descriptor used by SETUP request.
static usb_iface_desc_t UDC_DESC_STORAGE *udc_ptr_iface;
//! @}
//! \name Internal structure to store the USB device main strings
//! @{
/**
* \brief Language ID of USB device (US ID by default)
*/
COMPILER_WORD_ALIGNED
static UDC_DESC_STORAGE usb_str_lgid_desc_t udc_string_desc_languageid = {
.desc.bLength = sizeof(usb_str_lgid_desc_t),
.desc.bDescriptorType = USB_DT_STRING,
.string = {LE16(USB_LANGID_EN_US)}
};
/**
* \brief USB device manufacture name storage
* String is allocated only if USB_DEVICE_MANUFACTURE_NAME is declared
* by usb application configuration
*/
#ifdef USB_DEVICE_MANUFACTURE_NAME
static uint8_t udc_string_manufacturer_name[] = USB_DEVICE_MANUFACTURE_NAME;
# define USB_DEVICE_MANUFACTURE_NAME_SIZE \
(sizeof(udc_string_manufacturer_name)-1)
#else
# define USB_DEVICE_MANUFACTURE_NAME_SIZE 0
#endif
/**
* \brief USB device product name storage
* String is allocated only if USB_DEVICE_PRODUCT_NAME is declared
* by usb application configuration
*/
#ifdef USB_DEVICE_PRODUCT_NAME
static uint8_t udc_string_product_name[] = USB_DEVICE_PRODUCT_NAME;
# define USB_DEVICE_PRODUCT_NAME_SIZE (sizeof(udc_string_product_name)-1)
#else
# define USB_DEVICE_PRODUCT_NAME_SIZE 0
#endif
/**
* \brief Get USB device serial number
*
* Use the define USB_DEVICE_SERIAL_NAME to set static serial number.
*
* For dynamic serial number set the define USB_DEVICE_GET_SERIAL_NAME_POINTER
* to a suitable pointer. This will also require the serial number length
* define USB_DEVICE_GET_SERIAL_NAME_LENGTH.
*/
#if defined USB_DEVICE_GET_SERIAL_NAME_POINTER
static const uint8_t *udc_get_string_serial_name(void)
{
return (const uint8_t *)USB_DEVICE_GET_SERIAL_NAME_POINTER;
}
# define USB_DEVICE_SERIAL_NAME_SIZE \
USB_DEVICE_GET_SERIAL_NAME_LENGTH
#elif defined USB_DEVICE_SERIAL_NAME
static const uint8_t *udc_get_string_serial_name(void)
{
return (const uint8_t *)USB_DEVICE_SERIAL_NAME;
}
# define USB_DEVICE_SERIAL_NAME_SIZE \
(sizeof(USB_DEVICE_SERIAL_NAME)-1)
#else
# define USB_DEVICE_SERIAL_NAME_SIZE 0
#endif
/**
* \brief USB device string descriptor
* Structure used to transfer ASCII strings to USB String descriptor structure.
*/
struct udc_string_desc_t {
usb_str_desc_t header;
le16_t string[Max(Max(USB_DEVICE_MANUFACTURE_NAME_SIZE, \
USB_DEVICE_PRODUCT_NAME_SIZE), USB_DEVICE_SERIAL_NAME_SIZE)];
};
COMPILER_WORD_ALIGNED
static UDC_DESC_STORAGE struct udc_string_desc_t udc_string_desc = {
.header.bDescriptorType = USB_DT_STRING
};
//! @}
usb_iface_desc_t UDC_DESC_STORAGE *udc_get_interface_desc(void)
{
return udc_ptr_iface;
}
/**
* \brief Returns a value to check the end of USB Configuration descriptor
*
* \return address after the last byte of USB Configuration descriptor
*/
static usb_conf_desc_t UDC_DESC_STORAGE *udc_get_eof_conf(void)
{
return (UDC_DESC_STORAGE usb_conf_desc_t *) ((uint8_t *)
udc_ptr_conf->desc +
le16_to_cpu(udc_ptr_conf->desc->wTotalLength));
}
#if (0!=USB_DEVICE_MAX_EP)
/**
* \brief Search specific descriptor in global interface descriptor
*
* \param desc Address of interface descriptor
* or previous specific descriptor found
* \param desc_id Descriptor ID to search
*
* \return address of specific descriptor found
* \return NULL if it is the end of global interface descriptor
*/
static usb_conf_desc_t UDC_DESC_STORAGE *udc_next_desc_in_iface(usb_conf_desc_t
UDC_DESC_STORAGE * desc, uint8_t desc_id)
{
usb_conf_desc_t UDC_DESC_STORAGE *ptr_eof_desc;
ptr_eof_desc = udc_get_eof_conf();
// Go to next descriptor
desc = (UDC_DESC_STORAGE usb_conf_desc_t *) ((uint8_t *) desc +
desc->bLength);
// Check the end of configuration descriptor
while (ptr_eof_desc > desc) {
// If new interface descriptor is found,
// then it is the end of the current global interface descriptor
if (USB_DT_INTERFACE == desc->bDescriptorType) {
break; // End of global interface descriptor
}
if (desc_id == desc->bDescriptorType) {
return desc; // Specific descriptor found
}
// Go to next descriptor
desc = (UDC_DESC_STORAGE usb_conf_desc_t *) ((uint8_t *) desc +
desc->bLength);
}
return NULL; // No specific descriptor found
}
#endif
/**
* \brief Search an interface descriptor
* This routine updates the internal pointer udc_ptr_iface.
*
* \param iface_num Interface number to find in Configuration Descriptor
* \param setting_num Setting number of interface to find
*
* \return 1 if found or 0 if not found
*/
static bool udc_update_iface_desc(uint8_t iface_num, uint8_t setting_num)
{
usb_conf_desc_t UDC_DESC_STORAGE *ptr_end_desc;
if (0 == udc_num_configuration) {
return false;
}
if (iface_num >= udc_ptr_conf->desc->bNumInterfaces) {
return false;
}
// Start at the beginning of configuration descriptor
udc_ptr_iface = (UDC_DESC_STORAGE usb_iface_desc_t *)
udc_ptr_conf->desc;
// Check the end of configuration descriptor
ptr_end_desc = udc_get_eof_conf();
while (ptr_end_desc >
(UDC_DESC_STORAGE usb_conf_desc_t *) udc_ptr_iface) {
if (USB_DT_INTERFACE == udc_ptr_iface->bDescriptorType) {
// A interface descriptor is found
// Check interface and alternate setting number
if ((iface_num == udc_ptr_iface->bInterfaceNumber) &&
(setting_num ==
udc_ptr_iface->bAlternateSetting)) {
return true; // Interface found
}
}
// Go to next descriptor
udc_ptr_iface = (UDC_DESC_STORAGE usb_iface_desc_t *) (
(uint8_t *) udc_ptr_iface +
udc_ptr_iface->bLength);
}
return false; // Interface not found
}
/**
* \brief Disables an usb device interface (UDI)
* This routine call the UDI corresponding to interface number
*
* \param iface_num Interface number to disable
*
* \return 1 if it is done or 0 if interface is not found
*/
static bool udc_iface_disable(uint8_t iface_num)
{
udi_api_t UDC_DESC_STORAGE *udi_api;
// Select first alternate setting of the interface
// to update udc_ptr_iface before call iface->getsetting()
if (!udc_update_iface_desc(iface_num, 0)) {
return false;
}
// Select the interface with the current alternate setting
udi_api = udc_ptr_conf->udi_apis[iface_num];
#if (0!=USB_DEVICE_MAX_EP)
if (!udc_update_iface_desc(iface_num, udi_api->getsetting())) {
return false;
}
// Start at the beginning of interface descriptor
{
usb_ep_desc_t UDC_DESC_STORAGE *ep_desc;
ep_desc = (UDC_DESC_STORAGE usb_ep_desc_t *) udc_ptr_iface;
while (1) {
// Search Endpoint descriptor included in global interface descriptor
ep_desc = (UDC_DESC_STORAGE usb_ep_desc_t *)
udc_next_desc_in_iface((UDC_DESC_STORAGE
usb_conf_desc_t *)
ep_desc, USB_DT_ENDPOINT);
if (NULL == ep_desc) {
break;
}
// Free the endpoint used by the interface
udd_ep_free(ep_desc->bEndpointAddress);
}
}
#endif
// Disable interface
udi_api->disable();
return true;
}
/**
* \brief Enables an usb device interface (UDI)
* This routine calls the UDI corresponding
* to the interface and setting number.
*
* \param iface_num Interface number to enable
* \param setting_num Setting number to enable
*
* \return 1 if it is done or 0 if interface is not found
*/
static bool udc_iface_enable(uint8_t iface_num, uint8_t setting_num)
{
// Select the interface descriptor
if (!udc_update_iface_desc(iface_num, setting_num)) {
return false;
}
#if (0!=USB_DEVICE_MAX_EP)
usb_ep_desc_t UDC_DESC_STORAGE *ep_desc;
// Start at the beginning of the global interface descriptor
ep_desc = (UDC_DESC_STORAGE usb_ep_desc_t *) udc_ptr_iface;
while (1) {
// Search Endpoint descriptor included in the global interface descriptor
ep_desc = (UDC_DESC_STORAGE usb_ep_desc_t *)
udc_next_desc_in_iface((UDC_DESC_STORAGE
usb_conf_desc_t *) ep_desc,
USB_DT_ENDPOINT);
if (NULL == ep_desc)
break;
// Alloc the endpoint used by the interface
if (!udd_ep_alloc(ep_desc->bEndpointAddress,
ep_desc->bmAttributes,
le16_to_cpu
(ep_desc->wMaxPacketSize))) {
return false;
}
}
#endif
// Enable the interface
return udc_ptr_conf->udi_apis[iface_num]->enable();
}
/*! \brief Start the USB Device stack
*/
void udc_start(void)
{
udd_enable();
}
/*! \brief Stop the USB Device stack
*/
void udc_stop(void)
{
udd_disable();
udc_reset();
}
/**
* \brief Reset the current configuration of the USB device,
* This routines can be called by UDD when a RESET on the USB line occurs.
*/
void udc_reset(void)
{
uint8_t iface_num;
if (udc_num_configuration) {
for (iface_num = 0;
iface_num < udc_ptr_conf->desc->bNumInterfaces;
iface_num++) {
udc_iface_disable(iface_num);
}
}
udc_num_configuration = 0;
#if (USB_CONFIG_ATTR_REMOTE_WAKEUP \
== (USB_DEVICE_ATTR & USB_CONFIG_ATTR_REMOTE_WAKEUP))
if (CPU_TO_LE16(USB_DEV_STATUS_REMOTEWAKEUP) & udc_device_status) {
// Remote wakeup is enabled then disable it
UDC_REMOTEWAKEUP_DISABLE();
}
#endif
udc_device_status =
#if (USB_DEVICE_ATTR & USB_CONFIG_ATTR_SELF_POWERED)
CPU_TO_LE16(USB_DEV_STATUS_SELF_POWERED);
#else
CPU_TO_LE16(USB_DEV_STATUS_BUS_POWERED);
#endif
}
void udc_sof_notify(void)
{
uint8_t iface_num;
if (udc_num_configuration) {
for (iface_num = 0;
iface_num < udc_ptr_conf->desc->bNumInterfaces;
iface_num++) {
if (udc_ptr_conf->udi_apis[iface_num]->sof_notify != NULL) {
udc_ptr_conf->udi_apis[iface_num]->sof_notify();
}
}
}
}
/**
* \brief Standard device request to get device status
*
* \return true if success
*/
static bool udc_req_std_dev_get_status(void)
{
if (udd_g_ctrlreq.req.wLength != sizeof(udc_device_status)) {
return false;
}
udd_set_setup_payload( (uint8_t *) & udc_device_status,
sizeof(udc_device_status));
return true;
}
#if (0!=USB_DEVICE_MAX_EP)
/**
* \brief Standard endpoint request to get endpoint status
*
* \return true if success
*/
static bool udc_req_std_ep_get_status(void)
{
static le16_t udc_ep_status;
if (udd_g_ctrlreq.req.wLength != sizeof(udc_ep_status)) {
return false;
}
udc_ep_status = udd_ep_is_halted(udd_g_ctrlreq.req.
wIndex & 0xFF) ? CPU_TO_LE16(USB_EP_STATUS_HALTED) : 0;
udd_set_setup_payload( (uint8_t *) & udc_ep_status,
sizeof(udc_ep_status));
return true;
}
#endif
/**
* \brief Standard device request to change device status
*
* \return true if success
*/
static bool udc_req_std_dev_clear_feature(void)
{
if (udd_g_ctrlreq.req.wLength) {
return false;
}
if (udd_g_ctrlreq.req.wValue == USB_DEV_FEATURE_REMOTE_WAKEUP) {
udc_device_status &= CPU_TO_LE16(~(uint32_t)USB_DEV_STATUS_REMOTEWAKEUP);
#if (USB_CONFIG_ATTR_REMOTE_WAKEUP \
== (USB_DEVICE_ATTR & USB_CONFIG_ATTR_REMOTE_WAKEUP))
UDC_REMOTEWAKEUP_DISABLE();
#endif
return true;
}
return false;
}
#if (0!=USB_DEVICE_MAX_EP)
/**
* \brief Standard endpoint request to clear endpoint feature
*
* \return true if success
*/
static bool udc_req_std_ep_clear_feature(void)
{
if (udd_g_ctrlreq.req.wLength) {
return false;
}
if (udd_g_ctrlreq.req.wValue == USB_EP_FEATURE_HALT) {
return udd_ep_clear_halt(udd_g_ctrlreq.req.wIndex & 0xFF);
}
return false;
}
#endif
/**
* \brief Standard device request to set a feature
*
* \return true if success
*/
static bool udc_req_std_dev_set_feature(void)
{
if (udd_g_ctrlreq.req.wLength) {
return false;
}
switch (udd_g_ctrlreq.req.wValue) {
case USB_DEV_FEATURE_REMOTE_WAKEUP:
#if (USB_CONFIG_ATTR_REMOTE_WAKEUP \
== (USB_DEVICE_ATTR & USB_CONFIG_ATTR_REMOTE_WAKEUP))
udc_device_status |= CPU_TO_LE16(USB_DEV_STATUS_REMOTEWAKEUP);
UDC_REMOTEWAKEUP_ENABLE();
return true;
#else
return false;
#endif
#ifdef USB_DEVICE_HS_SUPPORT
case USB_DEV_FEATURE_TEST_MODE:
if (!udd_is_high_speed()) {
break;
}
if (udd_g_ctrlreq.req.wIndex & 0xff) {
break;
}
// Unconfigure the device, terminating all ongoing requests
udc_reset();
switch ((udd_g_ctrlreq.req.wIndex >> 8) & 0xFF) {
case USB_DEV_TEST_MODE_J:
udd_g_ctrlreq.callback = udd_test_mode_j;
return true;
case USB_DEV_TEST_MODE_K:
udd_g_ctrlreq.callback = udd_test_mode_k;
return true;
case USB_DEV_TEST_MODE_SE0_NAK:
udd_g_ctrlreq.callback = udd_test_mode_se0_nak;
return true;
case USB_DEV_TEST_MODE_PACKET:
udd_g_ctrlreq.callback = udd_test_mode_packet;
return true;
case USB_DEV_TEST_MODE_FORCE_ENABLE: // Only for downstream facing hub ports
default:
break;
}
break;
#endif
default:
break;
}
return false;
}
/**
* \brief Standard endpoint request to halt an endpoint
*
* \return true if success
*/
#if (0!=USB_DEVICE_MAX_EP)
static bool udc_req_std_ep_set_feature(void)
{
if (udd_g_ctrlreq.req.wLength) {
return false;
}
if (udd_g_ctrlreq.req.wValue == USB_EP_FEATURE_HALT) {
udd_ep_abort(udd_g_ctrlreq.req.wIndex & 0xFF);
return udd_ep_set_halt(udd_g_ctrlreq.req.wIndex & 0xFF);
}
return false;
}
#endif
/**
* \brief Change the address of device
* Callback called at the end of request set address
*/
static void udc_valid_address(void)
{
udd_set_address(udd_g_ctrlreq.req.wValue & 0x7F);
}
/**
* \brief Standard device request to set device address
*
* \return true if success
*/
static bool udc_req_std_dev_set_address(void)
{
if (udd_g_ctrlreq.req.wLength) {
return false;
}
// The address must be changed at the end of setup request after the handshake
// then we use a callback to change address
udd_g_ctrlreq.callback = udc_valid_address;
return true;
}
/**
* \brief Standard device request to get device string descriptor
*
* \return true if success
*/
static bool udc_req_std_dev_get_str_desc(void)
{
uint8_t i;
const uint8_t *str;
uint8_t str_length = 0;
// Link payload pointer to the string corresponding at request
switch (udd_g_ctrlreq.req.wValue & 0xff) {
case 0:
udd_set_setup_payload((uint8_t *) &udc_string_desc_languageid,
sizeof(udc_string_desc_languageid));
break;
#ifdef USB_DEVICE_MANUFACTURE_NAME
case 1:
str_length = USB_DEVICE_MANUFACTURE_NAME_SIZE;
str = udc_string_manufacturer_name;
break;
#endif
#ifdef USB_DEVICE_PRODUCT_NAME
case 2:
str_length = USB_DEVICE_PRODUCT_NAME_SIZE;
str = udc_string_product_name;
break;
#endif
#if defined USB_DEVICE_SERIAL_NAME || defined USB_DEVICE_GET_SERIAL_NAME_POINTER
case 3:
str_length = USB_DEVICE_SERIAL_NAME_SIZE;
str = udc_get_string_serial_name();
break;
#endif
default:
#ifdef UDC_GET_EXTRA_STRING
if (UDC_GET_EXTRA_STRING()) {
break;
}
#endif
return false;
}
if (str_length) {
for(i = 0; i < str_length; i++) {
udc_string_desc.string[i] = cpu_to_le16((le16_t)str[i]);
}
udc_string_desc.header.bLength = 2 + (str_length) * 2;
udd_set_setup_payload(
(uint8_t *) &udc_string_desc,
udc_string_desc.header.bLength);
}
return true;
}
/**
* \brief Standard device request to get descriptors about USB device
*
* \return true if success
*/
static bool udc_req_std_dev_get_descriptor(void)
{
uint8_t conf_num;
conf_num = udd_g_ctrlreq.req.wValue & 0xff;
// Check descriptor ID
switch ((uint8_t) (udd_g_ctrlreq.req.wValue >> 8)) {
case USB_DT_DEVICE:
// Device descriptor requested
#ifdef USB_DEVICE_HS_SUPPORT
if (!udd_is_high_speed()) {
udd_set_setup_payload(
(uint8_t *) udc_config.confdev_hs,
udc_config.confdev_hs->bLength);
} else
#endif
{
udd_set_setup_payload(
(uint8_t *) udc_config.confdev_lsfs,
udc_config.confdev_lsfs->bLength);
}
break;
case USB_DT_CONFIGURATION:
// Configuration descriptor requested
#ifdef USB_DEVICE_HS_SUPPORT
if (udd_is_high_speed()) {
// HS descriptor
if (conf_num >= udc_config.confdev_hs->
bNumConfigurations) {
return false;
}
udd_set_setup_payload(
(uint8_t *)udc_config.conf_hs[conf_num].desc,
le16_to_cpu(udc_config.conf_hs[conf_num].desc->wTotalLength));
} else
#endif
{
// FS descriptor
if (conf_num >= udc_config.confdev_lsfs->
bNumConfigurations) {
return false;
}
udd_set_setup_payload(
(uint8_t *)udc_config.conf_lsfs[conf_num].desc,
le16_to_cpu(udc_config.conf_lsfs[conf_num].desc->wTotalLength));
}
((usb_conf_desc_t *) udd_g_ctrlreq.payload)->bDescriptorType =
USB_DT_CONFIGURATION;
break;
#ifdef USB_DEVICE_HS_SUPPORT
case USB_DT_DEVICE_QUALIFIER:
// Device qualifier descriptor requested
udd_set_setup_payload( (uint8_t *) udc_config.qualifier,
udc_config.qualifier->bLength);
break;
case USB_DT_OTHER_SPEED_CONFIGURATION:
// Other configuration descriptor requested
if (!udd_is_high_speed()) {
// HS descriptor
if (conf_num >= udc_config.confdev_hs->
bNumConfigurations) {
return false;
}
udd_set_setup_payload(
(uint8_t *)udc_config.conf_hs[conf_num].desc,
le16_to_cpu(udc_config.conf_hs[conf_num].desc->wTotalLength));
} else {
// FS descriptor
if (conf_num >= udc_config.confdev_lsfs->
bNumConfigurations) {
return false;
}
udd_set_setup_payload(
(uint8_t *)udc_config.conf_lsfs[conf_num].desc,
le16_to_cpu(udc_config.conf_lsfs[conf_num].desc->wTotalLength));
}
((usb_conf_desc_t *) udd_g_ctrlreq.payload)->bDescriptorType =
USB_DT_OTHER_SPEED_CONFIGURATION;
break;
#endif
case USB_DT_BOS:
// Device BOS descriptor requested
if (udc_config.conf_bos == NULL) {
return false;
}
udd_set_setup_payload( (uint8_t *) udc_config.conf_bos,
udc_config.conf_bos->wTotalLength);
break;
case USB_DT_STRING:
// String descriptor requested
if (!udc_req_std_dev_get_str_desc()) {
return false;
}
break;
default:
// Unknown descriptor requested
return false;
}
// if the descriptor is larger than length requested, then reduce it
if (udd_g_ctrlreq.req.wLength < udd_g_ctrlreq.payload_size) {
udd_g_ctrlreq.payload_size = udd_g_ctrlreq.req.wLength;
}
return true;
}
/**
* \brief Standard device request to get configuration number
*
* \return true if success
*/
static bool udc_req_std_dev_get_configuration(void)
{
if (udd_g_ctrlreq.req.wLength != 1) {
return false;
}
udd_set_setup_payload(&udc_num_configuration,1);
return true;
}
/**
* \brief Standard device request to enable a configuration
*
* \return true if success
*/
static bool udc_req_std_dev_set_configuration(void)
{
uint8_t iface_num;
// Check request length
if (udd_g_ctrlreq.req.wLength) {
return false;
}
// Authorize configuration only if the address is valid
if (!udd_getaddress()) {
return false;
}
// Check the configuration number requested
#ifdef USB_DEVICE_HS_SUPPORT
if (udd_is_high_speed()) {
// HS descriptor
if ((udd_g_ctrlreq.req.wValue & 0xFF) >
udc_config.confdev_hs->bNumConfigurations) {
return false;
}
} else
#endif
{
// FS descriptor
if ((udd_g_ctrlreq.req.wValue & 0xFF) >
udc_config.confdev_lsfs->bNumConfigurations) {
return false;
}
}
// Reset current configuration
udc_reset();
// Enable new configuration
udc_num_configuration = udd_g_ctrlreq.req.wValue & 0xFF;
if (udc_num_configuration == 0) {
return true; // Default empty configuration requested
}
// Update pointer of the configuration descriptor
#ifdef USB_DEVICE_HS_SUPPORT
if (udd_is_high_speed()) {
// HS descriptor
udc_ptr_conf = &udc_config.conf_hs[udc_num_configuration - 1];
} else
#endif
{
// FS descriptor
udc_ptr_conf = &udc_config.conf_lsfs[udc_num_configuration - 1];
}
// Enable all interfaces of the selected configuration
for (iface_num = 0; iface_num < udc_ptr_conf->desc->bNumInterfaces;
iface_num++) {
if (!udc_iface_enable(iface_num, 0)) {
return false;
}
}
return true;
}
/**
* \brief Standard interface request
* to get the alternate setting number of an interface
*
* \return true if success
*/
static bool udc_req_std_iface_get_setting(void)
{
uint8_t iface_num;
udi_api_t UDC_DESC_STORAGE *udi_api;
if (udd_g_ctrlreq.req.wLength != 1) {
return false; // Error in request
}
if (!udc_num_configuration) {
return false; // The device is not is configured state yet
}
// Check the interface number included in the request
iface_num = udd_g_ctrlreq.req.wIndex & 0xFF;
if (iface_num >= udc_ptr_conf->desc->bNumInterfaces) {
return false;
}
// Select first alternate setting of the interface to update udc_ptr_iface
// before call iface->getsetting()
if (!udc_update_iface_desc(iface_num, 0)) {
return false;
}
// Get alternate setting from UDI
udi_api = udc_ptr_conf->udi_apis[iface_num];
udc_iface_setting = udi_api->getsetting();
// Link value to payload pointer of request
udd_set_setup_payload(&udc_iface_setting,1);
return true;
}
/**
* \brief Standard interface request
* to set an alternate setting of an interface
*
* \return true if success
*/
static bool udc_req_std_iface_set_setting(void)
{
uint8_t iface_num, setting_num;
if (udd_g_ctrlreq.req.wLength) {
return false; // Error in request
}
if (!udc_num_configuration) {
return false; // The device is not is configured state yet
}
iface_num = udd_g_ctrlreq.req.wIndex & 0xFF;
setting_num = udd_g_ctrlreq.req.wValue & 0xFF;
// Disable current setting
if (!udc_iface_disable(iface_num)) {
return false;
}
// Enable new setting
return udc_iface_enable(iface_num, setting_num);
}
/**
* \brief Main routine to manage the standard USB SETUP request
*
* \return true if the request is supported
*/
static bool udc_reqstd(void)
{
if (Udd_setup_is_in()) {
// GET Standard Requests
if (udd_g_ctrlreq.req.wLength == 0) {
return false; // Error for USB host
}
if (USB_REQ_RECIP_DEVICE == Udd_setup_recipient()) {
// Standard Get Device request
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_GET_STATUS:
return udc_req_std_dev_get_status();
case USB_REQ_GET_DESCRIPTOR:
return udc_req_std_dev_get_descriptor();
case USB_REQ_GET_CONFIGURATION:
return udc_req_std_dev_get_configuration();
default:
break;
}
}
if (USB_REQ_RECIP_INTERFACE == Udd_setup_recipient()) {
// Standard Get Interface request
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_GET_INTERFACE:
return udc_req_std_iface_get_setting();
default:
break;
}
}
#if (0!=USB_DEVICE_MAX_EP)
if (USB_REQ_RECIP_ENDPOINT == Udd_setup_recipient()) {
// Standard Get Endpoint request
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_GET_STATUS:
return udc_req_std_ep_get_status();
default:
break;
}
}
#endif
} else {
// SET Standard Requests
if (USB_REQ_RECIP_DEVICE == Udd_setup_recipient()) {
// Standard Set Device request
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_SET_ADDRESS:
return udc_req_std_dev_set_address();
case USB_REQ_CLEAR_FEATURE:
return udc_req_std_dev_clear_feature();
case USB_REQ_SET_FEATURE:
return udc_req_std_dev_set_feature();
case USB_REQ_SET_CONFIGURATION:
return udc_req_std_dev_set_configuration();
case USB_REQ_SET_DESCRIPTOR:
/* Not supported (defined as optional by the USB 2.0 spec) */
break;
default:
break;
}
}
if (USB_REQ_RECIP_INTERFACE == Udd_setup_recipient()) {
// Standard Set Interface request
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_SET_INTERFACE:
return udc_req_std_iface_set_setting();
default:
break;
}
}
#if (0!=USB_DEVICE_MAX_EP)
if (USB_REQ_RECIP_ENDPOINT == Udd_setup_recipient()) {
// Standard Set Endpoint request
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_CLEAR_FEATURE:
return udc_req_std_ep_clear_feature();
case USB_REQ_SET_FEATURE:
return udc_req_std_ep_set_feature();
default:
break;
}
}
#endif
}
return false;
}
/**
* \brief Send the SETUP interface request to UDI
*
* \return true if the request is supported
*/
static bool udc_req_iface(void)
{
uint8_t iface_num;
udi_api_t UDC_DESC_STORAGE *udi_api;
if (0 == udc_num_configuration) {
return false; // The device is not is configured state yet
}
// Check interface number
iface_num = udd_g_ctrlreq.req.wIndex & 0xFF;
if (iface_num >= udc_ptr_conf->desc->bNumInterfaces) {
return false;
}
//* To update udc_ptr_iface with the selected interface in request
// Select first alternate setting of interface to update udc_ptr_iface
// before calling udi_api->getsetting()
if (!udc_update_iface_desc(iface_num, 0)) {
return false;
}
// Select the interface with the current alternate setting
udi_api = udc_ptr_conf->udi_apis[iface_num];
if (!udc_update_iface_desc(iface_num, udi_api->getsetting())) {
return false;
}
// Send the SETUP request to the UDI corresponding to the interface number
return udi_api->setup();
}
/**
* \brief Send the SETUP interface request to UDI
*
* \return true if the request is supported
*/
static bool udc_req_ep(void)
{
uint8_t iface_num;
udi_api_t UDC_DESC_STORAGE *udi_api;
if (0 == udc_num_configuration) {
return false; // The device is not is configured state yet
}
// Send this request on all enabled interfaces
iface_num = udd_g_ctrlreq.req.wIndex & 0xFF;
for (iface_num = 0; iface_num < udc_ptr_conf->desc->bNumInterfaces;
iface_num++) {
// Select the interface with the current alternate setting
udi_api = udc_ptr_conf->udi_apis[iface_num];
if (!udc_update_iface_desc(iface_num, udi_api->getsetting())) {
return false;
}
// Send the SETUP request to the UDI
if (udi_api->setup()) {
return true;
}
}
return false;
}
/**
* \brief Main routine to manage the USB SETUP request.
*
* This function parses a USB SETUP request and submits an appropriate
* response back to the host or, in the case of SETUP OUT requests
* with data, sets up a buffer for receiving the data payload.
*
* The main standard requests defined by the USB 2.0 standard are handled
* internally. The interface requests are sent to UDI, and the specific request
* sent to a specific application callback.
*
* \return true if the request is supported, else the request is stalled by UDD
*/
bool udc_process_setup(void)
{
// By default no data (receive/send) and no callbacks registered
udd_g_ctrlreq.payload_size = 0;
udd_g_ctrlreq.callback = NULL;
udd_g_ctrlreq.over_under_run = NULL;
if (Udd_setup_is_in()) {
if (udd_g_ctrlreq.req.wLength == 0) {
return false; // Error from USB host
}
}
// If standard request then try to decode it in UDC
if (Udd_setup_type() == USB_REQ_TYPE_STANDARD) {
if (udc_reqstd()) {
return true;
}
}
// If interface request then try to decode it in UDI
if (Udd_setup_recipient() == USB_REQ_RECIP_INTERFACE) {
if (udc_req_iface()) {
return true;
}
}
// If endpoint request then try to decode it in UDI
if (Udd_setup_recipient() == USB_REQ_RECIP_ENDPOINT) {
if (udc_req_ep()) {
return true;
}
}
// Here SETUP request unknown by UDC and UDIs
#ifdef USB_DEVICE_SPECIFIC_REQUEST
// Try to decode it in specific callback
return USB_DEVICE_SPECIFIC_REQUEST(); // Ex: Vendor request,...
#else
return false;
#endif
}
//! @}
#endif

View file

@ -0,0 +1,697 @@
/**
* \file
*
* \brief Interface of the USB Device Controller (UDC)
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _UDC_H_
#define _UDC_H_
#include "conf_usb.h"
#include "usb_protocol.h"
#include "udc_desc.h"
#include "udd.h"
#if USB_DEVICE_VENDOR_ID == 0
# error USB_DEVICE_VENDOR_ID cannot be equal to 0
#endif
#if USB_DEVICE_PRODUCT_ID == 0
# error USB_DEVICE_PRODUCT_ID cannot be equal to 0
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup usb_device_group
* \defgroup udc_group USB Device Controller (UDC)
*
* The UDC provides a high-level abstraction of the usb device.
* You can use these functions to control the main device state
* (start/attach/wakeup).
*
* \section USB_DEVICE_CONF USB Device Custom configuration
* The following USB Device configuration must be included in the conf_usb.h
* file of the application.
*
* USB_DEVICE_VENDOR_ID (Word)<br>
* Vendor ID provided by USB org (ATMEL 0x03EB).
*
* USB_DEVICE_PRODUCT_ID (Word)<br>
* Product ID (Referenced in usb_atmel.h).
*
* USB_DEVICE_MAJOR_VERSION (Byte)<br>
* Major version of the device
*
* USB_DEVICE_MINOR_VERSION (Byte)<br>
* Minor version of the device
*
* USB_DEVICE_MANUFACTURE_NAME (string)<br>
* ASCII name for the manufacture
*
* USB_DEVICE_PRODUCT_NAME (string)<br>
* ASCII name for the product
*
* USB_DEVICE_SERIAL_NAME (string)<br>
* ASCII name to enable and set a serial number
*
* USB_DEVICE_POWER (Numeric)<br>
* (unit mA) Maximum device power
*
* USB_DEVICE_ATTR (Byte)<br>
* USB attributes available:
* - USB_CONFIG_ATTR_SELF_POWERED
* - USB_CONFIG_ATTR_REMOTE_WAKEUP
* Note: if remote wake enabled then defines remotewakeup callbacks,
* see Table 5-2. External API from UDC - Callback
*
* USB_DEVICE_LOW_SPEED (Only defined)<br>
* Force the USB Device to run in low speed
*
* USB_DEVICE_HS_SUPPORT (Only defined)<br>
* Authorize the USB Device to run in high speed
*
* USB_DEVICE_MAX_EP (Byte)<br>
* Define the maximum endpoint number used by the USB Device.<br>
* This one is already defined in UDI default configuration.
* Ex:
* - When endpoint control 0x00, endpoint 0x01 and
* endpoint 0x82 is used then USB_DEVICE_MAX_EP=2
* - When only endpoint control 0x00 is used then USB_DEVICE_MAX_EP=0
* - When endpoint 0x01 and endpoint 0x81 is used then USB_DEVICE_MAX_EP=1<br>
* (configuration not possible on USBB interface)
* @{
*/
/**
* \brief Authorizes the VBUS event
*
* \return true, if the VBUS monitoring is possible.
*
* \section udc_vbus_monitoring VBus monitoring used cases
*
* The VBus monitoring is used only for USB SELF Power application.
*
* - By default the USB device is automatically attached when Vbus is high
* or when USB is start for devices without internal Vbus monitoring.
* conf_usb.h file does not contains define USB_DEVICE_ATTACH_AUTO_DISABLE.
* \code //#define USB_DEVICE_ATTACH_AUTO_DISABLE \endcode
*
* - Add custom VBUS monitoring. conf_usb.h file contains define
* USB_DEVICE_ATTACH_AUTO_DISABLE:
* \code #define USB_DEVICE_ATTACH_AUTO_DISABLE \endcode
* User C file contains:
* \code
// Authorize VBUS monitoring
if (!udc_include_vbus_monitoring()) {
// Implement custom VBUS monitoring via GPIO or other
}
Event_VBUS_present() // VBUS interrupt or GPIO interrupt or other
{
// Attach USB Device
udc_attach();
}
\endcode
*
* - Case of battery charging. conf_usb.h file contains define
* USB_DEVICE_ATTACH_AUTO_DISABLE:
* \code #define USB_DEVICE_ATTACH_AUTO_DISABLE \endcode
* User C file contains:
* \code
Event VBUS present() // VBUS interrupt or GPIO interrupt or ..
{
// Authorize battery charging, but wait key press to start USB.
}
Event Key press()
{
// Stop batteries charging
// Start USB
udc_attach();
}
\endcode
*/
static inline bool udc_include_vbus_monitoring(void)
{
return udd_include_vbus_monitoring();
}
/*! \brief Start the USB Device stack
*/
void udc_start(void);
/*! \brief Stop the USB Device stack
*/
void udc_stop(void);
/**
* \brief Attach device to the bus when possible
*
* \warning If a VBus control is included in driver,
* then it will attach device when an acceptable Vbus
* level from the host is detected.
*/
static inline void udc_attach(void)
{
udd_attach();
}
/**
* \brief Detaches the device from the bus
*
* The driver must remove pull-up on USB line D- or D+.
*/
static inline void udc_detach(void)
{
udd_detach();
}
/*! \brief The USB driver sends a resume signal called \e "Upstream Resume"
* This is authorized only when the remote wakeup feature is enabled by host.
*/
static inline void udc_remotewakeup(void)
{
udd_send_remotewakeup();
}
/**
* \brief Returns a pointer on the current interface descriptor
*
* \return pointer on the current interface descriptor.
*/
usb_iface_desc_t UDC_DESC_STORAGE *udc_get_interface_desc(void);
//@}
/**
* \ingroup usb_group
* \defgroup usb_device_group USB Stack Device
*
* This module includes USB Stack Device implementation.
* The stack is divided in three parts:
* - USB Device Controller (UDC) provides USB chapter 9 compliance
* - USB Device Interface (UDI) provides USB Class compliance
* - USB Device Driver (UDD) provides USB Driver for each Atmel MCU
* Many USB Device applications can be implemented on Atmel MCU.
* Atmel provides many application notes for different applications:
* - AVR4900, provides general information about Device Stack
* - AVR4901, explains how to create a new class
* - AVR4902, explains how to create a composite device
* - AVR49xx, all device classes provided in ASF have an application note
*
* A basic USB knowledge is required to understand the USB Device
* Class application notes (HID,MS,CDC,PHDC,...).
* Then, to create an USB device with
* only one class provided by ASF, refer directly to the application note
* corresponding to this USB class. The USB Device application note for
* New Class and Composite is dedicated to advanced USB users.
*
* @{
*/
//! @}
#ifdef __cplusplus
}
#endif
/**
* \ingroup udc_group
* \defgroup udc_basic_use_case_setup_prereq USB Device Controller (UDC) - Prerequisites
* Common prerequisites for all USB devices.
*
* This module is based on USB device stack full interrupt driven, and supporting
* \ref sleepmgr_group sleepmgr. For AVR and SAM3/4 devices the \ref clk_group clock services
* is supported. For SAMD devices the \ref asfdoc_sam0_system_clock_group clock driver is supported.
*
* The following procedure must be executed to setup the project correctly:
* - Specify the clock configuration:
* - XMEGA USB devices need 48MHz clock input.\n
* XMEGA USB devices need CPU frequency higher than 12MHz.\n
* You can use either an internal RC48MHz auto calibrated by Start of Frames
* or an external OSC.
* - UC3 and SAM3/4 devices without USB high speed support need 48MHz clock input.\n
* You must use a PLL and an external OSC.
* - UC3 and SAM3/4 devices with USB high speed support need 12MHz clock input.\n
* You must use an external OSC.
* - UC3 devices with USBC hardware need CPU frequency higher than 25MHz.
* - SAMD devices without USB high speed support need 48MHz clock input.\n
* You should use DFLL with USBCRM.
* - In conf_board.h, the define CONF_BOARD_USB_PORT must be added to enable USB lines.
* (Not mandatory for all boards)
* - Enable interrupts
* - Initialize the clock service
*
* The usage of \ref sleepmgr_group sleepmgr service is optional, but recommended to reduce power
* consumption:
* - Initialize the sleep manager service
* - Activate sleep mode when the application is in IDLE state
*
* \subpage udc_conf_clock.
*
* for AVR and SAM3/4 devices, add to the initialization code:
* \code
sysclk_init();
irq_initialize_vectors();
cpu_irq_enable();
board_init();
sleepmgr_init(); // Optional
\endcode
*
* For SAMD devices, add to the initialization code:
* \code
system_init();
irq_initialize_vectors();
cpu_irq_enable();
sleepmgr_init(); // Optional
\endcode
* Add to the main IDLE loop:
* \code
sleepmgr_enter_sleep(); // Optional
\endcode
*
*/
/**
* \ingroup udc_group
* \defgroup udc_basic_use_case_setup_code USB Device Controller (UDC) - Example code
* Common example code for all USB devices.
*
* Content of conf_usb.h:
* \code
#define USB_DEVICE_VENDOR_ID 0x03EB
#define USB_DEVICE_PRODUCT_ID 0xXXXX
#define USB_DEVICE_MAJOR_VERSION 1
#define USB_DEVICE_MINOR_VERSION 0
#define USB_DEVICE_POWER 100
#define USB_DEVICE_ATTR USB_CONFIG_ATTR_BUS_POWERED
\endcode
*
* Add to application C-file:
* \code
void usb_init(void)
{
udc_start();
}
\endcode
*/
/**
* \ingroup udc_group
* \defgroup udc_basic_use_case_setup_flow USB Device Controller (UDC) - Workflow
* Common workflow for all USB devices.
*
* -# Ensure that conf_usb.h is available and contains the following configuration
* which is the main USB device configuration:
* - \code // Vendor ID provided by USB org (ATMEL 0x03EB)
#define USB_DEVICE_VENDOR_ID 0x03EB // Type Word
// Product ID (Atmel PID referenced in usb_atmel.h)
#define USB_DEVICE_PRODUCT_ID 0xXXXX // Type Word
// Major version of the device
#define USB_DEVICE_MAJOR_VERSION 1 // Type Byte
// Minor version of the device
#define USB_DEVICE_MINOR_VERSION 0 // Type Byte
// Maximum device power (mA)
#define USB_DEVICE_POWER 100 // Type 9-bits
// USB attributes to enable features
#define USB_DEVICE_ATTR USB_CONFIG_ATTR_BUS_POWERED // Flags \endcode
* -# Call the USB device stack start function to enable stack and start USB:
* - \code udc_start(); \endcode
* \note In case of USB dual roles (Device and Host) managed through USB OTG connector
* (USB ID pin), the call of udc_start() must be removed and replaced by uhc_start().
* SeRefer to "AVR4950 section 6.1 Dual roles" for further information about dual roles.
*/
/**
* \page udc_conf_clock conf_clock.h examples with USB support
*
* Content of XMEGA conf_clock.h:
* \code
// Configuration based on internal RC:
// USB clock need of 48Mhz
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_RCOSC
#define CONFIG_OSC_RC32_CAL 48000000UL
#define CONFIG_OSC_AUTOCAL_RC32MHZ_REF_OSC OSC_ID_USBSOF
// CPU clock need of clock > 12MHz to run with USB (Here 24MHz)
#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_RC32MHZ
#define CONFIG_SYSCLK_PSADIV SYSCLK_PSADIV_2
#define CONFIG_SYSCLK_PSBCDIV SYSCLK_PSBCDIV_1_1
\endcode
*
* Content of conf_clock.h for AT32UC3A0, AT32UC3A1, AT32UC3B devices (USBB):
* \code
// Configuration based on 12MHz external OSC:
#define CONFIG_PLL1_SOURCE PLL_SRC_OSC0
#define CONFIG_PLL1_MUL 8
#define CONFIG_PLL1_DIV 2
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL1
#define CONFIG_USBCLK_DIV 1 // Fusb = Fsys/(2 ^ USB_div)
\endcode
*
* Content of conf_clock.h for AT32UC3A3, AT32UC3A4 devices (USBB with high speed support):
* \code
// Configuration based on 12MHz external OSC:
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_OSC0
#define CONFIG_USBCLK_DIV 1 // Fusb = Fsys/(2 ^ USB_div)
\endcode
*
* Content of conf_clock.h for AT32UC3C, ATUCXXD, ATUCXXL3U, ATUCXXL4U devices (USBC):
* \code
// Configuration based on 12MHz external OSC:
#define CONFIG_PLL1_SOURCE PLL_SRC_OSC0
#define CONFIG_PLL1_MUL 8
#define CONFIG_PLL1_DIV 2
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL1
#define CONFIG_USBCLK_DIV 1 // Fusb = Fsys/(2 ^ USB_div)
// CPU clock need of clock > 25MHz to run with USBC
#define CONFIG_SYSCLK_SOURCE SYSCLK_SRC_PLL1
\endcode
*
* Content of conf_clock.h for SAM3S, SAM3SD, SAM4S devices (UPD: USB Peripheral Device):
* \code
// PLL1 (B) Options (Fpll = (Fclk * PLL_mul) / PLL_div)
#define CONFIG_PLL1_SOURCE PLL_SRC_MAINCK_XTAL
#define CONFIG_PLL1_MUL 16
#define CONFIG_PLL1_DIV 2
// USB Clock Source Options (Fusb = FpllX / USB_div)
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_PLL1
#define CONFIG_USBCLK_DIV 2
\endcode
*
* Content of conf_clock.h for SAM3U device (UPDHS: USB Peripheral Device High Speed):
* \code
// USB Clock Source fixed at UPLL.
\endcode
*
* Content of conf_clock.h for SAM3X, SAM3A devices (UOTGHS: USB OTG High Speed):
* \code
// USB Clock Source fixed at UPLL.
#define CONFIG_USBCLK_SOURCE USBCLK_SRC_UPLL
#define CONFIG_USBCLK_DIV 1
\endcode
*
* Content of conf_clocks.h for SAMD devices (USB):
* \code
// System clock bus configuration
# define CONF_CLOCK_FLASH_WAIT_STATES 2
// USB Clock Source fixed at DFLL.
// SYSTEM_CLOCK_SOURCE_DFLL configuration - Digital Frequency Locked Loop
# define CONF_CLOCK_DFLL_ENABLE true
# define CONF_CLOCK_DFLL_LOOP_MODE SYSTEM_CLOCK_DFLL_LOOP_MODE_USB_RECOVERY
# define CONF_CLOCK_DFLL_ON_DEMAND true
// Set this to true to configure the GCLK when running clocks_init.
// If set to false, none of the GCLK generators will be configured in clocks_init().
# define CONF_CLOCK_CONFIGURE_GCLK true
// Configure GCLK generator 0 (Main Clock)
# define CONF_CLOCK_GCLK_0_ENABLE true
# define CONF_CLOCK_GCLK_0_RUN_IN_STANDBY true
# define CONF_CLOCK_GCLK_0_CLOCK_SOURCE SYSTEM_CLOCK_SOURCE_DFLL
# define CONF_CLOCK_GCLK_0_PRESCALER 1
# define CONF_CLOCK_GCLK_0_OUTPUT_ENABLE false
\endcode
*/
/**
* \page udc_use_case_1 Change USB speed
*
* In this use case, the USB device is used with different USB speeds.
*
* \section udc_use_case_1_setup Setup steps
*
* Prior to implement this use case, be sure to have already
* apply the UDI module "basic use case".
*
* \section udc_use_case_1_usage Usage steps
*
* \subsection udc_use_case_1_usage_code Example code
* Content of conf_usb.h:
* \code
#if // Low speed
#define USB_DEVICE_LOW_SPEED
// #define USB_DEVICE_HS_SUPPORT
#elif // Full speed
// #define USB_DEVICE_LOW_SPEED
// #define USB_DEVICE_HS_SUPPORT
#elif // High speed
// #define USB_DEVICE_LOW_SPEED
#define USB_DEVICE_HS_SUPPORT
#endif
\endcode
*
* \subsection udc_use_case_1_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters
* required for a USB device low speed (1.5Mbit/s):
* - \code #define USB_DEVICE_LOW_SPEED
//#define USB_DEVICE_HS_SUPPORT \endcode
* -# Ensure that conf_usb.h contains the following parameters
* required for a USB device full speed (12Mbit/s):
* - \code //#define USB_DEVICE_LOW_SPEED
//#define USB_DEVICE_HS_SUPPORT \endcode
* -# Ensure that conf_usb.h contains the following parameters
* required for a USB device high speed (480Mbit/s):
* - \code //#define USB_DEVICE_LOW_SPEED
#define USB_DEVICE_HS_SUPPORT \endcode
*/
/**
* \page udc_use_case_2 Use USB strings
*
* In this use case, the usual USB strings is added in the USB device.
*
* \section udc_use_case_2_setup Setup steps
* Prior to implement this use case, be sure to have already
* apply the UDI module "basic use case".
*
* \section udc_use_case_2_usage Usage steps
*
* \subsection udc_use_case_2_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_MANUFACTURE_NAME "Manufacture name"
#define USB_DEVICE_PRODUCT_NAME "Product name"
#define USB_DEVICE_SERIAL_NAME "12...EF"
\endcode
*
* \subsection udc_use_case_2_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters
* required to enable different USB strings:
* - \code // Static ASCII name for the manufacture
#define USB_DEVICE_MANUFACTURE_NAME "Manufacture name" \endcode
* - \code // Static ASCII name for the product
#define USB_DEVICE_PRODUCT_NAME "Product name" \endcode
* - \code // Static ASCII name to enable and set a serial number
#define USB_DEVICE_SERIAL_NAME "12...EF" \endcode
*/
/**
* \page udc_use_case_3 Use USB remote wakeup feature
*
* In this use case, the USB remote wakeup feature is enabled.
*
* \section udc_use_case_3_setup Setup steps
* Prior to implement this use case, be sure to have already
* apply the UDI module "basic use case".
*
* \section udc_use_case_3_usage Usage steps
*
* \subsection udc_use_case_3_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_ATTR \
(USB_CONFIG_ATTR_REMOTE_WAKEUP | USB_CONFIG_ATTR_..._POWERED)
#define UDC_REMOTEWAKEUP_ENABLE() my_callback_remotewakeup_enable()
extern void my_callback_remotewakeup_enable(void);
#define UDC_REMOTEWAKEUP_DISABLE() my_callback_remotewakeup_disable()
extern void my_callback_remotewakeup_disable(void);
\endcode
*
* Add to application C-file:
* \code
void my_callback_remotewakeup_enable(void)
{
// Enable application wakeup events (e.g. enable GPIO interrupt)
}
void my_callback_remotewakeup_disable(void)
{
// Disable application wakeup events (e.g. disable GPIO interrupt)
}
void my_interrupt_event(void)
{
udc_remotewakeup();
}
\endcode
*
* \subsection udc_use_case_3_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters
* required to enable remote wakeup feature:
* - \code // Authorizes the remote wakeup feature
#define USB_DEVICE_ATTR (USB_CONFIG_ATTR_REMOTE_WAKEUP | USB_CONFIG_ATTR_..._POWERED) \endcode
* - \code // Define callback called when the host enables the remotewakeup feature
#define UDC_REMOTEWAKEUP_ENABLE() my_callback_remotewakeup_enable()
extern void my_callback_remotewakeup_enable(void); \endcode
* - \code // Define callback called when the host disables the remotewakeup feature
#define UDC_REMOTEWAKEUP_DISABLE() my_callback_remotewakeup_disable()
extern void my_callback_remotewakeup_disable(void); \endcode
* -# Send a remote wakeup (USB upstream):
* - \code udc_remotewakeup(); \endcode
*/
/**
* \page udc_use_case_5 Bus power application recommendations
*
* In this use case, the USB device BUS power feature is enabled.
* This feature requires a correct power consumption management.
*
* \section udc_use_case_5_setup Setup steps
* Prior to implement this use case, be sure to have already
* apply the UDI module "basic use case".
*
* \section udc_use_case_5_usage Usage steps
*
* \subsection udc_use_case_5_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_ATTR (USB_CONFIG_ATTR_BUS_POWERED)
#define UDC_SUSPEND_EVENT() user_callback_suspend_action()
extern void user_callback_suspend_action(void)
#define UDC_RESUME_EVENT() user_callback_resume_action()
extern void user_callback_resume_action(void)
\endcode
*
* Add to application C-file:
* \code
void user_callback_suspend_action(void)
{
// Disable hardware component to reduce power consumption
}
void user_callback_resume_action(void)
{
// Re-enable hardware component
}
\endcode
*
* \subsection udc_use_case_5_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters:
* - \code // Authorizes the BUS power feature
#define USB_DEVICE_ATTR (USB_CONFIG_ATTR_BUS_POWERED) \endcode
* - \code // Define callback called when the host suspend the USB line
#define UDC_SUSPEND_EVENT() user_callback_suspend_action()
extern void user_callback_suspend_action(void); \endcode
* - \code // Define callback called when the host or device resume the USB line
#define UDC_RESUME_EVENT() user_callback_resume_action()
extern void user_callback_resume_action(void); \endcode
* -# Reduce power consumption in suspend mode (max. 2.5mA on Vbus):
* - \code void user_callback_suspend_action(void)
{
turn_off_components();
} \endcode
*/
/**
* \page udc_use_case_6 USB dynamic serial number
*
* In this use case, the USB serial strings is dynamic.
* For a static serial string refer to \ref udc_use_case_2.
*
* \section udc_use_case_6_setup Setup steps
* Prior to implement this use case, be sure to have already
* apply the UDI module "basic use case".
*
* \section udc_use_case_6_usage Usage steps
*
* \subsection udc_use_case_6_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_SERIAL_NAME
#define USB_DEVICE_GET_SERIAL_NAME_POINTER serial_number
#define USB_DEVICE_GET_SERIAL_NAME_LENGTH 12
extern uint8_t serial_number[];
\endcode
*
* Add to application C-file:
* \code
uint8_t serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH];
void init_build_usb_serial_number(void)
{
serial_number[0] = 'A';
serial_number[1] = 'B';
...
serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH-1] = 'C';
} \endcode
*
* \subsection udc_use_case_6_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters
* required to enable a USB serial number strings dynamically:
* - \code #define USB_DEVICE_SERIAL_NAME // Define this empty
#define USB_DEVICE_GET_SERIAL_NAME_POINTER serial_number // Give serial array pointer
#define USB_DEVICE_GET_SERIAL_NAME_LENGTH 12 // Give size of serial array
extern uint8_t serial_number[]; // Declare external serial array \endcode
* -# Before start USB stack, initialize the serial array
* - \code
uint8_t serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH];
void init_build_usb_serial_number(void)
{
serial_number[0] = 'A';
serial_number[1] = 'B';
...
serial_number[USB_DEVICE_GET_SERIAL_NAME_LENGTH-1] = 'C';
} \endcode
*/
#endif // _UDC_H_

View file

@ -0,0 +1,135 @@
/**
* \file
*
* \brief Common API for USB Device Interface
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _UDC_DESC_H_
#define _UDC_DESC_H_
#include "conf_usb.h"
#include "usb_protocol.h"
#include "udi.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup udc_group
* \defgroup udc_desc_group USB Device Descriptor
*
* @{
*/
/**
* \brief Defines the memory's location of USB descriptors
*
* By default the Descriptor is stored in RAM
* (UDC_DESC_STORAGE is defined empty).
*
* If you have need to free RAM space,
* it is possible to put descriptor in flash in following case:
* - USB driver authorize flash transfer (USBB on UC3 and USB on Mega)
* - USB Device is not high speed (UDC no need to change USB descriptors)
*
* For UC3 application used "const".
*
* For Mega application used "code".
*/
#define UDC_DESC_STORAGE
// Descriptor storage in internal RAM
#if (defined UDC_DATA_USE_HRAM_SUPPORT)
# if defined(__GNUC__)
# define UDC_DATA(x) COMPILER_WORD_ALIGNED __attribute__((__section__(".data_hram0")))
# define UDC_BSS(x) COMPILER_ALIGNED(x) __attribute__((__section__(".bss_hram0")))
# elif defined(__ICCAVR32__)
# define UDC_DATA(x) COMPILER_ALIGNED(x) __data32
# define UDC_BSS(x) COMPILER_ALIGNED(x) __data32
# endif
#else
# define UDC_DATA(x) COMPILER_ALIGNED(x)
# define UDC_BSS(x) COMPILER_ALIGNED(x)
#endif
/**
* \brief Configuration descriptor and UDI link for one USB speed
*/
typedef struct {
//! USB configuration descriptor
usb_conf_desc_t UDC_DESC_STORAGE *desc;
//! Array of UDI API pointer
udi_api_t UDC_DESC_STORAGE *UDC_DESC_STORAGE * udi_apis;
} udc_config_speed_t;
/**
* \brief All information about the USB Device
*/
typedef struct {
//! USB device descriptor for low or full speed
usb_dev_desc_t UDC_DESC_STORAGE *confdev_lsfs;
//! USB configuration descriptor and UDI API pointers for low or full speed
udc_config_speed_t UDC_DESC_STORAGE *conf_lsfs;
#ifdef USB_DEVICE_HS_SUPPORT
//! USB device descriptor for high speed
usb_dev_desc_t UDC_DESC_STORAGE *confdev_hs;
//! USB device qualifier, only use in high speed mode
usb_dev_qual_desc_t UDC_DESC_STORAGE *qualifier;
//! USB configuration descriptor and UDI API pointers for high speed
udc_config_speed_t UDC_DESC_STORAGE *conf_hs;
#endif
usb_dev_bos_desc_t UDC_DESC_STORAGE *conf_bos;
} udc_config_t;
//! Global variables of USB Device Descriptor and UDI links
extern UDC_DESC_STORAGE udc_config_t udc_config;
//@}
#ifdef __cplusplus
}
#endif
#endif // _UDC_DESC_H_

View file

@ -0,0 +1,396 @@
/**
* \file
*
* \brief Common API for USB Device Drivers (UDD)
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _UDD_H_
#define _UDD_H_
#include "usb_protocol.h"
#include "udc_desc.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup usb_device_group
* \defgroup udd_group USB Device Driver (UDD)
*
* The UDD driver provides a low-level abstraction of the device
* controller hardware. Most events coming from the hardware such as
* interrupts, which may cause the UDD to call into the UDC and UDI.
*
* @{
*/
//! \brief Endpoint identifier
typedef uint8_t udd_ep_id_t;
//! \brief Endpoint transfer status
//! Returned in parameters of callback register via udd_ep_run routine.
typedef enum {
UDD_EP_TRANSFER_OK = 0,
UDD_EP_TRANSFER_ABORT = 1,
} udd_ep_status_t;
/**
* \brief Global variable to give and record information of the setup request management
*
* This global variable allows to decode and response a setup request.
* It can be updated by udc_process_setup() from UDC or *setup() from UDIs.
*/
typedef struct {
//! Data received in USB SETUP packet
//! Note: The swap of "req.wValues" from uin16_t to le16_t is done by UDD.
usb_setup_req_t req;
//! Point to buffer to send or fill with data following SETUP packet
//! This buffer must be word align for DATA IN phase (use prefix COMPILER_WORD_ALIGNED for buffer)
uint8_t *payload;
//! Size of buffer to send or fill, and content the number of byte transfered
uint16_t payload_size;
//! Callback called after reception of ZLP from setup request
void (*callback) (void);
//! Callback called when the buffer given (.payload) is full or empty.
//! This one return false to abort data transfer, or true with a new buffer in .payload.
bool(*over_under_run) (void);
} udd_ctrl_request_t;
extern udd_ctrl_request_t udd_g_ctrlreq;
//! Return true if the setup request \a udd_g_ctrlreq indicates IN data transfer
#define Udd_setup_is_in() \
(USB_REQ_DIR_IN == (udd_g_ctrlreq.req.bmRequestType & USB_REQ_DIR_MASK))
//! Return true if the setup request \a udd_g_ctrlreq indicates OUT data transfer
#define Udd_setup_is_out() \
(USB_REQ_DIR_OUT == (udd_g_ctrlreq.req.bmRequestType & USB_REQ_DIR_MASK))
//! Return the type of the SETUP request \a udd_g_ctrlreq. \see usb_reqtype.
#define Udd_setup_type() \
(udd_g_ctrlreq.req.bmRequestType & USB_REQ_TYPE_MASK)
//! Return the recipient of the SETUP request \a udd_g_ctrlreq. \see usb_recipient
#define Udd_setup_recipient() \
(udd_g_ctrlreq.req.bmRequestType & USB_REQ_RECIP_MASK)
/**
* \brief End of halt callback function type.
* Registered by routine udd_ep_wait_stall_clear()
* Callback called when endpoint stall is cleared.
*/
typedef void (*udd_callback_halt_cleared_t) (void);
/**
* \brief End of transfer callback function type.
* Registered by routine udd_ep_run()
* Callback called by USB interrupt after data transfer or abort (reset,...).
*
* \param status UDD_EP_TRANSFER_OK, if transfer is complete
* \param status UDD_EP_TRANSFER_ABORT, if transfer is aborted
* \param n number of data transfered
*/
typedef void (*udd_callback_trans_t) (udd_ep_status_t status,
iram_size_t nb_transfered, udd_ep_id_t ep);
/**
* \brief Authorizes the VBUS event
*
* \return true, if the VBUS monitoring is possible.
*/
bool udd_include_vbus_monitoring(void);
/**
* \brief Enables the USB Device mode
*/
void udd_enable(void);
/**
* \brief Disables the USB Device mode
*/
void udd_disable(void);
/**
* \brief Attach device to the bus when possible
*
* \warning If a VBus control is included in driver,
* then it will attach device when an acceptable Vbus
* level from the host is detected.
*/
void udd_attach(void);
/**
* \brief Detaches the device from the bus
*
* The driver must remove pull-up on USB line D- or D+.
*/
void udd_detach(void);
/**
* \brief Test whether the USB Device Controller is running at high
* speed or not.
*
* \return \c true if the Device is running at high speed mode, otherwise \c false.
*/
bool udd_is_high_speed(void);
/**
* \brief Changes the USB address of device
*
* \param address New USB address
*/
void udd_set_address(uint8_t address);
/**
* \brief Returns the USB address of device
*
* \return USB address
*/
uint8_t udd_getaddress(void);
/**
* \brief Returns the current start of frame number
*
* \return current start of frame number.
*/
uint16_t udd_get_frame_number(void);
/**
* \brief Returns the current micro start of frame number
*
* \return current micro start of frame number required in high speed mode.
*/
uint16_t udd_get_micro_frame_number(void);
/*! \brief The USB driver sends a resume signal called Upstream Resume
*/
void udd_send_remotewakeup(void);
/**
* \brief Load setup payload
*
* \param payload Pointer on payload
* \param payload_size Size of payload
*/
void udd_set_setup_payload( uint8_t *payload, uint16_t payload_size );
/**
* \name Endpoint Management
*
* The following functions allow drivers to create and remove
* endpoints, as well as set, clear and query their "halted" and
* "wedged" states.
*/
//@{
#if (USB_DEVICE_MAX_EP != 0)
/**
* \brief Configures and enables an endpoint
*
* \param ep Endpoint number including direction (USB_EP_DIR_IN/USB_EP_DIR_OUT).
* \param bmAttributes Attributes of endpoint declared in the descriptor.
* \param MaxEndpointSize Endpoint maximum size
*
* \return \c 1 if the endpoint is enabled, otherwise \c 0.
*/
bool udd_ep_alloc(udd_ep_id_t ep, uint8_t bmAttributes,
uint16_t MaxEndpointSize);
/**
* \brief Disables an endpoint
*
* \param ep Endpoint number including direction (USB_EP_DIR_IN/USB_EP_DIR_OUT).
*/
void udd_ep_free(udd_ep_id_t ep);
/**
* \brief Check if the endpoint \a ep is halted.
*
* \param ep The ID of the endpoint to check.
*
* \return \c 1 if \a ep is halted, otherwise \c 0.
*/
bool udd_ep_is_halted(udd_ep_id_t ep);
/**
* \brief Set the halted state of the endpoint \a ep
*
* After calling this function, any transaction on \a ep will result
* in a STALL handshake being sent. Any pending transactions will be
* performed first, however.
*
* \param ep The ID of the endpoint to be halted
*
* \return \c 1 if \a ep is halted, otherwise \c 0.
*/
bool udd_ep_set_halt(udd_ep_id_t ep);
/**
* \brief Clear the halted state of the endpoint \a ep
*
* After calling this function, any transaction on \a ep will
* be handled normally, i.e. a STALL handshake will not be sent, and
* the data toggle sequence will start at DATA0.
*
* \param ep The ID of the endpoint to be un-halted
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
bool udd_ep_clear_halt(udd_ep_id_t ep);
/**
* \brief Registers a callback to call when endpoint halt is cleared
*
* \param ep The ID of the endpoint to use
* \param callback NULL or function to call when endpoint halt is cleared
*
* \warning if the endpoint is not halted then the \a callback is called immediately.
*
* \return \c 1 if the register is accepted, otherwise \c 0.
*/
bool udd_ep_wait_stall_clear(udd_ep_id_t ep,
udd_callback_halt_cleared_t callback);
/**
* \brief Allows to receive or send data on an endpoint
*
* The driver uses a specific DMA USB to transfer data
* from internal RAM to endpoint, if this one is available.
* When the transfer is finished or aborted (stall, reset, ...), the \a callback is called.
* The \a callback returns the transfer status and eventually the number of byte transfered.
* Note: The control endpoint is not authorized.
*
* \param ep The ID of the endpoint to use
* \param b_shortpacket Enabled automatic short packet
* \param buf Buffer on Internal RAM to send or fill.
* It must be align, then use COMPILER_WORD_ALIGNED.
* \param buf_size Buffer size to send or fill
* \param callback NULL or function to call at the end of transfer
*
* \warning About \a b_shortpacket, for IN endpoint it means that a short packet
* (or a Zero Length Packet) will be sent to the USB line to properly close the usb
* transfer at the end of the data transfer.
* For Bulk and Interrupt OUT endpoint, it will automatically stop the transfer
* at the end of the data transfer (received short packet).
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
bool udd_ep_run(udd_ep_id_t ep, bool b_shortpacket,
uint8_t * buf, iram_size_t buf_size,
udd_callback_trans_t callback);
/**
* \brief Aborts transfer on going on endpoint
*
* If a transfer is on going, then it is stopped and
* the callback registered is called to signal the end of transfer.
* Note: The control endpoint is not authorized.
*
* \param ep Endpoint to abort
*/
void udd_ep_abort(udd_ep_id_t ep);
#endif
//@}
/**
* \name High speed test mode management
*
* The following functions allow the device to jump to a specific test mode required in high speed mode.
*/
//@{
void udd_test_mode_j(void);
void udd_test_mode_k(void);
void udd_test_mode_se0_nak(void);
void udd_test_mode_packet(void);
//@}
/**
* \name UDC callbacks to provide for UDD
*
* The following callbacks are used by UDD.
*/
//@{
/**
* \brief Decodes and manages a setup request
*
* The driver call it when a SETUP packet is received.
* The \c udd_g_ctrlreq contains the data of SETUP packet.
* If this callback accepts the setup request then it must
* return \c 1 and eventually update \c udd_g_ctrlreq to send or receive data.
*
* \return \c 1 if the request is accepted, otherwise \c 0.
*/
extern bool udc_process_setup(void);
/**
* \brief Reset the UDC
*
* The UDC must reset all configuration.
*/
extern void udc_reset(void);
/**
* \brief To signal that a SOF is occurred
*
* The UDC must send the signal to all UDIs enabled
*/
extern void udc_sof_notify(void);
//@}
//@}
#ifdef __cplusplus
}
#endif
#endif // _UDD_H_

View file

@ -0,0 +1,133 @@
/**
* \file
*
* \brief Common API for USB Device Interface
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _UDI_H_
#define _UDI_H_
#include "conf_usb.h"
#include "usb_protocol.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \ingroup usb_device_group
* \defgroup udi_group USB Device Interface (UDI)
* The UDI provides a common API for all classes,
* and this is used by UDC for the main control of USB Device interface.
* @{
*/
/**
* \brief UDI API.
*
* The callbacks within this structure are called only by
* USB Device Controller (UDC)
*
* The udc_get_interface_desc() can be use by UDI to know the interface descriptor
* selected by UDC.
*/
typedef struct {
/**
* \brief Enable the interface.
*
* This function is called when the host selects a configuration
* to which this interface belongs through a Set Configuration
* request, and when the host selects an alternate setting of
* this interface through a Set Interface request.
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
bool(*enable) (void);
/**
* \brief Disable the interface.
*
* This function is called when this interface is currently
* active, and
* - the host selects any configuration through a Set
* Configuration request, or
* - the host issues a USB reset, or
* - the device is detached from the host (i.e. Vbus is no
* longer present)
*/
void (*disable) (void);
/**
* \brief Handle a control request directed at an interface.
*
* This function is called when this interface is currently
* active and the host sends a SETUP request
* with this interface as the recipient.
*
* Use udd_g_ctrlreq to decode and response to SETUP request.
*
* \return \c 1 if this interface supports the SETUP request, otherwise \c 0.
*/
bool(*setup) (void);
/**
* \brief Returns the current setting of the selected interface.
*
* This function is called when UDC when know alternate setting of selected interface.
*
* \return alternate setting of selected interface
*/
uint8_t(*getsetting) (void);
/**
* \brief To signal that a SOF is occurred
*/
void(*sof_notify) (void);
} udi_api_t;
//@}
#ifdef __cplusplus
}
#endif
#endif // _UDI_H_

View file

@ -0,0 +1,1155 @@
/**
* \file
*
* \brief USB Device Communication Device Class (CDC) interface.
*
* Copyright (c) 2009-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "conf_usb.h"
#include "usb_protocol.h"
#include "usb_protocol_cdc.h"
#include "udd.h"
#include "udc.h"
#include "udi_cdc.h"
#include <string.h>
#ifdef UDI_CDC_LOW_RATE
# ifdef USB_DEVICE_HS_SUPPORT
# define UDI_CDC_TX_BUFFERS (UDI_CDC_DATA_EPS_HS_SIZE)
# define UDI_CDC_RX_BUFFERS (UDI_CDC_DATA_EPS_HS_SIZE)
# else
# define UDI_CDC_TX_BUFFERS (UDI_CDC_DATA_EPS_FS_SIZE)
# define UDI_CDC_RX_BUFFERS (UDI_CDC_DATA_EPS_FS_SIZE)
# endif
#else
# ifdef USB_DEVICE_HS_SUPPORT
# define UDI_CDC_TX_BUFFERS (UDI_CDC_DATA_EPS_HS_SIZE)
# define UDI_CDC_RX_BUFFERS (UDI_CDC_DATA_EPS_HS_SIZE)
# else
# define UDI_CDC_TX_BUFFERS (5*UDI_CDC_DATA_EPS_FS_SIZE)
# define UDI_CDC_RX_BUFFERS (5*UDI_CDC_DATA_EPS_FS_SIZE)
# endif
#endif
#ifndef UDI_CDC_TX_EMPTY_NOTIFY
# define UDI_CDC_TX_EMPTY_NOTIFY(port)
#endif
/**
* \ingroup udi_cdc_group
* \defgroup udi_cdc_group_udc Interface with USB Device Core (UDC)
*
* Structures and functions required by UDC.
*
* @{
*/
bool udi_cdc_comm_enable(void);
void udi_cdc_comm_disable(void);
bool udi_cdc_comm_setup(void);
bool udi_cdc_data_enable(void);
void udi_cdc_data_disable(void);
bool udi_cdc_data_setup(void);
uint8_t udi_cdc_getsetting(void);
void udi_cdc_data_sof_notify(void);
UDC_DESC_STORAGE udi_api_t udi_api_cdc_comm = {
.enable = udi_cdc_comm_enable,
.disable = udi_cdc_comm_disable,
.setup = udi_cdc_comm_setup,
.getsetting = udi_cdc_getsetting,
};
UDC_DESC_STORAGE udi_api_t udi_api_cdc_data = {
.enable = udi_cdc_data_enable,
.disable = udi_cdc_data_disable,
.setup = udi_cdc_data_setup,
.getsetting = udi_cdc_getsetting,
.sof_notify = udi_cdc_data_sof_notify,
};
//@}
/**
* \ingroup udi_cdc_group
* \defgroup udi_cdc_group_internal Implementation of UDI CDC
*
* Class internal implementation
* @{
*/
/**
* \name Internal routines
*/
//@{
/**
* \name Routines to control serial line
*/
//@{
/**
* \brief Returns the port number corresponding at current setup request
*
* \return port number
*/
static uint8_t udi_cdc_setup_to_port(void);
/**
* \brief Sends line coding to application
*
* Called after SETUP request when line coding data is received.
*/
static void udi_cdc_line_coding_received(void);
/**
* \brief Records new state
*
* \param port Communication port number to manage
* \param b_set State is enabled if true, else disabled
* \param bit_mask Field to process (see CDC_SERIAL_STATE_ defines)
*/
static void udi_cdc_ctrl_state_change(uint8_t port, bool b_set, le16_t bit_mask);
/**
* \brief Check and eventually notify the USB host of new state
*
* \param port Communication port number to manage
* \param ep Port communication endpoint
*/
static void udi_cdc_ctrl_state_notify(uint8_t port, udd_ep_id_t ep);
/**
* \brief Ack sent of serial state message
* Callback called after serial state message sent
*
* \param status UDD_EP_TRANSFER_OK, if transfer finished
* \param status UDD_EP_TRANSFER_ABORT, if transfer aborted
* \param n number of data transfered
*/
static void udi_cdc_serial_state_msg_sent(udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep);
//@}
/**
* \name Routines to process data transfer
*/
//@{
/**
* \brief Enable the reception of data from the USB host
*
* The value udi_cdc_rx_trans_sel indicate the RX buffer to fill.
*
* \param port Communication port number to manage
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
static bool udi_cdc_rx_start(uint8_t port);
/**
* \brief Update rx buffer management with a new data
* Callback called after data reception on USB line
*
* \param status UDD_EP_TRANSFER_OK, if transfer finish
* \param status UDD_EP_TRANSFER_ABORT, if transfer aborted
* \param n number of data received
*/
static void udi_cdc_data_received(udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep);
/**
* \brief Ack sent of tx buffer
* Callback called after data transfer on USB line
*
* \param status UDD_EP_TRANSFER_OK, if transfer finished
* \param status UDD_EP_TRANSFER_ABORT, if transfer aborted
* \param n number of data transfered
*/
static void udi_cdc_data_sent(udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep);
/**
* \brief Send buffer on line or wait a SOF event
*
* \param port Communication port number to manage
*/
static void udi_cdc_tx_send(uint8_t port);
//@}
//@}
/**
* \name Information about configuration of communication line
*/
//@{
COMPILER_WORD_ALIGNED
static usb_cdc_line_coding_t udi_cdc_line_coding[UDI_CDC_PORT_NB];
static bool udi_cdc_serial_state_msg_ongoing[UDI_CDC_PORT_NB];
static volatile le16_t udi_cdc_state[UDI_CDC_PORT_NB];
COMPILER_WORD_ALIGNED static usb_cdc_notify_serial_state_t uid_cdc_state_msg[UDI_CDC_PORT_NB];
//! Status of CDC COMM interfaces
static volatile uint8_t udi_cdc_nb_comm_enabled = 0;
//@}
/**
* \name Variables to manage RX/TX transfer requests
* Two buffers for each sense are used to optimize the speed.
*/
//@{
//! Status of CDC DATA interfaces
static volatile uint8_t udi_cdc_nb_data_enabled = 0;
static volatile bool udi_cdc_data_running = false;
//! Buffer to receive data
COMPILER_WORD_ALIGNED static uint8_t udi_cdc_rx_buf[UDI_CDC_PORT_NB][2][UDI_CDC_RX_BUFFERS];
//! Data available in RX buffers
static volatile uint16_t udi_cdc_rx_buf_nb[UDI_CDC_PORT_NB][2];
//! Give the current RX buffer used (rx0 if 0, rx1 if 1)
static volatile uint8_t udi_cdc_rx_buf_sel[UDI_CDC_PORT_NB];
//! Read position in current RX buffer
static volatile uint16_t udi_cdc_rx_pos[UDI_CDC_PORT_NB];
//! Signal a transfer on-going
static volatile bool udi_cdc_rx_trans_ongoing[UDI_CDC_PORT_NB];
//! Define a transfer halted
#define UDI_CDC_TRANS_HALTED 2
//! Buffer to send data
COMPILER_WORD_ALIGNED static uint8_t udi_cdc_tx_buf[UDI_CDC_PORT_NB][2][UDI_CDC_TX_BUFFERS];
//! Data available in TX buffers
static uint16_t udi_cdc_tx_buf_nb[UDI_CDC_PORT_NB][2];
//! Give current TX buffer used (tx0 if 0, tx1 if 1)
static volatile uint8_t udi_cdc_tx_buf_sel[UDI_CDC_PORT_NB];
//! Value of SOF during last TX transfer
static uint16_t udi_cdc_tx_sof_num[UDI_CDC_PORT_NB];
//! Signal a transfer on-going
static volatile bool udi_cdc_tx_trans_ongoing[UDI_CDC_PORT_NB];
//! Signal that both buffer content data to send
static volatile bool udi_cdc_tx_both_buf_to_send[UDI_CDC_PORT_NB];
//@}
bool udi_cdc_comm_enable(void)
{
uint8_t port;
uint8_t iface_comm_num;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
udi_cdc_nb_comm_enabled = 0;
#else
if (udi_cdc_nb_comm_enabled > UDI_CDC_PORT_NB) {
udi_cdc_nb_comm_enabled = 0;
}
port = udi_cdc_nb_comm_enabled;
#endif
// Initialize control signal management
udi_cdc_state[port] = CPU_TO_LE16(0);
uid_cdc_state_msg[port].header.bmRequestType =
USB_REQ_DIR_IN | USB_REQ_TYPE_CLASS |
USB_REQ_RECIP_INTERFACE;
uid_cdc_state_msg[port].header.bNotification = USB_REQ_CDC_NOTIFY_SERIAL_STATE;
uid_cdc_state_msg[port].header.wValue = LE16(0);
switch (port) {
#define UDI_CDC_PORT_TO_IFACE_COMM(index, unused) \
case index: \
iface_comm_num = UDI_CDC_COMM_IFACE_NUMBER_##index; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_PORT_TO_IFACE_COMM, ~)
#undef UDI_CDC_PORT_TO_IFACE_COMM
default:
iface_comm_num = UDI_CDC_COMM_IFACE_NUMBER_0;
break;
}
uid_cdc_state_msg[port].header.wIndex = LE16(iface_comm_num);
uid_cdc_state_msg[port].header.wLength = LE16(2);
uid_cdc_state_msg[port].value = CPU_TO_LE16(0);
udi_cdc_line_coding[port].dwDTERate = CPU_TO_LE32(UDI_CDC_DEFAULT_RATE);
udi_cdc_line_coding[port].bCharFormat = UDI_CDC_DEFAULT_STOPBITS;
udi_cdc_line_coding[port].bParityType = UDI_CDC_DEFAULT_PARITY;
udi_cdc_line_coding[port].bDataBits = UDI_CDC_DEFAULT_DATABITS;
// Call application callback
// to initialize memories or indicate that interface is enabled
UDI_CDC_SET_CODING_EXT(port,(&udi_cdc_line_coding[port]));
if (!UDI_CDC_ENABLE_EXT(port)) {
return false;
}
udi_cdc_nb_comm_enabled++;
return true;
}
bool udi_cdc_data_enable(void)
{
uint8_t port;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
udi_cdc_nb_data_enabled = 0;
#else
if (udi_cdc_nb_data_enabled > UDI_CDC_PORT_NB) {
udi_cdc_nb_data_enabled = 0;
}
port = udi_cdc_nb_data_enabled;
#endif
// Initialize TX management
udi_cdc_tx_trans_ongoing[port] = false;
udi_cdc_tx_both_buf_to_send[port] = false;
udi_cdc_tx_buf_sel[port] = 0;
udi_cdc_tx_buf_nb[port][0] = 0;
udi_cdc_tx_buf_nb[port][1] = 0;
udi_cdc_tx_sof_num[port] = 0;
udi_cdc_tx_send(port);
// Initialize RX management
udi_cdc_rx_trans_ongoing[port] = false;
udi_cdc_rx_buf_sel[port] = 0;
udi_cdc_rx_buf_nb[port][0] = 0;
udi_cdc_rx_buf_nb[port][1] = 0;
udi_cdc_rx_pos[port] = 0;
if (!udi_cdc_rx_start(port)) {
return false;
}
udi_cdc_nb_data_enabled++;
if (udi_cdc_nb_data_enabled == UDI_CDC_PORT_NB) {
udi_cdc_data_running = true;
}
return true;
}
void udi_cdc_comm_disable(void)
{
Assert(udi_cdc_nb_comm_enabled != 0);
udi_cdc_nb_comm_enabled--;
}
void udi_cdc_data_disable(void)
{
uint8_t port;
Assert(udi_cdc_nb_data_enabled != 0);
udi_cdc_nb_data_enabled--;
port = udi_cdc_nb_data_enabled;
UDI_CDC_DISABLE_EXT(port);
udi_cdc_data_running = false;
}
bool udi_cdc_comm_setup(void)
{
uint8_t port = udi_cdc_setup_to_port();
if (Udd_setup_is_in()) {
// GET Interface Requests
if (Udd_setup_type() == USB_REQ_TYPE_CLASS) {
// Requests Class Interface Get
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_CDC_GET_LINE_CODING:
// Get configuration of CDC line
if (sizeof(usb_cdc_line_coding_t) !=
udd_g_ctrlreq.req.wLength)
return false; // Error for USB host
udd_g_ctrlreq.payload =
(uint8_t *) &
udi_cdc_line_coding[port];
udd_g_ctrlreq.payload_size =
sizeof(usb_cdc_line_coding_t);
return true;
}
}
}
if (Udd_setup_is_out()) {
// SET Interface Requests
if (Udd_setup_type() == USB_REQ_TYPE_CLASS) {
// Requests Class Interface Set
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_CDC_SET_LINE_CODING:
// Change configuration of CDC line
if (sizeof(usb_cdc_line_coding_t) !=
udd_g_ctrlreq.req.wLength)
return false; // Error for USB host
udd_g_ctrlreq.callback =
udi_cdc_line_coding_received;
udd_g_ctrlreq.payload =
(uint8_t *) &
udi_cdc_line_coding[port];
udd_g_ctrlreq.payload_size =
sizeof(usb_cdc_line_coding_t);
return true;
case USB_REQ_CDC_SET_CONTROL_LINE_STATE:
// According cdc spec 1.1 chapter 6.2.14
UDI_CDC_SET_DTR_EXT(port, (0 !=
(udd_g_ctrlreq.req.wValue
& CDC_CTRL_SIGNAL_DTE_PRESENT)));
UDI_CDC_SET_RTS_EXT(port, (0 !=
(udd_g_ctrlreq.req.wValue
& CDC_CTRL_SIGNAL_ACTIVATE_CARRIER)));
return true;
}
}
}
return false; // request Not supported
}
bool udi_cdc_data_setup(void)
{
return false; // request Not supported
}
uint8_t udi_cdc_getsetting(void)
{
return 0; // CDC don't have multiple alternate setting
}
void udi_cdc_data_sof_notify(void)
{
static uint8_t port_notify = 0;
// A call of udi_cdc_data_sof_notify() is done for each port
udi_cdc_tx_send(port_notify);
#if UDI_CDC_PORT_NB != 1 // To optimize code
port_notify++;
if (port_notify >= UDI_CDC_PORT_NB) {
port_notify = 0;
}
#endif
}
//-------------------------------------------------
//------- Internal routines to control serial line
static uint8_t udi_cdc_setup_to_port(void)
{
uint8_t port;
switch (udd_g_ctrlreq.req.wIndex & 0xFF) {
#define UDI_CDC_IFACE_COMM_TO_PORT(iface, unused) \
case UDI_CDC_COMM_IFACE_NUMBER_##iface: \
port = iface; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_IFACE_COMM_TO_PORT, ~)
#undef UDI_CDC_IFACE_COMM_TO_PORT
default:
port = 0;
break;
}
return port;
}
static void udi_cdc_line_coding_received(void)
{
uint8_t port = udi_cdc_setup_to_port();
UNUSED(port);
UDI_CDC_SET_CODING_EXT(port, (&udi_cdc_line_coding[port]));
}
static void udi_cdc_ctrl_state_change(uint8_t port, bool b_set, le16_t bit_mask)
{
irqflags_t flags;
udd_ep_id_t ep_comm;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
// Update state
flags = cpu_irq_save(); // Protect udi_cdc_state
if (b_set) {
udi_cdc_state[port] |= bit_mask;
} else {
udi_cdc_state[port] &= ~(unsigned)bit_mask;
}
cpu_irq_restore(flags);
// Send it if possible and state changed
switch (port) {
#define UDI_CDC_PORT_TO_COMM_EP(index, unused) \
case index: \
ep_comm = UDI_CDC_COMM_EP_##index; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_PORT_TO_COMM_EP, ~)
#undef UDI_CDC_PORT_TO_COMM_EP
default:
ep_comm = UDI_CDC_COMM_EP_0;
break;
}
udi_cdc_ctrl_state_notify(port, ep_comm);
}
static void udi_cdc_ctrl_state_notify(uint8_t port, udd_ep_id_t ep)
{
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
// Send it if possible and state changed
if ((!udi_cdc_serial_state_msg_ongoing[port])
&& (udi_cdc_state[port] != uid_cdc_state_msg[port].value)) {
// Fill notification message
uid_cdc_state_msg[port].value = udi_cdc_state[port];
// Send notification message
udi_cdc_serial_state_msg_ongoing[port] =
udd_ep_run(ep,
false,
(uint8_t *) & uid_cdc_state_msg[port],
sizeof(uid_cdc_state_msg[0]),
udi_cdc_serial_state_msg_sent);
}
}
static void udi_cdc_serial_state_msg_sent(udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep)
{
uint8_t port;
UNUSED(n);
UNUSED(status);
switch (ep) {
#define UDI_CDC_GET_PORT_FROM_COMM_EP(iface, unused) \
case UDI_CDC_COMM_EP_##iface: \
port = iface; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_GET_PORT_FROM_COMM_EP, ~)
#undef UDI_CDC_GET_PORT_FROM_COMM_EP
default:
port = 0;
break;
}
udi_cdc_serial_state_msg_ongoing[port] = false;
// For the irregular signals like break, the incoming ring signal,
// or the overrun error state, this will reset their values to zero
// and again will not send another notification until their state changes.
udi_cdc_state[port] &= ~(CDC_SERIAL_STATE_BREAK |
CDC_SERIAL_STATE_RING |
CDC_SERIAL_STATE_FRAMING |
CDC_SERIAL_STATE_PARITY | CDC_SERIAL_STATE_OVERRUN);
uid_cdc_state_msg[port].value &= ~(CDC_SERIAL_STATE_BREAK |
CDC_SERIAL_STATE_RING |
CDC_SERIAL_STATE_FRAMING |
CDC_SERIAL_STATE_PARITY | CDC_SERIAL_STATE_OVERRUN);
// Send it if possible and state changed
udi_cdc_ctrl_state_notify(port, ep);
}
//-------------------------------------------------
//------- Internal routines to process data transfer
static bool udi_cdc_rx_start(uint8_t port)
{
irqflags_t flags;
uint8_t buf_sel_trans;
udd_ep_id_t ep;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
flags = cpu_irq_save();
buf_sel_trans = udi_cdc_rx_buf_sel[port];
if (udi_cdc_rx_trans_ongoing[port] ||
(udi_cdc_rx_pos[port] < udi_cdc_rx_buf_nb[port][buf_sel_trans])) {
// Transfer already on-going or current buffer no empty
cpu_irq_restore(flags);
return false;
}
// Change current buffer
udi_cdc_rx_pos[port] = 0;
udi_cdc_rx_buf_sel[port] = (buf_sel_trans==0)?1:0;
// Start transfer on RX
udi_cdc_rx_trans_ongoing[port] = true;
cpu_irq_restore(flags);
if (udi_cdc_multi_is_rx_ready(port)) {
UDI_CDC_RX_NOTIFY(port);
}
// Send the buffer with enable of short packet
switch (port) {
#define UDI_CDC_PORT_TO_DATA_EP_OUT(index, unused) \
case index: \
ep = UDI_CDC_DATA_EP_OUT_##index; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_PORT_TO_DATA_EP_OUT, ~)
#undef UDI_CDC_PORT_TO_DATA_EP_OUT
default:
ep = UDI_CDC_DATA_EP_OUT_0;
break;
}
return udd_ep_run(ep,
true,
udi_cdc_rx_buf[port][buf_sel_trans],
UDI_CDC_RX_BUFFERS,
udi_cdc_data_received);
}
static void udi_cdc_data_received(udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep)
{
uint8_t buf_sel_trans;
uint8_t port;
switch (ep) {
#define UDI_CDC_DATA_EP_OUT_TO_PORT(index, unused) \
case UDI_CDC_DATA_EP_OUT_##index: \
port = index; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_DATA_EP_OUT_TO_PORT, ~)
#undef UDI_CDC_DATA_EP_OUT_TO_PORT
default:
port = 0;
break;
}
if (UDD_EP_TRANSFER_OK != status) {
// Abort reception
return;
}
buf_sel_trans = (udi_cdc_rx_buf_sel[port]==0)?1:0;
if (!n) {
udd_ep_run( ep,
true,
udi_cdc_rx_buf[port][buf_sel_trans],
UDI_CDC_RX_BUFFERS,
udi_cdc_data_received);
return;
}
udi_cdc_rx_buf_nb[port][buf_sel_trans] = n;
udi_cdc_rx_trans_ongoing[port] = false;
udi_cdc_rx_start(port);
}
static void udi_cdc_data_sent(udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep)
{
uint8_t port;
UNUSED(n);
switch (ep) {
#define UDI_CDC_DATA_EP_IN_TO_PORT(index, unused) \
case UDI_CDC_DATA_EP_IN_##index: \
port = index; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_DATA_EP_IN_TO_PORT, ~)
#undef UDI_CDC_DATA_EP_IN_TO_PORT
default:
port = 0;
break;
}
if (UDD_EP_TRANSFER_OK != status) {
// Abort transfer
return;
}
udi_cdc_tx_buf_nb[port][(udi_cdc_tx_buf_sel[port]==0)?1:0] = 0;
udi_cdc_tx_both_buf_to_send[port] = false;
udi_cdc_tx_trans_ongoing[port] = false;
if (n != 0) {
UDI_CDC_TX_EMPTY_NOTIFY(port);
}
udi_cdc_tx_send(port);
}
static void udi_cdc_tx_send(uint8_t port)
{
irqflags_t flags;
uint8_t buf_sel_trans;
bool b_short_packet;
udd_ep_id_t ep;
static uint16_t sof_zlp_counter = 0;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
if (udi_cdc_tx_trans_ongoing[port]) {
return; // Already on going or wait next SOF to send next data
}
if (udd_is_high_speed()) {
if (udi_cdc_tx_sof_num[port] == udd_get_micro_frame_number()) {
return; // Wait next SOF to send next data
}
}else{
if (udi_cdc_tx_sof_num[port] == udd_get_frame_number()) {
return; // Wait next SOF to send next data
}
}
flags = cpu_irq_save(); // to protect udi_cdc_tx_buf_sel
buf_sel_trans = udi_cdc_tx_buf_sel[port];
if (udi_cdc_tx_buf_nb[port][buf_sel_trans] == 0) {
sof_zlp_counter++;
if (((!udd_is_high_speed()) && (sof_zlp_counter < 100))
|| (udd_is_high_speed() && (sof_zlp_counter < 800))) {
cpu_irq_restore(flags);
return;
}
}
sof_zlp_counter = 0;
if (!udi_cdc_tx_both_buf_to_send[port]) {
// Send current Buffer
// and switch the current buffer
udi_cdc_tx_buf_sel[port] = (buf_sel_trans==0)?1:0;
}else{
// Send the other Buffer
// and no switch the current buffer
buf_sel_trans = (buf_sel_trans==0)?1:0;
}
udi_cdc_tx_trans_ongoing[port] = true;
cpu_irq_restore(flags);
b_short_packet = (udi_cdc_tx_buf_nb[port][buf_sel_trans] != UDI_CDC_TX_BUFFERS);
if (b_short_packet) {
if (udd_is_high_speed()) {
udi_cdc_tx_sof_num[port] = udd_get_micro_frame_number();
}else{
udi_cdc_tx_sof_num[port] = udd_get_frame_number();
}
}else{
udi_cdc_tx_sof_num[port] = 0; // Force next transfer without wait SOF
}
// Send the buffer with enable of short packet
switch (port) {
#define UDI_CDC_PORT_TO_DATA_EP_IN(index, unused) \
case index: \
ep = UDI_CDC_DATA_EP_IN_##index; \
break;
MREPEAT(UDI_CDC_PORT_NB, UDI_CDC_PORT_TO_DATA_EP_IN, ~)
#undef UDI_CDC_PORT_TO_DATA_EP_IN
default:
ep = UDI_CDC_DATA_EP_IN_0;
break;
}
udd_ep_run( ep,
b_short_packet,
udi_cdc_tx_buf[port][buf_sel_trans],
udi_cdc_tx_buf_nb[port][buf_sel_trans],
udi_cdc_data_sent);
}
//---------------------------------------------
//------- Application interface
//------- Application interface
void udi_cdc_ctrl_signal_dcd(bool b_set)
{
udi_cdc_ctrl_state_change(0, b_set, CDC_SERIAL_STATE_DCD);
}
void udi_cdc_ctrl_signal_dsr(bool b_set)
{
udi_cdc_ctrl_state_change(0, b_set, CDC_SERIAL_STATE_DSR);
}
void udi_cdc_signal_framing_error(void)
{
udi_cdc_ctrl_state_change(0, true, CDC_SERIAL_STATE_FRAMING);
}
void udi_cdc_signal_parity_error(void)
{
udi_cdc_ctrl_state_change(0, true, CDC_SERIAL_STATE_PARITY);
}
void udi_cdc_signal_overrun(void)
{
udi_cdc_ctrl_state_change(0, true, CDC_SERIAL_STATE_OVERRUN);
}
void udi_cdc_multi_ctrl_signal_dcd(uint8_t port, bool b_set)
{
udi_cdc_ctrl_state_change(port, b_set, CDC_SERIAL_STATE_DCD);
}
void udi_cdc_multi_ctrl_signal_dsr(uint8_t port, bool b_set)
{
udi_cdc_ctrl_state_change(port, b_set, CDC_SERIAL_STATE_DSR);
}
void udi_cdc_multi_signal_framing_error(uint8_t port)
{
udi_cdc_ctrl_state_change(port, true, CDC_SERIAL_STATE_FRAMING);
}
void udi_cdc_multi_signal_parity_error(uint8_t port)
{
udi_cdc_ctrl_state_change(port, true, CDC_SERIAL_STATE_PARITY);
}
void udi_cdc_multi_signal_overrun(uint8_t port)
{
udi_cdc_ctrl_state_change(port, true, CDC_SERIAL_STATE_OVERRUN);
}
iram_size_t udi_cdc_multi_get_nb_received_data(uint8_t port)
{
irqflags_t flags;
uint16_t pos;
iram_size_t nb_received;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
flags = cpu_irq_save();
pos = udi_cdc_rx_pos[port];
nb_received = udi_cdc_rx_buf_nb[port][udi_cdc_rx_buf_sel[port]] - pos;
cpu_irq_restore(flags);
return nb_received;
}
iram_size_t udi_cdc_get_nb_received_data(void)
{
return udi_cdc_multi_get_nb_received_data(0);
}
bool udi_cdc_multi_is_rx_ready(uint8_t port)
{
return (udi_cdc_multi_get_nb_received_data(port) > 0);
}
bool udi_cdc_is_rx_ready(void)
{
return udi_cdc_multi_is_rx_ready(0);
}
int udi_cdc_multi_getc(uint8_t port)
{
irqflags_t flags;
int rx_data = 0;
bool b_databit_9;
uint16_t pos;
uint8_t buf_sel;
bool again;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
b_databit_9 = (9 == udi_cdc_line_coding[port].bDataBits);
udi_cdc_getc_process_one_byte:
// Check available data
flags = cpu_irq_save();
pos = udi_cdc_rx_pos[port];
buf_sel = udi_cdc_rx_buf_sel[port];
again = pos >= udi_cdc_rx_buf_nb[port][buf_sel];
cpu_irq_restore(flags);
while (again) {
if (!udi_cdc_data_running) {
return 0;
}
goto udi_cdc_getc_process_one_byte;
}
// Read data
rx_data |= udi_cdc_rx_buf[port][buf_sel][pos];
udi_cdc_rx_pos[port] = pos+1;
udi_cdc_rx_start(port);
if (b_databit_9) {
// Receive MSB
b_databit_9 = false;
rx_data = rx_data << 8;
goto udi_cdc_getc_process_one_byte;
}
return rx_data;
}
int udi_cdc_getc(void)
{
return udi_cdc_multi_getc(0);
}
iram_size_t udi_cdc_multi_read_buf(uint8_t port, void* buf, iram_size_t size)
{
irqflags_t flags;
uint8_t *ptr_buf = (uint8_t *)buf;
iram_size_t copy_nb;
uint16_t pos;
uint8_t buf_sel;
bool again;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
udi_cdc_read_buf_loop_wait:
// Check available data
flags = cpu_irq_save();
pos = udi_cdc_rx_pos[port];
buf_sel = udi_cdc_rx_buf_sel[port];
again = pos >= udi_cdc_rx_buf_nb[port][buf_sel];
cpu_irq_restore(flags);
while (again) {
if (!udi_cdc_data_running) {
return size;
}
goto udi_cdc_read_buf_loop_wait;
}
// Read data
copy_nb = udi_cdc_rx_buf_nb[port][buf_sel] - pos;
if (copy_nb>size) {
copy_nb = size;
}
memcpy(ptr_buf, &udi_cdc_rx_buf[port][buf_sel][pos], copy_nb);
udi_cdc_rx_pos[port] += copy_nb;
ptr_buf += copy_nb;
size -= copy_nb;
udi_cdc_rx_start(port);
if (size) {
goto udi_cdc_read_buf_loop_wait;
}
return 0;
}
static iram_size_t udi_cdc_multi_read_no_polling(uint8_t port, void* buf, iram_size_t size)
{
uint8_t *ptr_buf = (uint8_t *)buf;
iram_size_t nb_avail_data;
uint16_t pos;
uint8_t buf_sel;
irqflags_t flags;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
//Data interface not started... exit
if (!udi_cdc_data_running) {
return 0;
}
//Get number of available data
// Check available data
flags = cpu_irq_save(); // to protect udi_cdc_rx_pos & udi_cdc_rx_buf_sel
pos = udi_cdc_rx_pos[port];
buf_sel = udi_cdc_rx_buf_sel[port];
nb_avail_data = udi_cdc_rx_buf_nb[port][buf_sel] - pos;
cpu_irq_restore(flags);
//If the buffer contains less than the requested number of data,
//adjust read size
if(nb_avail_data<size) {
size = nb_avail_data;
}
if(size>0) {
memcpy(ptr_buf, &udi_cdc_rx_buf[port][buf_sel][pos], size);
flags = cpu_irq_save(); // to protect udi_cdc_rx_pos
udi_cdc_rx_pos[port] += size;
cpu_irq_restore(flags);
ptr_buf += size;
udi_cdc_rx_start(port);
}
return(nb_avail_data);
}
iram_size_t udi_cdc_read_no_polling(void* buf, iram_size_t size)
{
return udi_cdc_multi_read_no_polling(0, buf, size);
}
iram_size_t udi_cdc_read_buf(void* buf, iram_size_t size)
{
return udi_cdc_multi_read_buf(0, buf, size);
}
iram_size_t udi_cdc_multi_get_free_tx_buffer(uint8_t port)
{
irqflags_t flags;
iram_size_t buf_sel_nb, retval;
uint8_t buf_sel;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
flags = cpu_irq_save();
buf_sel = udi_cdc_tx_buf_sel[port];
buf_sel_nb = udi_cdc_tx_buf_nb[port][buf_sel];
if (buf_sel_nb == UDI_CDC_TX_BUFFERS) {
if ((!udi_cdc_tx_trans_ongoing[port])
&& (!udi_cdc_tx_both_buf_to_send[port])) {
/* One buffer is full, but the other buffer is not used.
* (not used = transfer on-going)
* then move to the other buffer to store data */
udi_cdc_tx_both_buf_to_send[port] = true;
udi_cdc_tx_buf_sel[port] = (buf_sel == 0)? 1 : 0;
buf_sel_nb = 0;
}
}
retval = UDI_CDC_TX_BUFFERS - buf_sel_nb;
cpu_irq_restore(flags);
return retval;
}
iram_size_t udi_cdc_get_free_tx_buffer(void)
{
return udi_cdc_multi_get_free_tx_buffer(0);
}
bool udi_cdc_multi_is_tx_ready(uint8_t port)
{
return (udi_cdc_multi_get_free_tx_buffer(port) != 0);
}
bool udi_cdc_is_tx_ready(void)
{
return udi_cdc_multi_is_tx_ready(0);
}
int udi_cdc_multi_putc(uint8_t port, int value)
{
irqflags_t flags;
bool b_databit_9;
uint8_t buf_sel;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
b_databit_9 = (9 == udi_cdc_line_coding[port].bDataBits);
udi_cdc_putc_process_one_byte:
// Check available space
if (!udi_cdc_multi_is_tx_ready(port)) {
if (!udi_cdc_data_running) {
return false;
}
goto udi_cdc_putc_process_one_byte;
}
// Write value
flags = cpu_irq_save();
buf_sel = udi_cdc_tx_buf_sel[port];
udi_cdc_tx_buf[port][buf_sel][udi_cdc_tx_buf_nb[port][buf_sel]++] = value;
cpu_irq_restore(flags);
if (b_databit_9) {
// Send MSB
b_databit_9 = false;
value = value >> 8;
goto udi_cdc_putc_process_one_byte;
}
return true;
}
int udi_cdc_putc(int value)
{
return udi_cdc_multi_putc(0, value);
}
iram_size_t udi_cdc_multi_write_buf(uint8_t port, const void* buf, iram_size_t size)
{
irqflags_t flags;
uint8_t buf_sel;
uint16_t buf_nb;
iram_size_t copy_nb;
uint8_t *ptr_buf = (uint8_t *)buf;
#if UDI_CDC_PORT_NB == 1 // To optimize code
port = 0;
#endif
if (9 == udi_cdc_line_coding[port].bDataBits) {
size *=2;
}
udi_cdc_write_buf_loop_wait:
// Check available space
if (!udi_cdc_multi_is_tx_ready(port)) {
if (!udi_cdc_data_running) {
return size;
}
goto udi_cdc_write_buf_loop_wait;
}
// Write values
flags = cpu_irq_save();
buf_sel = udi_cdc_tx_buf_sel[port];
buf_nb = udi_cdc_tx_buf_nb[port][buf_sel];
copy_nb = UDI_CDC_TX_BUFFERS - buf_nb;
if (copy_nb > size) {
copy_nb = size;
}
memcpy(&udi_cdc_tx_buf[port][buf_sel][buf_nb], ptr_buf, copy_nb);
udi_cdc_tx_buf_nb[port][buf_sel] = buf_nb + copy_nb;
cpu_irq_restore(flags);
// Update buffer pointer
ptr_buf = ptr_buf + copy_nb;
size -= copy_nb;
if (size) {
goto udi_cdc_write_buf_loop_wait;
}
return 0;
}
iram_size_t udi_cdc_write_buf(const void* buf, iram_size_t size)
{
return udi_cdc_multi_write_buf(0, buf, size);
}
//@}
#endif

View file

@ -0,0 +1,810 @@
/**
* \file
*
* \brief USB Device Communication Device Class (CDC) interface definitions.
*
* Copyright (c) 2009-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _UDI_CDC_H_
#define _UDI_CDC_H_
#include "conf_usb.h"
#include "usb_protocol.h"
#include "usb_protocol_cdc.h"
#include "udd.h"
#include "udc_desc.h"
#include "udi.h"
// Check the number of port
#ifndef UDI_CDC_PORT_NB
# define UDI_CDC_PORT_NB 1
#endif
#if (UDI_CDC_PORT_NB < 1) || (UDI_CDC_PORT_NB > 7)
# error UDI_CDC_PORT_NB must be between 1 and 7
#endif
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup udi_cdc_group_udc
* @{
*/
//! Global structure which contains standard UDI API for UDC
extern UDC_DESC_STORAGE udi_api_t udi_api_cdc_comm;
extern UDC_DESC_STORAGE udi_api_t udi_api_cdc_data;
//@}
/**
* \ingroup udi_cdc_group
* \defgroup udi_cdc_group_desc USB interface descriptors
*
* The following structures provide predefined USB interface descriptors.
* It must be used to define the final USB descriptors.
*/
//@{
/**
* \brief Communication Class interface descriptor
*
* Interface descriptor with associated functional and endpoint
* descriptors for the CDC Communication Class interface.
*/
typedef struct {
//! Standard interface descriptor
usb_iface_desc_t iface;
//! CDC Header functional descriptor
usb_cdc_hdr_desc_t header;
//! CDC Abstract Control Model functional descriptor
usb_cdc_acm_desc_t acm;
//! CDC Union functional descriptor
usb_cdc_union_desc_t union_desc;
//! CDC Call Management functional descriptor
usb_cdc_call_mgmt_desc_t call_mgmt;
//! Notification endpoint descriptor
usb_ep_desc_t ep_notify;
} udi_cdc_comm_desc_t;
/**
* \brief Data Class interface descriptor
*
* Interface descriptor with associated endpoint descriptors for the
* CDC Data Class interface.
*/
typedef struct {
//! Standard interface descriptor
usb_iface_desc_t iface;
//! Data IN/OUT endpoint descriptors
usb_ep_desc_t ep_in;
usb_ep_desc_t ep_out;
} udi_cdc_data_desc_t;
//! CDC communication endpoints size for all speeds
#define UDI_CDC_COMM_EP_SIZE 64
//! CDC data endpoints size for FS speed (8B, 16B, 32B, 64B)
#define UDI_CDC_DATA_EPS_FS_SIZE 64
//! CDC data endpoints size for HS speed (512B only)
#define UDI_CDC_DATA_EPS_HS_SIZE 512
/**
* \name Content of interface descriptors
* Up to 7 CDC interfaces can be implemented on a USB device.
*/
//@{
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_0
#define UDI_CDC_IAD_STRING_ID_0 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_0
#define UDI_CDC_COMM_STRING_ID_0 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_0
#define UDI_CDC_DATA_STRING_ID_0 0
#endif
#define UDI_CDC_IAD_DESC_0 UDI_CDC_IAD_DESC(0)
#define UDI_CDC_COMM_DESC_0 UDI_CDC_COMM_DESC(0)
#define UDI_CDC_DATA_DESC_0_FS UDI_CDC_DATA_DESC_FS(0)
#define UDI_CDC_DATA_DESC_0_HS UDI_CDC_DATA_DESC_HS(0)
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_1
#define UDI_CDC_IAD_STRING_ID_1 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_1
#define UDI_CDC_COMM_STRING_ID_1 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_1
#define UDI_CDC_DATA_STRING_ID_1 0
#endif
#define UDI_CDC_IAD_DESC_1 UDI_CDC_IAD_DESC(1)
#define UDI_CDC_COMM_DESC_1 UDI_CDC_COMM_DESC(1)
#define UDI_CDC_DATA_DESC_1_FS UDI_CDC_DATA_DESC_FS(1)
#define UDI_CDC_DATA_DESC_1_HS UDI_CDC_DATA_DESC_HS(1)
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_2
#define UDI_CDC_IAD_STRING_ID_2 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_2
#define UDI_CDC_COMM_STRING_ID_2 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_2
#define UDI_CDC_DATA_STRING_ID_2 0
#endif
#define UDI_CDC_IAD_DESC_2 UDI_CDC_IAD_DESC(2)
#define UDI_CDC_COMM_DESC_2 UDI_CDC_COMM_DESC(2)
#define UDI_CDC_DATA_DESC_2_FS UDI_CDC_DATA_DESC_FS(2)
#define UDI_CDC_DATA_DESC_2_HS UDI_CDC_DATA_DESC_HS(2)
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_3
#define UDI_CDC_IAD_STRING_ID_3 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_3
#define UDI_CDC_COMM_STRING_ID_3 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_3
#define UDI_CDC_DATA_STRING_ID_3 0
#endif
#define UDI_CDC_IAD_DESC_3 UDI_CDC_IAD_DESC(3)
#define UDI_CDC_COMM_DESC_3 UDI_CDC_COMM_DESC(3)
#define UDI_CDC_DATA_DESC_3_FS UDI_CDC_DATA_DESC_FS(3)
#define UDI_CDC_DATA_DESC_3_HS UDI_CDC_DATA_DESC_HS(3)
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_4
#define UDI_CDC_IAD_STRING_ID_4 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_4
#define UDI_CDC_COMM_STRING_ID_4 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_4
#define UDI_CDC_DATA_STRING_ID_4 0
#endif
#define UDI_CDC_IAD_DESC_4 UDI_CDC_IAD_DESC(4)
#define UDI_CDC_COMM_DESC_4 UDI_CDC_COMM_DESC(4)
#define UDI_CDC_DATA_DESC_4_FS UDI_CDC_DATA_DESC_FS(4)
#define UDI_CDC_DATA_DESC_4_HS UDI_CDC_DATA_DESC_HS(4)
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_5
#define UDI_CDC_IAD_STRING_ID_5 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_5
#define UDI_CDC_COMM_STRING_ID_5 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_5
#define UDI_CDC_DATA_STRING_ID_5 0
#endif
#define UDI_CDC_IAD_DESC_5 UDI_CDC_IAD_DESC(5)
#define UDI_CDC_COMM_DESC_5 UDI_CDC_COMM_DESC(5)
#define UDI_CDC_DATA_DESC_5_FS UDI_CDC_DATA_DESC_FS(5)
#define UDI_CDC_DATA_DESC_5_HS UDI_CDC_DATA_DESC_HS(5)
//! By default no string associated to these interfaces
#ifndef UDI_CDC_IAD_STRING_ID_6
#define UDI_CDC_IAD_STRING_ID_6 0
#endif
#ifndef UDI_CDC_COMM_STRING_ID_6
#define UDI_CDC_COMM_STRING_ID_6 0
#endif
#ifndef UDI_CDC_DATA_STRING_ID_6
#define UDI_CDC_DATA_STRING_ID_6 0
#endif
#define UDI_CDC_IAD_DESC_6 UDI_CDC_IAD_DESC(6)
#define UDI_CDC_COMM_DESC_6 UDI_CDC_COMM_DESC(6)
#define UDI_CDC_DATA_DESC_6_FS UDI_CDC_DATA_DESC_FS(6)
#define UDI_CDC_DATA_DESC_6_HS UDI_CDC_DATA_DESC_HS(6)
//@}
//! Content of CDC IAD interface descriptor for all speeds
#define UDI_CDC_IAD_DESC(port) { \
.bLength = sizeof(usb_iad_desc_t),\
.bDescriptorType = USB_DT_IAD,\
.bInterfaceCount = 2,\
.bFunctionClass = CDC_CLASS_COMM,\
.bFunctionSubClass = CDC_SUBCLASS_ACM,\
.bFunctionProtocol = CDC_PROTOCOL_V25TER,\
.bFirstInterface = UDI_CDC_COMM_IFACE_NUMBER_##port,\
.iFunction = UDI_CDC_IAD_STRING_ID_##port,\
}
//! Content of CDC COMM interface descriptor for all speeds
#define UDI_CDC_COMM_DESC(port) { \
.iface.bLength = sizeof(usb_iface_desc_t),\
.iface.bDescriptorType = USB_DT_INTERFACE,\
.iface.bAlternateSetting = 0,\
.iface.bNumEndpoints = 1,\
.iface.bInterfaceClass = CDC_CLASS_COMM,\
.iface.bInterfaceSubClass = CDC_SUBCLASS_ACM,\
.iface.bInterfaceProtocol = CDC_PROTOCOL_V25TER,\
.header.bFunctionLength = sizeof(usb_cdc_hdr_desc_t),\
.header.bDescriptorType = CDC_CS_INTERFACE,\
.header.bDescriptorSubtype = CDC_SCS_HEADER,\
.header.bcdCDC = LE16(0x0110),\
.call_mgmt.bFunctionLength = sizeof(usb_cdc_call_mgmt_desc_t),\
.call_mgmt.bDescriptorType = CDC_CS_INTERFACE,\
.call_mgmt.bDescriptorSubtype = CDC_SCS_CALL_MGMT,\
.call_mgmt.bmCapabilities = \
CDC_CALL_MGMT_SUPPORTED | CDC_CALL_MGMT_OVER_DCI,\
.acm.bFunctionLength = sizeof(usb_cdc_acm_desc_t),\
.acm.bDescriptorType = CDC_CS_INTERFACE,\
.acm.bDescriptorSubtype = CDC_SCS_ACM,\
.acm.bmCapabilities = CDC_ACM_SUPPORT_LINE_REQUESTS,\
.union_desc.bFunctionLength = sizeof(usb_cdc_union_desc_t),\
.union_desc.bDescriptorType = CDC_CS_INTERFACE,\
.union_desc.bDescriptorSubtype= CDC_SCS_UNION,\
.ep_notify.bLength = sizeof(usb_ep_desc_t),\
.ep_notify.bDescriptorType = USB_DT_ENDPOINT,\
.ep_notify.bmAttributes = USB_EP_TYPE_INTERRUPT,\
.ep_notify.wMaxPacketSize = LE16(UDI_CDC_COMM_EP_SIZE),\
.ep_notify.bInterval = 0x10,\
.ep_notify.bEndpointAddress = UDI_CDC_COMM_EP_##port,\
.iface.bInterfaceNumber = UDI_CDC_COMM_IFACE_NUMBER_##port,\
.call_mgmt.bDataInterface = UDI_CDC_DATA_IFACE_NUMBER_##port,\
.union_desc.bMasterInterface = UDI_CDC_COMM_IFACE_NUMBER_##port,\
.union_desc.bSlaveInterface0 = UDI_CDC_DATA_IFACE_NUMBER_##port,\
.iface.iInterface = UDI_CDC_COMM_STRING_ID_##port,\
}
//! Content of CDC DATA interface descriptors
#define UDI_CDC_DATA_DESC_COMMON \
.iface.bLength = sizeof(usb_iface_desc_t),\
.iface.bDescriptorType = USB_DT_INTERFACE,\
.iface.bAlternateSetting = 0,\
.iface.bNumEndpoints = 2,\
.iface.bInterfaceClass = CDC_CLASS_DATA,\
.iface.bInterfaceSubClass = 0,\
.iface.bInterfaceProtocol = 0,\
.ep_in.bLength = sizeof(usb_ep_desc_t),\
.ep_in.bDescriptorType = USB_DT_ENDPOINT,\
.ep_in.bmAttributes = USB_EP_TYPE_BULK,\
.ep_in.bInterval = 0,\
.ep_out.bLength = sizeof(usb_ep_desc_t),\
.ep_out.bDescriptorType = USB_DT_ENDPOINT,\
.ep_out.bmAttributes = USB_EP_TYPE_BULK,\
.ep_out.bInterval = 0,
#define UDI_CDC_DATA_DESC_FS(port) { \
UDI_CDC_DATA_DESC_COMMON \
.ep_in.wMaxPacketSize = LE16(UDI_CDC_DATA_EPS_FS_SIZE),\
.ep_out.wMaxPacketSize = LE16(UDI_CDC_DATA_EPS_FS_SIZE),\
.ep_in.bEndpointAddress = UDI_CDC_DATA_EP_IN_##port,\
.ep_out.bEndpointAddress = UDI_CDC_DATA_EP_OUT_##port,\
.iface.bInterfaceNumber = UDI_CDC_DATA_IFACE_NUMBER_##port,\
.iface.iInterface = UDI_CDC_DATA_STRING_ID_##port,\
}
#define UDI_CDC_DATA_DESC_HS(port) { \
UDI_CDC_DATA_DESC_COMMON \
.ep_in.wMaxPacketSize = LE16(UDI_CDC_DATA_EPS_HS_SIZE),\
.ep_out.wMaxPacketSize = LE16(UDI_CDC_DATA_EPS_HS_SIZE),\
.ep_in.bEndpointAddress = UDI_CDC_DATA_EP_IN_##port,\
.ep_out.bEndpointAddress = UDI_CDC_DATA_EP_OUT_##port,\
.iface.bInterfaceNumber = UDI_CDC_DATA_IFACE_NUMBER_##port,\
.iface.iInterface = UDI_CDC_DATA_STRING_ID_##port,\
}
//@}
/**
* \ingroup udi_group
* \defgroup udi_cdc_group USB Device Interface (UDI) for Communication Class Device (CDC)
*
* Common APIs used by high level application to use this USB class.
*
* These routines are used to transfer and control data
* to/from USB CDC endpoint.
*
* See \ref udi_cdc_quickstart.
* @{
*/
/**
* \name Interface for application with single CDC interface support
*/
//@{
/**
* \brief Notify a state change of DCD signal
*
* \param b_set DCD is enabled if true, else disabled
*/
void udi_cdc_ctrl_signal_dcd(bool b_set);
/**
* \brief Notify a state change of DSR signal
*
* \param b_set DSR is enabled if true, else disabled
*/
void udi_cdc_ctrl_signal_dsr(bool b_set);
/**
* \brief Notify a framing error
*/
void udi_cdc_signal_framing_error(void);
/**
* \brief Notify a parity error
*/
void udi_cdc_signal_parity_error(void);
/**
* \brief Notify a overrun
*/
void udi_cdc_signal_overrun(void);
/**
* \brief Gets the number of byte received
*
* \return the number of data available
*/
iram_size_t udi_cdc_get_nb_received_data(void);
/**
* \brief This function checks if a character has been received on the CDC line
*
* \return \c 1 if a byte is ready to be read.
*/
bool udi_cdc_is_rx_ready(void);
/**
* \brief Waits and gets a value on CDC line
*
* \return value read on CDC line
*/
int udi_cdc_getc(void);
/**
* \brief Reads a RAM buffer on CDC line
*
* \param buf Values read
* \param size Number of value read
*
* \return the number of data remaining
*/
iram_size_t udi_cdc_read_buf(void* buf, iram_size_t size);
/**
* \brief Non polling reads of a up to 'size' data from CDC line
*
* \param port Communication port number to manage
* \param buf Buffer where to store read data
* \param size Maximum number of data to read (size of buffer)
*
* \return the number of data effectively read
*/
iram_size_t udi_cdc_read_no_polling(void* buf, iram_size_t size);
/**
* \brief Gets the number of free byte in TX buffer
*
* \return the number of free byte in TX buffer
*/
iram_size_t udi_cdc_get_free_tx_buffer(void);
/**
* \brief This function checks if a new character sent is possible
* The type int is used to support scanf redirection from compiler LIB.
*
* \return \c 1 if a new character can be sent
*/
bool udi_cdc_is_tx_ready(void);
/**
* \brief Puts a byte on CDC line
* The type int is used to support printf redirection from compiler LIB.
*
* \param value Value to put
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
int udi_cdc_putc(int value);
/**
* \brief Writes a RAM buffer on CDC line
*
* \param buf Values to write
* \param size Number of value to write
*
* \return the number of data remaining
*/
iram_size_t udi_cdc_write_buf(const void* buf, iram_size_t size);
//@}
/**
* \name Interface for application with multi CDC interfaces support
*/
//@{
/**
* \brief Notify a state change of DCD signal
*
* \param port Communication port number to manage
* \param b_set DCD is enabled if true, else disabled
*/
void udi_cdc_multi_ctrl_signal_dcd(uint8_t port, bool b_set);
/**
* \brief Notify a state change of DSR signal
*
* \param port Communication port number to manage
* \param b_set DSR is enabled if true, else disabled
*/
void udi_cdc_multi_ctrl_signal_dsr(uint8_t port, bool b_set);
/**
* \brief Notify a framing error
*
* \param port Communication port number to manage
*/
void udi_cdc_multi_signal_framing_error(uint8_t port);
/**
* \brief Notify a parity error
*
* \param port Communication port number to manage
*/
void udi_cdc_multi_signal_parity_error(uint8_t port);
/**
* \brief Notify a overrun
*
* \param port Communication port number to manage
*/
void udi_cdc_multi_signal_overrun(uint8_t port);
/**
* \brief Gets the number of byte received
*
* \param port Communication port number to manage
*
* \return the number of data available
*/
iram_size_t udi_cdc_multi_get_nb_received_data(uint8_t port);
/**
* \brief This function checks if a character has been received on the CDC line
*
* \param port Communication port number to manage
*
* \return \c 1 if a byte is ready to be read.
*/
bool udi_cdc_multi_is_rx_ready(uint8_t port);
/**
* \brief Waits and gets a value on CDC line
*
* \param port Communication port number to manage
*
* \return value read on CDC line
*/
int udi_cdc_multi_getc(uint8_t port);
/**
* \brief Reads a RAM buffer on CDC line
*
* \param port Communication port number to manage
* \param buf Values read
* \param size Number of values read
*
* \return the number of data remaining
*/
iram_size_t udi_cdc_multi_read_buf(uint8_t port, void* buf, iram_size_t size);
/**
* \brief Gets the number of free byte in TX buffer
*
* \param port Communication port number to manage
*
* \return the number of free byte in TX buffer
*/
iram_size_t udi_cdc_multi_get_free_tx_buffer(uint8_t port);
/**
* \brief This function checks if a new character sent is possible
* The type int is used to support scanf redirection from compiler LIB.
*
* \param port Communication port number to manage
*
* \return \c 1 if a new character can be sent
*/
bool udi_cdc_multi_is_tx_ready(uint8_t port);
/**
* \brief Puts a byte on CDC line
* The type int is used to support printf redirection from compiler LIB.
*
* \param port Communication port number to manage
* \param value Value to put
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
int udi_cdc_multi_putc(uint8_t port, int value);
/**
* \brief Writes a RAM buffer on CDC line
*
* \param port Communication port number to manage
* \param buf Values to write
* \param size Number of value to write
*
* \return the number of data remaining
*/
iram_size_t udi_cdc_multi_write_buf(uint8_t port, const void* buf, iram_size_t size);
//@}
//@}
/**
* \page udi_cdc_quickstart Quick start guide for USB device Communication Class Device module (UDI CDC)
*
* This is the quick start guide for the \ref udi_cdc_group
* "USB device interface CDC module (UDI CDC)" with step-by-step instructions on
* how to configure and use the modules in a selection of use cases.
*
* The use cases contain several code fragments. The code fragments in the
* steps for setup can be copied into a custom initialization function, while
* the steps for usage can be copied into, e.g., the main application function.
*
* \section udi_cdc_basic_use_case Basic use case
* In this basic use case, the "USB CDC (Single Interface Device)" module is used
* with only one communication port.
* The "USB CDC (Composite Device)" module usage is described in \ref udi_cdc_use_cases
* "Advanced use cases".
*
* \section udi_cdc_basic_use_case_setup Setup steps
* \subsection udi_cdc_basic_use_case_setup_prereq Prerequisites
* \copydetails udc_basic_use_case_setup_prereq
* \subsection udi_cdc_basic_use_case_setup_code Example code
* \copydetails udc_basic_use_case_setup_code
* \subsection udi_cdc_basic_use_case_setup_flow Workflow
* \copydetails udc_basic_use_case_setup_flow
*
* \section udi_cdc_basic_use_case_usage Usage steps
*
* \subsection udi_cdc_basic_use_case_usage_code Example code
* Content of conf_usb.h:
* \code
#define UDI_CDC_ENABLE_EXT(port) my_callback_cdc_enable()
extern bool my_callback_cdc_enable(void);
#define UDI_CDC_DISABLE_EXT(port) my_callback_cdc_disable()
extern void my_callback_cdc_disable(void);
#define UDI_CDC_LOW_RATE
#define UDI_CDC_DEFAULT_RATE 115200
#define UDI_CDC_DEFAULT_STOPBITS CDC_STOP_BITS_1
#define UDI_CDC_DEFAULT_PARITY CDC_PAR_NONE
#define UDI_CDC_DEFAULT_DATABITS 8
#include "udi_cdc_conf.h" // At the end of conf_usb.h file
\endcode
*
* Add to application C-file:
* \code
static bool my_flag_autorize_cdc_transfert = false;
bool my_callback_cdc_enable(void)
{
my_flag_autorize_cdc_transfert = true;
return true;
}
void my_callback_cdc_disable(void)
{
my_flag_autorize_cdc_transfert = false;
}
void task(void)
{
if (my_flag_autorize_cdc_transfert) {
udi_cdc_putc('A');
udi_cdc_getc();
}
}
\endcode
*
* \subsection udi_cdc_basic_use_case_setup_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following configuration,
* which is the USB device CDC configuration:
* - \code #define USB_DEVICE_SERIAL_NAME "12...EF" // Disk SN for CDC \endcode
* \note The USB serial number is mandatory when a CDC interface is used.
* - \code #define UDI_CDC_ENABLE_EXT(port) my_callback_cdc_enable()
extern bool my_callback_cdc_enable(void); \endcode
* \note After the device enumeration (detecting and identifying USB devices),
* the USB host starts the device configuration. When the USB CDC interface
* from the device is accepted by the host, the USB host enables this interface and the
* UDI_CDC_ENABLE_EXT() callback function is called and return true.
* Thus, when this event is received, the data transfer on CDC interface are authorized.
* - \code #define UDI_CDC_DISABLE_EXT(port) my_callback_cdc_disable()
extern void my_callback_cdc_disable(void); \endcode
* \note When the USB device is unplugged or is reset by the USB host, the USB
* interface is disabled and the UDI_CDC_DISABLE_EXT() callback function
* is called. Thus, the data transfer must be stopped on CDC interface.
* - \code #define UDI_CDC_LOW_RATE \endcode
* \note Define it when the transfer CDC Device to Host is a low rate
* (<512000 bauds) to reduce CDC buffers size.
* - \code #define UDI_CDC_DEFAULT_RATE 115200
#define UDI_CDC_DEFAULT_STOPBITS CDC_STOP_BITS_1
#define UDI_CDC_DEFAULT_PARITY CDC_PAR_NONE
#define UDI_CDC_DEFAULT_DATABITS 8 \endcode
* \note Default configuration of communication port at startup.
* -# Send or wait data on CDC line:
* - \code // Waits and gets a value on CDC line
int udi_cdc_getc(void);
// Reads a RAM buffer on CDC line
iram_size_t udi_cdc_read_buf(int* buf, iram_size_t size);
// Puts a byte on CDC line
int udi_cdc_putc(int value);
// Writes a RAM buffer on CDC line
iram_size_t udi_cdc_write_buf(const int* buf, iram_size_t size); \endcode
*
* \section udi_cdc_use_cases Advanced use cases
* For more advanced use of the UDI CDC module, see the following use cases:
* - \subpage udi_cdc_use_case_composite
* - \subpage udc_use_case_1
* - \subpage udc_use_case_2
* - \subpage udc_use_case_3
* - \subpage udc_use_case_4
* - \subpage udc_use_case_5
* - \subpage udc_use_case_6
*/
/**
* \page udi_cdc_use_case_composite CDC in a composite device
*
* A USB Composite Device is a USB Device which uses more than one USB class.
* In this use case, the "USB CDC (Composite Device)" module is used to
* create a USB composite device. Thus, this USB module can be associated with
* another "Composite Device" module, like "USB HID Mouse (Composite Device)".
*
* Also, you can refer to application note
* <A href="http://www.atmel.com/dyn/resources/prod_documents/doc8445.pdf">
* AVR4902 ASF - USB Composite Device</A>.
*
* \section udi_cdc_use_case_composite_setup Setup steps
* For the setup code of this use case to work, the
* \ref udi_cdc_basic_use_case "basic use case" must be followed.
*
* \section udi_cdc_use_case_composite_usage Usage steps
*
* \subsection udi_cdc_use_case_composite_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_EP_CTRL_SIZE 64
#define USB_DEVICE_NB_INTERFACE (X+2)
#define USB_DEVICE_MAX_EP (X+3)
#define UDI_CDC_DATA_EP_IN_0 (1 | USB_EP_DIR_IN) // TX
#define UDI_CDC_DATA_EP_OUT_0 (2 | USB_EP_DIR_OUT) // RX
#define UDI_CDC_COMM_EP_0 (3 | USB_EP_DIR_IN) // Notify endpoint
#define UDI_CDC_COMM_IFACE_NUMBER_0 X+0
#define UDI_CDC_DATA_IFACE_NUMBER_0 X+1
#define UDI_COMPOSITE_DESC_T \
usb_iad_desc_t udi_cdc_iad; \
udi_cdc_comm_desc_t udi_cdc_comm; \
udi_cdc_data_desc_t udi_cdc_data; \
...
#define UDI_COMPOSITE_DESC_FS \
.udi_cdc_iad = UDI_CDC_IAD_DESC_0, \
.udi_cdc_comm = UDI_CDC_COMM_DESC_0, \
.udi_cdc_data = UDI_CDC_DATA_DESC_0_FS, \
...
#define UDI_COMPOSITE_DESC_HS \
.udi_cdc_iad = UDI_CDC_IAD_DESC_0, \
.udi_cdc_comm = UDI_CDC_COMM_DESC_0, \
.udi_cdc_data = UDI_CDC_DATA_DESC_0_HS, \
...
#define UDI_COMPOSITE_API \
&udi_api_cdc_comm, \
&udi_api_cdc_data, \
...
\endcode
*
* \subsection udi_cdc_use_case_composite_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters
* required for a USB composite device configuration:
* - \code // Endpoint control size, This must be:
// - 8, 16, 32 or 64 for full speed device (8 is recommended to save RAM)
// - 64 for a high speed device
#define USB_DEVICE_EP_CTRL_SIZE 64
// Total Number of interfaces on this USB device.
// Add 2 for CDC.
#define USB_DEVICE_NB_INTERFACE (X+2)
// Total number of endpoints on this USB device.
// This must include each endpoint for each interface.
// Add 3 for CDC.
#define USB_DEVICE_MAX_EP (X+3) \endcode
* -# Ensure that conf_usb.h contains the description of
* composite device:
* - \code // The endpoint numbers chosen by you for the CDC.
// The endpoint numbers starting from 1.
#define UDI_CDC_DATA_EP_IN_0 (1 | USB_EP_DIR_IN) // TX
#define UDI_CDC_DATA_EP_OUT_0 (2 | USB_EP_DIR_OUT) // RX
#define UDI_CDC_COMM_EP_0 (3 | USB_EP_DIR_IN) // Notify endpoint
// The interface index of an interface starting from 0
#define UDI_CDC_COMM_IFACE_NUMBER_0 X+0
#define UDI_CDC_DATA_IFACE_NUMBER_0 X+1 \endcode
* -# Ensure that conf_usb.h contains the following parameters
* required for a USB composite device configuration:
* - \code // USB Interfaces descriptor structure
#define UDI_COMPOSITE_DESC_T \
...
usb_iad_desc_t udi_cdc_iad; \
udi_cdc_comm_desc_t udi_cdc_comm; \
udi_cdc_data_desc_t udi_cdc_data; \
...
// USB Interfaces descriptor value for Full Speed
#define UDI_COMPOSITE_DESC_FS \
...
.udi_cdc_iad = UDI_CDC_IAD_DESC_0, \
.udi_cdc_comm = UDI_CDC_COMM_DESC_0, \
.udi_cdc_data = UDI_CDC_DATA_DESC_0_FS, \
...
// USB Interfaces descriptor value for High Speed
#define UDI_COMPOSITE_DESC_HS \
...
.udi_cdc_iad = UDI_CDC_IAD_DESC_0, \
.udi_cdc_comm = UDI_CDC_COMM_DESC_0, \
.udi_cdc_data = UDI_CDC_DATA_DESC_0_HS, \
...
// USB Interface APIs
#define UDI_COMPOSITE_API \
...
&udi_api_cdc_comm, \
&udi_api_cdc_data, \
... \endcode
* - \note The descriptors order given in the four lists above must be the
* same as the order defined by all interface indexes. The interface index
* orders are defined through UDI_X_IFACE_NUMBER defines.\n
* Also, the CDC requires a USB Interface Association Descriptor (IAD) for
* composite device.
*/
#ifdef __cplusplus
}
#endif
#endif // _UDI_CDC_H_

View file

@ -0,0 +1,188 @@
/**
* \file
*
* \brief Descriptors for an USB Composite Device
*
* Copyright (c) 2009-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "conf_usb.h"
#include "udd.h"
#include "udc_desc.h"
/**
* \defgroup udi_group_desc Descriptors for a USB Device
* composite
*
* @{
*/
/**INDENT-OFF**/
//! USB Device Descriptor
COMPILER_WORD_ALIGNED
UDC_DESC_STORAGE usb_dev_desc_t udc_device_desc = {
.bLength = sizeof(usb_dev_desc_t),
.bDescriptorType = USB_DT_DEVICE,
.bcdUSB = LE16(USB_V2_0),
.bDeviceClass = 0,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = USB_DEVICE_EP_CTRL_SIZE,
.idVendor = LE16(USB_DEVICE_VENDOR_ID),
.idProduct = LE16(USB_DEVICE_PRODUCT_ID),
.bcdDevice = LE16((USB_DEVICE_MAJOR_VERSION << 8)
| USB_DEVICE_MINOR_VERSION),
#ifdef USB_DEVICE_MANUFACTURE_NAME
.iManufacturer = 1,
#else
.iManufacturer = 0, // No manufacture string
#endif
#ifdef USB_DEVICE_PRODUCT_NAME
.iProduct = 2,
#else
.iProduct = 0, // No product string
#endif
#if (defined USB_DEVICE_SERIAL_NAME || defined USB_DEVICE_GET_SERIAL_NAME_POINTER)
.iSerialNumber = 3,
#else
.iSerialNumber = 0, // No serial string
#endif
.bNumConfigurations = 1
};
#ifdef USB_DEVICE_HS_SUPPORT
//! USB Device Qualifier Descriptor for HS
COMPILER_WORD_ALIGNED
UDC_DESC_STORAGE usb_dev_qual_desc_t udc_device_qual = {
.bLength = sizeof(usb_dev_qual_desc_t),
.bDescriptorType = USB_DT_DEVICE_QUALIFIER,
.bcdUSB = LE16(USB_V2_0),
.bDeviceClass = 0,
.bDeviceSubClass = 0,
.bDeviceProtocol = 0,
.bMaxPacketSize0 = USB_DEVICE_EP_CTRL_SIZE,
.bNumConfigurations = 1
};
#endif
//! Structure for USB Device Configuration Descriptor
COMPILER_PACK_SET(1)
typedef struct {
usb_conf_desc_t conf;
UDI_COMPOSITE_DESC_T;
} udc_desc_t;
COMPILER_PACK_RESET()
//! USB Device Configuration Descriptor filled for FS
COMPILER_WORD_ALIGNED
UDC_DESC_STORAGE udc_desc_t udc_desc_fs = {
.conf.bLength = sizeof(usb_conf_desc_t),
.conf.bDescriptorType = USB_DT_CONFIGURATION,
.conf.wTotalLength = LE16(sizeof(udc_desc_t)),
.conf.bNumInterfaces = USB_DEVICE_NB_INTERFACE,
.conf.bConfigurationValue = 1,
.conf.iConfiguration = 0,
.conf.bmAttributes = USB_CONFIG_ATTR_MUST_SET | USB_DEVICE_ATTR,
.conf.bMaxPower = USB_CONFIG_MAX_POWER(USB_DEVICE_POWER),
UDI_COMPOSITE_DESC_FS
};
#ifdef USB_DEVICE_HS_SUPPORT
//! USB Device Configuration Descriptor filled for HS
COMPILER_WORD_ALIGNED
UDC_DESC_STORAGE udc_desc_t udc_desc_hs = {
.conf.bLength = sizeof(usb_conf_desc_t),
.conf.bDescriptorType = USB_DT_CONFIGURATION,
.conf.wTotalLength = LE16(sizeof(udc_desc_t)),
.conf.bNumInterfaces = USB_DEVICE_NB_INTERFACE,
.conf.bConfigurationValue = 1,
.conf.iConfiguration = 0,
.conf.bmAttributes = USB_CONFIG_ATTR_MUST_SET | USB_DEVICE_ATTR,
.conf.bMaxPower = USB_CONFIG_MAX_POWER(USB_DEVICE_POWER),
UDI_COMPOSITE_DESC_HS
};
#endif
/**
* \name UDC structures which contains all USB Device definitions
*/
//@{
//! Associate an UDI for each USB interface
UDC_DESC_STORAGE udi_api_t *udi_apis[USB_DEVICE_NB_INTERFACE] = {
UDI_COMPOSITE_API
};
//! Add UDI with USB Descriptors FS
UDC_DESC_STORAGE udc_config_speed_t udc_config_lsfs[1] = {{
.desc = (usb_conf_desc_t UDC_DESC_STORAGE*)&udc_desc_fs,
.udi_apis = udi_apis,
}};
#ifdef USB_DEVICE_HS_SUPPORT
//! Add UDI with USB Descriptors HS
UDC_DESC_STORAGE udc_config_speed_t udc_config_hs[1] = {{
.desc = (usb_conf_desc_t UDC_DESC_STORAGE*)&udc_desc_hs,
.udi_apis = udi_apis,
}};
#endif
//! Add all information about USB Device in global structure for UDC
UDC_DESC_STORAGE udc_config_t udc_config = {
.confdev_lsfs = &udc_device_desc,
.conf_lsfs = udc_config_lsfs,
#ifdef USB_DEVICE_HS_SUPPORT
.confdev_hs = &udc_device_desc,
.qualifier = &udc_device_qual,
.conf_hs = udc_config_hs,
#endif
};
//@}
/**INDENT-ON**/
//@}
#endif

View file

@ -0,0 +1,1128 @@
/**
* \file
*
* \brief USB Device Mass Storage Class (MSC) interface.
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "conf_usb.h"
#include "usb_protocol.h"
#include "usb_protocol_msc.h"
#include "spc_protocol.h"
#include "sbc_protocol.h"
#include "udd.h"
#include "udc.h"
#include "udi_msc.h"
#include "ctrl_access.h"
#include <string.h>
#ifndef UDI_MSC_NOTIFY_TRANS_EXT
# define UDI_MSC_NOTIFY_TRANS_EXT()
#endif
/**
* \ingroup udi_msc_group
* \defgroup udi_msc_group_udc Interface with USB Device Core (UDC)
*
* Structures and functions required by UDC.
*
* @{
*/
bool udi_msc_enable(void);
void udi_msc_disable(void);
bool udi_msc_setup(void);
uint8_t udi_msc_getsetting(void);
//! Global structure which contains standard UDI API for UDC
UDC_DESC_STORAGE udi_api_t udi_api_msc = {
.enable = udi_msc_enable,
.disable = udi_msc_disable,
.setup = udi_msc_setup,
.getsetting = udi_msc_getsetting,
.sof_notify = NULL,
};
//@}
/**
* \ingroup udi_msc_group
* \defgroup udi_msc_group_internal Implementation of UDI MSC
*
* Class internal implementation
* @{
*/
//! Static block size for all memories
#define UDI_MSC_BLOCK_SIZE 512L
/**
* \name Variables to manage SCSI requests
*/
//@{
//! Structure to receive a CBW packet
UDC_BSS(4) static struct usb_msc_cbw udi_msc_cbw;
//! Structure to send a CSW packet
UDC_DATA(4) static struct usb_msc_csw udi_msc_csw =
{.dCSWSignature = CPU_TO_BE32(USB_CSW_SIGNATURE) };
//! Number of lun
UDC_DATA(4) static uint8_t udi_msc_nb_lun = 0;
//! Structure with current SCSI sense data
UDC_BSS(4) static struct scsi_request_sense_data udi_msc_sense;
/**
* \name Variables to manage the background read/write SCSI commands
*/
//@{
//! True if an invalid CBW command has been detected
static bool udi_msc_b_cbw_invalid = false;
//! True if a transfer command must be processed
static bool udi_msc_b_trans_req = false;
//! True if it is a read command, else write command
static bool udi_msc_b_read;
//! Memory address to execute the command
static uint32_t udi_msc_addr;
//! Number of block to transfer
static uint16_t udi_msc_nb_block;
//! Signal end of transfer, if true
volatile bool udi_msc_b_ack_trans = true;
//! Status of transfer, aborted if true
volatile bool udi_msc_b_abort_trans;
//! Signal (re)init of transfer, if true (by reset/reconnect)
volatile bool udi_msc_b_reset_trans = true;
//@}
//@}
/**
* \name Internal routines
*/
//@{
/**
* \name Routines to process CBW packet
*/
//@{
/**
* \brief Stall CBW request
*/
static void udi_msc_cbw_invalid(void);
/**
* \brief Stall CSW request
*/
static void udi_msc_csw_invalid(void);
/**
* \brief Links a callback and buffer on endpoint OUT reception
*
* Called by:
* - enable interface
* - at the end of previous command after sending the CSW
*/
static void udi_msc_cbw_wait(void);
/**
* \brief Callback called after CBW reception
* Called by UDD when a transfer is finished or aborted
*
* \param status UDD_EP_TRANSFER_OK, if transfer is finished
* \param status UDD_EP_TRANSFER_ABORT, if transfer is aborted
* \param nb_received number of data transfered
*/
static void udi_msc_cbw_received(udd_ep_status_t status,
iram_size_t nb_received, udd_ep_id_t ep);
/**
* \brief Function to check the CBW length and direction
* Call it after SCSI command decode to check integrity of command
*
* \param alloc_len number of bytes that device want transfer
* \param dir_flag Direction of transfer (USB_CBW_DIRECTION_IN/OUT)
*
* \retval true if the command can be processed
*/
static bool udi_msc_cbw_validate(uint32_t alloc_len, uint8_t dir_flag);
//@}
/**
* \name Routines to process small data packet
*/
//@{
/**
* \brief Sends data on MSC IN endpoint
* Called by SCSI command which must send a data to host followed by a CSW
*
* \param buffer Internal RAM buffer to send
* \param buf_size Size of buffer to send
*/
static void udi_msc_data_send(uint8_t * buffer, uint8_t buf_size);
/**
* \brief Callback called after data sent
* It start CSW packet process
*
* \param status UDD_EP_TRANSFER_OK, if transfer finish
* \param status UDD_EP_TRANSFER_ABORT, if transfer aborted
* \param nb_sent number of data transfered
*/
static void udi_msc_data_sent(udd_ep_status_t status, iram_size_t nb_sent,
udd_ep_id_t ep);
//@}
/**
* \name Routines to process CSW packet
*/
//@{
/**
* \brief Build CSW packet and send it
*
* Called at the end of SCSI command
*/
static void udi_msc_csw_process(void);
/**
* \brief Sends CSW
*
* Called by #udi_msc_csw_process()
* or UDD callback when endpoint halt is cleared
*/
void udi_msc_csw_send(void);
/**
* \brief Callback called after CSW sent
* It restart CBW reception.
*
* \param status UDD_EP_TRANSFER_OK, if transfer is finished
* \param status UDD_EP_TRANSFER_ABORT, if transfer is aborted
* \param nb_sent number of data transfered
*/
static void udi_msc_csw_sent(udd_ep_status_t status, iram_size_t nb_sent,
udd_ep_id_t ep);
//@}
/**
* \name Routines manage sense data
*/
//@{
/**
* \brief Reinitialize sense data.
*/
static void udi_msc_clear_sense(void);
/**
* \brief Update sense data with new value to signal a fail
*
* \param sense_key Sense key
* \param add_sense Additional Sense Code
* \param lba LBA corresponding at error
*/
static void udi_msc_sense_fail(uint8_t sense_key, uint16_t add_sense,
uint32_t lba);
/**
* \brief Update sense data with new value to signal success
*/
static void udi_msc_sense_pass(void);
/**
* \brief Update sense data to signal that memory is not present
*/
static void udi_msc_sense_fail_not_present(void);
/**
* \brief Update sense data to signal that memory is busy
*/
static void udi_msc_sense_fail_busy_or_change(void);
/**
* \brief Update sense data to signal a hardware error on memory
*/
static void udi_msc_sense_fail_hardware(void);
/**
* \brief Update sense data to signal that memory is protected
*/
static void udi_msc_sense_fail_protected(void);
/**
* \brief Update sense data to signal that CDB fields are not valid
*/
static void udi_msc_sense_fail_cdb_invalid(void);
/**
* \brief Update sense data to signal that command is not supported
*/
static void udi_msc_sense_command_invalid(void);
//@}
/**
* \name Routines manage SCSI Commands
*/
//@{
/**
* \brief Process SPC Request Sense command
* Returns error information about last command
*/
static void udi_msc_spc_requestsense(void);
/**
* \brief Process SPC Inquiry command
* Returns information (name,version) about disk
*/
static void udi_msc_spc_inquiry(void);
/**
* \brief Checks state of disk
*
* \retval true if disk is ready, otherwise false and updates sense data
*/
static bool udi_msc_spc_testunitready_global(void);
/**
* \brief Process test unit ready command
* Returns state of logical unit
*/
static void udi_msc_spc_testunitready(void);
/**
* \brief Process prevent allow medium removal command
*/
static void udi_msc_spc_prevent_allow_medium_removal(void);
/**
* \brief Process mode sense command
*
* \param b_sense10 Sense10 SCSI command, if true
* \param b_sense10 Sense6 SCSI command, if false
*/
static void udi_msc_spc_mode_sense(bool b_sense10);
/**
* \brief Process start stop command
*/
static void udi_msc_sbc_start_stop(void);
/**
* \brief Process read capacity command
*/
static void udi_msc_sbc_read_capacity(void);
/**
* \brief Process read10 or write10 command
*
* \param b_read Read transfer, if true,
* \param b_read Write transfer, if false
*/
static void udi_msc_sbc_trans(bool b_read);
//@}
//@}
bool udi_msc_enable(void)
{
uint8_t lun;
udi_msc_b_trans_req = false;
udi_msc_b_cbw_invalid = false;
udi_msc_b_ack_trans = true;
udi_msc_b_reset_trans = true;
udi_msc_nb_lun = get_nb_lun();
if (0 == udi_msc_nb_lun)
return false; // No lun available, then not authorize to enable interface
udi_msc_nb_lun--;
// Call application callback
// to initialize memories or signal that interface is enabled
if (!UDI_MSC_ENABLE_EXT())
return false;
// Load the medium on each LUN
for (lun = 0; lun <= udi_msc_nb_lun; lun ++) {
mem_unload(lun, false);
}
// Start MSC process by CBW reception
udi_msc_cbw_wait();
return true;
}
void udi_msc_disable(void)
{
udi_msc_b_trans_req = false;
udi_msc_b_ack_trans = true;
udi_msc_b_reset_trans = true;
UDI_MSC_DISABLE_EXT();
}
bool udi_msc_setup(void)
{
if (Udd_setup_is_in()) {
// Requests Interface GET
if (Udd_setup_type() == USB_REQ_TYPE_CLASS) {
// Requests Class Interface Get
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_MSC_GET_MAX_LUN:
// Give the number of memories available
if (1 != udd_g_ctrlreq.req.wLength)
return false; // Error for USB host
if (0 != udd_g_ctrlreq.req.wValue)
return false;
udd_g_ctrlreq.payload = &udi_msc_nb_lun;
udd_g_ctrlreq.payload_size = 1;
return true;
}
}
}
if (Udd_setup_is_out()) {
// Requests Interface SET
if (Udd_setup_type() == USB_REQ_TYPE_CLASS) {
// Requests Class Interface Set
switch (udd_g_ctrlreq.req.bRequest) {
case USB_REQ_MSC_BULK_RESET:
// Reset MSC interface
if (0 != udd_g_ctrlreq.req.wLength)
return false;
if (0 != udd_g_ctrlreq.req.wValue)
return false;
udi_msc_b_cbw_invalid = false;
udi_msc_b_trans_req = false;
// Abort all tasks (transfer or clear stall wait) on endpoints
udd_ep_abort(UDI_MSC_EP_OUT);
udd_ep_abort(UDI_MSC_EP_IN);
// Restart by CBW wait
udi_msc_cbw_wait();
return true;
}
}
}
return false; // Not supported request
}
uint8_t udi_msc_getsetting(void)
{
return 0; // MSC don't have multiple alternate setting
}
//---------------------------------------------
//------- Routines to process CBW packet
static void udi_msc_cbw_invalid(void)
{
if (!udi_msc_b_cbw_invalid)
return; // Don't re-stall endpoint if error reseted by setup
udd_ep_set_halt(UDI_MSC_EP_OUT);
// If stall cleared then re-stall it. Only Setup MSC Reset can clear it
udd_ep_wait_stall_clear(UDI_MSC_EP_OUT, udi_msc_cbw_invalid);
}
static void udi_msc_csw_invalid(void)
{
if (!udi_msc_b_cbw_invalid)
return; // Don't re-stall endpoint if error reseted by setup
udd_ep_set_halt(UDI_MSC_EP_IN);
// If stall cleared then re-stall it. Only Setup MSC Reset can clear it
udd_ep_wait_stall_clear(UDI_MSC_EP_IN, udi_msc_csw_invalid);
}
static void udi_msc_cbw_wait(void)
{
// Register buffer and callback on OUT endpoint
if (!udd_ep_run(UDI_MSC_EP_OUT, true,
(uint8_t *) & udi_msc_cbw,
sizeof(udi_msc_cbw),
udi_msc_cbw_received)) {
// OUT endpoint not available (halted), then wait a clear of halt.
udd_ep_wait_stall_clear(UDI_MSC_EP_OUT, udi_msc_cbw_wait);
}
}
static void udi_msc_cbw_received(udd_ep_status_t status,
iram_size_t nb_received, udd_ep_id_t ep)
{
UNUSED(ep);
// Check status of transfer
if (UDD_EP_TRANSFER_OK != status) {
// Transfer aborted
// Now wait MSC setup reset to relaunch CBW reception
return;
}
// Check CBW integrity:
// transfer status/CBW length/CBW signature
if ((sizeof(udi_msc_cbw) != nb_received)
|| (udi_msc_cbw.dCBWSignature !=
CPU_TO_BE32(USB_CBW_SIGNATURE))) {
// (5.2.1) Devices receiving a CBW with an invalid signature should stall
// further traffic on the Bulk In pipe, and either stall further traffic
// or accept and discard further traffic on the Bulk Out pipe, until
// reset recovery.
udi_msc_b_cbw_invalid = true;
udi_msc_cbw_invalid();
udi_msc_csw_invalid();
return;
}
// Check LUN asked
udi_msc_cbw.bCBWLUN &= USB_CBW_LUN_MASK;
if (udi_msc_cbw.bCBWLUN > udi_msc_nb_lun) {
// Bad LUN, then stop command process
udi_msc_sense_fail_cdb_invalid();
udi_msc_csw_process();
return;
}
// Prepare CSW residue field with the size requested
udi_msc_csw.dCSWDataResidue =
le32_to_cpu(udi_msc_cbw.dCBWDataTransferLength);
// Decode opcode
switch (udi_msc_cbw.CDB[0]) {
case SPC_REQUEST_SENSE:
udi_msc_spc_requestsense();
break;
case SPC_INQUIRY:
udi_msc_spc_inquiry();
break;
case SPC_MODE_SENSE6:
udi_msc_spc_mode_sense(false);
break;
case SPC_MODE_SENSE10:
udi_msc_spc_mode_sense(true);
break;
case SPC_TEST_UNIT_READY:
udi_msc_spc_testunitready();
break;
case SBC_READ_CAPACITY10:
udi_msc_sbc_read_capacity();
break;
case SBC_START_STOP_UNIT:
udi_msc_sbc_start_stop();
break;
// Accepts request to support plug/plug in case of card reader
case SPC_PREVENT_ALLOW_MEDIUM_REMOVAL:
udi_msc_spc_prevent_allow_medium_removal();
break;
// Accepts request to support full format from Windows
case SBC_VERIFY10:
udi_msc_sense_pass();
udi_msc_csw_process();
break;
case SBC_READ10:
udi_msc_sbc_trans(true);
break;
case SBC_WRITE10:
udi_msc_sbc_trans(false);
break;
default:
udi_msc_sense_command_invalid();
udi_msc_csw_process();
break;
}
}
static bool udi_msc_cbw_validate(uint32_t alloc_len, uint8_t dir_flag)
{
/*
* The following cases should result in a phase error:
* - Case 2: Hn < Di
* - Case 3: Hn < Do
* - Case 7: Hi < Di
* - Case 8: Hi <> Do
* - Case 10: Ho <> Di
* - Case 13: Ho < Do
*/
if (((udi_msc_cbw.bmCBWFlags ^ dir_flag) & USB_CBW_DIRECTION_IN)
|| (udi_msc_csw.dCSWDataResidue < alloc_len)) {
udi_msc_sense_fail_cdb_invalid();
udi_msc_csw_process();
return false;
}
/*
* The following cases should result in a stall and nonzero
* residue:
* - Case 4: Hi > Dn
* - Case 5: Hi > Di
* - Case 9: Ho > Dn
* - Case 11: Ho > Do
*/
return true;
}
//---------------------------------------------
//------- Routines to process small data packet
static void udi_msc_data_send(uint8_t * buffer, uint8_t buf_size)
{
// Sends data on IN endpoint
if (!udd_ep_run(UDI_MSC_EP_IN, true,
buffer, buf_size, udi_msc_data_sent)) {
// If endpoint not available, then exit process command
udi_msc_sense_fail_hardware();
udi_msc_csw_process();
}
}
static void udi_msc_data_sent(udd_ep_status_t status, iram_size_t nb_sent,
udd_ep_id_t ep)
{
UNUSED(ep);
if (UDD_EP_TRANSFER_OK != status) {
// Error protocol
// Now wait MSC setup reset to relaunch CBW reception
return;
}
// Update sense data
udi_msc_sense_pass();
// Update CSW
udi_msc_csw.dCSWDataResidue -= nb_sent;
udi_msc_csw_process();
}
//---------------------------------------------
//------- Routines to process CSW packet
static void udi_msc_csw_process(void)
{
if (0 != udi_msc_csw.dCSWDataResidue) {
// Residue not NULL
// then STALL next request from USB host on corresponding endpoint
if (udi_msc_cbw.bmCBWFlags & USB_CBW_DIRECTION_IN)
udd_ep_set_halt(UDI_MSC_EP_IN);
else
udd_ep_set_halt(UDI_MSC_EP_OUT);
}
// Prepare and send CSW
udi_msc_csw.dCSWTag = udi_msc_cbw.dCBWTag;
udi_msc_csw.dCSWDataResidue = cpu_to_le32(udi_msc_csw.dCSWDataResidue);
udi_msc_csw_send();
}
void udi_msc_csw_send(void)
{
// Sends CSW on IN endpoint
if (!udd_ep_run(UDI_MSC_EP_IN, false,
(uint8_t *) & udi_msc_csw,
sizeof(udi_msc_csw),
udi_msc_csw_sent)) {
// Endpoint not available
// then restart CSW sent when endpoint IN STALL will be cleared
udd_ep_wait_stall_clear(UDI_MSC_EP_IN, udi_msc_csw_send);
}
}
static void udi_msc_csw_sent(udd_ep_status_t status, iram_size_t nb_sent,
udd_ep_id_t ep)
{
UNUSED(ep);
UNUSED(status);
UNUSED(nb_sent);
// CSW is sent or not
// In all case, restart process and wait CBW
udi_msc_cbw_wait();
}
//---------------------------------------------
//------- Routines manage sense data
static void udi_msc_clear_sense(void)
{
memset((uint8_t*)&udi_msc_sense, 0, sizeof(struct scsi_request_sense_data));
udi_msc_sense.valid_reponse_code = SCSI_SENSE_VALID | SCSI_SENSE_CURRENT;
udi_msc_sense.AddSenseLen = SCSI_SENSE_ADDL_LEN(sizeof(udi_msc_sense));
}
static void udi_msc_sense_fail(uint8_t sense_key, uint16_t add_sense,
uint32_t lba)
{
udi_msc_clear_sense();
udi_msc_csw.bCSWStatus = USB_CSW_STATUS_FAIL;
udi_msc_sense.sense_flag_key = sense_key;
udi_msc_sense.information[0] = lba >> 24;
udi_msc_sense.information[1] = lba >> 16;
udi_msc_sense.information[2] = lba >> 8;
udi_msc_sense.information[3] = lba;
udi_msc_sense.AddSenseCode = add_sense >> 8;
udi_msc_sense.AddSnsCodeQlfr = add_sense;
}
static void udi_msc_sense_pass(void)
{
udi_msc_clear_sense();
udi_msc_csw.bCSWStatus = USB_CSW_STATUS_PASS;
}
static void udi_msc_sense_fail_not_present(void)
{
udi_msc_sense_fail(SCSI_SK_NOT_READY, SCSI_ASC_MEDIUM_NOT_PRESENT, 0);
}
static void udi_msc_sense_fail_busy_or_change(void)
{
udi_msc_sense_fail(SCSI_SK_UNIT_ATTENTION,
SCSI_ASC_NOT_READY_TO_READY_CHANGE, 0);
}
static void udi_msc_sense_fail_hardware(void)
{
udi_msc_sense_fail(SCSI_SK_HARDWARE_ERROR,
SCSI_ASC_NO_ADDITIONAL_SENSE_INFO, 0);
}
static void udi_msc_sense_fail_protected(void)
{
udi_msc_sense_fail(SCSI_SK_DATA_PROTECT, SCSI_ASC_WRITE_PROTECTED, 0);
}
static void udi_msc_sense_fail_cdb_invalid(void)
{
udi_msc_sense_fail(SCSI_SK_ILLEGAL_REQUEST,
SCSI_ASC_INVALID_FIELD_IN_CDB, 0);
}
static void udi_msc_sense_command_invalid(void)
{
udi_msc_sense_fail(SCSI_SK_ILLEGAL_REQUEST,
SCSI_ASC_INVALID_COMMAND_OPERATION_CODE, 0);
}
//---------------------------------------------
//------- Routines manage SCSI Commands
static void udi_msc_spc_requestsense(void)
{
uint8_t length = udi_msc_cbw.CDB[4];
// Can't send more than sense data length
if (length > sizeof(udi_msc_sense))
length = sizeof(udi_msc_sense);
if (!udi_msc_cbw_validate(length, USB_CBW_DIRECTION_IN))
return;
// Send sense data
udi_msc_data_send((uint8_t*)&udi_msc_sense, length);
}
static void udi_msc_spc_inquiry(void)
{
uint8_t length, i;
UDC_DATA(4)
// Constant inquiry data for all LUNs
static struct scsi_inquiry_data udi_msc_inquiry_data = {
.pq_pdt = SCSI_INQ_PQ_CONNECTED | SCSI_INQ_DT_DIR_ACCESS,
.version = SCSI_INQ_VER_SPC,
.flags3 = SCSI_INQ_RSP_SPC2,
.addl_len = SCSI_INQ_ADDL_LEN(sizeof(struct scsi_inquiry_data)),
.vendor_id = {UDI_MSC_GLOBAL_VENDOR_ID},
.product_rev = {UDI_MSC_GLOBAL_PRODUCT_VERSION},
};
length = udi_msc_cbw.CDB[4];
// Can't send more than inquiry data length
if (length > sizeof(udi_msc_inquiry_data))
length = sizeof(udi_msc_inquiry_data);
if (!udi_msc_cbw_validate(length, USB_CBW_DIRECTION_IN))
return;
if ((0 != (udi_msc_cbw.CDB[1] & (SCSI_INQ_REQ_EVPD | SCSI_INQ_REQ_CMDT)))
|| (0 != udi_msc_cbw.CDB[2])) {
// CMDT and EPVD bits are not at 0
// PAGE or OPERATION CODE fields are not empty
// = No standard inquiry asked
udi_msc_sense_fail_cdb_invalid(); // Command is unsupported
udi_msc_csw_process();
return;
}
udi_msc_inquiry_data.flags1 = mem_removal(udi_msc_cbw.bCBWLUN) ?
SCSI_INQ_RMB : 0;
//* Fill product ID field
// Copy name in product id field
memcpy(udi_msc_inquiry_data.product_id,
mem_name(udi_msc_cbw.bCBWLUN)+1, // To remove first '"'
sizeof(udi_msc_inquiry_data.product_id));
// Search end of name '/0' or '"'
i = 0;
while (sizeof(udi_msc_inquiry_data.product_id) != i) {
if ((0 == udi_msc_inquiry_data.product_id[i])
|| ('"' == udi_msc_inquiry_data.product_id[i])) {
break;
}
i++;
}
// Padding with space char
while (sizeof(udi_msc_inquiry_data.product_id) != i) {
udi_msc_inquiry_data.product_id[i] = ' ';
i++;
}
// Send inquiry data
udi_msc_data_send((uint8_t *) & udi_msc_inquiry_data, length);
}
static bool udi_msc_spc_testunitready_global(void)
{
switch (mem_test_unit_ready(udi_msc_cbw.bCBWLUN)) {
case CTRL_GOOD:
return true; // Don't change sense data
case CTRL_BUSY:
udi_msc_sense_fail_busy_or_change();
break;
case CTRL_NO_PRESENT:
udi_msc_sense_fail_not_present();
break;
case CTRL_FAIL:
default:
udi_msc_sense_fail_hardware();
break;
}
return false;
}
static void udi_msc_spc_testunitready(void)
{
if (udi_msc_spc_testunitready_global()) {
// LUN ready, then update sense data with status pass
udi_msc_sense_pass();
}
// Send status in CSW packet
udi_msc_csw_process();
}
static void udi_msc_spc_mode_sense(bool b_sense10)
{
// Union of all mode sense structures
union sense_6_10 {
struct {
struct scsi_mode_param_header6 header;
struct spc_control_page_info_execpt sense_data;
} s6;
struct {
struct scsi_mode_param_header10 header;
struct spc_control_page_info_execpt sense_data;
} s10;
};
uint8_t data_sense_lgt;
uint8_t mode;
uint8_t request_lgt;
uint8_t wp;
struct spc_control_page_info_execpt *ptr_mode;
UDC_BSS(4) static union sense_6_10 sense;
// Clear all fields
memset(&sense, 0, sizeof(sense));
// Initialize process
if (b_sense10) {
request_lgt = udi_msc_cbw.CDB[8];
ptr_mode = &sense.s10.sense_data;
data_sense_lgt = sizeof(struct scsi_mode_param_header10);
} else {
request_lgt = udi_msc_cbw.CDB[4];
ptr_mode = &sense.s6.sense_data;
data_sense_lgt = sizeof(struct scsi_mode_param_header6);
}
// No Block descriptor
// Fill page(s)
mode = udi_msc_cbw.CDB[2] & SCSI_MS_MODE_ALL;
if ((SCSI_MS_MODE_INFEXP == mode)
|| (SCSI_MS_MODE_ALL == mode)) {
// Informational exceptions control page (from SPC)
ptr_mode->page_code =
SCSI_MS_MODE_INFEXP;
ptr_mode->page_length =
SPC_MP_INFEXP_PAGE_LENGTH;
ptr_mode->mrie =
SPC_MP_INFEXP_MRIE_NO_SENSE;
data_sense_lgt += sizeof(struct spc_control_page_info_execpt);
}
// Can't send more than mode sense data length
if (request_lgt > data_sense_lgt)
request_lgt = data_sense_lgt;
if (!udi_msc_cbw_validate(request_lgt, USB_CBW_DIRECTION_IN))
return;
// Fill mode parameter header length
wp = (mem_wr_protect(udi_msc_cbw.bCBWLUN)) ? SCSI_MS_SBC_WP : 0;
if (b_sense10) {
sense.s10.header.mode_data_length =
cpu_to_be16((data_sense_lgt - 2));
//sense.s10.header.medium_type = 0;
sense.s10.header.device_specific_parameter = wp;
//sense.s10.header.block_descriptor_length = 0;
} else {
sense.s6.header.mode_data_length = data_sense_lgt - 1;
//sense.s6.header.medium_type = 0;
sense.s6.header.device_specific_parameter = wp;
//sense.s6.header.block_descriptor_length = 0;
}
// Send mode sense data
udi_msc_data_send((uint8_t *) & sense, request_lgt);
}
static void udi_msc_spc_prevent_allow_medium_removal(void)
{
uint8_t prevent = udi_msc_cbw.CDB[4];
if (0 == prevent) {
udi_msc_sense_pass();
} else {
udi_msc_sense_fail_cdb_invalid(); // Command is unsupported
}
udi_msc_csw_process();
}
static void udi_msc_sbc_start_stop(void)
{
bool start = 0x1 & udi_msc_cbw.CDB[4];
bool loej = 0x2 & udi_msc_cbw.CDB[4];
if (loej) {
mem_unload(udi_msc_cbw.bCBWLUN, !start);
}
udi_msc_sense_pass();
udi_msc_csw_process();
}
static void udi_msc_sbc_read_capacity(void)
{
UDC_BSS(4) static struct sbc_read_capacity10_data udi_msc_capacity;
if (!udi_msc_cbw_validate(sizeof(udi_msc_capacity),
USB_CBW_DIRECTION_IN))
return;
// Get capacity of LUN
switch (mem_read_capacity(udi_msc_cbw.bCBWLUN,
&udi_msc_capacity.max_lba)) {
case CTRL_GOOD:
break;
case CTRL_BUSY:
udi_msc_sense_fail_busy_or_change();
udi_msc_csw_process();
return;
case CTRL_NO_PRESENT:
udi_msc_sense_fail_not_present();
udi_msc_csw_process();
return;
default:
udi_msc_sense_fail_hardware();
udi_msc_csw_process();
return;
}
// Format capacity data
udi_msc_capacity.block_len = CPU_TO_BE32(UDI_MSC_BLOCK_SIZE);
udi_msc_capacity.max_lba = cpu_to_be32(udi_msc_capacity.max_lba);
// Send the corresponding sense data
udi_msc_data_send((uint8_t *) & udi_msc_capacity,
sizeof(udi_msc_capacity));
}
static void udi_msc_sbc_trans(bool b_read)
{
uint32_t trans_size;
if (!b_read) {
// Write operation then check Write Protect
if (mem_wr_protect(udi_msc_cbw.bCBWLUN)) {
// Write not authorized
udi_msc_sense_fail_protected();
udi_msc_csw_process();
return;
}
}
// Read/Write command fields (address and number of block)
MSB0(udi_msc_addr) = udi_msc_cbw.CDB[2];
MSB1(udi_msc_addr) = udi_msc_cbw.CDB[3];
MSB2(udi_msc_addr) = udi_msc_cbw.CDB[4];
MSB3(udi_msc_addr) = udi_msc_cbw.CDB[5];
MSB(udi_msc_nb_block) = udi_msc_cbw.CDB[7];
LSB(udi_msc_nb_block) = udi_msc_cbw.CDB[8];
// Compute number of byte to transfer and valid it
trans_size = (uint32_t) udi_msc_nb_block *UDI_MSC_BLOCK_SIZE;
if (!udi_msc_cbw_validate(trans_size,
(b_read) ? USB_CBW_DIRECTION_IN :
USB_CBW_DIRECTION_OUT))
return;
// Record transfer request to do it in a task and not under interrupt
udi_msc_b_read = b_read;
udi_msc_b_trans_req = true;
UDI_MSC_NOTIFY_TRANS_EXT();
}
bool udi_msc_process_trans(void)
{
Ctrl_status status;
if (!udi_msc_b_trans_req)
return false; // No Transfer request to do
udi_msc_b_trans_req = false;
udi_msc_b_reset_trans = false;
// Start transfer
if (udi_msc_b_read) {
status = memory_2_usb(udi_msc_cbw.bCBWLUN, udi_msc_addr,
udi_msc_nb_block);
} else {
status = usb_2_memory(udi_msc_cbw.bCBWLUN, udi_msc_addr,
udi_msc_nb_block);
}
// Check if transfer is aborted by reset
if (udi_msc_b_reset_trans) {
udi_msc_b_reset_trans = false;
return true;
}
// Check status of transfer
switch (status) {
case CTRL_GOOD:
udi_msc_sense_pass();
break;
case CTRL_BUSY:
udi_msc_sense_fail_busy_or_change();
break;
case CTRL_NO_PRESENT:
udi_msc_sense_fail_not_present();
break;
default:
case CTRL_FAIL:
udi_msc_sense_fail_hardware();
break;
}
// Send status of transfer in CSW packet
udi_msc_csw_process();
return true;
}
static void udi_msc_trans_ack(udd_ep_status_t status, iram_size_t n,
udd_ep_id_t ep)
{
UNUSED(ep);
UNUSED(n);
// Update variable to signal the end of transfer
udi_msc_b_abort_trans = (UDD_EP_TRANSFER_OK != status) ? true : false;
udi_msc_b_ack_trans = true;
}
bool udi_msc_trans_block(bool b_read, uint8_t * block, iram_size_t block_size,
void (*callback) (udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep))
{
if (!udi_msc_b_ack_trans)
return false; // No possible, transfer on going
// Start transfer Internal RAM<->USB line
udi_msc_b_ack_trans = false;
if (!udd_ep_run((b_read) ? UDI_MSC_EP_IN : UDI_MSC_EP_OUT,
false,
block,
block_size,
(NULL == callback) ? udi_msc_trans_ack :
callback)) {
udi_msc_b_ack_trans = true;
return false;
}
if (NULL == callback) {
while (!udi_msc_b_ack_trans);
if (udi_msc_b_abort_trans) {
return false;
}
udi_msc_csw.dCSWDataResidue -= block_size;
return (!udi_msc_b_abort_trans);
}
udi_msc_csw.dCSWDataResidue -= block_size;
return true;
}
//@}
#endif

View file

@ -0,0 +1,376 @@
/**
* \file
*
* \brief USB Device Mass Storage Class (MSC) interface definitions.
*
* Copyright (c) 2009-2016 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _UDI_MSC_H_
#define _UDI_MSC_H_
#include "conf_usb.h"
#include "usb_protocol.h"
#include "usb_protocol_msc.h"
#include "udd.h"
#include "udc_desc.h"
#include "udi.h"
#ifdef __cplusplus
extern "C" {
#endif
/**
* \addtogroup udi_msc_group_udc
* @{
*/
//! Global structure which contains standard UDI interface for UDC
extern UDC_DESC_STORAGE udi_api_t udi_api_msc;
//@}
/**
* \ingroup udi_msc_group
* \defgroup udi_msc_group USB interface descriptors
*
* The following structures provide predefined USB interface descriptors.
* It must be used to define the final USB descriptors.
*/
//@{
//! Interface descriptor structure for MSC
typedef struct {
usb_iface_desc_t iface;
usb_ep_desc_t ep_in;
usb_ep_desc_t ep_out;
} udi_msc_desc_t;
//! By default no string associated to this interface
#ifndef UDI_MSC_STRING_ID
#define UDI_MSC_STRING_ID 0
#endif
//! MSC endpoints size for full speed
#define UDI_MSC_EPS_SIZE_FS 64
//! MSC endpoints size for high speed
#define UDI_MSC_EPS_SIZE_HS 512
//! Content of MSC interface descriptor for all speeds
#define UDI_MSC_DESC \
.iface.bLength = sizeof(usb_iface_desc_t),\
.iface.bDescriptorType = USB_DT_INTERFACE,\
.iface.bInterfaceNumber = UDI_MSC_IFACE_NUMBER,\
.iface.bAlternateSetting = 0,\
.iface.bNumEndpoints = 2,\
.iface.bInterfaceClass = MSC_CLASS,\
.iface.bInterfaceSubClass = MSC_SUBCLASS_TRANSPARENT,\
.iface.bInterfaceProtocol = MSC_PROTOCOL_BULK,\
.iface.iInterface = UDI_MSC_STRING_ID,\
.ep_in.bLength = sizeof(usb_ep_desc_t),\
.ep_in.bDescriptorType = USB_DT_ENDPOINT,\
.ep_in.bEndpointAddress = UDI_MSC_EP_IN,\
.ep_in.bmAttributes = USB_EP_TYPE_BULK,\
.ep_in.bInterval = 0,\
.ep_out.bLength = sizeof(usb_ep_desc_t),\
.ep_out.bDescriptorType = USB_DT_ENDPOINT,\
.ep_out.bEndpointAddress = UDI_MSC_EP_OUT,\
.ep_out.bmAttributes = USB_EP_TYPE_BULK,\
.ep_out.bInterval = 0,
//! Content of MSC interface descriptor for full speed only
#define UDI_MSC_DESC_FS {\
UDI_MSC_DESC \
.ep_in.wMaxPacketSize = LE16(UDI_MSC_EPS_SIZE_FS),\
.ep_out.wMaxPacketSize = LE16(UDI_MSC_EPS_SIZE_FS),\
}
//! Content of MSC interface descriptor for high speed only
#define UDI_MSC_DESC_HS {\
UDI_MSC_DESC \
.ep_in.wMaxPacketSize = LE16(UDI_MSC_EPS_SIZE_HS),\
.ep_out.wMaxPacketSize = LE16(UDI_MSC_EPS_SIZE_HS),\
}
//@}
/**
* \ingroup udi_group
* \defgroup udi_msc_group USB Device Interface (UDI) for Mass Storage Class (MSC)
*
* Common APIs used by high level application to use this USB class.
*
* These routines are used by memory to transfer its data
* to/from USB MSC endpoints.
*
* See \ref udi_msc_quickstart.
* @{
*/
/**
* \brief Process the background read/write commands
*
* Routine called by the main loop
*/
bool udi_msc_process_trans(void);
/**
* \brief Transfers data to/from USB MSC endpoints
*
*
* \param b_read Memory to USB, if true
* \param block Buffer on Internal RAM to send or fill
* \param block_size Buffer size to send or fill
* \param callback Function to call at the end of transfer.
* If NULL then the routine exit when transfer is finish.
*
* \return \c 1 if function was successfully done, otherwise \c 0.
*/
bool udi_msc_trans_block(bool b_read, uint8_t * block, iram_size_t block_size,
void (*callback) (udd_ep_status_t status, iram_size_t n, udd_ep_id_t ep));
//@}
#ifdef __cplusplus
}
#endif
/**
* \page udi_msc_quickstart Quick start guide for USB device Mass Storage module (UDI MSC)
*
* This is the quick start guide for the \ref udi_msc_group
* "USB device interface MSC module (UDI MSC)" with step-by-step instructions on
* how to configure and use the modules in a selection of use cases.
*
* The use cases contain several code fragments. The code fragments in the
* steps for setup can be copied into a custom initialization function, while
* the steps for usage can be copied into, e.g., the main application function.
*
* \section udi_msc_basic_use_case Basic use case
* In this basic use case, the "USB MSC (Single Interface Device)" module is used.
* The "USB MSC (Composite Device)" module usage is described in \ref udi_msc_use_cases
* "Advanced use cases".
*
* \section udi_msc_basic_use_case_setup Setup steps
* \subsection udi_msc_basic_use_case_setup_prereq Prerequisites
* \copydetails udc_basic_use_case_setup_prereq
* \subsection udi_msc_basic_use_case_setup_code Example code
* \copydetails udc_basic_use_case_setup_code
* \subsection udi_msc_basic_use_case_setup_flow Workflow
* \copydetails udc_basic_use_case_setup_flow
*
* \section udi_msc_basic_use_case_usage Usage steps
*
* \subsection udi_msc_basic_use_case_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_SERIAL_NAME "12...EF" // Disk SN for MSC
#define UDI_MSC_GLOBAL_VENDOR_ID \
'A', 'T', 'M', 'E', 'L', ' ', ' ', ' '
#define UDI_MSC_GLOBAL_PRODUCT_VERSION \
'1', '.', '0', '0'
#define UDI_MSC_ENABLE_EXT() my_callback_msc_enable()
extern bool my_callback_msc_enable(void);
#define UDI_MSC_DISABLE_EXT() my_callback_msc_disable()
extern void my_callback_msc_disable(void);
#include "udi_msc_conf.h" // At the end of conf_usb.h file
\endcode
*
* Add to application C-file:
* \code
static bool my_flag_autorize_msc_transfert = false;
bool my_callback_msc_enable(void)
{
my_flag_autorize_msc_transfert = true;
return true;
}
void my_callback_msc_disable(void)
{
my_flag_autorize_msc_transfert = false;
}
void task(void)
{
udi_msc_process_trans();
}
\endcode
*
* \subsection udi_msc_basic_use_case_setup_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following configuration,
* which is the USB device MSC configuration:
* - \code #define USB_DEVICE_SERIAL_NAME "12...EF" // Disk SN for MSC \endcode
* \note The USB serial number is mandatory when a MSC interface is used.
* - \code //! Vendor name and Product version of MSC interface
#define UDI_MSC_GLOBAL_VENDOR_ID \
'A', 'T', 'M', 'E', 'L', ' ', ' ', ' '
#define UDI_MSC_GLOBAL_PRODUCT_VERSION \
'1', '.', '0', '0' \endcode
* \note The USB MSC interface requires a vendor ID (8 ASCII characters)
* and a product version (4 ASCII characters).
* - \code #define UDI_MSC_ENABLE_EXT() my_callback_msc_enable()
extern bool my_callback_msc_enable(void); \endcode
* \note After the device enumeration (detecting and identifying USB devices),
* the USB host starts the device configuration. When the USB MSC interface
* from the device is accepted by the host, the USB host enables this interface and the
* UDI_MSC_ENABLE_EXT() callback function is called and return true.
* Thus, when this event is received, the tasks which call
* udi_msc_process_trans() must be enabled.
* - \code #define UDI_MSC_DISABLE_EXT() my_callback_msc_disable()
extern void my_callback_msc_disable(void); \endcode
* \note When the USB device is unplugged or is reset by the USB host, the USB
* interface is disabled and the UDI_MSC_DISABLE_EXT() callback function
* is called. Thus, it is recommended to disable the task which is called udi_msc_process_trans().
* -# The MSC is automatically linked with memory control access component
* which provides the memories interfaces. However, the memory data transfers
* must be done outside USB interrupt routine. This is done in the MSC process
* ("udi_msc_process_trans()") called by main loop:
* - \code * void task(void) {
udi_msc_process_trans();
} \endcode
* -# The MSC speed depends on task periodicity. To get the best speed
* the notification callback "UDI_MSC_NOTIFY_TRANS_EXT" can be used to wakeup
* this task (Example, through a mutex):
* - \code #define UDI_MSC_NOTIFY_TRANS_EXT() msc_notify_trans()
void msc_notify_trans(void) {
wakeup_my_task();
} \endcode
*
* \section udi_msc_use_cases Advanced use cases
* For more advanced use of the UDI MSC module, see the following use cases:
* - \subpage udi_msc_use_case_composite
* - \subpage udc_use_case_1
* - \subpage udc_use_case_2
* - \subpage udc_use_case_3
* - \subpage udc_use_case_5
* - \subpage udc_use_case_6
*/
/**
* \page udi_msc_use_case_composite MSC in a composite device
*
* A USB Composite Device is a USB Device which uses more than one USB class.
* In this use case, the "USB MSC (Composite Device)" module is used to
* create a USB composite device. Thus, this USB module can be associated with
* another "Composite Device" module, like "USB HID Mouse (Composite Device)".
*
* Also, you can refer to application note
* <A href="http://www.atmel.com/dyn/resources/prod_documents/doc8445.pdf">
* AVR4902 ASF - USB Composite Device</A>.
*
* \section udi_msc_use_case_composite_setup Setup steps
* For the setup code of this use case to work, the
* \ref udi_msc_basic_use_case "basic use case" must be followed.
*
* \section udi_msc_use_case_composite_usage Usage steps
*
* \subsection udi_msc_use_case_composite_usage_code Example code
* Content of conf_usb.h:
* \code
#define USB_DEVICE_EP_CTRL_SIZE 64
#define USB_DEVICE_NB_INTERFACE (X+1)
#define USB_DEVICE_MAX_EP (X+2)
#define UDI_MSC_EP_IN (X | USB_EP_DIR_IN)
#define UDI_MSC_EP_OUT (Y | USB_EP_DIR_OUT)
#define UDI_MSC_IFACE_NUMBER X
#define UDI_COMPOSITE_DESC_T \
udi_msc_desc_t udi_msc; \
...
#define UDI_COMPOSITE_DESC_FS \
.udi_msc = UDI_MSC_DESC, \
...
#define UDI_COMPOSITE_DESC_HS \
.udi_msc = UDI_MSC_DESC, \
...
#define UDI_COMPOSITE_API \
&udi_api_msc, \
...
\endcode
*
* \subsection udi_msc_use_case_composite_usage_flow Workflow
* -# Ensure that conf_usb.h is available and contains the following parameters
* required for a USB composite device configuration:
* - \code // Endpoint control size, This must be:
// - 8, 16, 32 or 64 for full speed device (8 is recommended to save RAM)
// - 64 for a high speed device
#define USB_DEVICE_EP_CTRL_SIZE 64
// Total Number of interfaces on this USB device.
// Add 1 for MSC.
#define USB_DEVICE_NB_INTERFACE (X+1)
// Total number of endpoints on this USB device.
// This must include each endpoint for each interface.
// Add 2 for MSC.
#define USB_DEVICE_MAX_EP (X+2) \endcode
* -# Ensure that conf_usb.h contains the description of
* composite device:
* - \code // The endpoint numbers chosen by you for the MSC.
// The endpoint numbers starting from 1.
#define UDI_MSC_EP_IN (X | USB_EP_DIR_IN)
#define UDI_MSC_EP_OUT (Y | USB_EP_DIR_OUT)
// The interface index of an interface starting from 0
#define UDI_MSC_IFACE_NUMBER X \endcode
* -# Ensure that conf_usb.h contains the following parameters
* required for a USB composite device configuration:
* - \code // USB Interfaces descriptor structure
#define UDI_COMPOSITE_DESC_T \
...
udi_msc_desc_t udi_msc; \
...
// USB Interfaces descriptor value for Full Speed
#define UDI_COMPOSITE_DESC_FS \
...
.udi_msc = UDI_MSC_DESC_FS, \
...
// USB Interfaces descriptor value for High Speed
#define UDI_COMPOSITE_DESC_HS \
...
.udi_msc = UDI_MSC_DESC_HS, \
...
// USB Interface APIs
#define UDI_COMPOSITE_API \
...
&udi_api_msc, \
... \endcode
* - \note The descriptors order given in the four lists above must be the
* same as the order defined by all interface indexes. The interface index
* orders are defined through UDI_X_IFACE_NUMBER defines.
*/
#endif // _UDI_MSC_H_

View file

@ -0,0 +1,2073 @@
/**
* \file
*
* \brief USB Device Driver for UOTGHS. Compliant with common UDD driver.
*
* Copyright (c) 2012-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "compiler.h"
#include "uotghs_device_due.h"
#include "conf_usb.h"
#include "sysclk.h"
#include "udd.h"
#include "uotghs_otg.h"
#include <string.h>
#ifndef UDD_NO_SLEEP_MGR
# include "sleep.h"
# include "sleepmgr.h"
#endif
#if !(SAM3XA)
# error The current UOTGHS Device Driver supports only SAM3X and SAM3A.
#endif
#ifndef UDD_USB_INT_FUN
# define UDD_USB_INT_FUN UOTGHS_Handler
#endif
#ifndef UDD_USB_INT_LEVEL
# define UDD_USB_INT_LEVEL 5 // By default USB interrupt have low priority
#endif
#define UDD_EP_USED(ep) (USB_DEVICE_MAX_EP >= ep)
#if ( (UDD_EP_USED( 1) && Is_udd_endpoint_dma_supported( 1)) \
||(UDD_EP_USED( 2) && Is_udd_endpoint_dma_supported( 2)) \
||(UDD_EP_USED( 3) && Is_udd_endpoint_dma_supported( 3)) \
||(UDD_EP_USED( 4) && Is_udd_endpoint_dma_supported( 4)) \
||(UDD_EP_USED( 5) && Is_udd_endpoint_dma_supported( 5)) \
||(UDD_EP_USED( 6) && Is_udd_endpoint_dma_supported( 6)) \
||(UDD_EP_USED( 7) && Is_udd_endpoint_dma_supported( 7)) \
||(UDD_EP_USED( 8) && Is_udd_endpoint_dma_supported( 8)) \
||(UDD_EP_USED( 9) && Is_udd_endpoint_dma_supported( 9)) \
||(UDD_EP_USED(10) && Is_udd_endpoint_dma_supported(10)) \
||(UDD_EP_USED(11) && Is_udd_endpoint_dma_supported(11)) \
||(UDD_EP_USED(12) && Is_udd_endpoint_dma_supported(12)) \
||(UDD_EP_USED(13) && Is_udd_endpoint_dma_supported(13)) \
||(UDD_EP_USED(14) && Is_udd_endpoint_dma_supported(14)) \
||(UDD_EP_USED(15) && Is_udd_endpoint_dma_supported(15)) \
)
# define UDD_EP_DMA_SUPPORTED
#endif
#if ( (UDD_EP_USED( 1) && !Is_udd_endpoint_dma_supported( 1)) \
||(UDD_EP_USED( 2) && !Is_udd_endpoint_dma_supported( 2)) \
||(UDD_EP_USED( 3) && !Is_udd_endpoint_dma_supported( 3)) \
||(UDD_EP_USED( 4) && !Is_udd_endpoint_dma_supported( 4)) \
||(UDD_EP_USED( 5) && !Is_udd_endpoint_dma_supported( 5)) \
||(UDD_EP_USED( 6) && !Is_udd_endpoint_dma_supported( 6)) \
||(UDD_EP_USED( 7) && !Is_udd_endpoint_dma_supported( 7)) \
||(UDD_EP_USED( 8) && !Is_udd_endpoint_dma_supported( 8)) \
||(UDD_EP_USED( 9) && !Is_udd_endpoint_dma_supported( 9)) \
||(UDD_EP_USED(10) && !Is_udd_endpoint_dma_supported(10)) \
||(UDD_EP_USED(11) && !Is_udd_endpoint_dma_supported(11)) \
||(UDD_EP_USED(12) && !Is_udd_endpoint_dma_supported(12)) \
||(UDD_EP_USED(13) && !Is_udd_endpoint_dma_supported(13)) \
||(UDD_EP_USED(14) && !Is_udd_endpoint_dma_supported(14)) \
||(UDD_EP_USED(15) && !Is_udd_endpoint_dma_supported(15)) \
)
# define UDD_EP_FIFO_SUPPORTED
#endif
// for debug text
//#define dbg_print printf
#define dbg_print(...)
/**
* \ingroup udd_group
* \defgroup udd_udphs_group USB On-The-Go High-Speed Port for device mode (UOTGHS)
*
* \section UOTGHS_CONF UOTGHS Custom configuration
* The following UOTGHS driver configuration must be included in the conf_usb.h
* file of the application.
*
* UDD_USB_INT_LEVEL<br>
* Option to change the interrupt priority (0 to 15) by default 5 (recommended).
*
* UDD_USB_INT_FUN<br>
* Option to fit interrupt function to what defined in exception table.
*
* UDD_ISOCHRONOUS_NB_BANK(ep)<br>
* Feature to reduce or increase isochronous endpoints buffering (1 to 3).
* Default value 2.
*
* UDD_BULK_NB_BANK(ep)<br>
* Feature to reduce or increase bulk endpoints buffering (1 to 2).
* Default value 2.
*
* UDD_INTERRUPT_NB_BANK(ep)<br>
* Feature to reduce or increase interrupt endpoints buffering (1 to 2).
* Default value 1.
*
* \section Callbacks management
* The USB driver is fully managed by interrupt and does not request periodique
* task. Thereby, the USB events use callbacks to transfer the information.
* The callbacks are declared in static during compilation or in variable during
* code execution.
*
* Static declarations defined in conf_usb.h:
* - UDC_VBUS_EVENT(bool b_present)<br>
* To signal Vbus level change
* - UDC_SUSPEND_EVENT()<br>
* Called when USB bus enter in suspend mode
* - UDC_RESUME_EVENT()<br>
* Called when USB bus is wakeup
* - UDC_SOF_EVENT()<br>
* Called for each received SOF, Note: Each 1ms in HS/FS mode only.
*
* Dynamic callbacks, called "endpoint job" , are registered
* in udd_ep_job_t structure via the following functions:
* - udd_ep_run()<br>
* To call it when a transfer is finish
* - udd_ep_wait_stall_clear()<br>
* To call it when a endpoint halt is disabled
*
* \section Power mode management
* The Sleep modes authorized :
* - in USB IDLE state, the UOTGHS needs of USB clock and authorizes up to sleep mode WFI.
* - in USB SUSPEND state, the UOTGHS no needs USB clock and authorizes up to sleep mode WAIT.
* @{
*/
// Check USB Device configuration
#ifndef USB_DEVICE_EP_CTRL_SIZE
# error USB_DEVICE_EP_CTRL_SIZE not defined
#endif
#ifndef USB_DEVICE_MAX_EP
# error USB_DEVICE_MAX_EP not defined
#endif
// Note: USB_DEVICE_MAX_EP does not include control endpoint
#if USB_DEVICE_MAX_EP > (UDD_MAX_PEP_NB-1)
# error USB_DEVICE_MAX_EP is too high and not supported by this part
#endif
#define UDD_EP_ISO_NBANK_ERROR(ep) \
( (UDD_ISOCHRONOUS_NB_BANK(ep) < 1) \
|| (UDD_ISOCHRONOUS_NB_BANK(ep) > 3) )
#define UDD_EP_BULK_NBANK_ERROR(ep) \
( (UDD_BULK_NB_BANK(ep) < 1) || (UDD_BULK_NB_BANK(ep) > 2) )
#define UDD_EP_INT_NBANK_ERROR(ep) \
( (UDD_INTERRUPT_NB_BANK(ep) < 1) || (UDD_INTERRUPT_NB_BANK(ep) > 2) )
#define UDD_EP_ISO_NB_BANK_ERROR(ep) \
(UDD_EP_USED(ep) && UDD_EP_ISO_NBANK_ERROR(ep))
#define UDD_EP_BULK_NB_BANK_ERROR(ep) \
(UDD_EP_USED(ep) && UDD_EP_ISO_NBANK_ERROR(ep))
#define UDD_EP_INT_NB_BANK_ERROR(ep) \
(UDD_EP_USED(ep) && UDD_EP_ISO_NBANK_ERROR(ep))
#define UDD_EP_NB_BANK_ERROR(ep, type) \
(ATPASTE3(UDD_EP_, type, _NB_BANK_ERROR(ep)))
#define UDD_ISO_NB_BANK_ERROR \
( UDD_EP_NB_BANK_ERROR( 1, ISO) \
|| UDD_EP_NB_BANK_ERROR( 2, ISO) \
|| UDD_EP_NB_BANK_ERROR( 3, ISO) \
|| UDD_EP_NB_BANK_ERROR( 4, ISO) \
|| UDD_EP_NB_BANK_ERROR( 5, ISO) \
|| UDD_EP_NB_BANK_ERROR( 6, ISO) \
|| UDD_EP_NB_BANK_ERROR( 7, ISO) \
|| UDD_EP_NB_BANK_ERROR( 8, ISO) \
|| UDD_EP_NB_BANK_ERROR( 9, ISO) \
|| UDD_EP_NB_BANK_ERROR(10, ISO) \
|| UDD_EP_NB_BANK_ERROR(11, ISO) \
|| UDD_EP_NB_BANK_ERROR(12, ISO) \
|| UDD_EP_NB_BANK_ERROR(13, ISO) \
|| UDD_EP_NB_BANK_ERROR(14, ISO) \
|| UDD_EP_NB_BANK_ERROR(15, ISO) )
#define UDD_BULK_NB_BANK_ERROR \
( UDD_EP_NB_BANK_ERROR( 1, BULK) \
|| UDD_EP_NB_BANK_ERROR( 2, BULK) \
|| UDD_EP_NB_BANK_ERROR( 3, BULK) \
|| UDD_EP_NB_BANK_ERROR( 4, BULK) \
|| UDD_EP_NB_BANK_ERROR( 5, BULK) \
|| UDD_EP_NB_BANK_ERROR( 6, BULK) \
|| UDD_EP_NB_BANK_ERROR( 7, BULK) \
|| UDD_EP_NB_BANK_ERROR( 8, BULK) \
|| UDD_EP_NB_BANK_ERROR( 9, BULK) \
|| UDD_EP_NB_BANK_ERROR(10, BULK) \
|| UDD_EP_NB_BANK_ERROR(11, BULK) \
|| UDD_EP_NB_BANK_ERROR(12, BULK) \
|| UDD_EP_NB_BANK_ERROR(13, BULK) \
|| UDD_EP_NB_BANK_ERROR(14, BULK) \
|| UDD_EP_NB_BANK_ERROR(15, BULK) )
#define UDD_INTERRUPT_NB_BANK_ERROR \
( UDD_EP_NB_BANK_ERROR( 1, INT) \
|| UDD_EP_NB_BANK_ERROR( 2, INT) \
|| UDD_EP_NB_BANK_ERROR( 3, INT) \
|| UDD_EP_NB_BANK_ERROR( 4, INT) \
|| UDD_EP_NB_BANK_ERROR( 5, INT) \
|| UDD_EP_NB_BANK_ERROR( 6, INT) \
|| UDD_EP_NB_BANK_ERROR( 7, INT) \
|| UDD_EP_NB_BANK_ERROR( 8, INT) \
|| UDD_EP_NB_BANK_ERROR( 9, INT) \
|| UDD_EP_NB_BANK_ERROR(10, INT) \
|| UDD_EP_NB_BANK_ERROR(11, INT) \
|| UDD_EP_NB_BANK_ERROR(12, INT) \
|| UDD_EP_NB_BANK_ERROR(13, INT) \
|| UDD_EP_NB_BANK_ERROR(14, INT) \
|| UDD_EP_NB_BANK_ERROR(15, INT) )
#ifndef UDD_ISOCHRONOUS_NB_BANK
# define UDD_ISOCHRONOUS_NB_BANK(ep) 2
#else
# if UDD_ISO_NB_BANK_ERROR
# error UDD_ISOCHRONOUS_NB_BANK(ep) must be define within 1 to 3.
# endif
#endif
#ifndef UDD_BULK_NB_BANK
# define UDD_BULK_NB_BANK(ep) 2
#else
# if UDD_BULK_NB_BANK_ERROR
# error UDD_BULK_NB_BANK must be define with 1 or 2.
# endif
#endif
#ifndef UDD_INTERRUPT_NB_BANK
# define UDD_INTERRUPT_NB_BANK(ep) 1
#else
# if UDD_INTERRUPT_NB_BANK_ERROR
# error UDD_INTERRUPT_NB_BANK must be define with 1 or 2.
# endif
#endif
/**
* \name Power management routine.
*/
//@{
#ifndef UDD_NO_SLEEP_MGR
//! Definition of sleep levels
#define UOTGHS_SLEEP_MODE_USB_SUSPEND SLEEPMGR_WAIT_FAST
#define UOTGHS_SLEEP_MODE_USB_IDLE SLEEPMGR_SLEEP_WFI
//! State of USB line
static bool udd_b_idle;
//! State of sleep manager
static bool udd_b_sleep_initialized = false;
/*! \brief Authorize or not the CPU powerdown mode
*
* \param b_enable true to authorize idle mode
*/
static void udd_sleep_mode(bool b_idle)
{
if (!b_idle && udd_b_idle) {
dbg_print("_S ");
sleepmgr_unlock_mode(UOTGHS_SLEEP_MODE_USB_IDLE);
}
if (b_idle && !udd_b_idle) {
dbg_print("_W ");
sleepmgr_lock_mode(UOTGHS_SLEEP_MODE_USB_IDLE);
}
udd_b_idle = b_idle;
}
#else
static void udd_sleep_mode(bool b_idle)
{
b_idle = b_idle;
}
#endif // UDD_NO_SLEEP_MGR
//@}
/**
* \name Control endpoint low level management routine.
*
* This function performs control endpoint mangement.
* It handle the SETUP/DATA/HANDSHAKE phases of a control transaction.
*/
//@{
//! Global variable to give and record information about setup request management
COMPILER_WORD_ALIGNED udd_ctrl_request_t udd_g_ctrlreq;
//! Bit definitions about endpoint control state machine for udd_ep_control_state
typedef enum {
UDD_EPCTRL_SETUP = 0, //!< Wait a SETUP packet
UDD_EPCTRL_DATA_OUT = 1, //!< Wait a OUT data packet
UDD_EPCTRL_DATA_IN = 2, //!< Wait a IN data packet
UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP = 3, //!< Wait a IN ZLP packet
UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP = 4, //!< Wait a OUT ZLP packet
UDD_EPCTRL_STALL_REQ = 5, //!< STALL enabled on IN & OUT packet
} udd_ctrl_ep_state_t;
//! State of the endpoint control management
static udd_ctrl_ep_state_t udd_ep_control_state;
//! Total number of data received/sent during data packet phase with previous payload buffers
static uint16_t udd_ctrl_prev_payload_buf_cnt;
//! Number of data received/sent to/from udd_g_ctrlreq.payload buffer
static uint16_t udd_ctrl_payload_buf_cnt;
/**
* \brief Reset control endpoint
*
* Called after a USB line reset or when UDD is enabled
*/
static void udd_reset_ep_ctrl(void);
/**
* \brief Reset control endpoint management
*
* Called after a USB line reset or at the end of SETUP request (after ZLP)
*/
static void udd_ctrl_init(void);
//! \brief Managed reception of SETUP packet on control endpoint
static void udd_ctrl_setup_received(void);
//! \brief Managed reception of IN packet on control endpoint
static void udd_ctrl_in_sent(void);
//! \brief Managed reception of OUT packet on control endpoint
static void udd_ctrl_out_received(void);
//! \brief Managed underflow event of IN packet on control endpoint
static void udd_ctrl_underflow(void);
//! \brief Managed overflow event of OUT packet on control endpoint
static void udd_ctrl_overflow(void);
//! \brief Managed stall event of IN/OUT packet on control endpoint
static void udd_ctrl_stall_data(void);
//! \brief Send a ZLP IN on control endpoint
static void udd_ctrl_send_zlp_in(void);
//! \brief Send a ZLP OUT on control endpoint
static void udd_ctrl_send_zlp_out(void);
//! \brief Call callback associated to setup request
static void udd_ctrl_endofrequest(void);
/**
* \brief Main interrupt routine for control endpoint
*
* This switchs control endpoint events to correct sub function.
*
* \return \c 1 if an event about control endpoint is occured, otherwise \c 0.
*/
static bool udd_ctrl_interrupt(void);
//@}
/**
* \name Management of bulk/interrupt/isochronous endpoints
*
* The UDD manages the data transfer on endpoints:
* - Start data tranfer on endpoint with USB Device DMA
* - Send a ZLP packet if requested
* - Call callback registered to signal end of transfer
* The transfer abort and stall feature are supported.
*/
//@{
#if (0!=USB_DEVICE_MAX_EP)
//! Structure definition about job registered on an endpoint
typedef struct {
union {
//! Callback to call at the end of transfer
udd_callback_trans_t call_trans;
//! Callback to call when the endpoint halt is cleared
udd_callback_halt_cleared_t call_nohalt;
};
//! Buffer located in internal RAM to send or fill during job
uint8_t *buf;
//! Size of buffer to send or fill
iram_size_t buf_size;
//!< Size of data transfered
iram_size_t buf_cnt;
//!< Size of data loaded (or prepared for DMA) last time
iram_size_t buf_load;
//! A job is registered on this endpoint
uint8_t busy:1;
//! A short packet is requested for this job on endpoint IN
uint8_t b_shortpacket:1;
//! A stall has been requested but not executed
uint8_t stall_requested:1;
} udd_ep_job_t;
//! Array to register a job on bulk/interrupt/isochronous endpoint
static udd_ep_job_t udd_ep_job[USB_DEVICE_MAX_EP];
//! \brief Reset all job table
static void udd_ep_job_table_reset(void);
//! \brief Abort all endpoint jobs on going
static void udd_ep_job_table_kill(void);
#ifdef UDD_EP_FIFO_SUPPORTED
/**
* \brief Fill banks and send them
*
* \param ep endpoint number of job to abort
*/
static void udd_ep_in_sent(udd_ep_id_t ep);
/**
* \brief Store received banks
*
* \param ep endpoint number of job to abort
*/
static void udd_ep_out_received(udd_ep_id_t ep);
#endif
/**
* \brief Abort endpoint job on going
*
* \param ep endpoint number of job to abort
*/
static void udd_ep_abort_job(udd_ep_id_t ep);
/**
* \brief Call the callback associated to the job which is finished
*
* \param ptr_job job to complete
* \param b_abort if true then the job has been aborted
*/
static void udd_ep_finish_job(udd_ep_job_t * ptr_job, bool b_abort, uint8_t ep_num);
#ifdef UDD_EP_DMA_SUPPORTED
/**
* \brief Start the next transfer if necessary or complet the job associated.
*
* \param ep endpoint number without direction flag
*/
static void udd_ep_trans_done(udd_ep_id_t ep);
#endif
/**
* \brief Main interrupt routine for bulk/interrupt/isochronous endpoints
*
* This switchs endpoint events to correct sub function.
*
* \return \c 1 if an event about bulk/interrupt/isochronous endpoints has occured, otherwise \c 0.
*/
static bool udd_ep_interrupt(void);
#endif // (0!=USB_DEVICE_MAX_EP)
//@}
//--------------------------------------------------------
//--- INTERNAL ROUTINES TO MANAGED GLOBAL EVENTS
/**
* \internal
* \brief Function called by UOTGHS interrupt to manage USB Device interrupts
*
* USB Device interrupt events are splited in three parts:
* - USB line events (SOF, reset, suspend, resume, wakeup)
* - control endpoint events (setup reception, end of data transfer, underflow, overflow, stall)
* - bulk/interrupt/isochronous endpoints events (end of data transfer)
*
* Note:
* Here, the global interrupt mask is not clear when an USB interrupt is enabled
* because this one can not be occured during the USB ISR (=during INTX is masked).
* See Technical reference $3.8.3 Masking interrupt requests in peripheral modules.
*/
#ifdef UHD_ENABLE
void udd_interrupt(void);
void udd_interrupt(void)
#else
ISR(UDD_USB_INT_FUN)
#endif
{
/* For fast wakeup clocks restore
* In WAIT mode, clocks are switched to FASTRC.
* After wakeup clocks should be restored, before that ISR should not
* be served.
*/
if (!pmc_is_wakeup_clocks_restored() && !Is_udd_suspend()) {
cpu_irq_disable();
return;
}
if (Is_udd_sof()) {
udd_ack_sof();
if (Is_udd_full_speed_mode()) {
udc_sof_notify();
}
#ifdef UDC_SOF_EVENT
UDC_SOF_EVENT();
#endif
goto udd_interrupt_sof_end;
}
if (Is_udd_msof()) {
udd_ack_msof();
udc_sof_notify();
goto udd_interrupt_sof_end;
}
dbg_print("%c ", udd_is_high_speed() ? 'H' : 'F');
if (udd_ctrl_interrupt()) {
goto udd_interrupt_end; // Interrupt acked by control endpoint managed
}
#if (0 != USB_DEVICE_MAX_EP)
if (udd_ep_interrupt()) {
goto udd_interrupt_end; // Interrupt acked by bulk/interrupt/isochronous endpoint managed
}
#endif
// USB bus reset detection
if (Is_udd_reset()) {
udd_ack_reset();
dbg_print("RST ");
// Abort all jobs on-going
#if (USB_DEVICE_MAX_EP != 0)
udd_ep_job_table_kill();
#endif
// Reset USB Device Stack Core
udc_reset();
// Reset endpoint control
udd_reset_ep_ctrl();
// Reset endpoint control management
udd_ctrl_init();
goto udd_interrupt_end;
}
if (Is_udd_suspend_interrupt_enabled() && Is_udd_suspend()) {
otg_unfreeze_clock();
// The suspend interrupt is automatic acked when a wakeup occur
udd_disable_suspend_interrupt();
udd_enable_wake_up_interrupt();
otg_freeze_clock(); // Mandatory to exit of sleep mode after a wakeup event
udd_sleep_mode(false); // Enter in SUSPEND mode
#ifdef UDC_SUSPEND_EVENT
UDC_SUSPEND_EVENT();
#endif
goto udd_interrupt_end;
}
if (Is_udd_wake_up_interrupt_enabled() && Is_udd_wake_up()) {
// Ack wakeup interrupt and enable suspend interrupt
otg_unfreeze_clock();
// Check USB clock ready after suspend and eventually sleep USB clock
while (!Is_otg_clock_usable()) {
if (Is_udd_suspend()) {
break; // In case of USB state change in HS
}
};
// The wakeup interrupt is automatic acked when a suspend occur
udd_disable_wake_up_interrupt();
udd_enable_suspend_interrupt();
udd_sleep_mode(true); // Enter in IDLE mode
#ifdef UDC_RESUME_EVENT
UDC_RESUME_EVENT();
#endif
goto udd_interrupt_end;
}
if (Is_otg_vbus_transition()) {
dbg_print("VBus ");
// Ack Vbus transition and send status to high level
otg_unfreeze_clock();
otg_ack_vbus_transition();
otg_freeze_clock();
#ifndef USB_DEVICE_ATTACH_AUTO_DISABLE
if (Is_otg_vbus_high()) {
udd_attach();
} else {
udd_detach();
}
#endif
#ifdef UDC_VBUS_EVENT
UDC_VBUS_EVENT(Is_otg_vbus_high());
#endif
goto udd_interrupt_end;
}
udd_interrupt_end:
dbg_print("\n\r");
udd_interrupt_sof_end:
return;
}
bool udd_include_vbus_monitoring(void)
{
return true;
}
void udd_enable(void)
{
irqflags_t flags;
flags = cpu_irq_save();
#ifdef UHD_ENABLE
// DUAL ROLE INITIALIZATION
if (otg_dual_enable()) {
// The current mode has been started by otg_dual_enable()
cpu_irq_restore(flags);
return;
}
#else
// SINGLE DEVICE MODE INITIALIZATION
pmc_enable_periph_clk(ID_UOTGHS);
sysclk_enable_usb();
// Here, only the device mode is possible, then link UOTGHS interrupt to UDD interrupt
NVIC_SetPriority((IRQn_Type) ID_UOTGHS, UDD_USB_INT_LEVEL);
NVIC_EnableIRQ((IRQn_Type) ID_UOTGHS);
// Always authorize asynchrone USB interrupts to exit of sleep mode
// For SAM USB wake up device except BACKUP mode
pmc_set_fast_startup_input(PMC_FSMR_USBAL);
#endif
#if (defined USB_ID_GPIO) && (defined UHD_ENABLE)
// Check that the device mode is selected by ID pin
if (!Is_otg_id_device()) {
cpu_irq_restore(flags);
return; // Device is not the current mode
}
#else
// ID pin not used then force device mode
otg_disable_id_pin();
otg_force_device_mode();
#endif
// Enable USB hardware
otg_enable_pad();
otg_enable();
// Set the USB speed requested by configuration file
#ifdef USB_DEVICE_LOW_SPEED
udd_low_speed_enable();
#else
udd_low_speed_disable();
# ifdef USB_DEVICE_HS_SUPPORT
udd_high_speed_enable();
# else
udd_high_speed_disable();
# endif
#endif // USB_DEVICE_LOW_SPEED
// Check USB clock
otg_unfreeze_clock();
while (!Is_otg_clock_usable());
// Reset internal variables
#if (0!=USB_DEVICE_MAX_EP)
udd_ep_job_table_reset();
#endif
otg_ack_vbus_transition();
// Force Vbus interrupt in case of Vbus always with a high level
// This is possible with a short timing between a Host mode stop/start.
if (Is_otg_vbus_high()) {
otg_raise_vbus_transition();
}
otg_enable_vbus_interrupt();
otg_freeze_clock();
#ifndef UDD_NO_SLEEP_MGR
if (!udd_b_sleep_initialized) {
udd_b_sleep_initialized = true;
// Initialize the sleep mode authorized for the USB suspend mode
udd_b_idle = false;
sleepmgr_lock_mode(UOTGHS_SLEEP_MODE_USB_SUSPEND);
} else {
udd_sleep_mode(false); // Enter idle mode
}
#endif
cpu_irq_restore(flags);
}
void udd_disable(void)
{
irqflags_t flags;
#ifdef UHD_ENABLE
# ifdef USB_ID_GPIO
if (Is_otg_id_host()) {
// Freeze clock to switch mode
otg_freeze_clock();
udd_detach();
otg_disable();
return; // Host mode running, ignore UDD disable
}
# else
if (Is_otg_host_mode_forced()) {
return; // Host mode running, ignore UDD disable
}
# endif
#endif
flags = cpu_irq_save();
otg_unfreeze_clock();
udd_detach();
#ifndef UDD_NO_SLEEP_MGR
if (udd_b_sleep_initialized) {
udd_b_sleep_initialized = false;
sleepmgr_unlock_mode(UOTGHS_SLEEP_MODE_USB_SUSPEND);
}
#endif
#ifndef UHD_ENABLE
otg_disable();
otg_disable_pad();
sysclk_disable_usb();
pmc_disable_periph_clk(ID_UOTGHS);
// Else the USB clock disable is done by UHC which manage USB dual role
#endif
cpu_irq_restore(flags);
}
void udd_attach(void)
{
irqflags_t flags;
flags = cpu_irq_save();
// At startup the USB bus state is unknown,
// therefore the state is considered IDLE to not miss any USB event
udd_sleep_mode(true);
otg_unfreeze_clock();
// This section of clock check can be improved with a chek of
// USB clock source via sysclk()
// Check USB clock because the source can be a PLL
while (!Is_otg_clock_usable());
// Authorize attach if Vbus is present
udd_attach_device();
// Enable USB line events
udd_enable_reset_interrupt();
udd_enable_suspend_interrupt();
udd_enable_wake_up_interrupt();
udd_enable_sof_interrupt();
#ifdef USB_DEVICE_HS_SUPPORT
udd_enable_msof_interrupt();
#endif
// Reset following interupts flag
udd_ack_reset();
udd_ack_sof();
udd_ack_msof();
// The first suspend interrupt must be forced
// The first suspend interrupt is not detected else raise it
udd_raise_suspend();
udd_ack_wake_up();
otg_freeze_clock();
cpu_irq_restore(flags);
}
void udd_detach(void)
{
otg_unfreeze_clock();
// Detach device from the bus
udd_detach_device();
otg_freeze_clock();
udd_sleep_mode(false);
}
bool udd_is_high_speed(void)
{
#ifdef USB_DEVICE_HS_SUPPORT
return !Is_udd_full_speed_mode();
#else
return false;
#endif
}
void udd_set_address(uint8_t address)
{
udd_disable_address();
udd_configure_address(address);
udd_enable_address();
}
uint8_t udd_getaddress(void)
{
return udd_get_configured_address();
}
uint16_t udd_get_frame_number(void)
{
return udd_frame_number();
}
uint16_t udd_get_micro_frame_number(void)
{
return udd_micro_frame_number();
}
void udd_send_remotewakeup(void)
{
#ifndef UDD_NO_SLEEP_MGR
if (!udd_b_idle)
#endif
{
udd_sleep_mode(true); // Enter in IDLE mode
otg_unfreeze_clock();
udd_initiate_remote_wake_up();
}
}
void udd_set_setup_payload(uint8_t *payload, uint16_t payload_size)
{
udd_g_ctrlreq.payload = payload;
udd_g_ctrlreq.payload_size = payload_size;
}
#if (0 != USB_DEVICE_MAX_EP)
bool udd_ep_alloc(udd_ep_id_t ep, uint8_t bmAttributes,
uint16_t MaxEndpointSize)
{
bool b_dir_in;
uint16_t ep_allocated;
uint8_t nb_bank, bank, i;
b_dir_in = ep & USB_EP_DIR_IN;
ep = ep & USB_EP_ADDR_MASK;
if (ep > USB_DEVICE_MAX_EP) {
return false;
}
if (Is_udd_endpoint_enabled(ep)) {
return false;
}
dbg_print("alloc(%x, %d) ", ep, MaxEndpointSize);
// Bank choise
switch (bmAttributes & USB_EP_TYPE_MASK) {
case USB_EP_TYPE_ISOCHRONOUS:
nb_bank = UDD_ISOCHRONOUS_NB_BANK(ep);
break;
case USB_EP_TYPE_INTERRUPT:
nb_bank = UDD_INTERRUPT_NB_BANK(ep);
break;
case USB_EP_TYPE_BULK:
nb_bank = UDD_BULK_NB_BANK(ep);
break;
default:
Assert(false);
return false;
}
switch (nb_bank) {
case 1:
bank = UOTGHS_DEVEPTCFG_EPBK_1_BANK >>
UOTGHS_DEVEPTCFG_EPBK_Pos;
break;
case 2:
bank = UOTGHS_DEVEPTCFG_EPBK_2_BANK >>
UOTGHS_DEVEPTCFG_EPBK_Pos;
break;
case 3:
bank = UOTGHS_DEVEPTCFG_EPBK_3_BANK >>
UOTGHS_DEVEPTCFG_EPBK_Pos;
break;
default:
Assert(false);
return false;
}
// Check if endpoint size is 8,16,32,64,128,256,512 or 1023
Assert(MaxEndpointSize < 1024);
Assert((MaxEndpointSize == 1023)
|| !(MaxEndpointSize & (MaxEndpointSize - 1)));
Assert(MaxEndpointSize >= 8);
// Set configuration of new endpoint
udd_configure_endpoint(ep, bmAttributes, (b_dir_in ? 1 : 0),
MaxEndpointSize, bank);
ep_allocated = 1 << ep;
// Unalloc endpoints superior
for (i = USB_DEVICE_MAX_EP; i > ep; i--) {
if (Is_udd_endpoint_enabled(i)) {
ep_allocated |= 1 << i;
udd_disable_endpoint(i);
udd_unallocate_memory(i);
}
}
// Realloc/Enable endpoints
for (i = ep; i <= USB_DEVICE_MAX_EP; i++) {
if (ep_allocated & (1 << i)) {
udd_ep_job_t *ptr_job = &udd_ep_job[i - 1];
bool b_restart = ptr_job->busy;
// Restart running job because
// memory window slides up and its data is lost
ptr_job->busy = false;
// Re-allocate memory
udd_allocate_memory(i);
udd_enable_endpoint(i);
if (!Is_udd_endpoint_configured(i)) {
dbg_print("ErrRealloc%d ", i);
if (NULL == ptr_job->call_trans) {
return false;
}
if (Is_udd_endpoint_in(i)) {
i |= USB_EP_DIR_IN;
}
ptr_job->call_trans(UDD_EP_TRANSFER_ABORT,
ptr_job->buf_cnt, i);
return false;
}
udd_enable_endpoint_bank_autoswitch(i);
if (b_restart) {
// Re-run the job remaining part
# ifdef UDD_EP_FIFO_SUPPORTED
if (!Is_udd_endpoint_dma_supported(i)
&& !Is_udd_endpoint_in(i)) {
ptr_job->buf_cnt -= ptr_job->buf_load;
}
# else
ptr_job->buf_cnt -= ptr_job->buf_load;
# endif
b_restart = udd_ep_run(Is_udd_endpoint_in(i) ?
(i | USB_EP_DIR_IN) : i,
ptr_job->b_shortpacket,
&ptr_job->buf[ptr_job->buf_cnt],
ptr_job->buf_size
- ptr_job->buf_cnt,
ptr_job->call_trans);
if (!b_restart) {
dbg_print("ErrReRun%d ", i);
return false;
}
}
}
}
return true;
}
void udd_ep_free(udd_ep_id_t ep)
{
uint8_t ep_index = ep & USB_EP_ADDR_MASK;
if (USB_DEVICE_MAX_EP < ep_index) {
return;
}
udd_disable_endpoint(ep_index);
udd_unallocate_memory(ep_index);
udd_ep_abort_job(ep);
udd_ep_job[ep_index - 1].stall_requested = false;
}
bool udd_ep_is_halted(udd_ep_id_t ep)
{
uint8_t ep_index = ep & USB_EP_ADDR_MASK;
return Is_udd_endpoint_stall_requested(ep_index);
}
bool udd_ep_set_halt(udd_ep_id_t ep)
{
uint8_t ep_index = ep & USB_EP_ADDR_MASK;
udd_ep_job_t *ptr_job = &udd_ep_job[ep_index - 1];
irqflags_t flags;
if (USB_DEVICE_MAX_EP < ep_index) {
return false;
}
if (Is_udd_endpoint_stall_requested(ep_index) // Endpoint stalled
|| ptr_job->stall_requested) { // Endpoint stall is requested
return true; // Already STALL
}
if (ptr_job->busy == true) {
return false; // Job on going, stall impossible
}
flags = cpu_irq_save();
if ((ep & USB_EP_DIR_IN) && (0 != udd_nb_busy_bank(ep_index))) {
// Delay the stall after the end of IN transfer on USB line
ptr_job->stall_requested = true;
#ifdef UDD_EP_FIFO_SUPPORTED
udd_disable_in_send_interrupt(ep_index);
udd_enable_endpoint_bank_autoswitch(ep_index);
#endif
udd_enable_bank_interrupt(ep_index);
udd_enable_endpoint_interrupt(ep_index);
cpu_irq_restore(flags);
return true;
}
// Stall endpoint immediately
udd_disable_endpoint_bank_autoswitch(ep_index);
udd_ack_stall(ep_index);
udd_enable_stall_handshake(ep_index);
cpu_irq_restore(flags);
return true;
}
bool udd_ep_clear_halt(udd_ep_id_t ep)
{
uint8_t ep_index = ep & USB_EP_ADDR_MASK;
udd_ep_job_t *ptr_job = &udd_ep_job[ep_index - 1];
bool b_stall_cleared = false;
if (USB_DEVICE_MAX_EP < ep_index)
return false;
if (ptr_job->stall_requested) {
// Endpoint stall has been requested but not done
// Remove stall request
ptr_job->stall_requested = false;
udd_disable_bank_interrupt(ep_index);
udd_disable_endpoint_interrupt(ep_index);
b_stall_cleared = true;
}
if (Is_udd_endpoint_stall_requested(ep_index)) {
if (Is_udd_stall(ep_index)) {
udd_ack_stall(ep_index);
// A packet has been stalled
// then reset datatoggle
udd_reset_data_toggle(ep_index);
}
// Disable stall
udd_disable_stall_handshake(ep_index);
udd_enable_endpoint_bank_autoswitch(ep_index);
b_stall_cleared = true;
}
if (b_stall_cleared) {
// If a job is register on clear halt action
// then execute callback
if (ptr_job->busy == true) {
ptr_job->busy = false;
ptr_job->call_nohalt();
}
}
return true;
}
bool udd_ep_run(udd_ep_id_t ep, bool b_shortpacket,
uint8_t * buf, iram_size_t buf_size,
udd_callback_trans_t callback)
{
#ifdef UDD_EP_FIFO_SUPPORTED
bool b_dir_in = Is_udd_endpoint_in(ep & USB_EP_ADDR_MASK);
#endif
udd_ep_job_t *ptr_job;
irqflags_t flags;
ep &= USB_EP_ADDR_MASK;
if (USB_DEVICE_MAX_EP < ep) {
return false;
}
// Get job about endpoint
ptr_job = &udd_ep_job[ep - 1];
if ((!Is_udd_endpoint_enabled(ep))
|| Is_udd_endpoint_stall_requested(ep)
|| ptr_job->stall_requested) {
return false; // Endpoint is halted
}
flags = cpu_irq_save();
if (ptr_job->busy == true) {
cpu_irq_restore(flags);
return false; // Job already on going
}
ptr_job->busy = true;
cpu_irq_restore(flags);
// No job running. Let's setup a new one.
ptr_job->buf = buf;
ptr_job->buf_size = buf_size;
ptr_job->buf_cnt = 0;
ptr_job->buf_load = 0;
ptr_job->call_trans = callback;
ptr_job->b_shortpacket = b_shortpacket || (buf_size == 0);
#ifdef UDD_EP_FIFO_SUPPORTED
// No DMA support
if (!Is_udd_endpoint_dma_supported(ep)) {
dbg_print("ex%x.%c%d\n\r", ep, b_dir_in ? 'i':'o', buf_size);
flags = cpu_irq_save();
udd_enable_endpoint_interrupt(ep);
if (b_dir_in) {
udd_disable_endpoint_bank_autoswitch(ep);
udd_enable_in_send_interrupt(ep);
} else {
udd_disable_endpoint_bank_autoswitch(ep);
udd_enable_out_received_interrupt(ep);
}
cpu_irq_restore(flags);
return true;
}
#endif // UDD_EP_FIFO_SUPPORTED
#ifdef UDD_EP_DMA_SUPPORTED
// Request first DMA transfer
dbg_print("(exDMA%x) ", ep);
udd_ep_trans_done(ep);
return true;
#endif
}
void udd_ep_abort(udd_ep_id_t ep)
{
uint8_t ep_index = ep & USB_EP_ADDR_MASK;
#ifdef UDD_EP_FIFO_SUPPORTED
if (!Is_udd_endpoint_dma_supported(ep_index)) {
// Disable interrupts
udd_disable_endpoint_interrupt(ep_index);
udd_disable_out_received_interrupt(ep_index);
udd_disable_in_send_interrupt(ep_index);
} else
#endif
{
// Stop DMA transfer
udd_disable_endpoint_dma_interrupt(ep_index);
udd_endpoint_dma_set_control(ep_index, 0);
}
udd_disable_endpoint_interrupt(ep_index);
// Kill IN banks
if (ep & USB_EP_DIR_IN) {
while(udd_nb_busy_bank(ep_index)) {
udd_kill_last_in_bank(ep_index);
while(Is_udd_kill_last(ep_index));
}
}
udd_ep_abort_job(ep);
}
bool udd_ep_wait_stall_clear(udd_ep_id_t ep,
udd_callback_halt_cleared_t callback)
{
udd_ep_job_t *ptr_job;
ep &= USB_EP_ADDR_MASK;
if (USB_DEVICE_MAX_EP < ep) {
return false;
}
ptr_job = &udd_ep_job[ep - 1];
if (!Is_udd_endpoint_enabled(ep)) {
return false; // Endpoint not enabled
}
// Wait clear halt endpoint
if (ptr_job->busy == true) {
return false; // Job already on going
}
if (Is_udd_endpoint_stall_requested(ep)
|| ptr_job->stall_requested) {
// Endpoint halted then registes the callback
ptr_job->busy = true;
ptr_job->call_nohalt = callback;
} else {
// endpoint not halted then call directly callback
callback();
}
return true;
}
#endif // (0 != USB_DEVICE_MAX_EP)
#ifdef USB_DEVICE_HS_SUPPORT
void udd_test_mode_j(void)
{
udd_enable_hs_test_mode();
udd_enable_hs_test_mode_j();
}
void udd_test_mode_k(void)
{
udd_enable_hs_test_mode();
udd_enable_hs_test_mode_k();
}
void udd_test_mode_se0_nak(void)
{
udd_enable_hs_test_mode();
}
void udd_test_mode_packet(void)
{
uint8_t i;
uint8_t *ptr_dest;
const uint8_t *ptr_src;
const uint8_t test_packet[] = {
// 00000000 * 9
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// 01010101 * 8
0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA, 0xAA,
// 01110111 * 8
0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE, 0xEE,
// 0, {111111S * 15}, 111111
0xFE, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF,
// S, 111111S, {0111111S * 7}
0x7F, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD,
// 00111111, {S0111111 * 9}, S0
0xFC, 0x7E, 0xBF, 0xDF, 0xEF, 0xF7, 0xFB, 0xFD, 0x7E
};
// Reconfigure control endpoint to bulk IN endpoint
udd_disable_endpoint(0);
udd_configure_endpoint(0, USB_EP_TYPE_BULK, 1,
64, UOTGHS_DEVEPTCFG_EPBK_1_BANK);
udd_allocate_memory(0);
udd_enable_endpoint(0);
udd_enable_hs_test_mode();
udd_enable_hs_test_mode_packet();
// Send packet on endpoint 0
ptr_dest = (uint8_t *) & udd_get_endpoint_fifo_access(0, 8);
ptr_src = test_packet;
for (i = 0; i < sizeof(test_packet); i++) {
*ptr_dest++ = *ptr_src++;
}
udd_ack_fifocon(0);
}
#endif // USB_DEVICE_HS_SUPPORT
//--------------------------------------------------------
//--- INTERNAL ROUTINES TO MANAGED THE CONTROL ENDPOINT
static void udd_reset_ep_ctrl(void)
{
irqflags_t flags;
// Reset USB address to 0
udd_configure_address(0);
udd_enable_address();
// Alloc and configure control endpoint
udd_configure_endpoint(0,
USB_EP_TYPE_CONTROL,
0,
USB_DEVICE_EP_CTRL_SIZE,
UOTGHS_DEVEPTCFG_EPBK_1_BANK);
udd_allocate_memory(0);
udd_enable_endpoint(0);
flags = cpu_irq_save();
udd_enable_setup_received_interrupt(0);
udd_enable_out_received_interrupt(0);
udd_enable_endpoint_interrupt(0);
cpu_irq_restore(flags);
}
static void udd_ctrl_init(void)
{
irqflags_t flags;
flags = cpu_irq_save();
// In case of abort of IN Data Phase:
// No need to abort IN transfer (rise TXINI),
// because it is automatically done by hardware when a Setup packet is received.
// But the interrupt must be disabled to don't generate interrupt TXINI
// after SETUP reception.
udd_disable_in_send_interrupt(0);
cpu_irq_restore(flags);
// In case of OUT ZLP event is no processed before Setup event occurs
udd_ack_out_received(0);
udd_g_ctrlreq.callback = NULL;
udd_g_ctrlreq.over_under_run = NULL;
udd_g_ctrlreq.payload_size = 0;
udd_ep_control_state = UDD_EPCTRL_SETUP;
}
static void udd_ctrl_setup_received(void)
{
irqflags_t flags;
uint8_t i;
if (UDD_EPCTRL_SETUP != udd_ep_control_state) {
// May be a hidden DATA or ZLP phase or protocol abort
udd_ctrl_endofrequest();
// Reinitializes control endpoint management
udd_ctrl_init();
}
// Fill setup request structure
if (8 != udd_byte_count(0)) {
udd_ctrl_stall_data();
udd_ack_setup_received(0);
return; // Error data number doesn't correspond to SETUP packet
}
uint8_t *ptr = (uint8_t *) & udd_get_endpoint_fifo_access(0,8);
for (i = 0; i < 8; i++) {
((uint8_t*) &udd_g_ctrlreq.req)[i] = *ptr++;
}
// Manage LSB/MSB to fit with CPU usage
udd_g_ctrlreq.req.wValue = le16_to_cpu(udd_g_ctrlreq.req.wValue);
udd_g_ctrlreq.req.wIndex = le16_to_cpu(udd_g_ctrlreq.req.wIndex);
udd_g_ctrlreq.req.wLength = le16_to_cpu(udd_g_ctrlreq.req.wLength);
// Decode setup request
if (udc_process_setup() == false) {
// Setup request unknow then stall it
udd_ctrl_stall_data();
udd_ack_setup_received(0);
return;
}
udd_ack_setup_received(0);
if (Udd_setup_is_in()) {
// IN data phase requested
udd_ctrl_prev_payload_buf_cnt = 0;
udd_ctrl_payload_buf_cnt = 0;
udd_ep_control_state = UDD_EPCTRL_DATA_IN;
udd_ctrl_in_sent(); // Send first data transfer
} else {
if (0 == udd_g_ctrlreq.req.wLength) {
// No data phase requested
// Send IN ZLP to ACK setup request
udd_ctrl_send_zlp_in();
return;
}
// OUT data phase requested
udd_ctrl_prev_payload_buf_cnt = 0;
udd_ctrl_payload_buf_cnt = 0;
udd_ep_control_state = UDD_EPCTRL_DATA_OUT;
// To detect a protocol error, enable nak interrupt on data IN phase
udd_ack_nak_in(0);
flags = cpu_irq_save();
udd_enable_nak_in_interrupt(0);
cpu_irq_restore(flags);
}
}
static void udd_ctrl_in_sent(void)
{
static bool b_shortpacket = false;
uint16_t nb_remain;
uint8_t i;
uint8_t *ptr_dest, *ptr_src;
irqflags_t flags;
flags = cpu_irq_save();
udd_disable_in_send_interrupt(0);
cpu_irq_restore(flags);
if (UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP == udd_ep_control_state) {
// ZLP on IN is sent, then valid end of setup request
udd_ctrl_endofrequest();
// Reinitializes control endpoint management
udd_ctrl_init();
return;
}
Assert(udd_ep_control_state == UDD_EPCTRL_DATA_IN);
nb_remain = udd_g_ctrlreq.payload_size - udd_ctrl_payload_buf_cnt;
if (0 == nb_remain) {
// All content of current buffer payload are sent
// Update number of total data sending by previous playlaod buffer
udd_ctrl_prev_payload_buf_cnt += udd_ctrl_payload_buf_cnt;
if ((udd_g_ctrlreq.req.wLength == udd_ctrl_prev_payload_buf_cnt)
|| b_shortpacket) {
// All data requested are transfered or a short packet has been sent
// then it is the end of data phase.
// Generate an OUT ZLP for handshake phase.
udd_ctrl_send_zlp_out();
return;
}
// Need of new buffer because the data phase is not complete
if ((!udd_g_ctrlreq.over_under_run)
|| (!udd_g_ctrlreq.over_under_run())) {
// Underrun then send zlp on IN
// Here nb_remain=0 and allows to send a IN ZLP
} else {
// A new payload buffer is given
udd_ctrl_payload_buf_cnt = 0;
nb_remain = udd_g_ctrlreq.payload_size;
}
}
// Continue transfer and send next data
if (nb_remain >= USB_DEVICE_EP_CTRL_SIZE) {
nb_remain = USB_DEVICE_EP_CTRL_SIZE;
b_shortpacket = false;
} else {
b_shortpacket = true;
}
// Fill buffer of endpoint control
ptr_dest = (uint8_t *) & udd_get_endpoint_fifo_access(0, 8);
ptr_src = udd_g_ctrlreq.payload + udd_ctrl_payload_buf_cnt;
// Critical section
// Only in case of DATA IN phase abort without USB Reset signal after.
// The IN data don't must be written in endpoint 0 DPRAM during
// a next setup reception in same endpoint 0 DPRAM.
// Thereby, an OUT ZLP reception must check before IN data write
// and if no OUT ZLP is recevied the data must be written quickly (800us)
// before an eventually ZLP OUT and SETUP reception
flags = cpu_irq_save();
if (Is_udd_out_received(0)) {
// IN DATA phase aborted by OUT ZLP
cpu_irq_restore(flags);
udd_ep_control_state = UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP;
return; // Exit of IN DATA phase
}
// Write quickly the IN data
for (i = 0; i < nb_remain; i++) {
*ptr_dest++ = *ptr_src++;
}
udd_ctrl_payload_buf_cnt += nb_remain;
// Validate and send the data available in the control endpoint buffer
udd_ack_in_send(0);
udd_enable_in_send_interrupt(0);
// In case of abort of DATA IN phase, no need to enable nak OUT interrupt
// because OUT endpoint is already free and ZLP OUT accepted.
cpu_irq_restore(flags);
}
static void udd_ctrl_out_received(void)
{
irqflags_t flags;
uint8_t i;
uint16_t nb_data;
if (UDD_EPCTRL_DATA_OUT != udd_ep_control_state) {
if ((UDD_EPCTRL_DATA_IN == udd_ep_control_state)
|| (UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP ==
udd_ep_control_state)) {
// End of SETUP request:
// - Data IN Phase aborted,
// - or last Data IN Phase hidden by ZLP OUT sending quiclky,
// - or ZLP OUT received normaly.
udd_ctrl_endofrequest();
} else {
// Protocol error during SETUP request
udd_ctrl_stall_data();
}
// Reinitializes control endpoint management
udd_ctrl_init();
return;
}
// Read data received during OUT phase
nb_data = udd_byte_count(0);
if (udd_g_ctrlreq.payload_size < (udd_ctrl_payload_buf_cnt + nb_data)) {
// Payload buffer too small
nb_data = udd_g_ctrlreq.payload_size - udd_ctrl_payload_buf_cnt;
}
uint8_t *ptr_src = (uint8_t *) & udd_get_endpoint_fifo_access(0, 8);
uint8_t *ptr_dest = udd_g_ctrlreq.payload + udd_ctrl_payload_buf_cnt;
for (i = 0; i < nb_data; i++) {
*ptr_dest++ = *ptr_src++;
}
udd_ctrl_payload_buf_cnt += nb_data;
if ((USB_DEVICE_EP_CTRL_SIZE != nb_data)
|| (udd_g_ctrlreq.req.wLength <=
(udd_ctrl_prev_payload_buf_cnt +
udd_ctrl_payload_buf_cnt))) {
// End of reception because it is a short packet
// Before send ZLP, call intermediat calback
// in case of data receiv generate a stall
udd_g_ctrlreq.payload_size = udd_ctrl_payload_buf_cnt;
if (NULL != udd_g_ctrlreq.over_under_run) {
if (!udd_g_ctrlreq.over_under_run()) {
// Stall ZLP
udd_ctrl_stall_data();
// Ack reception of OUT to replace NAK by a STALL
udd_ack_out_received(0);
return;
}
}
// Send IN ZLP to ACK setup request
udd_ack_out_received(0);
udd_ctrl_send_zlp_in();
return;
}
if (udd_g_ctrlreq.payload_size == udd_ctrl_payload_buf_cnt) {
// Overrun then request a new payload buffer
if (!udd_g_ctrlreq.over_under_run) {
// No callback availabled to request a new payload buffer
udd_ctrl_stall_data();
// Ack reception of OUT to replace NAK by a STALL
udd_ack_out_received(0);
return;
}
if (!udd_g_ctrlreq.over_under_run()) {
// No new payload buffer delivered
udd_ctrl_stall_data();
// Ack reception of OUT to replace NAK by a STALL
udd_ack_out_received(0);
return;
}
// New payload buffer available
// Update number of total data received
udd_ctrl_prev_payload_buf_cnt += udd_ctrl_payload_buf_cnt;
// Reinit reception on payload buffer
udd_ctrl_payload_buf_cnt = 0;
}
// Free buffer of control endpoint to authorize next reception
udd_ack_out_received(0);
// To detect a protocol error, enable nak interrupt on data IN phase
udd_ack_nak_in(0);
flags = cpu_irq_save();
udd_enable_nak_in_interrupt(0);
cpu_irq_restore(flags);
}
static void udd_ctrl_underflow(void)
{
if (Is_udd_out_received(0))
return; // Underflow ignored if OUT data is received
if (UDD_EPCTRL_DATA_OUT == udd_ep_control_state) {
// Host want to stop OUT transaction
// then stop to wait OUT data phase and wait IN ZLP handshake
udd_ctrl_send_zlp_in();
} else if (UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP == udd_ep_control_state) {
// A OUT handshake is waiting by device,
// but host want extra IN data then stall extra IN data
udd_enable_stall_handshake(0);
}
}
static void udd_ctrl_overflow(void)
{
if (Is_udd_in_send(0))
return; // Overflow ignored if IN data is received
// The case of UDD_EPCTRL_DATA_IN is not managed
// because the OUT endpoint is already free and OUT ZLP accepted
if (UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP == udd_ep_control_state) {
// A IN handshake is waiting by device,
// but host want extra OUT data then stall extra OUT data
udd_enable_stall_handshake(0);
}
}
static void udd_ctrl_stall_data(void)
{
// Stall all packets on IN & OUT control endpoint
udd_ep_control_state = UDD_EPCTRL_STALL_REQ;
udd_enable_stall_handshake(0);
}
static void udd_ctrl_send_zlp_in(void)
{
irqflags_t flags;
udd_ep_control_state = UDD_EPCTRL_HANDSHAKE_WAIT_IN_ZLP;
// Validate and send empty IN packet on control endpoint
flags = cpu_irq_save();
// Send ZLP on IN endpoint
udd_ack_in_send(0);
udd_enable_in_send_interrupt(0);
// To detect a protocol error, enable nak interrupt on data OUT phase
udd_ack_nak_out(0);
udd_enable_nak_out_interrupt(0);
cpu_irq_restore(flags);
}
static void udd_ctrl_send_zlp_out(void)
{
irqflags_t flags;
udd_ep_control_state = UDD_EPCTRL_HANDSHAKE_WAIT_OUT_ZLP;
// No action is necessary to accept OUT ZLP
// because the buffer of control endpoint is already free
// To detect a protocol error, enable nak interrupt on data IN phase
flags = cpu_irq_save();
udd_ack_nak_in(0);
udd_enable_nak_in_interrupt(0);
cpu_irq_restore(flags);
}
static void udd_ctrl_endofrequest(void)
{
// If a callback is registered then call it
if (udd_g_ctrlreq.callback) {
udd_g_ctrlreq.callback();
}
}
static bool udd_ctrl_interrupt(void)
{
if (!Is_udd_endpoint_interrupt(0)) {
return false; // No interrupt events on control endpoint
}
dbg_print("0: ");
// By default disable overflow and underflow interrupt
udd_disable_nak_in_interrupt(0);
udd_disable_nak_out_interrupt(0);
// Search event on control endpoint
if (Is_udd_setup_received(0)) {
dbg_print("stup ");
// SETUP packet received
udd_ctrl_setup_received();
return true;
}
if (Is_udd_in_send(0) && Is_udd_in_send_interrupt_enabled(0)) {
dbg_print("in ");
// IN packet sent
udd_ctrl_in_sent();
return true;
}
if (Is_udd_out_received(0)) {
dbg_print("out ");
// OUT packet received
udd_ctrl_out_received();
return true;
}
if (Is_udd_nak_out(0)) {
dbg_print("nako ");
// Overflow on OUT packet
udd_ack_nak_out(0);
udd_ctrl_overflow();
return true;
}
if (Is_udd_nak_in(0)) {
dbg_print("naki ");
// Underflow on IN packet
udd_ack_nak_in(0);
udd_ctrl_underflow();
return true;
}
dbg_print("n%x ", UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], 0));
return false;
}
//--------------------------------------------------------
//--- INTERNAL ROUTINES TO MANAGED THE BULK/INTERRUPT/ISOCHRONOUS ENDPOINTS
#if (0 != USB_DEVICE_MAX_EP)
static void udd_ep_job_table_reset(void)
{
uint8_t i;
for (i = 0; i < USB_DEVICE_MAX_EP; i++) {
udd_ep_job[i].busy = false;
udd_ep_job[i].stall_requested = false;
}
}
static void udd_ep_job_table_kill(void)
{
uint8_t i;
// For each endpoint, kill job
for (i = 0; i < USB_DEVICE_MAX_EP; i++) {
udd_ep_finish_job(&udd_ep_job[i], true, i + 1);
}
}
static void udd_ep_abort_job(udd_ep_id_t ep)
{
ep &= USB_EP_ADDR_MASK;
// Abort job on endpoint
udd_ep_finish_job(&udd_ep_job[ep - 1], true, ep);
}
static void udd_ep_finish_job(udd_ep_job_t * ptr_job, bool b_abort, uint8_t ep_num)
{
if (ptr_job->busy == false) {
return; // No on-going job
}
dbg_print("(JobE%x:%d) ", (ptr_job-udd_ep_job)+1, b_abort);
ptr_job->busy = false;
if (NULL == ptr_job->call_trans) {
return; // No callback linked to job
}
if (Is_udd_endpoint_in(ep_num)) {
ep_num |= USB_EP_DIR_IN;
}
ptr_job->call_trans((b_abort) ? UDD_EP_TRANSFER_ABORT :
UDD_EP_TRANSFER_OK, ptr_job->buf_size, ep_num);
}
#ifdef UDD_EP_DMA_SUPPORTED
static void udd_ep_trans_done(udd_ep_id_t ep)
{
uint32_t udd_dma_ctrl = 0;
udd_ep_job_t *ptr_job;
iram_size_t next_trans;
irqflags_t flags;
// Get job corresponding at endpoint
ptr_job = &udd_ep_job[ep - 1];
if (!ptr_job->busy) {
return; // No job is running, then ignore it (system error)
}
if (ptr_job->buf_cnt != ptr_job->buf_size) {
// Need to send or receiv other data
next_trans = ptr_job->buf_size - ptr_job->buf_cnt;
if (UDD_ENDPOINT_MAX_TRANS < next_trans) {
// The USB hardware support a maximum
// transfer size of UDD_ENDPOINT_MAX_TRANS Bytes
next_trans = UDD_ENDPOINT_MAX_TRANS;
// Set 0 to tranfer the maximum
udd_dma_ctrl = UOTGHS_DEVDMACONTROL_BUFF_LENGTH(0);
} else {
udd_dma_ctrl = UOTGHS_DEVDMACONTROL_BUFF_LENGTH(next_trans);
}
if (Is_udd_endpoint_in(ep)) {
if (0 != (next_trans % udd_get_endpoint_size(ep))) {
// Enable short packet option
// else the DMA transfer is accepted
// and interrupt DMA valid but nothing is sent.
udd_dma_ctrl |= UOTGHS_DEVDMACONTROL_END_B_EN;
// No need to request another ZLP
ptr_job->b_shortpacket = false;
}
} else {
if ((USB_EP_TYPE_ISOCHRONOUS != udd_get_endpoint_type(ep))
|| (next_trans <= (iram_size_t) udd_get_endpoint_size(ep))) {
// Enable short packet reception
udd_dma_ctrl |= UOTGHS_DEVDMACONTROL_END_TR_IT
| UOTGHS_DEVDMACONTROL_END_TR_EN;
}
}
// Start USB DMA to fill or read fifo of the selected endpoint
udd_endpoint_dma_set_addr(ep, (uint32_t) & ptr_job->buf[ptr_job->buf_cnt]);
udd_dma_ctrl |= UOTGHS_DEVDMACONTROL_END_BUFFIT |
UOTGHS_DEVDMACONTROL_CHANN_ENB;
// Disable IRQs to have a short sequence
// between read of EOT_STA and DMA enable
flags = cpu_irq_save();
if (!(udd_endpoint_dma_get_status(ep)
& UOTGHS_DEVDMASTATUS_END_TR_ST)) {
dbg_print("dmaS%x ", ep);
udd_endpoint_dma_set_control(ep, udd_dma_ctrl);
ptr_job->buf_cnt += next_trans;
ptr_job->buf_load = next_trans;
udd_enable_endpoint_dma_interrupt(ep);
cpu_irq_restore(flags);
return;
}
cpu_irq_restore(flags);
// Here a ZLP has been recieved
// and the DMA transfer must be not started.
// It is the end of transfer
ptr_job->buf_size = ptr_job->buf_cnt;
}
if (Is_udd_endpoint_in(ep)) {
if (ptr_job->b_shortpacket) {
dbg_print("zlpS%x ", ep);
// Need to send a ZLP (No possible with USB DMA)
// enable interrupt to wait a free bank to sent ZLP
udd_ack_in_send(ep);
if (Is_udd_write_enabled(ep)) {
// Force interrupt in case of ep already free
udd_raise_in_send(ep);
}
udd_enable_in_send_interrupt(ep);
udd_enable_endpoint_interrupt(ep);
return;
}
}
dbg_print("dmaE ");
// Call callback to signal end of transfer
udd_ep_finish_job(ptr_job, false, ep);
}
#endif
#ifdef UDD_EP_FIFO_SUPPORTED
static void udd_ep_in_sent(udd_ep_id_t ep)
{
udd_ep_job_t *ptr_job = &udd_ep_job[ep - 1];
uint8_t *ptr_src = &ptr_job->buf[ptr_job->buf_cnt];
uint8_t *ptr_dst = (uint8_t *) & udd_get_endpoint_fifo_access(ep, 8);
uint32_t pkt_size = udd_get_endpoint_size(ep);
uint32_t nb_data = 0, i;
uint32_t nb_remain;
irqflags_t flags;
// All transfer done, including ZLP, Finish Job
if (ptr_job->buf_cnt >= ptr_job->buf_size && !ptr_job->b_shortpacket) {
flags = cpu_irq_save();
udd_disable_in_send_interrupt(ep);
udd_disable_endpoint_interrupt(ep);
cpu_irq_restore(flags);
ptr_job->buf_size = ptr_job->buf_cnt; // buf_size is passed to callback as XFR count
udd_ep_finish_job(ptr_job, false, ep);
return;
} else {
// ACK TXINI
udd_ack_in_send(ep);
// Fill FIFO
ptr_dst = (uint8_t *) & udd_get_endpoint_fifo_access(ep, 8);
ptr_src = &ptr_job->buf[ptr_job->buf_cnt];
nb_remain = ptr_job->buf_size - ptr_job->buf_cnt;
// Fill a bank even if no data (ZLP)
nb_data = min(nb_remain, pkt_size);
// Modify job information
ptr_job->buf_cnt += nb_data;
ptr_job->buf_load = nb_data;
// Copy buffer to FIFO
for (i = 0; i < nb_data; i++) {
*ptr_dst++ = *ptr_src++;
}
// Switch to next bank
udd_ack_fifocon(ep);
// ZLP?
if (nb_data < pkt_size) {
ptr_job->b_shortpacket = false;
}
}
}
static void udd_ep_out_received(udd_ep_id_t ep)
{
udd_ep_job_t *ptr_job = &udd_ep_job[ep - 1];
uint32_t nb_data = 0, i;
uint32_t nb_remain = ptr_job->buf_size - ptr_job->buf_cnt;
uint32_t pkt_size = udd_get_endpoint_size(ep);
uint8_t *ptr_src = (uint8_t *) & udd_get_endpoint_fifo_access(ep, 8);
uint8_t *ptr_dst = &ptr_job->buf[ptr_job->buf_cnt];
bool b_full = false, b_short = false;
// Clear RX OUT
udd_ack_out_received(ep);
// Read byte count
nb_data = udd_byte_count(ep);
if (nb_data < pkt_size) {
b_short = true;
}
//dbg_print("o%d ", ep);
//dbg_print("%d ", nb_data);
// Copy data if there is
if (nb_data > 0) {
if (nb_data >= nb_remain) {
nb_data = nb_remain;
b_full = true;
}
// Modify job information
ptr_job->buf_cnt += nb_data;
ptr_job->buf_load = nb_data;
// Copy FIFO to buffer
for (i = 0; i < nb_data; i++) {
*ptr_dst++ = *ptr_src++;
}
}
// Clear FIFO Status
udd_ack_fifocon(ep);
// Finish job on error or short packet
if (b_full || b_short) {
//dbg_print("EoO%d\n\r", ep);
udd_disable_out_received_interrupt(ep);
udd_disable_endpoint_interrupt(ep);
ptr_job->buf_size = ptr_job->buf_cnt; // buf_size is passed to callback as XFR count
udd_ep_finish_job(ptr_job, false, ep);
}
}
#endif // #ifdef UDD_EP_FIFO_SUPPORTED
static bool udd_ep_interrupt(void)
{
udd_ep_id_t ep;
udd_ep_job_t *ptr_job;
// For each endpoint different of control endpoint (0)
for (ep = 1; ep <= USB_DEVICE_MAX_EP; ep++) {
// Get job corresponding at endpoint
ptr_job = &udd_ep_job[ep - 1];
#ifdef UDD_EP_DMA_SUPPORTED
// Check DMA event
if (Is_udd_endpoint_dma_interrupt_enabled(ep)
&& Is_udd_endpoint_dma_interrupt(ep)) {
uint32_t nb_remaining;
if (udd_endpoint_dma_get_status(ep)
& UOTGHS_DEVDMASTATUS_CHANN_ENB) {
return true; // Ignore EOT_STA interrupt
}
dbg_print("dma%x: ", ep);
udd_disable_endpoint_dma_interrupt(ep);
// Save number of data no transfered
nb_remaining = (udd_endpoint_dma_get_status(ep) &
UOTGHS_DEVDMASTATUS_BUFF_COUNT_Msk)
>> UOTGHS_DEVDMASTATUS_BUFF_COUNT_Pos;
if (nb_remaining) {
// Transfer no complete (short packet or ZLP) then:
// Update number of data transfered
ptr_job->buf_cnt -= nb_remaining;
// Set transfer complete to stop the transfer
ptr_job->buf_size = ptr_job->buf_cnt;
}
udd_ep_trans_done(ep);
return true;
}
#endif
#ifdef UDD_EP_FIFO_SUPPORTED
// Check RXRDY and TXEMPTY event for none DMA endpoints
if (!Is_udd_endpoint_dma_supported(ep)
&& Is_udd_endpoint_interrupt_enabled(ep)) {
dbg_print("ep%x: ", ep);
// RXOUT: Full packet received
if (Is_udd_out_received(ep)
&& Is_udd_out_received_interrupt_enabled(ep)) {
dbg_print("Out ");
udd_ep_out_received(ep);
return true;
}
// TXIN: packet sent
if (Is_udd_in_send(ep)
&& Is_udd_in_send_interrupt_enabled(ep)) {
dbg_print("In ");
udd_ep_in_sent(ep);
return true;
}
// Errors: Abort?
if (Is_udd_overflow(ep)
|| Is_udd_underflow(ep)
|| Is_udd_crc_error(ep)) {
dbg_print("Err ");
udd_ep_abort(ep);
return true;
}
}
#endif // UDD_EP_FIFO_SUPPORTED
// Check empty bank interrupt event
if (Is_udd_endpoint_interrupt_enabled(ep)) {
dbg_print("bg%x: ", ep);
if (Is_udd_in_send_interrupt_enabled(ep)
&& Is_udd_in_send(ep)) {
dbg_print("I ");
udd_disable_in_send_interrupt(ep);
// One bank is free then send a ZLP
udd_ack_in_send(ep);
udd_ack_fifocon(ep);
udd_ep_finish_job(ptr_job, false, ep);
return true;
}
if (Is_udd_bank_interrupt_enabled(ep)
&& (0 == udd_nb_busy_bank(ep))) {
dbg_print("EoT ");
// End of background transfer on IN endpoint
udd_disable_bank_interrupt(ep);
udd_disable_endpoint_interrupt(ep);
Assert(ptr_job->stall_requested);
// A stall has been requested during backgound transfer
ptr_job->stall_requested = false;
udd_disable_endpoint_bank_autoswitch(ep);
udd_enable_stall_handshake(ep);
udd_reset_data_toggle(ep);
return true;
}
}
}
return false;
}
#endif // (0 != USB_DEVICE_MAX_EP)
//@}
#endif

View file

@ -0,0 +1,663 @@
/**
* \file
*
* \brief USB Device Driver for UOTGHS. Compliant with common UDD driver.
*
* Copyright (c) 2014-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef UOTGHS_DEVICE_DUE_H_INCLUDED
#define UOTGHS_DEVICE_DUE_H_INCLUDED
//#include "compiler.h"
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
extern "C" {
#endif
/**INDENT-ON**/
/// @endcond
//! \ingroup udd_group
//! \defgroup udd_udphs_group USB On-The-Go High-Speed Port for device mode (UOTGHS)
//! UOTGHS low-level driver for USB device mode
//!
//! @{
#ifndef UOTGHS_DEVEPTCFG_EPDIR_Pos
// Bit pos is not defined in SAM header file but we need it.
# define UOTGHS_DEVEPTCFG_EPDIR_Pos 8
#endif
//! @name UOTGHS Device IP properties
//! These macros give access to IP properties
//! @{
//! Get maximal number of endpoints
#define udd_get_endpoint_max_nbr() (9)
#define UDD_MAX_PEP_NB (udd_get_endpoint_max_nbr() + 1)
//! Get maximal number of banks of endpoints
#define udd_get_endpoint_bank_max_nbr(ep) ((ep == 0) ? 1 : (( ep <= 2) ? 3 : 2))
//! Get maximal size of endpoint (3X, 1024/64)
#define udd_get_endpoint_size_max(ep) (((ep) == 0) ? 64 : 1024)
//! Get DMA support of endpoints
#define Is_udd_endpoint_dma_supported(ep) ((((ep) >= 1) && ((ep) <= 6)) ? true : false)
//! Get High Band Width support of endpoints
#define Is_udd_endpoint_high_bw_supported(ep) (((ep) >= 2) ? true : false)
//! @}
//! @name UOTGHS Device speeds management
//! @{
//! Enable/disable device low-speed mode
#define udd_low_speed_enable() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_LS))
#define udd_low_speed_disable() (Clr_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_LS))
//! Test if device low-speed mode is forced
#define Is_udd_low_speed_enable() (Tst_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_LS))
#ifdef UOTGHS_DEVCTRL_SPDCONF_HIGH_SPEED
//! Enable high speed mode
# define udd_high_speed_enable() (Wr_bitfield(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_SPDCONF_Msk, 0))
//! Disable high speed mode
# define udd_high_speed_disable() (Wr_bitfield(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_SPDCONF_Msk, 3))
//! Test if controller is in full speed mode
# define Is_udd_full_speed_mode() (Rd_bitfield(UOTGHS->UOTGHS_SR, UOTGHS_SR_SPEED_Msk) == UOTGHS_SR_SPEED_FULL_SPEED)
#else
# define udd_high_speed_enable() do { } while (0)
# define udd_high_speed_disable() do { } while (0)
# define Is_udd_full_speed_mode() true
#endif
//! @}
//! @name UOTGHS Device HS test mode management
//! @{
#ifdef UOTGHS_DEVCTRL_SPDCONF_HIGH_SPEED
//! Enable high speed test mode
# define udd_enable_hs_test_mode() (Wr_bitfield(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_SPDCONF_Msk, 2))
# define udd_enable_hs_test_mode_j() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_TSTJ))
# define udd_enable_hs_test_mode_k() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_TSTK))
# define udd_enable_hs_test_mode_packet() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_TSTPCKT))
#endif
//! @}
//! @name UOTGHS Device vbus management
//! @{
#define udd_enable_vbus_interrupt() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_VBUSTE))
#define udd_disable_vbus_interrupt() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_VBUSTE))
#define Is_udd_vbus_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_VBUSTE))
#define Is_udd_vbus_high() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_VBUS))
#define Is_udd_vbus_low() (!Is_udd_vbus_high())
#define udd_ack_vbus_transition() (UOTGHS->UOTGHS_SCR = UOTGHS_SCR_VBUSTIC)
#define udd_raise_vbus_transition() (UOTGHS->UOTGHS_SFR = UOTGHS_SFR_VBUSTIS)
#define Is_udd_vbus_transition() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_VBUSTI))
//! @}
//! @name UOTGHS device attach control
//! These macros manage the UOTGHS Device attach.
//! @{
//! Detaches from USB bus
#define udd_detach_device() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_DETACH))
//! Attaches to USB bus
#define udd_attach_device() (Clr_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_DETACH))
//! Test if the device is detached
#define Is_udd_detached() (Tst_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_DETACH))
//! @}
//! @name UOTGHS device bus events control
//! These macros manage the UOTGHS Device bus events.
//! @{
//! Initiates a remote wake-up event
//! @{
#define udd_initiate_remote_wake_up() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_RMWKUP))
#define Is_udd_pending_remote_wake_up() (Tst_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_RMWKUP))
//! @}
//! Manage upstream resume event (=remote wakeup)
//! The USB driver sends a resume signal called "Upstream Resume"
//! @{
#define udd_enable_remote_wake_up_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_UPRSMES)
#define udd_disable_remote_wake_up_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_UPRSMEC)
#define Is_udd_remote_wake_up_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_UPRSME))
#define udd_ack_remote_wake_up_start() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVICR_UPRSMC)
#define udd_raise_remote_wake_up_start() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_UPRSMS)
#define Is_udd_remote_wake_up_start() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_UPRSM))
//! @}
//! Manage downstream resume event (=remote wakeup from host)
//! The USB controller detects a valid "End of Resume" signal initiated by the host
//! @{
#define udd_enable_resume_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_EORSMES)
#define udd_disable_resume_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_EORSMEC)
#define Is_udd_resume_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_EORSME))
#define udd_ack_resume() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVICR_EORSMC)
#define udd_raise_resume() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_EORSMS)
#define Is_udd_resume() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_EORSM))
//! @}
//! Manage wake-up event (=usb line activity)
//! The USB controller is reactivated by a filtered non-idle signal from the lines
//! @{
#define udd_enable_wake_up_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_WAKEUPES)
#define udd_disable_wake_up_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_WAKEUPEC)
#define Is_udd_wake_up_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_WAKEUPE))
#define udd_ack_wake_up() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVICR_WAKEUPC)
#define udd_raise_wake_up() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_WAKEUPS)
#define Is_udd_wake_up() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_WAKEUP))
//! @}
//! Manage reset event
//! Set when a USB "End of Reset" has been detected
//! @{
#define udd_enable_reset_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_EORSTES)
#define udd_disable_reset_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_EORSTEC)
#define Is_udd_reset_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_EORSTE))
#define udd_ack_reset() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVICR_EORSTC)
#define udd_raise_reset() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_EORSTS)
#define Is_udd_reset() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_EORST))
//! @}
//! Manage start of frame event
//! @{
#define udd_enable_sof_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_SOFES)
#define udd_disable_sof_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_SOFEC)
#define Is_udd_sof_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_SOFE))
#define udd_ack_sof() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVICR_SOFC)
#define udd_raise_sof() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_SOFS)
#define Is_udd_sof() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_SOF))
#define udd_frame_number() (Rd_bitfield(UOTGHS->UOTGHS_DEVFNUM, UOTGHS_DEVFNUM_FNUM_Msk))
#define Is_udd_frame_number_crc_error() (Tst_bits(UOTGHS->UOTGHS_DEVFNUM, UOTGHS_DEVFNUM_FNCERR))
//! @}
//! Manage Micro start of frame event (High Speed Only)
//! @{
#define udd_enable_msof_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_MSOFES)
#define udd_disable_msof_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_MSOFEC)
#define Is_udd_msof_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_MSOFE))
#define udd_ack_msof() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVIMR_MSOFE)
#define udd_raise_msof() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_MSOFS)
#define Is_udd_msof() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_MSOF))
#define udd_micro_frame_number() \
(Rd_bitfield(UOTGHS->UOTGHS_DEVFNUM, (UOTGHS_DEVFNUM_FNUM_Msk|UOTGHS_DEVFNUM_MFNUM_Msk)))
//! @}
//! Manage suspend event
//! @{
#define udd_enable_suspend_interrupt() (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_SUSPES)
#define udd_disable_suspend_interrupt() (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_SUSPEC)
#define Is_udd_suspend_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_SUSPE))
#define udd_ack_suspend() (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVICR_SUSPC)
#define udd_raise_suspend() (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_SUSPS)
#define Is_udd_suspend() (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_SUSP))
//! @}
//! @}
//! @name UOTGHS device address control
//! These macros manage the UOTGHS Device address.
//! @{
//! enables USB device address
#define udd_enable_address() (Set_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_ADDEN))
//! disables USB device address
#define udd_disable_address() (Clr_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_ADDEN))
#define Is_udd_address_enabled() (Tst_bits(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_ADDEN))
//! configures the USB device address
#define udd_configure_address(addr) (Wr_bitfield(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_UADD_Msk, addr))
//! gets the currently configured USB device address
#define udd_get_configured_address() (Rd_bitfield(UOTGHS->UOTGHS_DEVCTRL, UOTGHS_DEVCTRL_UADD_Msk))
//! @}
//! @name UOTGHS Device endpoint drivers
//! These macros manage the common features of the endpoints.
//! @{
//! Generic macro for UOTGHS registers that can be arrayed
//! @{
#define UOTGHS_ARRAY(reg,index) ((&(UOTGHS->reg))[(index)])
//! @}
//! @name UOTGHS Device endpoint configuration
//! @{
//! enables the selected endpoint
#define udd_enable_endpoint(ep) (Set_bits(UOTGHS->UOTGHS_DEVEPT, UOTGHS_DEVEPT_EPEN0 << (ep)))
//! disables the selected endpoint
#define udd_disable_endpoint(ep) (Clr_bits(UOTGHS->UOTGHS_DEVEPT, UOTGHS_DEVEPT_EPEN0 << (ep)))
//! tests if the selected endpoint is enabled
#define Is_udd_endpoint_enabled(ep) (Tst_bits(UOTGHS->UOTGHS_DEVEPT, UOTGHS_DEVEPT_EPEN0 << (ep)))
//! resets the selected endpoint
#define udd_reset_endpoint(ep) \
do { \
Set_bits(UOTGHS->UOTGHS_DEVEPT, UOTGHS_DEVEPT_EPRST0 << (ep)); \
Clr_bits(UOTGHS->UOTGHS_DEVEPT, UOTGHS_DEVEPT_EPRST0 << (ep)); \
} while (0)
//! Tests if the selected endpoint is being reset
#define Is_udd_resetting_endpoint(ep) (Tst_bits(UOTGHS->UOTGHS_DEVEPT, UOTGHS_DEVEPT_EPRST0 << (ep)))
//! Configures the selected endpoint type
#define udd_configure_endpoint_type(ep, type) (Wr_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPTYPE_Msk, type))
//! Gets the configured selected endpoint type
#define udd_get_endpoint_type(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPTYPE_Msk))
//! Enables the bank autoswitch for the selected endpoint
#define udd_enable_endpoint_bank_autoswitch(ep) (Set_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_AUTOSW))
//! Disables the bank autoswitch for the selected endpoint
#define udd_disable_endpoint_bank_autoswitch(ep) (Clr_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_AUTOSW))
#define Is_udd_endpoint_bank_autoswitch_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_AUTOSW))
//! Configures the selected endpoint direction
#define udd_configure_endpoint_direction(ep, dir) (Wr_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPDIR, dir))
//! Gets the configured selected endpoint direction
#define udd_get_endpoint_direction(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPDIR))
#define Is_udd_endpoint_in(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPDIR))
//! Bounds given integer size to allowed range and rounds it up to the nearest
//! available greater size, then applies register format of UOTGHS controller
//! for endpoint size bit-field.
#define udd_format_endpoint_size(size) (32 - clz(((uint32_t)min(max(size, 8), 1024) << 1) - 1) - 1 - 3)
//! Configures the selected endpoint size
#define udd_configure_endpoint_size(ep, size) (Wr_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPSIZE_Msk, udd_format_endpoint_size(size)))
//! Gets the configured selected endpoint size
#define udd_get_endpoint_size(ep) (8 << Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPSIZE_Msk))
//! Configures the selected endpoint number of banks
#define udd_configure_endpoint_bank(ep, bank) (Wr_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPBK_Msk, bank))
//! Gets the configured selected endpoint number of banks
#define udd_get_endpoint_bank(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPBK_Msk)+1)
//! Allocates the configuration selected endpoint in DPRAM memory
#define udd_allocate_memory(ep) (Set_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_ALLOC))
//! un-allocates the configuration selected endpoint in DPRAM memory
#define udd_unallocate_memory(ep) (Clr_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_ALLOC))
#define Is_udd_memory_allocated(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_ALLOC))
//! Configures selected endpoint in one step
#define udd_configure_endpoint(ep, type, dir, size, bank) (\
Wr_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTCFG[0], ep), UOTGHS_DEVEPTCFG_EPTYPE_Msk |\
UOTGHS_DEVEPTCFG_EPDIR |\
UOTGHS_DEVEPTCFG_EPSIZE_Msk |\
UOTGHS_DEVEPTCFG_EPBK_Msk , \
(((uint32_t)(type) << UOTGHS_DEVEPTCFG_EPTYPE_Pos) & UOTGHS_DEVEPTCFG_EPTYPE_Msk) |\
(((uint32_t)(dir ) << UOTGHS_DEVEPTCFG_EPDIR_Pos ) & UOTGHS_DEVEPTCFG_EPDIR) |\
( (uint32_t)udd_format_endpoint_size(size) << UOTGHS_DEVEPTCFG_EPSIZE_Pos) |\
(((uint32_t)(bank) << UOTGHS_DEVEPTCFG_EPBK_Pos) & UOTGHS_DEVEPTCFG_EPBK_Msk))\
)
//! Tests if current endpoint is configured
#define Is_udd_endpoint_configured(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_CFGOK))
//! Returns the control direction
#define udd_control_direction() (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], EP_CONTROL), UOTGHS_DEVEPTISR_CTRLDIR))
//! Resets the data toggle sequence
#define udd_reset_data_toggle(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_RSTDTS)
//! Tests if the data toggle sequence is being reset
#define Is_udd_data_toggle_reset(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_RSTDT))
//! Returns data toggle
#define udd_data_toggle(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_DTSEQ_Msk))
//! @}
//! @name UOTGHS Device control endpoint
//! These macros control the endpoints.
//! @{
//! @name UOTGHS Device control endpoint interrupts
//! These macros control the endpoints interrupts.
//! @{
//! Enables the selected endpoint interrupt
#define udd_enable_endpoint_interrupt(ep) (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_PEP_0 << (ep))
//! Disables the selected endpoint interrupt
#define udd_disable_endpoint_interrupt(ep) (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_PEP_0 << (ep))
//! Tests if the selected endpoint interrupt is enabled
#define Is_udd_endpoint_interrupt_enabled(ep) (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_PEP_0 << (ep)))
//! Tests if an interrupt is triggered by the selected endpoint
#define Is_udd_endpoint_interrupt(ep) (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_PEP_0 << (ep)))
//! Returns the lowest endpoint number generating an endpoint interrupt or MAX_PEP_NB if none
#define udd_get_interrupt_endpoint_number() (ctz(((UOTGHS->UOTGHS_DEVISR >> UOTGHS_DEVISR_PEP_Pos) & \
(UOTGHS->UOTGHS_DEVIMR >> UOTGHS_DEVIMR_PEP_Pos)) | \
(1 << MAX_PEP_NB)))
#define UOTGHS_DEVISR_PEP_Pos 12
#define UOTGHS_DEVIMR_PEP_Pos 12
//! @}
//! @name UOTGHS Device control endpoint errors
//! These macros control the endpoint errors.
//! @{
//! Enables the STALL handshake
#define udd_enable_stall_handshake(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_STALLRQS)
//! Disables the STALL handshake
#define udd_disable_stall_handshake(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_STALLRQC)
//! Tests if STALL handshake request is running
#define Is_udd_endpoint_stall_requested(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_STALLRQ))
//! Tests if STALL sent
#define Is_udd_stall(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_STALLEDI))
//! ACKs STALL sent
#define udd_ack_stall(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_STALLEDIC)
//! Raises STALL sent
#define udd_raise_stall(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_STALLEDIS)
//! Enables STALL sent interrupt
#define udd_enable_stall_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_STALLEDES)
//! Disables STALL sent interrupt
#define udd_disable_stall_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_STALLEDEC)
//! Tests if STALL sent interrupt is enabled
#define Is_udd_stall_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_STALLEDE))
//! Tests if NAK OUT received
#define Is_udd_nak_out(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_NAKOUTI))
//! ACKs NAK OUT received
#define udd_ack_nak_out(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_NAKOUTIC)
//! Raises NAK OUT received
#define udd_raise_nak_out(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_NAKOUTIS)
//! Enables NAK OUT interrupt
#define udd_enable_nak_out_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_NAKOUTES)
//! Disables NAK OUT interrupt
#define udd_disable_nak_out_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_NAKOUTEC)
//! Tests if NAK OUT interrupt is enabled
#define Is_udd_nak_out_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_NAKOUTE))
//! Tests if NAK IN received
#define Is_udd_nak_in(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_NAKINI))
//! ACKs NAK IN received
#define udd_ack_nak_in(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_NAKINIC)
//! Raises NAK IN received
#define udd_raise_nak_in(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_NAKINIS)
//! Enables NAK IN interrupt
#define udd_enable_nak_in_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_NAKINES)
//! Disables NAK IN interrupt
#define udd_disable_nak_in_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_NAKINEC)
//! Tests if NAK IN interrupt is enabled
#define Is_udd_nak_in_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_NAKINE))
//! ACKs endpoint isochronous overflow interrupt
#define udd_ack_overflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_OVERFIC)
//! Raises endpoint isochronous overflow interrupt
#define udd_raise_overflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_OVERFIS)
//! Tests if an overflow occurs
#define Is_udd_overflow(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_OVERFI))
//! Enables overflow interrupt
#define udd_enable_overflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_OVERFES)
//! Disables overflow interrupt
#define udd_disable_overflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_OVERFEC)
//! Tests if overflow interrupt is enabled
#define Is_udd_overflow_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_OVERFE))
//! ACKs endpoint isochronous underflow interrupt
#define udd_ack_underflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_UNDERFIC)
//! Raises endpoint isochronous underflow interrupt
#define udd_raise_underflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_UNDERFIS)
//! Tests if an underflow occurs
#define Is_udd_underflow(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_UNDERFI))
//! Enables underflow interrupt
#define udd_enable_underflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_UNDERFES)
//! Disables underflow interrupt
#define udd_disable_underflow_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_UNDERFEC)
//! Tests if underflow interrupt is enabled
#define Is_udd_underflow_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_UNDERFE))
//! Tests if CRC ERROR ISO OUT detected
#define Is_udd_crc_error(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_CRCERRI))
//! ACKs CRC ERROR ISO OUT detected
#define udd_ack_crc_error(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_CRCERRIC)
//! Raises CRC ERROR ISO OUT detected
#define udd_raise_crc_error(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_CRCERRIS)
//! Enables CRC ERROR ISO OUT detected interrupt
#define udd_enable_crc_error_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_CRCERRES)
//! Disables CRC ERROR ISO OUT detected interrupt
#define udd_disable_crc_error_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_CRCERREC)
//! Tests if CRC ERROR ISO OUT detected interrupt is enabled
#define Is_udd_crc_error_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_CRCERRE))
//! @}
//! @name UOTGHS Device control endpoint transfer
//! These macros control the endpoint transfer.
//! @{
//! Tests if endpoint read allowed
#define Is_udd_read_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_RWALL))
//! Tests if endpoint write allowed
#define Is_udd_write_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_RWALL))
//! Returns the byte count
#define udd_byte_count(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_BYCT_Msk))
//! Clears FIFOCON bit
#define udd_ack_fifocon(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_FIFOCONC)
//! Tests if FIFOCON bit set
#define Is_udd_fifocon(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_FIFOCON))
//! Returns the number of busy banks
#define udd_nb_busy_bank(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_NBUSYBK_Msk))
//! Returns the number of the current bank
#define udd_current_bank(ep) (Rd_bitfield(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_CURRBK_Msk))
//! Kills last bank
#define udd_kill_last_in_bank(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_KILLBKS)
#define Is_udd_kill_last(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_KILLBK))
//! Tests if last bank killed
#define Is_udd_last_in_bank_killed(ep) (!Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_KILLBK))
//! Forces all banks full (OUT) or free (IN) interrupt
#define udd_force_bank_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_NBUSYBKS)
//! Unforces all banks full (OUT) or free (IN) interrupt
#define udd_unforce_bank_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_NBUSYBKS)
//! Enables all banks full (OUT) or free (IN) interrupt
#define udd_enable_bank_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_NBUSYBKES)
//! Disables all banks full (OUT) or free (IN) interrupt
#define udd_disable_bank_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_NBUSYBKEC)
//! Tests if all banks full (OUT) or free (IN) interrupt enabled
#define Is_udd_bank_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_NBUSYBKE))
//! Tests if SHORT PACKET received
#define Is_udd_short_packet(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_SHORTPACKET))
//! ACKs SHORT PACKET received
#define udd_ack_short_packet(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_SHORTPACKETC)
//! Raises SHORT PACKET received
#define udd_raise_short_packet(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_SHORTPACKETS)
//! Enables SHORT PACKET received interrupt
#define udd_enable_short_packet_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_SHORTPACKETES)
//! Disables SHORT PACKET received interrupt
#define udd_disable_short_packet_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_SHORTPACKETEC)
//! Tests if SHORT PACKET received interrupt is enabled
#define Is_udd_short_packet_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_SHORTPACKETE))
//! Tests if SETUP received
#define Is_udd_setup_received(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_RXSTPI))
//! ACKs SETUP received
#define udd_ack_setup_received(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_RXSTPIC)
//! Raises SETUP received
#define udd_raise_setup_received(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_RXSTPIS)
//! Enables SETUP received interrupt
#define udd_enable_setup_received_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_RXSTPES)
//! Disables SETUP received interrupt
#define udd_disable_setup_received_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_RXSTPEC)
//! Tests if SETUP received interrupt is enabled
#define Is_udd_setup_received_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_RXSTPE))
//! Tests if OUT received
#define Is_udd_out_received(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_RXOUTI))
//! ACKs OUT received
#define udd_ack_out_received(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_RXOUTIC)
//! Raises OUT received
#define udd_raise_out_received(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_RXOUTIS)
//! Enables OUT received interrupt
#define udd_enable_out_received_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_RXOUTES)
//! Disables OUT received interrupt
#define udd_disable_out_received_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_RXOUTEC)
//! Tests if OUT received interrupt is enabled
#define Is_udd_out_received_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_RXOUTE))
//! Tests if IN sending
#define Is_udd_in_send(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTISR[0], ep), UOTGHS_DEVEPTISR_TXINI))
//! ACKs IN sending
#define udd_ack_in_send(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTICR[0], ep) = UOTGHS_DEVEPTICR_TXINIC)
//! Raises IN sending
#define udd_raise_in_send(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIFR[0], ep) = UOTGHS_DEVEPTIFR_TXINIS)
//! Enables IN sending interrupt
#define udd_enable_in_send_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0], ep) = UOTGHS_DEVEPTIER_TXINES)
//! Disables IN sending interrupt
#define udd_disable_in_send_interrupt(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0], ep) = UOTGHS_DEVEPTIDR_TXINEC)
//! Tests if IN sending interrupt is enabled
#define Is_udd_in_send_interrupt_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0], ep), UOTGHS_DEVEPTIMR_TXINE))
//! Get 64-, 32-, 16- or 8-bit access to FIFO data register of selected endpoint.
//! @param ep Endpoint of which to access FIFO data register
//! @param scale Data scale in bits: 64, 32, 16 or 8
//! @return Volatile 64-, 32-, 16- or 8-bit data pointer to FIFO data register
//! @warning It is up to the user of this macro to make sure that all accesses
//! are aligned with their natural boundaries except 64-bit accesses which
//! require only 32-bit alignment.
//! @warning It is up to the user of this macro to make sure that used HSB
//! addresses are identical to the DPRAM internal pointer modulo 32 bits.
#define udd_get_endpoint_fifo_access(ep, scale) \
(((volatile TPASTE2(U, scale) (*)[0x8000 / ((scale) / 8)])UOTGHS_RAM_ADDR)[(ep)])
//! @name UOTGHS endpoint DMA drivers
//! These macros manage the common features of the endpoint DMA channels.
//! @{
//! Maximum transfer size on USB DMA
#define UDD_ENDPOINT_MAX_TRANS 0x10000
//! Enables the disabling of HDMA requests by endpoint interrupts
#define udd_enable_endpoint_int_dis_hdma_req(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIER[0](ep) = UOTGHS_DEVEPTIER_EPDISHDMAS)
//! Disables the disabling of HDMA requests by endpoint interrupts
#define udd_disable_endpoint_int_dis_hdma_req(ep) (UOTGHS_ARRAY(UOTGHS_DEVEPTIDR[0](ep) = UOTGHS_DEVEPTIDR_EPDISHDMAC)
//! Tests if the disabling of HDMA requests by endpoint interrupts is enabled
#define Is_udd_endpoint_int_dis_hdma_req_enabled(ep) (Tst_bits(UOTGHS_ARRAY(UOTGHS_DEVEPTIMR[0](ep), UOTGHS_DEVEPTIMR_EPDISHDMA))
//! Raises the selected endpoint DMA channel interrupt
#define udd_raise_endpoint_dma_interrupt(ep) (UOTGHS->UOTGHS_DEVIFR = UOTGHS_DEVIFR_DMA_1 << ((ep) - 1))
//! Raises the selected endpoint DMA channel interrupt
#define udd_clear_endpoint_dma_interrupt(ep) (UOTGHS->UOTGHS_DEVICR = UOTGHS_DEVISR_DMA_1 << ((ep) - 1))
//! Tests if an interrupt is triggered by the selected endpoint DMA channel
#define Is_udd_endpoint_dma_interrupt(ep) (Tst_bits(UOTGHS->UOTGHS_DEVISR, UOTGHS_DEVISR_DMA_1 << ((ep) - 1)))
//! Enables the selected endpoint DMA channel interrupt
#define udd_enable_endpoint_dma_interrupt(ep) (UOTGHS->UOTGHS_DEVIER = UOTGHS_DEVIER_DMA_1 << ((ep) - 1))
//! Disables the selected endpoint DMA channel interrupt
#define udd_disable_endpoint_dma_interrupt(ep) (UOTGHS->UOTGHS_DEVIDR = UOTGHS_DEVIDR_DMA_1 << ((ep) - 1))
//! Tests if the selected endpoint DMA channel interrupt is enabled
#define Is_udd_endpoint_dma_interrupt_enabled(ep) (Tst_bits(UOTGHS->UOTGHS_DEVIMR, UOTGHS_DEVIMR_DMA_1 << ((ep) - 1)))
//! Access points to the UOTGHS device DMA memory map with arrayed registers
//! @{
//! Structure for DMA next descriptor register
typedef struct {
uint32_t *NXT_DSC_ADD;
} uotghs_dma_nextdesc_t;
//! Structure for DMA control register
typedef struct {
uint32_t CHANN_ENB:1,
LDNXT_DSC:1,
END_TR_EN:1,
END_B_EN:1,
END_TR_IT:1,
END_BUFFIT:1,
DESC_LD_IT:1,
BUST_LCK:1,
reserved:8,
BUFF_LENGTH:16;
} uotghs_dma_control_t;
//! Structure for DMA status register
typedef struct {
uint32_t CHANN_ENB:1,
CHANN_ACT:1,
reserved0:2,
END_TR_ST:1,
END_BF_ST:1,
DESC_LDST:1,
reserved1:9,
BUFF_COUNT:16;
} uotghs_dma_status_t;
//! Structure for DMA descriptor
typedef struct {
union {
uint32_t nextdesc;
uotghs_dma_nextdesc_t NEXTDESC;
};
uint32_t addr;
union {
uint32_t control;
uotghs_dma_control_t CONTROL;
};
uint32_t reserved;
} sam_uotghs_dmadesc_t, uotghs_dmadesc_t;
//! Structure for DMA registers in a channel
typedef struct {
union {
uint32_t nextdesc;
uotghs_dma_nextdesc_t NEXTDESC;
};
uint32_t addr;
union {
uint32_t control;
uotghs_dma_control_t CONTROL;
};
union {
unsigned long status;
uotghs_dma_status_t STATUS;
};
} sam_uotghs_dmach_t, uotghs_dmach_t;
//! DMA channel control command
#define UDD_ENDPOINT_DMA_STOP_NOW (0)
#define UDD_ENDPOINT_DMA_RUN_AND_STOP (UOTGHS_DEVDMACONTROL_CHANN_ENB)
#define UDD_ENDPOINT_DMA_LOAD_NEXT_DESC (UOTGHS_DEVDMACONTROL_LDNXT_DSC)
#define UDD_ENDPOINT_DMA_RUN_AND_LINK (UOTGHS_DEVDMACONTROL_CHANN_ENB|UOTGHS_DEVDMACONTROL_LDNXT_DSC)
//! Structure for DMA registers
#define UOTGHS_UDDMA_ARRAY(ep) (((volatile uotghs_dmach_t *)UOTGHS->UOTGHS_DEVDMA)[(ep) - 1])
//! Set control desc to selected endpoint DMA channel
#define udd_endpoint_dma_set_control(ep,desc) (UOTGHS_UDDMA_ARRAY(ep).control = desc)
//! Get control desc to selected endpoint DMA channel
#define udd_endpoint_dma_get_control(ep) (UOTGHS_UDDMA_ARRAY(ep).control)
//! Set RAM address to selected endpoint DMA channel
#define udd_endpoint_dma_set_addr(ep,add) (UOTGHS_UDDMA_ARRAY(ep).addr = add)
//! Get status to selected endpoint DMA channel
#define udd_endpoint_dma_get_status(ep) (UOTGHS_UDDMA_ARRAY(ep).status)
//! @}
//! @}
//! @}
//! @}
//! @}
//! @}
/// @cond 0
/**INDENT-OFF**/
#ifdef __cplusplus
}
#endif
/**INDENT-ON**/
/// @endcond
#endif /* UOTGHS_DEVICE_H_INCLUDED */

View file

@ -0,0 +1,242 @@
/**
* \file
*
* \brief USB OTG Driver for UOTGHS.
*
* Copyright (c) 2012-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef UOTGHS_OTG_H_INCLUDED
#define UOTGHS_OTG_H_INCLUDED
#include "compiler.h"
#ifdef __cplusplus
extern "C" {
#endif
//! \ingroup usb_group
//! \defgroup otg_group UOTGHS OTG Driver
//! UOTGHS low-level driver for OTG features
//!
//! @{
/**
* \brief Initialize the dual role
* This function is implemented in uotghs_host.c file.
*
* \return \c true if the ID pin management has been started, otherwise \c false.
*/
bool otg_dual_enable(void);
/**
* \brief Uninitialize the dual role
* This function is implemented in uotghs_host.c file.
*/
void otg_dual_disable(void);
//! @name UOTGHS OTG ID pin management
//! The ID pin come from the USB OTG connector (A and B receptable) and
//! allows to select the USB mode host or device.
//! The UOTGHS hardware can manage it automatically. This feature is optional.
//! When USB_ID_GPIO is defined (in board.h), this feature is enabled.
//!
//! @{
//! Enable external OTG_ID pin (listened to by USB)
#define otg_enable_id_pin() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIDE))
//! Disable external OTG_ID pin (ignored by USB)
#define otg_disable_id_pin() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIDE))
//! Test if external OTG_ID pin enabled (listened to by USB)
#define Is_otg_id_pin_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIDE))
//! Disable external OTG_ID pin and force device mode
#define otg_force_device_mode() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIMOD), otg_disable_id_pin())
//! Test if device mode is forced
#define Is_otg_device_mode_forced() (!Is_otg_id_pin_enabled() && Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIMOD))
//! Disable external OTG_ID pin and force host mode
#define otg_force_host_mode() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIMOD), otg_disable_id_pin())
//! Test if host mode is forced
#define Is_otg_host_mode_forced() (!Is_otg_id_pin_enabled() && !Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UIMOD))
//! @name UOTGHS OTG ID pin interrupt management
//! These macros manage the ID pin interrupt
//! @{
#define otg_enable_id_interrupt() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_IDTE))
#define otg_disable_id_interrupt() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_IDTE))
#define Is_otg_id_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_IDTE))
#define Is_otg_id_device() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_ID))
#define Is_otg_id_host() (!Is_otg_id_device())
#define otg_ack_id_transition() (UOTGHS->UOTGHS_SCR = UOTGHS_SCR_IDTIC)
#define otg_raise_id_transition() (UOTGHS->UOTGHS_SFR = UOTGHS_SFR_IDTIS)
#define Is_otg_id_transition() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_IDTI))
//! @}
//! @}
//! @name OTG Vbus management
//! @{
#define otg_enable_vbus_interrupt() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_VBUSTE))
#define otg_disable_vbus_interrupt() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_VBUSTE))
#define Is_otg_vbus_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_VBUSTE))
#define Is_otg_vbus_high() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_VBUS))
#define Is_otg_vbus_low() (!Is_otg_vbus_high())
#define otg_ack_vbus_transition() (UOTGHS->UOTGHS_SCR = UOTGHS_SCR_VBUSTIC)
#define otg_raise_vbus_transition() (UOTGHS->UOTGHS_SFR = UOTGHS_SFR_VBUSTIS)
#define Is_otg_vbus_transition() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_VBUSTI))
//! @}
//! @name UOTGHS OTG main management
//! These macros allows to enable/disable pad and UOTGHS hardware
//! @{
//! Reset USB macro
#define otg_reset() \
do { \
UOTGHS->UOTGHS_CTRL = 0; \
while( UOTGHS->UOTGHS_SR & 0x3FFF) {\
UOTGHS->UOTGHS_SCR = 0xFFFFFFFF;\
} \
} while (0)
//! Enable USB macro
#define otg_enable() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_USBE))
//! Disable USB macro
#define otg_disable() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_USBE))
#define Is_otg_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_USBE))
//! Enable OTG pad
#define otg_enable_pad() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_OTGPADE))
//! Disable OTG pad
#define otg_disable_pad() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_OTGPADE))
#define Is_otg_pad_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_OTGPADE))
//! Check Clock Usable
//! For parts with HS feature, this one corresponding at UTMI clock
#define Is_otg_clock_usable() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_CLKUSABLE))
//! Stop (freeze) internal USB clock
#define otg_freeze_clock() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_FRZCLK))
#define otg_unfreeze_clock() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_FRZCLK))
#define Is_otg_clock_frozen() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_FRZCLK))
//! Configure time-out of specified OTG timer
#define otg_configure_timeout(timer, timeout) (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UNLOCK),\
Wr_bitfield(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_TIMPAGE_Msk, timer),\
Wr_bitfield(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_TIMVALUE_Msk, timeout),\
Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UNLOCK))
//! Get configured time-out of specified OTG timer
#define otg_get_timeout(timer) (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UNLOCK),\
Wr_bitfield(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_TIMPAGE_Msk, timer),\
Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_UNLOCK),\
Rd_bitfield(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_TIMVALUE_Msk))
//! Get the dual-role device state of the internal USB finite state machine of the UOTGHS controller
#define otg_get_fsm_drd_state() (Rd_bitfield(UOTGHS->UOTGHS_FSM, UOTGHS_FSM_DRDSTATE_Msk))
#define Is_otg_a_suspend() (4==otg_get_fsm_drd_state())
#define Is_otg_a_wait_vrise() (1==otg_get_fsm_drd_state())
//! @}
//! @name UOTGHS OTG hardware protocol
//! These macros manages the hardware OTG protocol
//! @{
//! Initiates a Host negotiation Protocol
#define otg_device_initiate_hnp() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPREQ))
//! Accepts a Host negotiation Protocol
#define otg_host_accept_hnp() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPREQ))
//! Rejects a Host negotiation Protocol
#define otg_host_reject_hnp() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPREQ))
//! initiates a Session Request Protocol
#define otg_device_initiate_srp() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPREQ))
//! Selects VBus as SRP method
#define otg_select_vbus_srp_method() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPSEL))
#define Is_otg_vbus_srp_method_selected() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPSEL))
//! Selects data line as SRP method
#define otg_select_data_srp_method() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPSEL))
#define Is_otg_data_srp_method_selected() (!Is_otg_vbus_srp_method_selected())
//! Tests if a HNP occurs
#define Is_otg_hnp() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPREQ))
//! Tests if a SRP from device occurs
#define Is_otg_device_srp() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPREQ))
//! Enables HNP error interrupt
#define otg_enable_hnp_error_interrupt() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPERRE))
//! Disables HNP error interrupt
#define otg_disable_hnp_error_interrupt() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPERRE))
#define Is_otg_hnp_error_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_HNPERRE))
//! ACKs HNP error interrupt
#define otg_ack_hnp_error_interrupt() (UOTGHS->UOTGHS_SCR = UOTGHS_SCR_HNPERRIC)
//! Raises HNP error interrupt
#define otg_raise_hnp_error_interrupt() (UOTGHS->UOTGHS_SFR = UOTGHS_SFR_HNPERRIS)
//! Tests if a HNP error occurs
#define Is_otg_hnp_error_interrupt() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_HNPERRI))
//! Enables role exchange interrupt
#define otg_enable_role_exchange_interrupt() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_ROLEEXE))
//! Disables role exchange interrupt
#define otg_disable_role_exchange_interrupt() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_ROLEEXE))
#define Is_otg_role_exchange_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_ROLEEXE))
//! ACKs role exchange interrupt
#define otg_ack_role_exchange_interrupt() (UOTGHS->UOTGHS_SCR = UOTGHS_SCR_ROLEEXIC)
//! Raises role exchange interrupt
#define otg_raise_role_exchange_interrupt() (UOTGHS->UOTGHS_SFR = UOTGHS_SFR_ROLEEXIS)
//! Tests if a role exchange occurs
#define Is_otg_role_exchange_interrupt() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_ROLEEXI))
//! Enables SRP interrupt
#define otg_enable_srp_interrupt() (Set_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPE))
//! Disables SRP interrupt
#define otg_disable_srp_interrupt() (Clr_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPE))
#define Is_otg_srp_interrupt_enabled() (Tst_bits(UOTGHS->UOTGHS_CTRL, UOTGHS_CTRL_SRPE))
//! ACKs SRP interrupt
#define otg_ack_srp_interrupt() (UOTGHS->UOTGHS_SCR = UOTGHS_SCR_SRPIC)
//! Raises SRP interrupt
#define otg_raise_srp_interrupt() (UOTGHS->UOTGHS_SFR = UOTGHS_SFR_SRPIS)
//! Tests if a SRP occurs
#define Is_otg_srp_interrupt() (Tst_bits(UOTGHS->UOTGHS_SR, UOTGHS_SR_SRPI))
//! @}
//! @}
#ifdef __cplusplus
}
#endif
#endif /* UOTGHS_OTG_H_INCLUDED */

View file

@ -0,0 +1,496 @@
/**
* \file
*
* \brief USB protocol definitions.
*
* This file contains the USB definitions and data structures provided by the
* USB 2.0 specification.
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _USB_PROTOCOL_H_
#define _USB_PROTOCOL_H_
/**
* \ingroup usb_group
* \defgroup usb_protocol_group USB Protocol Definitions
*
* This module defines constants and data structures provided by the USB
* 2.0 specification.
*
* @{
*/
//! Value for field bcdUSB
#define USB_V2_0 0x0200 //!< USB Specification version 2.00
#define USB_V2_1 0x0201 //!< USB Specification version 2.01
/*! \name Generic definitions (Class, subclass and protocol)
*/
//! @{
#define NO_CLASS 0x00
#define CLASS_VENDOR_SPECIFIC 0xFF
#define NO_SUBCLASS 0x00
#define NO_PROTOCOL 0x00
//! @}
//! \name IAD (Interface Association Descriptor) constants
//! @{
#define CLASS_IAD 0xEF
#define SUB_CLASS_IAD 0x02
#define PROTOCOL_IAD 0x01
//! @}
/**
* \brief USB request data transfer direction (bmRequestType)
*/
#define USB_REQ_DIR_OUT (0<<7) //!< Host to device
#define USB_REQ_DIR_IN (1<<7) //!< Device to host
#define USB_REQ_DIR_MASK (1<<7) //!< Mask
/**
* \brief USB request types (bmRequestType)
*/
#define USB_REQ_TYPE_STANDARD (0<<5) //!< Standard request
#define USB_REQ_TYPE_CLASS (1<<5) //!< Class-specific request
#define USB_REQ_TYPE_VENDOR (2<<5) //!< Vendor-specific request
#define USB_REQ_TYPE_MASK (3<<5) //!< Mask
/**
* \brief USB recipient codes (bmRequestType)
*/
#define USB_REQ_RECIP_DEVICE (0<<0) //!< Recipient device
#define USB_REQ_RECIP_INTERFACE (1<<0) //!< Recipient interface
#define USB_REQ_RECIP_ENDPOINT (2<<0) //!< Recipient endpoint
#define USB_REQ_RECIP_OTHER (3<<0) //!< Recipient other
#define USB_REQ_RECIP_MASK (0x1F) //!< Mask
/**
* \brief Standard USB requests (bRequest)
*/
enum usb_reqid {
USB_REQ_GET_STATUS = 0,
USB_REQ_CLEAR_FEATURE = 1,
USB_REQ_SET_FEATURE = 3,
USB_REQ_SET_ADDRESS = 5,
USB_REQ_GET_DESCRIPTOR = 6,
USB_REQ_SET_DESCRIPTOR = 7,
USB_REQ_GET_CONFIGURATION = 8,
USB_REQ_SET_CONFIGURATION = 9,
USB_REQ_GET_INTERFACE = 10,
USB_REQ_SET_INTERFACE = 11,
USB_REQ_SYNCH_FRAME = 12,
};
/**
* \brief Standard USB device status flags
*
*/
enum usb_device_status {
USB_DEV_STATUS_BUS_POWERED = 0,
USB_DEV_STATUS_SELF_POWERED = 1,
USB_DEV_STATUS_REMOTEWAKEUP = 2
};
/**
* \brief Standard USB Interface status flags
*
*/
enum usb_interface_status {
USB_IFACE_STATUS_RESERVED = 0
};
/**
* \brief Standard USB endpoint status flags
*
*/
enum usb_endpoint_status {
USB_EP_STATUS_HALTED = 1,
};
/**
* \brief Standard USB device feature flags
*
* \note valid for SetFeature request.
*/
enum usb_device_feature {
USB_DEV_FEATURE_REMOTE_WAKEUP = 1, //!< Remote wakeup enabled
USB_DEV_FEATURE_TEST_MODE = 2, //!< USB test mode
USB_DEV_FEATURE_OTG_B_HNP_ENABLE = 3,
USB_DEV_FEATURE_OTG_A_HNP_SUPPORT = 4,
USB_DEV_FEATURE_OTG_A_ALT_HNP_SUPPORT = 5
};
/**
* \brief Test Mode possible on HS USB device
*
* \note valid for USB_DEV_FEATURE_TEST_MODE request.
*/
enum usb_device_hs_test_mode {
USB_DEV_TEST_MODE_J = 1,
USB_DEV_TEST_MODE_K = 2,
USB_DEV_TEST_MODE_SE0_NAK = 3,
USB_DEV_TEST_MODE_PACKET = 4,
USB_DEV_TEST_MODE_FORCE_ENABLE = 5,
};
/**
* \brief Standard USB endpoint feature/status flags
*/
enum usb_endpoint_feature {
USB_EP_FEATURE_HALT = 0,
};
/**
* \brief Standard USB Test Mode Selectors
*/
enum usb_test_mode_selector {
USB_TEST_J = 0x01,
USB_TEST_K = 0x02,
USB_TEST_SE0_NAK = 0x03,
USB_TEST_PACKET = 0x04,
USB_TEST_FORCE_ENABLE = 0x05,
};
/**
* \brief Standard USB descriptor types
*/
enum usb_descriptor_type {
USB_DT_DEVICE = 1,
USB_DT_CONFIGURATION = 2,
USB_DT_STRING = 3,
USB_DT_INTERFACE = 4,
USB_DT_ENDPOINT = 5,
USB_DT_DEVICE_QUALIFIER = 6,
USB_DT_OTHER_SPEED_CONFIGURATION = 7,
USB_DT_INTERFACE_POWER = 8,
USB_DT_OTG = 9,
USB_DT_IAD = 0x0B,
USB_DT_BOS = 0x0F,
USB_DT_DEVICE_CAPABILITY = 0x10,
};
/**
* \brief USB Device Capability types
*/
enum usb_capability_type {
USB_DC_USB20_EXTENSION = 0x02,
};
/**
* \brief USB Device Capability - USB 2.0 Extension
* To fill bmAttributes field of usb_capa_ext_desc_t structure.
*/
enum usb_capability_extension_attr {
USB_DC_EXT_LPM = 0x00000002,
};
#define HIRD_50_US 0
#define HIRD_125_US 1
#define HIRD_200_US 2
#define HIRD_275_US 3
#define HIRD_350_US 4
#define HIRD_425_US 5
#define HIRD_500_US 6
#define HIRD_575_US 7
#define HIRD_650_US 8
#define HIRD_725_US 9
#define HIRD_800_US 10
#define HIRD_875_US 11
#define HIRD_950_US 12
#define HIRD_1025_US 13
#define HIRD_1100_US 14
#define HIRD_1175_US 15
/** Fields definition from a LPM TOKEN */
#define USB_LPM_ATTRIBUT_BLINKSTATE_MASK (0xF << 0)
#define USB_LPM_ATTRIBUT_FIRD_MASK (0xF << 4)
#define USB_LPM_ATTRIBUT_REMOTEWAKE_MASK (1 << 8)
#define USB_LPM_ATTRIBUT_BLINKSTATE(value) ((value & 0xF) << 0)
#define USB_LPM_ATTRIBUT_FIRD(value) ((value & 0xF) << 4)
#define USB_LPM_ATTRIBUT_REMOTEWAKE(value) ((value & 1) << 8)
#define USB_LPM_ATTRIBUT_BLINKSTATE_L1 USB_LPM_ATTRIBUT_BLINKSTATE(1)
/**
* \brief Standard USB endpoint transfer types
*/
enum usb_ep_type {
USB_EP_TYPE_CONTROL = 0x00,
USB_EP_TYPE_ISOCHRONOUS = 0x01,
USB_EP_TYPE_BULK = 0x02,
USB_EP_TYPE_INTERRUPT = 0x03,
USB_EP_TYPE_MASK = 0x03,
};
/**
* \brief Standard USB language IDs for string descriptors
*/
enum usb_langid {
USB_LANGID_EN_US = 0x0409, //!< English (United States)
};
/**
* \brief Mask selecting the index part of an endpoint address
*/
#define USB_EP_ADDR_MASK 0x0f
//! \brief USB address identifier
typedef uint8_t usb_add_t;
/**
* \brief Endpoint transfer direction is IN
*/
#define USB_EP_DIR_IN 0x80
/**
* \brief Endpoint transfer direction is OUT
*/
#define USB_EP_DIR_OUT 0x00
//! \brief Endpoint identifier
typedef uint8_t usb_ep_t;
/**
* \brief Maximum length in bytes of a USB descriptor
*
* The maximum length of a USB descriptor is limited by the 8-bit
* bLength field.
*/
#define USB_MAX_DESC_LEN 255
/*
* 2-byte alignment requested for all USB structures.
*/
COMPILER_PACK_SET(1)
/**
* \brief A USB Device SETUP request
*
* The data payload of SETUP packets always follows this structure.
*/
typedef struct {
uint8_t bmRequestType;
uint8_t bRequest;
le16_t wValue;
le16_t wIndex;
le16_t wLength;
} usb_setup_req_t;
/**
* \brief Standard USB device descriptor structure
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
le16_t bcdUSB;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bMaxPacketSize0;
le16_t idVendor;
le16_t idProduct;
le16_t bcdDevice;
uint8_t iManufacturer;
uint8_t iProduct;
uint8_t iSerialNumber;
uint8_t bNumConfigurations;
} usb_dev_desc_t;
/**
* \brief Standard USB device qualifier descriptor structure
*
* This descriptor contains information about the device when running at
* the "other" speed (i.e. if the device is currently operating at high
* speed, this descriptor can be used to determine what would change if
* the device was operating at full speed.)
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
le16_t bcdUSB;
uint8_t bDeviceClass;
uint8_t bDeviceSubClass;
uint8_t bDeviceProtocol;
uint8_t bMaxPacketSize0;
uint8_t bNumConfigurations;
uint8_t bReserved;
} usb_dev_qual_desc_t;
/**
* \brief USB Device BOS descriptor structure
*
* The BOS descriptor (Binary device Object Store) defines a root
* descriptor that is similar to the configuration descriptor, and is
* the base descriptor for accessing a family of related descriptors.
* A host can read a BOS descriptor and learn from the wTotalLength field
* the entire size of the device-level descriptor set, or it can read in
* the entire BOS descriptor set of device capabilities.
* The host accesses this descriptor using the GetDescriptor() request.
* The descriptor type in the GetDescriptor() request is set to BOS.
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
le16_t wTotalLength;
uint8_t bNumDeviceCaps;
} usb_dev_bos_desc_t;
/**
* \brief USB Device Capabilities - USB 2.0 Extension Descriptor structure
*
* Defines the set of USB 1.1-specific device level capabilities.
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bDevCapabilityType;
le32_t bmAttributes;
} usb_dev_capa_ext_desc_t;
/**
* \brief USB Device LPM Descriptor structure
*
* The BOS descriptor and capabilities descriptors for LPM.
*/
typedef struct {
usb_dev_bos_desc_t bos;
usb_dev_capa_ext_desc_t capa_ext;
} usb_dev_lpm_desc_t;
/**
* \brief Standard USB Interface Association Descriptor structure
*/
typedef struct {
uint8_t bLength; //!< size of this descriptor in bytes
uint8_t bDescriptorType; //!< INTERFACE descriptor type
uint8_t bFirstInterface; //!< Number of interface
uint8_t bInterfaceCount; //!< value to select alternate setting
uint8_t bFunctionClass; //!< Class code assigned by the USB
uint8_t bFunctionSubClass;//!< Sub-class code assigned by the USB
uint8_t bFunctionProtocol;//!< Protocol code assigned by the USB
uint8_t iFunction; //!< Index of string descriptor
} usb_association_desc_t;
/**
* \brief Standard USB configuration descriptor structure
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
le16_t wTotalLength;
uint8_t bNumInterfaces;
uint8_t bConfigurationValue;
uint8_t iConfiguration;
uint8_t bmAttributes;
uint8_t bMaxPower;
} usb_conf_desc_t;
#define USB_CONFIG_ATTR_MUST_SET (1 << 7) //!< Must always be set
#define USB_CONFIG_ATTR_BUS_POWERED (0 << 6) //!< Bus-powered
#define USB_CONFIG_ATTR_SELF_POWERED (1 << 6) //!< Self-powered
#define USB_CONFIG_ATTR_REMOTE_WAKEUP (1 << 5) //!< remote wakeup supported
#define USB_CONFIG_MAX_POWER(ma) (((ma) + 1) / 2) //!< Max power in mA
/**
* \brief Standard USB association descriptor structure
*/
typedef struct {
uint8_t bLength; //!< Size of this descriptor in bytes
uint8_t bDescriptorType; //!< Interface descriptor type
uint8_t bFirstInterface; //!< Number of interface
uint8_t bInterfaceCount; //!< value to select alternate setting
uint8_t bFunctionClass; //!< Class code assigned by the USB
uint8_t bFunctionSubClass; //!< Sub-class code assigned by the USB
uint8_t bFunctionProtocol; //!< Protocol code assigned by the USB
uint8_t iFunction; //!< Index of string descriptor
} usb_iad_desc_t;
/**
* \brief Standard USB interface descriptor structure
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bInterfaceNumber;
uint8_t bAlternateSetting;
uint8_t bNumEndpoints;
uint8_t bInterfaceClass;
uint8_t bInterfaceSubClass;
uint8_t bInterfaceProtocol;
uint8_t iInterface;
} usb_iface_desc_t;
/**
* \brief Standard USB endpoint descriptor structure
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
uint8_t bEndpointAddress;
uint8_t bmAttributes;
le16_t wMaxPacketSize;
uint8_t bInterval;
} usb_ep_desc_t;
/**
* \brief A standard USB string descriptor structure
*/
typedef struct {
uint8_t bLength;
uint8_t bDescriptorType;
} usb_str_desc_t;
typedef struct {
usb_str_desc_t desc;
le16_t string[1];
} usb_str_lgid_desc_t;
COMPILER_PACK_RESET()
//! @}
#endif /* _USB_PROTOCOL_H_ */

View file

@ -0,0 +1,318 @@
/**
* \file
*
* \brief USB Communication Device Class (CDC) protocol definitions
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _USB_PROTOCOL_CDC_H_
#define _USB_PROTOCOL_CDC_H_
#include "compiler.h"
/**
* \ingroup usb_protocol_group
* \defgroup cdc_protocol_group Communication Device Class Definitions
* @{
*/
/**
* \name Possible values of class
*/
//@{
#define CDC_CLASS_DEVICE 0x02 //!< USB Communication Device Class
#define CDC_CLASS_COMM 0x02 //!< CDC Communication Class Interface
#define CDC_CLASS_DATA 0x0A //!< CDC Data Class Interface
//@}
//! \name USB CDC Subclass IDs
//@{
#define CDC_SUBCLASS_DLCM 0x01 //!< Direct Line Control Model
#define CDC_SUBCLASS_ACM 0x02 //!< Abstract Control Model
#define CDC_SUBCLASS_TCM 0x03 //!< Telephone Control Model
#define CDC_SUBCLASS_MCCM 0x04 //!< Multi-Channel Control Model
#define CDC_SUBCLASS_CCM 0x05 //!< CAPI Control Model
#define CDC_SUBCLASS_ETH 0x06 //!< Ethernet Networking Control Model
#define CDC_SUBCLASS_ATM 0x07 //!< ATM Networking Control Model
//@}
//! \name USB CDC Communication Interface Protocol IDs
//@{
#define CDC_PROTOCOL_V25TER 0x01 //!< Common AT commands
//@}
//! \name USB CDC Data Interface Protocol IDs
//@{
#define CDC_PROTOCOL_I430 0x30 //!< ISDN BRI
#define CDC_PROTOCOL_HDLC 0x31 //!< HDLC
#define CDC_PROTOCOL_TRANS 0x32 //!< Transparent
#define CDC_PROTOCOL_Q921M 0x50 //!< Q.921 management protocol
#define CDC_PROTOCOL_Q921 0x51 //!< Q.931 [sic] Data link protocol
#define CDC_PROTOCOL_Q921TM 0x52 //!< Q.921 TEI-multiplexor
#define CDC_PROTOCOL_V42BIS 0x90 //!< Data compression procedures
#define CDC_PROTOCOL_Q931 0x91 //!< Euro-ISDN protocol control
#define CDC_PROTOCOL_V120 0x92 //!< V.24 rate adaption to ISDN
#define CDC_PROTOCOL_CAPI20 0x93 //!< CAPI Commands
#define CDC_PROTOCOL_HOST 0xFD //!< Host based driver
/**
* \brief Describes the Protocol Unit Functional Descriptors [sic]
* on Communication Class Interface
*/
#define CDC_PROTOCOL_PUFD 0xFE
//@}
//! \name USB CDC Functional Descriptor Types
//@{
#define CDC_CS_INTERFACE 0x24 //!< Interface Functional Descriptor
#define CDC_CS_ENDPOINT 0x25 //!< Endpoint Functional Descriptor
//@}
//! \name USB CDC Functional Descriptor Subtypes
//@{
#define CDC_SCS_HEADER 0x00 //!< Header Functional Descriptor
#define CDC_SCS_CALL_MGMT 0x01 //!< Call Management
#define CDC_SCS_ACM 0x02 //!< Abstract Control Management
#define CDC_SCS_UNION 0x06 //!< Union Functional Descriptor
//@}
//! \name USB CDC Request IDs
//@{
#define USB_REQ_CDC_SEND_ENCAPSULATED_COMMAND 0x00
#define USB_REQ_CDC_GET_ENCAPSULATED_RESPONSE 0x01
#define USB_REQ_CDC_SET_COMM_FEATURE 0x02
#define USB_REQ_CDC_GET_COMM_FEATURE 0x03
#define USB_REQ_CDC_CLEAR_COMM_FEATURE 0x04
#define USB_REQ_CDC_SET_AUX_LINE_STATE 0x10
#define USB_REQ_CDC_SET_HOOK_STATE 0x11
#define USB_REQ_CDC_PULSE_SETUP 0x12
#define USB_REQ_CDC_SEND_PULSE 0x13
#define USB_REQ_CDC_SET_PULSE_TIME 0x14
#define USB_REQ_CDC_RING_AUX_JACK 0x15
#define USB_REQ_CDC_SET_LINE_CODING 0x20
#define USB_REQ_CDC_GET_LINE_CODING 0x21
#define USB_REQ_CDC_SET_CONTROL_LINE_STATE 0x22
#define USB_REQ_CDC_SEND_BREAK 0x23
#define USB_REQ_CDC_SET_RINGER_PARMS 0x30
#define USB_REQ_CDC_GET_RINGER_PARMS 0x31
#define USB_REQ_CDC_SET_OPERATION_PARMS 0x32
#define USB_REQ_CDC_GET_OPERATION_PARMS 0x33
#define USB_REQ_CDC_SET_LINE_PARMS 0x34
#define USB_REQ_CDC_GET_LINE_PARMS 0x35
#define USB_REQ_CDC_DIAL_DIGITS 0x36
#define USB_REQ_CDC_SET_UNIT_PARAMETER 0x37
#define USB_REQ_CDC_GET_UNIT_PARAMETER 0x38
#define USB_REQ_CDC_CLEAR_UNIT_PARAMETER 0x39
#define USB_REQ_CDC_GET_PROFILE 0x3A
#define USB_REQ_CDC_SET_ETHERNET_MULTICAST_FILTERS 0x40
#define USB_REQ_CDC_SET_ETHERNET_POWER_MANAGEMENT_PATTERNFILTER 0x41
#define USB_REQ_CDC_GET_ETHERNET_POWER_MANAGEMENT_PATTERNFILTER 0x42
#define USB_REQ_CDC_SET_ETHERNET_PACKET_FILTER 0x43
#define USB_REQ_CDC_GET_ETHERNET_STATISTIC 0x44
#define USB_REQ_CDC_SET_ATM_DATA_FORMAT 0x50
#define USB_REQ_CDC_GET_ATM_DEVICE_STATISTICS 0x51
#define USB_REQ_CDC_SET_ATM_DEFAULT_VC 0x52
#define USB_REQ_CDC_GET_ATM_VC_STATISTICS 0x53
// Added bNotification codes according cdc spec 1.1 chapter 6.3
#define USB_REQ_CDC_NOTIFY_RING_DETECT 0x09
#define USB_REQ_CDC_NOTIFY_SERIAL_STATE 0x20
#define USB_REQ_CDC_NOTIFY_CALL_STATE_CHANGE 0x28
#define USB_REQ_CDC_NOTIFY_LINE_STATE_CHANGE 0x29
//@}
/*
* Need to pack structures tightly, or the compiler might insert padding
* and violate the spec-mandated layout.
*/
COMPILER_PACK_SET(1)
//! \name USB CDC Descriptors
//@{
//! CDC Header Functional Descriptor
typedef struct {
uint8_t bFunctionLength;
uint8_t bDescriptorType;
uint8_t bDescriptorSubtype;
le16_t bcdCDC;
} usb_cdc_hdr_desc_t;
//! CDC Call Management Functional Descriptor
typedef struct {
uint8_t bFunctionLength;
uint8_t bDescriptorType;
uint8_t bDescriptorSubtype;
uint8_t bmCapabilities;
uint8_t bDataInterface;
} usb_cdc_call_mgmt_desc_t;
//! CDC ACM Functional Descriptor
typedef struct {
uint8_t bFunctionLength;
uint8_t bDescriptorType;
uint8_t bDescriptorSubtype;
uint8_t bmCapabilities;
} usb_cdc_acm_desc_t;
//! CDC Union Functional Descriptor
typedef struct {
uint8_t bFunctionLength;
uint8_t bDescriptorType;
uint8_t bDescriptorSubtype;
uint8_t bMasterInterface;
uint8_t bSlaveInterface0;
} usb_cdc_union_desc_t;
//! \name USB CDC Call Management Capabilities
//@{
//! Device handles call management itself
#define CDC_CALL_MGMT_SUPPORTED (1 << 0)
//! Device can send/receive call management info over a Data Class interface
#define CDC_CALL_MGMT_OVER_DCI (1 << 1)
//@}
//! \name USB CDC ACM Capabilities
//@{
//! Device supports the request combination of
//! Set_Comm_Feature, Clear_Comm_Feature, and Get_Comm_Feature.
#define CDC_ACM_SUPPORT_FEATURE_REQUESTS (1 << 0)
//! Device supports the request combination of
//! Set_Line_Coding, Set_Control_Line_State, Get_Line_Coding,
//! and the notification Serial_State.
#define CDC_ACM_SUPPORT_LINE_REQUESTS (1 << 1)
//! Device supports the request Send_Break
#define CDC_ACM_SUPPORT_SENDBREAK_REQUESTS (1 << 2)
//! Device supports the notification Network_Connection.
#define CDC_ACM_SUPPORT_NOTIFY_REQUESTS (1 << 3)
//@}
//@}
//! \name USB CDC line control
//@{
//! \name USB CDC line coding
//@{
//! Line Coding structure
typedef struct {
le32_t dwDTERate;
uint8_t bCharFormat;
uint8_t bParityType;
uint8_t bDataBits;
} usb_cdc_line_coding_t;
//! Possible values of bCharFormat
enum cdc_char_format {
CDC_STOP_BITS_1 = 0, //!< 1 stop bit
CDC_STOP_BITS_1_5 = 1, //!< 1.5 stop bits
CDC_STOP_BITS_2 = 2, //!< 2 stop bits
};
//! Possible values of bParityType
enum cdc_parity {
CDC_PAR_NONE = 0, //!< No parity
CDC_PAR_ODD = 1, //!< Odd parity
CDC_PAR_EVEN = 2, //!< Even parity
CDC_PAR_MARK = 3, //!< Parity forced to 0 (space)
CDC_PAR_SPACE = 4, //!< Parity forced to 1 (mark)
};
//@}
//! \name USB CDC control signals
//! spec 1.1 chapter 6.2.14
//@{
//! Control signal structure
typedef struct {
uint16_t value;
} usb_cdc_control_signal_t;
//! \name Possible values in usb_cdc_control_signal_t
//@{
//! Carrier control for half duplex modems.
//! This signal corresponds to V.24 signal 105 and RS-232 signal RTS.
//! The device ignores the value of this bit
//! when operating in full duplex mode.
#define CDC_CTRL_SIGNAL_ACTIVATE_CARRIER (1 << 1)
//! Indicates to DCE if DTE is present or not.
//! This signal corresponds to V.24 signal 108/2 and RS-232 signal DTR.
#define CDC_CTRL_SIGNAL_DTE_PRESENT (1 << 0)
//@}
//@}
//! \name USB CDC notification message
//@{
typedef struct {
uint8_t bmRequestType;
uint8_t bNotification;
le16_t wValue;
le16_t wIndex;
le16_t wLength;
} usb_cdc_notify_msg_t;
//! \name USB CDC serial state
//@{*
//! Hardware handshake support (cdc spec 1.1 chapter 6.3.5)
typedef struct {
usb_cdc_notify_msg_t header;
le16_t value;
} usb_cdc_notify_serial_state_t;
//! \name Possible values in usb_cdc_notify_serial_state_t
//@{
#define CDC_SERIAL_STATE_DCD CPU_TO_LE16((1<<0))
#define CDC_SERIAL_STATE_DSR CPU_TO_LE16((1<<1))
#define CDC_SERIAL_STATE_BREAK CPU_TO_LE16((1<<2))
#define CDC_SERIAL_STATE_RING CPU_TO_LE16((1<<3))
#define CDC_SERIAL_STATE_FRAMING CPU_TO_LE16((1<<4))
#define CDC_SERIAL_STATE_PARITY CPU_TO_LE16((1<<5))
#define CDC_SERIAL_STATE_OVERRUN CPU_TO_LE16((1<<6))
//@}
//! @}
//! @}
COMPILER_PACK_RESET()
//! @}
#endif // _USB_PROTOCOL_CDC_H_

View file

@ -0,0 +1,147 @@
/**
* \file
*
* \brief USB Mass Storage Class (MSC) protocol definitions.
*
* Copyright (c) 2009-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _USB_PROTOCOL_MSC_H_
#define _USB_PROTOCOL_MSC_H_
/**
* \ingroup usb_protocol_group
* \defgroup usb_msc_protocol USB Mass Storage Class (MSC) protocol definitions
*
* @{
*/
/**
* \name Possible Class value
*/
//@{
#define MSC_CLASS 0x08
//@}
/**
* \name Possible SubClass value
* \note In practise, most devices should use
* #MSC_SUBCLASS_TRANSPARENT and specify the actual command set in
* the standard INQUIRY data block, even if the MSC spec indicates
* otherwise. In particular, RBC is not supported by certain major
* operating systems like Windows XP.
*/
//@{
#define MSC_SUBCLASS_RBC 0x01 //!< Reduced Block Commands
#define MSC_SUBCLASS_ATAPI 0x02 //!< CD/DVD devices
#define MSC_SUBCLASS_QIC_157 0x03 //!< Tape devices
#define MSC_SUBCLASS_UFI 0x04 //!< Floppy disk drives
#define MSC_SUBCLASS_SFF_8070I 0x05 //!< Floppy disk drives
#define MSC_SUBCLASS_TRANSPARENT 0x06 //!< Determined by INQUIRY
//@}
/**
* \name Possible protocol value
* \note Only the BULK protocol should be used in new designs.
*/
//@{
#define MSC_PROTOCOL_CBI 0x00 //!< Command/Bulk/Interrupt
#define MSC_PROTOCOL_CBI_ALT 0x01 //!< W/o command completion
#define MSC_PROTOCOL_BULK 0x50 //!< Bulk-only
//@}
/**
* \brief MSC USB requests (bRequest)
*/
enum usb_reqid_msc {
USB_REQ_MSC_BULK_RESET = 0xFF, //!< Mass Storage Reset
USB_REQ_MSC_GET_MAX_LUN = 0xFE, //!< Get Max LUN
};
COMPILER_PACK_SET(1)
/**
* \name A Command Block Wrapper (CBW).
*/
//@{
struct usb_msc_cbw {
le32_t dCBWSignature; //!< Must contain 'USBC'
le32_t dCBWTag; //!< Unique command ID
le32_t dCBWDataTransferLength; //!< Number of bytes to transfer
uint8_t bmCBWFlags; //!< Direction in bit 7
uint8_t bCBWLUN; //!< Logical Unit Number
uint8_t bCBWCBLength; //!< Number of valid CDB bytes
uint8_t CDB[16]; //!< SCSI Command Descriptor Block
};
#define USB_CBW_SIGNATURE 0x55534243 //!< dCBWSignature value
#define USB_CBW_DIRECTION_IN (1<<7) //!< Data from device to host
#define USB_CBW_DIRECTION_OUT (0<<7) //!< Data from host to device
#define USB_CBW_LUN_MASK 0x0F //!< Valid bits in bCBWLUN
#define USB_CBW_LEN_MASK 0x1F //!< Valid bits in bCBWCBLength
//@}
/**
* \name A Command Status Wrapper (CSW).
*/
//@{
struct usb_msc_csw {
le32_t dCSWSignature; //!< Must contain 'USBS'
le32_t dCSWTag; //!< Same as dCBWTag
le32_t dCSWDataResidue; //!< Number of bytes not transfered
uint8_t bCSWStatus; //!< Status code
};
#define USB_CSW_SIGNATURE 0x55534253 //!< dCSWSignature value
#define USB_CSW_STATUS_PASS 0x00 //!< Command Passed
#define USB_CSW_STATUS_FAIL 0x01 //!< Command Failed
#define USB_CSW_STATUS_PE 0x02 //!< Phase Error
//@}
COMPILER_PACK_RESET()
//@}
#endif // _USB_PROTOCOL_MSC_H_

View file

@ -0,0 +1,186 @@
/**
* \file
*
* \brief Main functions for USB composite example
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifdef ARDUINO_ARCH_SAM
#include "conf_usb.h"
#include "udc.h"
static volatile bool main_b_msc_enable = false;
static volatile bool main_b_cdc_enable = false;
void HAL_init(void) {
udd_disable();
UDD_SetStack(&USBD_ISR);
// Start USB stack to authorize VBus monitoring
udc_start();
}
void HAL_idletask(void)
{
// Attend SD card access from the USB MSD -- Priotize access to improve speed
int delay = 2;
while (main_b_msc_enable && --delay > 0 ) {
if (udi_msc_process_trans()) {
delay = 10000;
}
/* Reset the watchdog, just to be sure */
REG_WDT_CR = WDT_CR_WDRSTT | WDT_CR_KEY(0xA5);
}
}
/*! \brief Example of extra USB string management
* This feature is available for single or composite device
* which want implement additional USB string than
* Manufacture, Product and serial number ID.
*
* return true, if the string ID requested is know and managed by this functions
*/
bool usb_task_extra_string(void)
{
static uint8_t udi_cdc_name[] = "CDC interface";
static uint8_t udi_msc_name[] = "MSC interface";
struct extra_strings_desc_t{
usb_str_desc_t header;
le16_t string[Max(sizeof(udi_cdc_name)-1, sizeof(udi_msc_name)-1)];
};
static UDC_DESC_STORAGE struct extra_strings_desc_t extra_strings_desc = {
.header.bDescriptorType = USB_DT_STRING
};
uint8_t i;
uint8_t *str;
uint8_t str_lgt=0;
// Link payload pointer to the string corresponding at request
switch (udd_g_ctrlreq.req.wValue & 0xff) {
case UDI_CDC_IAD_STRING_ID:
str_lgt = sizeof(udi_cdc_name)-1;
str = udi_cdc_name;
break;
case UDI_MSC_STRING_ID:
str_lgt = sizeof(udi_msc_name)-1;
str = udi_msc_name;
break;
default:
return false;
}
if (str_lgt!=0) {
for( i=0; i<str_lgt; i++) {
extra_strings_desc.string[i] = cpu_to_le16((le16_t)str[i]);
}
extra_strings_desc.header.bLength = 2+ (str_lgt)*2;
udd_g_ctrlreq.payload_size = extra_strings_desc.header.bLength;
udd_g_ctrlreq.payload = (uint8_t *) &extra_strings_desc;
}
// if the string is larger than request length, then cut it
if (udd_g_ctrlreq.payload_size > udd_g_ctrlreq.req.wLength) {
udd_g_ctrlreq.payload_size = udd_g_ctrlreq.req.wLength;
}
return true;
}
bool usb_task_msc_enable(void)
{
main_b_msc_enable = true;
return true;
}
void usb_task_msc_disable(void)
{
main_b_msc_enable = false;
}
bool usb_task_msc_isenabled(void)
{
return main_b_msc_enable;
}
bool usb_task_cdc_enable(uint8_t port)
{
main_b_cdc_enable = true;
return true;
}
void usb_task_cdc_disable(uint8_t port)
{
main_b_cdc_enable = false;
}
bool usb_task_cdc_isenabled(void)
{
return main_b_cdc_enable;
}
/*! \brief Called by CDC interface
* Callback running when CDC device have received data
*/
void usb_task_cdc_rx_notify(uint8_t port)
{
}
/*! \brief Configures communication line
*
* \param cfg line configuration
*/
void usb_task_cdc_config(uint8_t port, usb_cdc_line_coding_t * cfg)
{
}
void usb_task_cdc_set_dtr(uint8_t port, bool b_enable)
{
if (b_enable) {
} else {
}
}
#endif

View file

@ -0,0 +1,101 @@
/**
* \file
*
* \brief Declaration of main function used by Composite example 4
*
* Copyright (c) 2011-2015 Atmel Corporation. All rights reserved.
*
* \asf_license_start
*
* \page License
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
*
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* 3. The name of Atmel may not be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* 4. This software may only be redistributed and used in connection with an
* Atmel microcontroller product.
*
* THIS SOFTWARE IS PROVIDED BY ATMEL "AS IS" AND ANY EXPRESS OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT ARE
* EXPRESSLY AND SPECIFICALLY DISCLAIMED. IN NO EVENT SHALL ATMEL BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
* STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*
* \asf_license_stop
*
*/
/*
* Support and FAQ: visit <a href="http://www.atmel.com/design-support/">Atmel Support</a>
*/
#ifndef _USB_TASK_H_
#define _USB_TASK_H_
#include "usb_protocol_cdc.h"
/*! \brief Called by MSC interface
* Callback running when USB Host enable MSC interface
*
* \retval true if MSC startup is ok
*/
bool usb_task_msc_enable(void);
/*! \brief Called by MSC interface
* Callback running when USB Host disable MSC interface
*/
void usb_task_msc_disable(void);
/*! \brief Opens the communication port
* This is called by CDC interface when USB Host enable it.
*
* \retval true if cdc startup is successfully done
*/
bool usb_task_cdc_enable(uint8_t port);
/*! \brief Closes the communication port
* This is called by CDC interface when USB Host disable it.
*/
void usb_task_cdc_disable(uint8_t port);
/*! \brief Save new DTR state to change led behavior.
* The DTR notify that the terminal have open or close the communication port.
*/
void usb_task_cdc_set_dtr(uint8_t port, bool b_enable);
/*! \brief Called by UDC when USB Host request a extra string different
* of this specified in USB device descriptor
*/
bool usb_task_extra_string(void);
/*! \brief Called by CDC interface
* Callback running when CDC device have received data
*/
void usb_task_cdc_rx_notify(uint8_t port);
/*! \brief Configures communication line
*
* \param cfg line configuration
*/
void usb_task_cdc_config(uint8_t port, usb_cdc_line_coding_t * cfg);
/* The USB device interrupt
*/
void USBD_ISR(void);
#endif // _MAIN_H_

View file

@ -548,6 +548,10 @@ void idle(
lastUpdateMillis = millis();
}
#endif
#ifdef HAL_IDLETASK
HAL_idletask();
#endif
}
/**
@ -633,6 +637,10 @@ void stop() {
*/
void setup() {
#ifdef HAL_INIT
HAL_init();
#endif
#if ENABLED(MAX7219_DEBUG)
Max7219_init();
#endif

View file

@ -44,13 +44,13 @@
//===========================================================================
// Voltage reference on potentiometer on Green Pololus in millivolts
#define Vref_mV 800
#define Vref_mV 800UL
// Rsc value used on PCB of the Green Pololus
#define Rsc_mOhms 100
#define Rsc_mOhms 100UL
// Estimated maximum acceleration for X and Y axis
#define MAX_XYAXIS_ACCEL (3 * (Vref_mV) * 100 / (Rsc_mOhms))
#define MAX_XYAXIS_ACCEL (3UL * (Vref_mV) * 100UL / (Rsc_mOhms))
// Notes:
// If we could use 1.65A as motor current, then 3000 mm/s^2 as acceleration

View file

@ -158,9 +158,9 @@ FORCE_INLINE static void DELAY_CYCLES(uint32_t x) {
do {
WRITE(ST7920_CLK_PIN, LOW);
WRITE(ST7920_DAT_PIN, val & 0x80);
DELAY_NS(500);
DELAY_NS(700); /* RE-ARM requires 700ns to be stable, RAMPS4DUE works with 500ns */
WRITE(ST7920_CLK_PIN, HIGH);
DELAY_NS(500);
DELAY_NS(700); /* RE-ARM requires 700ns to be stable, RAMPS4DUE works with 500ns */
val <<= 1;
} while (--n);
}
@ -171,9 +171,9 @@ FORCE_INLINE static void DELAY_CYCLES(uint32_t x) {
#define ST7920_SND_BIT(nr) \
WRITE(ST7920_CLK_PIN, LOW); \
WRITE(ST7920_DAT_PIN, TEST(val, nr)); \
DELAY_NS(500); \
DELAY_NS(700); \
WRITE(ST7920_CLK_PIN, HIGH); \
DELAY_NS(500);
DELAY_NS(700);
static void ST7920_SWSPI_SND_8BIT(const uint8_t val) {
ST7920_SND_BIT(7); // MSBit

View file

@ -23,6 +23,7 @@
/**
* Arduino Sd2Card Library
* Copyright (C) 2009 by William Greiman
* Updated with backports of the latest SdFat library from the same author
*
* This file is part of the Arduino Sd2Card Library
*/
@ -31,29 +32,92 @@
#if ENABLED(SDSUPPORT)
/* Enable FAST CRC computations - You can trade speed for FLASH space if
* needed by disabling the following define */
#define FAST_CRC 1
#include "Sd2Card.h"
#include "../Marlin.h"
#if ENABLED(SD_CHECK_AND_RETRY)
#ifdef FAST_CRC
static const uint8_t crctab7[] PROGMEM = {
0x00,0x09,0x12,0x1b,0x24,0x2d,0x36,0x3f,0x48,0x41,0x5a,0x53,0x6c,0x65,0x7e,0x77,
0x19,0x10,0x0b,0x02,0x3d,0x34,0x2f,0x26,0x51,0x58,0x43,0x4a,0x75,0x7c,0x67,0x6e,
0x32,0x3b,0x20,0x29,0x16,0x1f,0x04,0x0d,0x7a,0x73,0x68,0x61,0x5e,0x57,0x4c,0x45,
0x2b,0x22,0x39,0x30,0x0f,0x06,0x1d,0x14,0x63,0x6a,0x71,0x78,0x47,0x4e,0x55,0x5c,
0x64,0x6d,0x76,0x7f,0x40,0x49,0x52,0x5b,0x2c,0x25,0x3e,0x37,0x08,0x01,0x1a,0x13,
0x7d,0x74,0x6f,0x66,0x59,0x50,0x4b,0x42,0x35,0x3c,0x27,0x2e,0x11,0x18,0x03,0x0a,
0x56,0x5f,0x44,0x4d,0x72,0x7b,0x60,0x69,0x1e,0x17,0x0c,0x05,0x3a,0x33,0x28,0x21,
0x4f,0x46,0x5d,0x54,0x6b,0x62,0x79,0x70,0x07,0x0e,0x15,0x1c,0x23,0x2a,0x31,0x38,
0x41,0x48,0x53,0x5a,0x65,0x6c,0x77,0x7e,0x09,0x00,0x1b,0x12,0x2d,0x24,0x3f,0x36,
0x58,0x51,0x4a,0x43,0x7c,0x75,0x6e,0x67,0x10,0x19,0x02,0x0b,0x34,0x3d,0x26,0x2f,
0x73,0x7a,0x61,0x68,0x57,0x5e,0x45,0x4c,0x3b,0x32,0x29,0x20,0x1f,0x16,0x0d,0x04,
0x6a,0x63,0x78,0x71,0x4e,0x47,0x5c,0x55,0x22,0x2b,0x30,0x39,0x06,0x0f,0x14,0x1d,
0x25,0x2c,0x37,0x3e,0x01,0x08,0x13,0x1a,0x6d,0x64,0x7f,0x76,0x49,0x40,0x5b,0x52,
0x3c,0x35,0x2e,0x27,0x18,0x11,0x0a,0x03,0x74,0x7d,0x66,0x6f,0x50,0x59,0x42,0x4b,
0x17,0x1e,0x05,0x0c,0x33,0x3a,0x21,0x28,0x5f,0x56,0x4d,0x44,0x7b,0x72,0x69,0x60,
0x0e,0x07,0x1c,0x15,0x2a,0x23,0x38,0x31,0x46,0x4f,0x54,0x5d,0x62,0x6b,0x70,0x79
};
static uint8_t CRC7(const uint8_t* data, uint8_t n) {
uint8_t crc = 0;
while ( n > 0 ) {
crc = pgm_read_byte(&crctab7[ (crc << 1) ^ *data++ ]);
n--;
}
return (crc << 1) | 1;
}
#else
static uint8_t CRC7(const uint8_t* data, uint8_t n) {
uint8_t crc = 0;
for (uint8_t i = 0; i < n; i++) {
uint8_t d = data[i];
d ^= crc << 1;
if (d & 0x80) d ^= 9;
crc = d ^ (crc & 0x78) ^ (crc << 4) ^ ((crc >> 3) & 15);
crc &= 0x7f;
}
crc = (crc << 1) ^ (crc << 4) ^ (crc & 0x70) ^ ((crc >> 3) & 0x0f);
return crc | 1;
}
#endif
#endif
// send command and return error code. Return zero for OK
uint8_t Sd2Card::cardCommand(uint8_t cmd, uint32_t arg) {
// select card
chipSelectLow();
chipSelect();
// wait up to 300 ms if busy
waitNotBusy(300);
waitNotBusy( SD_WRITE_TIMEOUT );
uint8_t *pa = (uint8_t *)(&arg);
#if ENABLED(SD_CHECK_AND_RETRY)
// form message
uint8_t d[6] = {(uint8_t) (cmd | 0x40), pa[3], pa[2], pa[1], pa[0] };
// add crc
d[5] = CRC7(d, 5);
// send message
for (uint8_t k = 0; k < 6; k++ )
spiSend( d[k] );
#else
// send command
spiSend(cmd | 0x40);
// send argument
for (int8_t s = 24; s >= 0; s -= 8) spiSend(arg >> s);
for( int8_t i = 3; i >= 0; i-- )
spiSend( pa[i] );
// send CRC
uint8_t crc = 0xFF;
if (cmd == CMD0) crc = 0x95; // correct crc for CMD0 with arg 0
if (cmd == CMD8) crc = 0x87; // correct crc for CMD8 with arg 0x1AA
spiSend(crc);
// send CRC - correct for CMD0 with arg zero or CMD8 with arg 0X1AA
spiSend( cmd == CMD0 ? 0X95 : 0X87 );
#endif
// skip stuff byte for stop read
if (cmd == CMD12) spiRec();
@ -91,14 +155,15 @@ uint32_t Sd2Card::cardSize() {
}
}
void Sd2Card::chipSelectHigh() {
void Sd2Card::chipDeselect() {
digitalWrite(chipSelectPin_, HIGH);
// insure MISO goes high impedance
spiSend( 0xFF );
}
void Sd2Card::chipSelectLow() {
#if DISABLED(SOFTWARE_SPI)
spiInit(spiRate_);
#endif // SOFTWARE_SPI
void Sd2Card::chipSelect() {
spiInit(spiRate_);
digitalWrite(chipSelectPin_, LOW);
}
@ -142,10 +207,10 @@ bool Sd2Card::erase(uint32_t firstBlock, uint32_t lastBlock) {
error(SD_CARD_ERROR_ERASE_TIMEOUT);
goto FAIL;
}
chipSelectHigh();
chipDeselect();
return true;
FAIL:
chipSelectHigh();
chipDeselect();
return false;
}
@ -200,22 +265,36 @@ bool Sd2Card::init(uint8_t sckRateID, pin_t chipSelectPin) {
goto FAIL;
}
}
// check SD version
if ((cardCommand(CMD8, 0x1AA) & R1_ILLEGAL_COMMAND)) {
type(SD_CARD_TYPE_SD1);
#if ENABLED(SD_CHECK_AND_RETRY)
if (cardCommand( CMD59, 1 ) != R1_IDLE_STATE) {
error(SD_CARD_ERROR_CMD59);
goto FAIL;
}
else {
#endif
// check SD version
while (1) {
if (cardCommand(CMD8, 0x1AA) == (R1_ILLEGAL_COMMAND | R1_IDLE_STATE)) {
type(SD_CARD_TYPE_SD1);
break;
}
// only need last byte of r7 response
for (uint8_t i = 0; i < 4; i++) status_ = spiRec();
if (status_ != 0xAA) {
if (status_ == 0xAA) {
type(SD_CARD_TYPE_SD2);
break;
}
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
error(SD_CARD_ERROR_CMD8);
goto FAIL;
}
type(SD_CARD_TYPE_SD2);
}
// initialize card and send host supports SDHC if SD2
arg = type() == SD_CARD_TYPE_SD2 ? 0x40000000 : 0;
while ((status_ = cardAcmd(ACMD41, arg)) != R1_READY_STATE) {
// check for timeout
if (((uint16_t)millis() - t0) > SD_INIT_TIMEOUT) {
@ -233,17 +312,12 @@ bool Sd2Card::init(uint8_t sckRateID, pin_t chipSelectPin) {
// discard rest of ocr - contains allowed voltage range
for (uint8_t i = 0; i < 3; i++) spiRec();
}
chipSelectHigh();
chipDeselect();
#if DISABLED(SOFTWARE_SPI)
return setSckRate(sckRateID);
#else // SOFTWARE_SPI
UNUSED(sckRateID);
return true;
#endif // SOFTWARE_SPI
return setSckRate(sckRateID);
FAIL:
chipSelectHigh();
chipDeselect();
return false;
}
@ -268,7 +342,7 @@ bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
if (!--retryCnt) break;
chipSelectHigh();
chipDeselect();
cardCommand(CMD12, 0); // Try sending a stop command, ignore the result.
errorCode_ = 0;
}
@ -279,7 +353,7 @@ bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
return readData(dst, 512);
#endif
chipSelectHigh();
chipDeselect();
return false;
}
@ -291,12 +365,13 @@ bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
* \return true for success, false for failure.
*/
bool Sd2Card::readData(uint8_t* dst) {
chipSelectLow();
chipSelect();
return readData(dst, 512);
}
#if ENABLED(SD_CHECK_AND_RETRY)
static const uint16_t crctab[] PROGMEM = {
#ifdef FAST_CRC
static const uint16_t crctab16[] PROGMEM = {
0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7,
0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF,
0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6,
@ -330,13 +405,30 @@ bool Sd2Card::readData(uint8_t* dst) {
0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8,
0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0
};
// faster CRC-CCITT
// uses the x^16,x^12,x^5,x^1 polynomial.
static uint16_t CRC_CCITT(const uint8_t* data, size_t n) {
uint16_t crc = 0;
for (size_t i = 0; i < n; i++) {
crc = pgm_read_word(&crctab[(crc >> 8 ^ data[i]) & 0xFF]) ^ (crc << 8);
crc = pgm_read_word(&crctab16[(crc >> 8 ^ data[i]) & 0xFF]) ^ (crc << 8);
}
return crc;
}
#else
// slower CRC-CCITT
// uses the x^16,x^12,x^5,x^1 polynomial.
static uint16_t CRC_CCITT(const uint8_t* data, size_t n) {
uint16_t crc = 0;
for (size_t i = 0; i < n; i++) {
crc = (uint8_t)(crc >> 8) | (crc << 8);
crc ^= data[i];
crc ^= (uint8_t)(crc & 0xff) >> 4;
crc ^= crc << 12;
crc ^= (crc & 0xff) << 5;
}
return crc;
}
#endif
#endif // SD_CHECK_AND_RETRY
bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
@ -357,11 +449,9 @@ bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
#if ENABLED(SD_CHECK_AND_RETRY)
{
uint16_t calcCrc = CRC_CCITT(dst, count);
uint16_t recvCrc = spiRec() << 8;
recvCrc |= spiRec();
if (calcCrc != recvCrc) {
error(SD_CARD_ERROR_CRC);
uint16_t recvCrc = (spiRec() << 8) | spiRec();
if (recvCrc != CRC_CCITT(dst, count)) {
error(SD_CARD_ERROR_READ_CRC);
goto FAIL;
}
}
@ -370,14 +460,10 @@ bool Sd2Card::readData(uint8_t* dst, uint16_t count) {
spiRec();
spiRec();
#endif
chipSelectHigh();
// Send an additional dummy byte, required by Toshiba Flash Air SD Card
spiSend(0xFF);
chipDeselect();
return true;
FAIL:
chipSelectHigh();
// Send an additional dummy byte, required by Toshiba Flash Air SD Card
spiSend(0xFF);
chipDeselect();
return false;
}
@ -386,7 +472,7 @@ bool Sd2Card::readRegister(uint8_t cmd, void* buf) {
uint8_t* dst = reinterpret_cast<uint8_t*>(buf);
if (cardCommand(cmd, 0)) {
error(SD_CARD_ERROR_READ_REG);
chipSelectHigh();
chipDeselect();
return false;
}
return readData(dst, 16);
@ -406,10 +492,10 @@ bool Sd2Card::readStart(uint32_t blockNumber) {
if (type() != SD_CARD_TYPE_SDHC) blockNumber <<= 9;
if (cardCommand(CMD18, blockNumber)) {
error(SD_CARD_ERROR_CMD18);
chipSelectHigh();
chipDeselect();
return false;
}
chipSelectHigh();
chipDeselect();
return true;
}
@ -419,13 +505,13 @@ bool Sd2Card::readStart(uint32_t blockNumber) {
* \return true for success, false for failure.
*/
bool Sd2Card::readStop() {
chipSelectLow();
chipSelect();
if (cardCommand(CMD12, 0)) {
error(SD_CARD_ERROR_CMD12);
chipSelectHigh();
chipDeselect();
return false;
}
chipSelectHigh();
chipDeselect();
return true;
}
@ -485,10 +571,10 @@ bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
error(SD_CARD_ERROR_WRITE_PROGRAMMING);
goto FAIL;
}
chipSelectHigh();
chipDeselect();
return true;
FAIL:
chipSelectHigh();
chipDeselect();
return false;
}
@ -498,28 +584,33 @@ bool Sd2Card::writeBlock(uint32_t blockNumber, const uint8_t* src) {
* \return true for success, false for failure.
*/
bool Sd2Card::writeData(const uint8_t* src) {
chipSelectLow();
chipSelect();
// wait for previous write to finish
if (!waitNotBusy(SD_WRITE_TIMEOUT) || !writeData(WRITE_MULTIPLE_TOKEN, src)) {
error(SD_CARD_ERROR_WRITE_MULTIPLE);
chipSelectHigh();
chipDeselect();
return false;
}
chipSelectHigh();
chipDeselect();
return true;
}
// send one block of data for write block or write multiple blocks
bool Sd2Card::writeData(uint8_t token, const uint8_t* src) {
spiSendBlock(token, src);
spiSend(0xFF); // dummy crc
spiSend(0xFF); // dummy crc
#if ENABLED(SD_CHECK_AND_RETRY)
uint16_t crc = CRC_CCITT( src, 512 );
#else // ENABLED(SD_CHECK_AND_RETRY)
uint16_t crc = 0xFFFF;
#endif // ENABLED(SD_CHECK_AND_RETRY)
spiSendBlock( token, src );
spiSend( crc >> 8 );
spiSend( crc & 0XFF );
status_ = spiRec();
if ((status_ & DATA_RES_MASK) != DATA_RES_ACCEPTED) {
error(SD_CARD_ERROR_WRITE);
chipSelectHigh();
chipDeselect();
return false;
}
return true;
@ -548,10 +639,10 @@ bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
error(SD_CARD_ERROR_CMD25);
goto FAIL;
}
chipSelectHigh();
chipDeselect();
return true;
FAIL:
chipSelectHigh();
chipDeselect();
return false;
}
@ -561,15 +652,15 @@ bool Sd2Card::writeStart(uint32_t blockNumber, uint32_t eraseCount) {
* \return true for success, false for failure.
*/
bool Sd2Card::writeStop() {
chipSelectLow();
chipSelect();
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto FAIL;
spiSend(STOP_TRAN_TOKEN);
if (!waitNotBusy(SD_WRITE_TIMEOUT)) goto FAIL;
chipSelectHigh();
chipDeselect();
return true;
FAIL:
error(SD_CARD_ERROR_STOP_TRAN);
chipSelectHigh();
chipDeselect();
return false;
}

View file

@ -71,7 +71,8 @@ uint8_t const SD_CARD_ERROR_CMD0 = 0x01, // timeout error for com
SD_CARD_ERROR_WRITE_TIMEOUT = 0x17, // timeout occurred during write programming
SD_CARD_ERROR_SCK_RATE = 0x18, // incorrect rate selected
SD_CARD_ERROR_INIT_NOT_CALLED = 0x19, // init() not called
SD_CARD_ERROR_CRC = 0x20; // crc check error
SD_CARD_ERROR_CMD59 = 0x1A, // card returned an error for CMD59 (CRC_ON_OFF)
SD_CARD_ERROR_READ_CRC = 0x1B; // invalid read CRC
// card types
uint8_t const SD_CARD_TYPE_SD1 = 1, // Standard capacity V1 SD card
@ -196,8 +197,8 @@ class Sd2Card {
bool readData(uint8_t* dst, uint16_t count);
bool readRegister(uint8_t cmd, void* buf);
void chipSelectHigh();
void chipSelectLow();
void chipDeselect();
void chipSelect();
void type(uint8_t value) { type_ = value; }
bool waitNotBusy(uint16_t timeoutMillis);
bool writeData(uint8_t token, const uint8_t* src);

View file

@ -54,12 +54,13 @@ uint8_t const CMD0 = 0x00, // GO_IDLE_STATE - init card in spi mode if CS low
CMD24 = 0x18, // WRITE_BLOCK - write a single data block to the card
CMD25 = 0x19, // WRITE_MULTIPLE_BLOCK - write blocks of data until a STOP_TRANSMISSION
CMD32 = 0x20, // ERASE_WR_BLK_START - sets the address of the first block to be erased
CMD33 = 0x21, // ERASE_WR_BLK_END - sets the address of the last block of the continuous range to be erased*/
CMD38 = 0x26, // ERASE - erase all previously selected blocks */
CMD55 = 0x37, // APP_CMD - escape for application specific command */
CMD58 = 0x3A, // READ_OCR - read the OCR register of a card */
ACMD23 = 0x17, // SET_WR_BLK_ERASE_COUNT - Set the number of write blocks to be pre-erased before writing */
ACMD41 = 0x29; // SD_SEND_OP_COMD - Sends host capacity support information and activates the card's initialization process */
CMD33 = 0x21, // ERASE_WR_BLK_END - sets the address of the last block of the continuous range to be erased
CMD38 = 0x26, // ERASE - erase all previously selected blocks
CMD55 = 0x37, // APP_CMD - escape for application specific command
CMD58 = 0x3A, // READ_OCR - read the OCR register of a card
CMD59 = 0x3B, // CRC_ON_OFF - enable or disable CRC checking
ACMD23 = 0x17, // SET_WR_BLK_ERASE_COUNT - Set the number of write blocks to be pre-erased before writing
ACMD41 = 0x29; // SD_SEND_OP_COMD - Sends host capacity support information and activates the card's initialization process
/** status for card in the ready state */
uint8_t const R1_READY_STATE = 0x00;

View file

@ -86,6 +86,7 @@ public:
FORCE_INLINE uint8_t percentDone() { return (isFileOpen() && filesize) ? sdpos / ((filesize + 99) / 100) : 0; }
FORCE_INLINE char* getWorkDirName() { workDir.getFilename(filename); return filename; }
Sd2Card& getSd2Card() { return card; }
public:
bool saving, logging, sdprinting, cardOK, filenameIsDir;
char filename[FILENAME_LENGTH], longFilename[LONG_FILENAME_LENGTH];