Merge branch 'Development' into marlin_configurator
Latest upstream changes
This commit is contained in:
commit
4b50205f11
24 changed files with 814 additions and 956 deletions
|
@ -362,6 +362,15 @@ const bool Z_MAX_ENDSTOP_INVERTING = false; // set to true to invert the logic o
|
|||
#define Y_MAX_LENGTH (Y_MAX_POS - Y_MIN_POS)
|
||||
#define Z_MAX_LENGTH (Z_MAX_POS - Z_MIN_POS)
|
||||
|
||||
//===========================================================================
|
||||
//============================= Filament Runout Sensor ======================
|
||||
//===========================================================================
|
||||
//#define FILAMENT_RUNOUT_SENSOR // Uncomment for defining a filament runout sensor such as a mechanical or opto endstop to check the existence of filament
|
||||
// In RAMPS uses servo pin 2. Can be changed in pins file. For other boards pin definition should be made.
|
||||
// It is assumed that when logic high = filament available
|
||||
// when logic low = filament ran out
|
||||
//const bool FIL_RUNOUT_INVERTING = true; // Should be uncommented and true or false should assigned
|
||||
//#define ENDSTOPPULLUP_FIL_RUNOUT // Uncomment to use internal pullup for filament runout pins if the sensor is defined.
|
||||
|
||||
//===========================================================================
|
||||
//============================= Bed Auto Leveling ===========================
|
||||
|
|
|
@ -32,6 +32,9 @@
|
|||
#include "WProgram.h"
|
||||
#endif
|
||||
|
||||
#define BIT(b) (1<<(b))
|
||||
#define TEST(n,b) ((n)&BIT(b)!=0)
|
||||
|
||||
// Arduino < 1.0.0 does not define this, so we need to do it ourselves
|
||||
#ifndef analogInputToDigitalPin
|
||||
#define analogInputToDigitalPin(p) ((p) + 0xA0)
|
||||
|
@ -199,6 +202,10 @@ void prepare_move();
|
|||
void kill();
|
||||
void Stop();
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
void filrunout();
|
||||
#endif
|
||||
|
||||
bool IsStopped();
|
||||
|
||||
bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
|
||||
|
|
|
@ -47,8 +47,8 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#include <SPI.h>
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOT_I2C)
|
||||
|
|
|
@ -47,8 +47,8 @@
|
|||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#include <SPI.h>
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOT_I2C)
|
||||
|
|
|
@ -76,7 +76,7 @@ void MarlinSerial::begin(long baud) {
|
|||
#endif
|
||||
|
||||
if (useU2X) {
|
||||
M_UCSRxA = 1 << M_U2Xx;
|
||||
M_UCSRxA = BIT(M_U2Xx);
|
||||
baud_setting = (F_CPU / 4 / baud - 1) / 2;
|
||||
} else {
|
||||
M_UCSRxA = 0;
|
||||
|
|
|
@ -97,14 +97,14 @@ class MarlinSerial { //: public Stream
|
|||
}
|
||||
|
||||
FORCE_INLINE void write(uint8_t c) {
|
||||
while (!((M_UCSRxA) & (1 << M_UDREx)))
|
||||
while (!TEST(M_UCSRxA, M_UDREx))
|
||||
;
|
||||
|
||||
M_UDRx = c;
|
||||
}
|
||||
|
||||
FORCE_INLINE void checkRx(void) {
|
||||
if ((M_UCSRxA & (1<<M_RXCx)) != 0) {
|
||||
if (TEST(M_UCSRxA, M_RXCx)) {
|
||||
unsigned char c = M_UDRx;
|
||||
int i = (unsigned int)(rx_buffer.head + 1) % RX_BUFFER_SIZE;
|
||||
|
||||
|
|
|
@ -62,7 +62,7 @@
|
|||
#include "Servo.h"
|
||||
#endif
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
|
@ -370,6 +370,10 @@ bool cancel_heatup = false;
|
|||
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
static bool filrunoutEnqued = false;
|
||||
#endif
|
||||
|
||||
const char errormagic[] PROGMEM = "Error:";
|
||||
const char echomagic[] PROGMEM = "echo:";
|
||||
|
||||
|
@ -529,6 +533,16 @@ void setup_killpin()
|
|||
#endif
|
||||
}
|
||||
|
||||
void setup_filrunoutpin()
|
||||
{
|
||||
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
||||
pinMode(FILRUNOUT_PIN,INPUT);
|
||||
#if defined(ENDSTOPPULLUP_FIL_RUNOUT)
|
||||
WRITE(FILLRUNOUT_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
// Set home pin
|
||||
void setup_homepin(void)
|
||||
{
|
||||
|
@ -605,6 +619,7 @@ void servo_init()
|
|||
void setup()
|
||||
{
|
||||
setup_killpin();
|
||||
setup_filrunoutpin();
|
||||
setup_powerhold();
|
||||
MYSERIAL.begin(BAUDRATE);
|
||||
SERIAL_PROTOCOLLNPGM("start");
|
||||
|
@ -2015,14 +2030,15 @@ inline void gcode_G28() {
|
|||
|
||||
if (verbose_level) {
|
||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[0] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
||||
SERIAL_PROTOCOLPGM(" b: ");
|
||||
SERIAL_PROTOCOL(plane_equation_coefficients[1] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
||||
SERIAL_PROTOCOLPGM(" d: ");
|
||||
SERIAL_PROTOCOLLN(plane_equation_coefficients[2] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
||||
SERIAL_EOL;
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_PROTOCOL_F(mean, 8);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
}
|
||||
|
@ -2033,15 +2049,20 @@ inline void gcode_G28() {
|
|||
|
||||
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
||||
#if TOPO_ORIGIN == OriginFrontLeft
|
||||
SERIAL_PROTOCOLPGM("+-----------+\n");
|
||||
SERIAL_PROTOCOLPGM("|...Back....|\n");
|
||||
SERIAL_PROTOCOLPGM("|Left..Right|\n");
|
||||
SERIAL_PROTOCOLPGM("|...Front...|\n");
|
||||
SERIAL_PROTOCOLPGM("+-----------+\n");
|
||||
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
|
||||
#else
|
||||
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
|
||||
#endif
|
||||
{
|
||||
#if TOPO_ORIGIN == OriginBackRight
|
||||
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
||||
#else
|
||||
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
|
||||
#else
|
||||
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
|
||||
#endif
|
||||
{
|
||||
int ind =
|
||||
|
@ -4130,6 +4151,11 @@ inline void gcode_M503() {
|
|||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
|
||||
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
filrunoutEnqued = false;
|
||||
#endif
|
||||
|
||||
}
|
||||
|
||||
#endif // FILAMENTCHANGEENABLE
|
||||
|
@ -4184,7 +4210,7 @@ inline void gcode_M503() {
|
|||
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
||||
*/
|
||||
inline void gcode_M907() {
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
for (int i=0;i<NUM_AXIS;i++)
|
||||
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
||||
if (code_seen('B')) digipot_current(4, code_value());
|
||||
|
@ -4207,7 +4233,7 @@ inline void gcode_M907() {
|
|||
#endif
|
||||
}
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
|
||||
/**
|
||||
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
||||
|
@ -4219,7 +4245,7 @@ inline void gcode_M907() {
|
|||
);
|
||||
}
|
||||
|
||||
#endif // DIGIPOTSS_PIN
|
||||
#endif // HAS_DIGIPOTSS
|
||||
|
||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
inline void gcode_M350() {
|
||||
|
@ -4806,11 +4832,11 @@ void process_commands() {
|
|||
gcode_M907();
|
||||
break;
|
||||
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#if HAS_DIGIPOTSS
|
||||
case 908: // M908 Control digital trimpot directly.
|
||||
gcode_M908();
|
||||
break;
|
||||
#endif // DIGIPOTSS_PIN
|
||||
#endif // HAS_DIGIPOTSS
|
||||
|
||||
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
gcode_M350();
|
||||
|
@ -5269,6 +5295,12 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
|
|||
const int KILL_DELAY = 10000;
|
||||
#endif
|
||||
|
||||
#if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
|
||||
if(card.sdprinting) {
|
||||
if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
|
||||
filrunout(); }
|
||||
#endif
|
||||
|
||||
#if defined(HOME_PIN) && HOME_PIN > -1
|
||||
static int homeDebounceCount = 0; // poor man's debouncing count
|
||||
const int HOME_DEBOUNCE_DELAY = 10000;
|
||||
|
@ -5417,6 +5449,16 @@ void kill()
|
|||
while(1) { /* Intentionally left empty */ } // Wait for reset
|
||||
}
|
||||
|
||||
#ifdef FILAMENT_RUNOUT_SENSOR
|
||||
void filrunout()
|
||||
{
|
||||
if filrunoutEnqued == false {
|
||||
filrunoutEnqued = true;
|
||||
enquecommand("M600");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
void Stop()
|
||||
{
|
||||
disable_heater();
|
||||
|
|
|
@ -35,14 +35,14 @@
|
|||
*/
|
||||
static void spiInit(uint8_t spiRate) {
|
||||
// See avr processor documentation
|
||||
SPCR = (1 << SPE) | (1 << MSTR) | (spiRate >> 1);
|
||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : 1 << SPI2X;
|
||||
SPCR = BIT(SPE) | BIT(MSTR) | (spiRate >> 1);
|
||||
SPSR = spiRate & 1 || spiRate == 6 ? 0 : BIT(SPI2X);
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI receive a byte */
|
||||
static uint8_t spiRec() {
|
||||
SPDR = 0XFF;
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
return SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
|
@ -52,18 +52,18 @@ void spiRead(uint8_t* buf, uint16_t nbyte) {
|
|||
if (nbyte-- == 0) return;
|
||||
SPDR = 0XFF;
|
||||
for (uint16_t i = 0; i < nbyte; i++) {
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
buf[i] = SPDR;
|
||||
SPDR = 0XFF;
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
buf[nbyte] = SPDR;
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send a byte */
|
||||
static void spiSend(uint8_t b) {
|
||||
SPDR = b;
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
/** SPI send block - only one call so force inline */
|
||||
|
@ -71,12 +71,12 @@ static inline __attribute__((always_inline))
|
|||
void spiSendBlock(uint8_t token, const uint8_t* buf) {
|
||||
SPDR = token;
|
||||
for (uint16_t i = 0; i < 512; i += 2) {
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
SPDR = buf[i];
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
SPDR = buf[i + 1];
|
||||
}
|
||||
while (!(SPSR & (1 << SPIF))) { /* Intentionally left empty */ }
|
||||
while (!TEST(SPSR, SPIF)) { /* Intentionally left empty */ }
|
||||
}
|
||||
//------------------------------------------------------------------------------
|
||||
#else // SOFTWARE_SPI
|
||||
|
|
|
@ -334,9 +334,9 @@ static inline __attribute__((always_inline))
|
|||
void setPinMode(uint8_t pin, uint8_t mode) {
|
||||
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
||||
if (mode) {
|
||||
*digitalPinMap[pin].ddr |= 1 << digitalPinMap[pin].bit;
|
||||
*digitalPinMap[pin].ddr |= BIT(digitalPinMap[pin].bit);
|
||||
} else {
|
||||
*digitalPinMap[pin].ddr &= ~(1 << digitalPinMap[pin].bit);
|
||||
*digitalPinMap[pin].ddr &= ~BIT(digitalPinMap[pin].bit);
|
||||
}
|
||||
} else {
|
||||
badPinNumber();
|
||||
|
@ -354,9 +354,9 @@ static inline __attribute__((always_inline))
|
|||
void fastDigitalWrite(uint8_t pin, uint8_t value) {
|
||||
if (__builtin_constant_p(pin) && pin < digitalPinCount) {
|
||||
if (value) {
|
||||
*digitalPinMap[pin].port |= 1 << digitalPinMap[pin].bit;
|
||||
*digitalPinMap[pin].port |= BIT(digitalPinMap[pin].bit);
|
||||
} else {
|
||||
*digitalPinMap[pin].port &= ~(1 << digitalPinMap[pin].bit);
|
||||
*digitalPinMap[pin].port &= ~BIT(digitalPinMap[pin].bit);
|
||||
}
|
||||
} else {
|
||||
badPinNumber();
|
||||
|
|
|
@ -171,9 +171,9 @@ static inline uint8_t FAT_SECOND(uint16_t fatTime) {
|
|||
return 2*(fatTime & 0X1F);
|
||||
}
|
||||
/** Default date for file timestamps is 1 Jan 2000 */
|
||||
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | (1 << 5) | 1;
|
||||
uint16_t const FAT_DEFAULT_DATE = ((2000 - 1980) << 9) | BIT(5) | 1;
|
||||
/** Default time for file timestamp is 1 am */
|
||||
uint16_t const FAT_DEFAULT_TIME = (1 << 11);
|
||||
uint16_t const FAT_DEFAULT_TIME = BIT(11);
|
||||
//------------------------------------------------------------------------------
|
||||
/**
|
||||
* \class SdBaseFile
|
||||
|
|
|
@ -360,7 +360,7 @@ bool SdVolume::init(Sd2Card* dev, uint8_t part) {
|
|||
blocksPerCluster_ = fbs->sectorsPerCluster;
|
||||
// determine shift that is same as multiply by blocksPerCluster_
|
||||
clusterSizeShift_ = 0;
|
||||
while (blocksPerCluster_ != (1 << clusterSizeShift_)) {
|
||||
while (blocksPerCluster_ != BIT(clusterSizeShift_)) {
|
||||
// error if not power of 2
|
||||
if (clusterSizeShift_++ > 7) goto fail;
|
||||
}
|
||||
|
|
|
@ -24,9 +24,9 @@
|
|||
#define BLEN_A 0
|
||||
#define BLEN_B 1
|
||||
#define BLEN_C 2
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_A BIT(BLEN_A)
|
||||
#define EN_B BIT(BLEN_B)
|
||||
#define EN_C BIT(BLEN_C)
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#endif
|
||||
|
||||
|
|
|
@ -13,8 +13,7 @@
|
|||
*/
|
||||
|
||||
#ifndef MASK
|
||||
/// MASKING- returns \f$2^PIN\f$
|
||||
#define MASK(PIN) (1 << PIN)
|
||||
#define MASK(PIN) (1 << PIN)
|
||||
#endif
|
||||
|
||||
/*
|
||||
|
|
|
@ -184,4 +184,6 @@
|
|||
analogInputToDigitalPin(TEMP_BED_PIN) \
|
||||
}
|
||||
|
||||
#define HAS_DIGIPOTSS (DIGIPOTSS_PIN >= 0)
|
||||
|
||||
#endif //__PINS_H
|
||||
|
|
|
@ -61,6 +61,11 @@
|
|||
#define FILWIDTH_PIN 5
|
||||
#endif
|
||||
|
||||
#if defined(FILAMENT_RUNOUT_SENSOR)
|
||||
// define digital pin 4 for the filament runout sensor. Use the RAMPS 1.4 digital input 4 on the servos connector
|
||||
#define FILRUNOUT_PIN 4
|
||||
#endif
|
||||
|
||||
#if MB(RAMPS_13_EFB) || MB(RAMPS_13_EFF)
|
||||
#define FAN_PIN 9 // (Sprinter config)
|
||||
#if MB(RAMPS_13_EFF)
|
||||
|
|
|
@ -59,7 +59,7 @@
|
|||
#include "language.h"
|
||||
|
||||
//===========================================================================
|
||||
//=============================public variables ============================
|
||||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
|
||||
unsigned long minsegmenttime;
|
||||
|
@ -623,37 +623,37 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
|
|||
#ifndef COREXY
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS);
|
||||
block->direction_bits |= BIT(X_AXIS);
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS);
|
||||
block->direction_bits |= BIT(Y_AXIS);
|
||||
}
|
||||
#else
|
||||
if (target[X_AXIS] < position[X_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
||||
block->direction_bits |= BIT(X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
|
||||
}
|
||||
if (target[Y_AXIS] < position[Y_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
||||
block->direction_bits |= BIT(Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
|
||||
}
|
||||
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||
{
|
||||
block->direction_bits |= (1<<X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
||||
block->direction_bits |= BIT(X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
|
||||
}
|
||||
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
|
||||
{
|
||||
block->direction_bits |= (1<<Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
||||
block->direction_bits |= BIT(Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
|
||||
}
|
||||
#endif
|
||||
if (target[Z_AXIS] < position[Z_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<Z_AXIS);
|
||||
block->direction_bits |= BIT(Z_AXIS);
|
||||
}
|
||||
if (target[E_AXIS] < position[E_AXIS])
|
||||
{
|
||||
block->direction_bits |= (1<<E_AXIS);
|
||||
block->direction_bits |= BIT(E_AXIS);
|
||||
}
|
||||
|
||||
block->active_extruder = extruder;
|
||||
|
@ -864,7 +864,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
|||
old_direction_bits = block->direction_bits;
|
||||
segment_time = lround((float)segment_time / speed_factor);
|
||||
|
||||
if((direction_change & (1<<X_AXIS)) == 0)
|
||||
if((direction_change & BIT(X_AXIS)) == 0)
|
||||
{
|
||||
x_segment_time[0] += segment_time;
|
||||
}
|
||||
|
@ -874,7 +874,7 @@ Having the real displacement of the head, we can calculate the total movement le
|
|||
x_segment_time[1] = x_segment_time[0];
|
||||
x_segment_time[0] = segment_time;
|
||||
}
|
||||
if((direction_change & (1<<Y_AXIS)) == 0)
|
||||
if((direction_change & BIT(Y_AXIS)) == 0)
|
||||
{
|
||||
y_segment_time[0] += segment_time;
|
||||
}
|
||||
|
|
1110
Marlin/stepper.cpp
1110
Marlin/stepper.cpp
|
@ -29,33 +29,34 @@
|
|||
#include "language.h"
|
||||
#include "cardreader.h"
|
||||
#include "speed_lookuptable.h"
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
#include <SPI.h>
|
||||
#if HAS_DIGIPOTSS
|
||||
#include <SPI.h>
|
||||
#endif
|
||||
|
||||
//===========================================================================
|
||||
//=============================public variables ============================
|
||||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
block_t *current_block; // A pointer to the block currently being traced
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//=============================private variables ============================
|
||||
//============================= private variables ===========================
|
||||
//===========================================================================
|
||||
//static makes it impossible to be called from outside of this file by extern.!
|
||||
|
||||
// Variables used by The Stepper Driver Interrupt
|
||||
static unsigned char out_bits; // The next stepping-bits to be output
|
||||
static long counter_x, // Counter variables for the bresenham line tracer
|
||||
counter_y,
|
||||
counter_z,
|
||||
counter_e;
|
||||
|
||||
// Counter variables for the bresenham line tracer
|
||||
static long counter_x, counter_y, counter_z, counter_e;
|
||||
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
||||
|
||||
#ifdef ADVANCE
|
||||
static long advance_rate, advance, final_advance = 0;
|
||||
static long old_advance = 0;
|
||||
static long e_steps[4];
|
||||
#endif
|
||||
|
||||
static long acceleration_time, deceleration_time;
|
||||
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
||||
static unsigned short acc_step_rate; // needed for deccelaration start point
|
||||
|
@ -63,137 +64,184 @@ static char step_loops;
|
|||
static unsigned short OCR1A_nominal;
|
||||
static unsigned short step_loops_nominal;
|
||||
|
||||
volatile long endstops_trigsteps[3]={0,0,0};
|
||||
volatile long endstops_stepsTotal,endstops_stepsDone;
|
||||
static volatile bool endstop_x_hit=false;
|
||||
static volatile bool endstop_y_hit=false;
|
||||
static volatile bool endstop_z_hit=false;
|
||||
volatile long endstops_trigsteps[3] = { 0 };
|
||||
volatile long endstops_stepsTotal, endstops_stepsDone;
|
||||
static volatile bool endstop_x_hit = false;
|
||||
static volatile bool endstop_y_hit = false;
|
||||
static volatile bool endstop_z_hit = false;
|
||||
|
||||
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
bool abort_on_endstop_hit = false;
|
||||
bool abort_on_endstop_hit = false;
|
||||
#endif
|
||||
|
||||
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
||||
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
|
||||
#endif
|
||||
|
||||
static bool old_x_min_endstop=false;
|
||||
static bool old_x_max_endstop=false;
|
||||
static bool old_y_min_endstop=false;
|
||||
static bool old_y_max_endstop=false;
|
||||
static bool old_z_min_endstop=false;
|
||||
static bool old_z_max_endstop=false;
|
||||
static bool old_x_min_endstop = false,
|
||||
old_x_max_endstop = false,
|
||||
old_y_min_endstop = false,
|
||||
old_y_max_endstop = false,
|
||||
old_z_min_endstop = false,
|
||||
old_z_max_endstop = false;
|
||||
|
||||
static bool check_endstops = true;
|
||||
|
||||
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
||||
volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
||||
volatile long count_position[NUM_AXIS] = { 0 };
|
||||
volatile signed char count_direction[NUM_AXIS] = { 1 };
|
||||
|
||||
|
||||
//===========================================================================
|
||||
//=============================functions ============================
|
||||
//================================ functions ================================
|
||||
//===========================================================================
|
||||
|
||||
#define CHECK_ENDSTOPS if(check_endstops)
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
#define X_APPLY_DIR(v,ALWAYS) \
|
||||
if (extruder_duplication_enabled || ALWAYS) { \
|
||||
X_DIR_WRITE(v); \
|
||||
X2_DIR_WRITE(v); \
|
||||
} \
|
||||
else{ \
|
||||
if (current_block->active_extruder) \
|
||||
X2_DIR_WRITE(v); \
|
||||
else \
|
||||
X_DIR_WRITE(v); \
|
||||
}
|
||||
#define X_APPLY_STEP(v,ALWAYS) \
|
||||
if (extruder_duplication_enabled || ALWAYS) { \
|
||||
X_STEP_WRITE(v); \
|
||||
X2_STEP_WRITE(v); \
|
||||
} \
|
||||
else { \
|
||||
if (current_block->active_extruder != 0) \
|
||||
X2_STEP_WRITE(v); \
|
||||
else \
|
||||
X_STEP_WRITE(v); \
|
||||
}
|
||||
#else
|
||||
#define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
|
||||
#define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
|
||||
#endif
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
|
||||
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
|
||||
#else
|
||||
#define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
|
||||
#define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
|
||||
#endif
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
|
||||
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
|
||||
#else
|
||||
#define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
|
||||
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
|
||||
#endif
|
||||
|
||||
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
|
||||
|
||||
// intRes = intIn1 * intIn2 >> 16
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 24 bit result
|
||||
#define MultiU16X8toH16(intRes, charIn1, intIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %A1, %A2 \n\t" \
|
||||
"add %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r0 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (charIn1), \
|
||||
"d" (intIn2) \
|
||||
: \
|
||||
"r26" \
|
||||
)
|
||||
|
||||
// intRes = longIn1 * longIn2 >> 24
|
||||
// uses:
|
||||
// r26 to store 0
|
||||
// r27 to store the byte 1 of the 48bit result
|
||||
#define MultiU24X24toH16(intRes, longIn1, longIn2) \
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"mov r27, r1 \n\t" \
|
||||
"mul %B1, %C2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %C1, %C2 \n\t" \
|
||||
"add %B0, r0 \n\t" \
|
||||
"mul %C1, %B2 \n\t" \
|
||||
"add %A0, r0 \n\t" \
|
||||
"adc %B0, r1 \n\t" \
|
||||
"mul %A1, %C2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %B2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %C1, %A2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %A2 \n\t" \
|
||||
"add r27, r1 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r27 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (longIn1), \
|
||||
"d" (longIn2) \
|
||||
: \
|
||||
"r26" , "r27" \
|
||||
)
|
||||
asm volatile ( \
|
||||
"clr r26 \n\t" \
|
||||
"mul %A1, %B2 \n\t" \
|
||||
"mov r27, r1 \n\t" \
|
||||
"mul %B1, %C2 \n\t" \
|
||||
"movw %A0, r0 \n\t" \
|
||||
"mul %C1, %C2 \n\t" \
|
||||
"add %B0, r0 \n\t" \
|
||||
"mul %C1, %B2 \n\t" \
|
||||
"add %A0, r0 \n\t" \
|
||||
"adc %B0, r1 \n\t" \
|
||||
"mul %A1, %C2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %B2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %C1, %A2 \n\t" \
|
||||
"add r27, r0 \n\t" \
|
||||
"adc %A0, r1 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"mul %B1, %A2 \n\t" \
|
||||
"add r27, r1 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"lsr r27 \n\t" \
|
||||
"adc %A0, r26 \n\t" \
|
||||
"adc %B0, r26 \n\t" \
|
||||
"clr r1 \n\t" \
|
||||
: \
|
||||
"=&r" (intRes) \
|
||||
: \
|
||||
"d" (longIn1), \
|
||||
"d" (longIn2) \
|
||||
: \
|
||||
"r26" , "r27" \
|
||||
)
|
||||
|
||||
// Some useful constants
|
||||
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
|
||||
#define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
|
||||
#define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
|
||||
|
||||
void endstops_hit_on_purpose() {
|
||||
endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
|
||||
}
|
||||
|
||||
void checkHitEndstops()
|
||||
{
|
||||
if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
|
||||
void checkHitEndstops() {
|
||||
if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
|
||||
if(endstop_x_hit) {
|
||||
SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
|
||||
if (endstop_x_hit) {
|
||||
SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
|
||||
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
|
||||
}
|
||||
if(endstop_y_hit) {
|
||||
SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
|
||||
if (endstop_y_hit) {
|
||||
SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
|
||||
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
|
||||
}
|
||||
if(endstop_z_hit) {
|
||||
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
|
||||
if (endstop_z_hit) {
|
||||
SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
|
||||
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
|
||||
}
|
||||
SERIAL_EOL;
|
||||
endstop_x_hit=false;
|
||||
endstop_y_hit=false;
|
||||
endstop_z_hit=false;
|
||||
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
|
||||
if (abort_on_endstop_hit)
|
||||
{
|
||||
|
||||
endstops_hit_on_purpose();
|
||||
|
||||
#if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
|
||||
if (abort_on_endstop_hit) {
|
||||
card.sdprinting = false;
|
||||
card.closefile();
|
||||
quickStop();
|
||||
|
@ -203,21 +251,11 @@ void checkHitEndstops()
|
|||
setTargetHotend3(0);
|
||||
setTargetBed(0);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void endstops_hit_on_purpose()
|
||||
{
|
||||
endstop_x_hit=false;
|
||||
endstop_y_hit=false;
|
||||
endstop_z_hit=false;
|
||||
}
|
||||
|
||||
void enable_endstops(bool check)
|
||||
{
|
||||
check_endstops = check;
|
||||
}
|
||||
void enable_endstops(bool check) { check_endstops = check; }
|
||||
|
||||
// __________________________
|
||||
// /| |\ _________________ ^
|
||||
|
@ -242,23 +280,23 @@ void st_wake_up() {
|
|||
|
||||
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
||||
unsigned short timer;
|
||||
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
||||
if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
|
||||
|
||||
if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = (step_rate >> 2)&0x3fff;
|
||||
if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
|
||||
step_rate = (step_rate >> 2) & 0x3fff;
|
||||
step_loops = 4;
|
||||
}
|
||||
else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = (step_rate >> 1)&0x7fff;
|
||||
else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
|
||||
step_rate = (step_rate >> 1) & 0x7fff;
|
||||
step_loops = 2;
|
||||
}
|
||||
else {
|
||||
step_loops = 1;
|
||||
}
|
||||
|
||||
if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
|
||||
step_rate -= (F_CPU/500000); // Correct for minimal speed
|
||||
if(step_rate >= (8*256)){ // higher step rate
|
||||
if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
|
||||
step_rate -= (F_CPU / 500000); // Correct for minimal speed
|
||||
if (step_rate >= (8 * 256)) { // higher step rate
|
||||
unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
|
||||
unsigned char tmp_step_rate = (step_rate & 0x00ff);
|
||||
unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
|
||||
|
@ -271,7 +309,7 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
|||
timer = (unsigned short)pgm_read_word_near(table_address);
|
||||
timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
|
||||
}
|
||||
if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
||||
if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
|
||||
return timer;
|
||||
}
|
||||
|
||||
|
@ -294,49 +332,45 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
|||
acceleration_time = calc_timer(acc_step_rate);
|
||||
OCR1A = acceleration_time;
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
|
||||
// SERIAL_ECHO_START;
|
||||
// SERIAL_ECHOPGM("advance :");
|
||||
// SERIAL_ECHO(current_block->advance/256.0);
|
||||
// SERIAL_ECHOPGM("advance rate :");
|
||||
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
||||
// SERIAL_ECHOPGM("initial advance :");
|
||||
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
||||
// SERIAL_ECHOPGM("final advance :");
|
||||
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
ISR(TIMER1_COMPA_vect)
|
||||
{
|
||||
ISR(TIMER1_COMPA_vect) {
|
||||
// If there is no current block, attempt to pop one from the buffer
|
||||
if (current_block == NULL) {
|
||||
if (!current_block) {
|
||||
// Anything in the buffer?
|
||||
current_block = plan_get_current_block();
|
||||
if (current_block != NULL) {
|
||||
if (current_block) {
|
||||
current_block->busy = true;
|
||||
trapezoid_generator_reset();
|
||||
counter_x = -(current_block->step_event_count >> 1);
|
||||
counter_y = counter_x;
|
||||
counter_z = counter_x;
|
||||
counter_e = counter_x;
|
||||
counter_y = counter_z = counter_e = counter_x;
|
||||
step_events_completed = 0;
|
||||
|
||||
#ifdef Z_LATE_ENABLE
|
||||
if(current_block->steps_z > 0) {
|
||||
if (current_block->steps_z > 0) {
|
||||
enable_z();
|
||||
OCR1A = 2000; //1ms wait
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
// #ifdef ADVANCE
|
||||
// e_steps[current_block->active_extruder] = 0;
|
||||
// #endif
|
||||
// #ifdef ADVANCE
|
||||
// e_steps[current_block->active_extruder] = 0;
|
||||
// #endif
|
||||
}
|
||||
else {
|
||||
OCR1A=2000; // 1kHz.
|
||||
OCR1A = 2000; // 1kHz.
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -344,68 +378,42 @@ ISR(TIMER1_COMPA_vect)
|
|||
// Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
|
||||
out_bits = current_block->direction_bits;
|
||||
|
||||
|
||||
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
||||
if((out_bits & (1<<X_AXIS))!=0){
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (extruder_duplication_enabled){
|
||||
X_DIR_WRITE(INVERT_X_DIR);
|
||||
X2_DIR_WRITE(INVERT_X_DIR);
|
||||
if (TEST(out_bits, X_AXIS)) {
|
||||
X_APPLY_DIR(INVERT_X_DIR,0);
|
||||
count_direction[X_AXIS] = -1;
|
||||
}
|
||||
else{
|
||||
if (current_block->active_extruder != 0)
|
||||
X2_DIR_WRITE(INVERT_X_DIR);
|
||||
else
|
||||
X_DIR_WRITE(INVERT_X_DIR);
|
||||
}
|
||||
#else
|
||||
X_DIR_WRITE(INVERT_X_DIR);
|
||||
#endif
|
||||
count_direction[X_AXIS]=-1;
|
||||
}
|
||||
else{
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (extruder_duplication_enabled){
|
||||
X_DIR_WRITE(!INVERT_X_DIR);
|
||||
X2_DIR_WRITE( !INVERT_X_DIR);
|
||||
}
|
||||
else{
|
||||
if (current_block->active_extruder != 0)
|
||||
X2_DIR_WRITE(!INVERT_X_DIR);
|
||||
else
|
||||
X_DIR_WRITE(!INVERT_X_DIR);
|
||||
}
|
||||
#else
|
||||
X_DIR_WRITE(!INVERT_X_DIR);
|
||||
#endif
|
||||
count_direction[X_AXIS]=1;
|
||||
}
|
||||
if((out_bits & (1<<Y_AXIS))!=0){
|
||||
Y_DIR_WRITE(INVERT_Y_DIR);
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
Y2_DIR_WRITE(!(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
||||
#endif
|
||||
|
||||
count_direction[Y_AXIS]=-1;
|
||||
}
|
||||
else{
|
||||
Y_DIR_WRITE(!INVERT_Y_DIR);
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
Y2_DIR_WRITE((INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
|
||||
#endif
|
||||
|
||||
count_direction[Y_AXIS]=1;
|
||||
else {
|
||||
X_APPLY_DIR(!INVERT_X_DIR,0);
|
||||
count_direction[X_AXIS] = 1;
|
||||
}
|
||||
|
||||
if(check_endstops) // check X and Y Endstops
|
||||
{
|
||||
if (TEST(out_bits, Y_AXIS)) {
|
||||
Y_APPLY_DIR(INVERT_Y_DIR,0);
|
||||
count_direction[Y_AXIS] = -1;
|
||||
}
|
||||
else {
|
||||
Y_APPLY_DIR(!INVERT_Y_DIR,0);
|
||||
count_direction[Y_AXIS] = 1;
|
||||
}
|
||||
|
||||
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
|
||||
bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
|
||||
if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
|
||||
endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
|
||||
endstop_## axis ##_hit = true; \
|
||||
step_events_completed = current_block->step_event_count; \
|
||||
} \
|
||||
old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
|
||||
|
||||
// Check X and Y endstops
|
||||
if (check_endstops) {
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
|
||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
|
||||
#else
|
||||
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
|
||||
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
|
||||
// Head direction in -X axis for CoreXY bots.
|
||||
// If DeltaX == -DeltaY, the movement is only in Y axis
|
||||
if (TEST(out_bits, X_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS))))
|
||||
#endif
|
||||
{ // -direction
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
|
@ -413,117 +421,71 @@ ISR(TIMER1_COMPA_vect)
|
|||
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
|
||||
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
|
||||
{
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_x_min_endstop = x_min_endstop;
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(x, X, min, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else
|
||||
{ // +direction
|
||||
else { // +direction
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
|
||||
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|
||||
#endif
|
||||
{
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
|
||||
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
|
||||
{
|
||||
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
||||
endstop_x_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_x_max_endstop = x_max_endstop;
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(x, X, max, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef COREXY
|
||||
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
|
||||
if (TEST(out_bits, Y_AXIS)) // -direction
|
||||
#else
|
||||
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
|
||||
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if (TEST(out_bits, Y_HEAD) && (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS))))
|
||||
#endif
|
||||
{ // -direction
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
|
||||
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
|
||||
{
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_y_min_endstop = y_min_endstop;
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(y, Y, min, MIN);
|
||||
#endif
|
||||
}
|
||||
else
|
||||
{ // +direction
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
|
||||
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
|
||||
{
|
||||
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
||||
endstop_y_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_y_max_endstop = y_max_endstop;
|
||||
else { // +direction
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(y, Y, max, MAX);
|
||||
#endif
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
||||
if (TEST(out_bits, Z_AXIS)) { // -direction
|
||||
Z_DIR_WRITE(INVERT_Z_DIR);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_DIR_WRITE(INVERT_Z_DIR);
|
||||
#endif
|
||||
|
||||
count_direction[Z_AXIS]=-1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
||||
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_z_min_endstop = z_min_endstop;
|
||||
count_direction[Z_AXIS] = -1;
|
||||
if (check_endstops) {
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
|
||||
UPDATE_ENDSTOP(z, Z, min, MIN);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else { // +direction
|
||||
Z_DIR_WRITE(!INVERT_Z_DIR);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_DIR_WRITE(!INVERT_Z_DIR);
|
||||
#endif
|
||||
|
||||
count_direction[Z_AXIS]=1;
|
||||
CHECK_ENDSTOPS
|
||||
{
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
|
||||
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_z_hit=true;
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
old_z_max_endstop = z_max_endstop;
|
||||
count_direction[Z_AXIS] = 1;
|
||||
if (check_endstops) {
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
|
||||
UPDATE_ENDSTOP(z, Z, max, MAX);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#ifndef ADVANCE
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
|
||||
if (TEST(out_bits, E_AXIS)) { // -direction
|
||||
REV_E_DIR();
|
||||
count_direction[E_AXIS]=-1;
|
||||
}
|
||||
|
@ -533,9 +495,8 @@ ISR(TIMER1_COMPA_vect)
|
|||
}
|
||||
#endif //!ADVANCE
|
||||
|
||||
|
||||
|
||||
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
||||
// Take multiple steps per interrupt (For high speed moves)
|
||||
for (int8_t i=0; i < step_loops; i++) {
|
||||
#ifndef AT90USB
|
||||
MSerial.checkRx(); // Check for serial chars.
|
||||
#endif
|
||||
|
@ -544,140 +505,63 @@ ISR(TIMER1_COMPA_vect)
|
|||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
||||
e_steps[current_block->active_extruder]--;
|
||||
}
|
||||
else {
|
||||
e_steps[current_block->active_extruder]++;
|
||||
}
|
||||
e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
|
||||
}
|
||||
#endif //ADVANCE
|
||||
|
||||
counter_x += current_block->steps_x;
|
||||
|
||||
#ifdef CONFIG_STEPPERS_TOSHIBA
|
||||
/* The Toshiba stepper controller require much longer pulses.
|
||||
#ifdef CONFIG_STEPPERS_TOSHIBA
|
||||
/**
|
||||
* The Toshiba stepper controller require much longer pulses.
|
||||
* So we 'stage' decompose the pulses between high and low
|
||||
* instead of doing each in turn. The extra tests add enough
|
||||
* lag to allow it work with without needing NOPs
|
||||
*/
|
||||
counter_x += current_block->steps_x;
|
||||
if (counter_x > 0) X_STEP_WRITE(HIGH);
|
||||
|
||||
counter_y += current_block->steps_y;
|
||||
if (counter_y > 0) Y_STEP_WRITE(HIGH);
|
||||
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) Z_STEP_WRITE(HIGH);
|
||||
|
||||
#ifndef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) WRITE_E_STEP(HIGH);
|
||||
#endif //!ADVANCE
|
||||
if (counter_e > 0) E_STEP_WRITE(HIGH);
|
||||
#endif
|
||||
|
||||
if (counter_x > 0) {
|
||||
counter_x -= current_block->step_event_count;
|
||||
count_position[X_AXIS] += count_direction[X_AXIS];
|
||||
X_STEP_WRITE(LOW);
|
||||
}
|
||||
|
||||
if (counter_y > 0) {
|
||||
counter_y -= current_block->step_event_count;
|
||||
count_position[Y_AXIS] += count_direction[Y_AXIS];
|
||||
Y_STEP_WRITE( LOW);
|
||||
}
|
||||
|
||||
if (counter_z > 0) {
|
||||
counter_z -= current_block->step_event_count;
|
||||
count_position[Z_AXIS] += count_direction[Z_AXIS];
|
||||
Z_STEP_WRITE(LOW);
|
||||
#define STEP_IF_COUNTER(axis, AXIS) \
|
||||
if (counter_## axis > 0) {
|
||||
counter_## axis -= current_block->step_event_count; \
|
||||
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
|
||||
AXIS ##_STEP_WRITE(LOW);
|
||||
}
|
||||
|
||||
STEP_IF_COUNTER(x, X);
|
||||
STEP_IF_COUNTER(y, Y);
|
||||
STEP_IF_COUNTER(z, Z);
|
||||
#ifndef ADVANCE
|
||||
if (counter_e > 0) {
|
||||
counter_e -= current_block->step_event_count;
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
WRITE_E_STEP(LOW);
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
#else
|
||||
if (counter_x > 0) {
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (extruder_duplication_enabled){
|
||||
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
||||
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
|
||||
}
|
||||
else {
|
||||
if (current_block->active_extruder != 0)
|
||||
X2_STEP_WRITE( !INVERT_X_STEP_PIN);
|
||||
else
|
||||
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
||||
}
|
||||
#else
|
||||
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
||||
#endif
|
||||
counter_x -= current_block->step_event_count;
|
||||
count_position[X_AXIS] += count_direction[X_AXIS];
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
if (extruder_duplication_enabled){
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
X2_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
}
|
||||
else {
|
||||
if (current_block->active_extruder != 0)
|
||||
X2_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
else
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
}
|
||||
#else
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
#endif
|
||||
}
|
||||
|
||||
counter_y += current_block->steps_y;
|
||||
if (counter_y > 0) {
|
||||
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
|
||||
STEP_IF_COUNTER(e, E);
|
||||
#endif
|
||||
|
||||
counter_y -= current_block->step_event_count;
|
||||
count_position[Y_AXIS] += count_direction[Y_AXIS];
|
||||
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
#else // !CONFIG_STEPPERS_TOSHIBA
|
||||
|
||||
#ifdef Y_DUAL_STEPPER_DRIVERS
|
||||
Y2_STEP_WRITE( INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
}
|
||||
|
||||
counter_z += current_block->steps_z;
|
||||
if (counter_z > 0) {
|
||||
Z_STEP_WRITE( !INVERT_Z_STEP_PIN);
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
|
||||
counter_z -= current_block->step_event_count;
|
||||
count_position[Z_AXIS] += count_direction[Z_AXIS];
|
||||
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
|
||||
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
#define APPLY_MOVEMENT(axis, AXIS) \
|
||||
counter_## axis += current_block->steps_## axis; \
|
||||
if (counter_## axis > 0) { \
|
||||
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
|
||||
counter_## axis -= current_block->step_event_count; \
|
||||
count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
|
||||
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
|
||||
}
|
||||
|
||||
APPLY_MOVEMENT(x, X);
|
||||
APPLY_MOVEMENT(y, Y);
|
||||
APPLY_MOVEMENT(z, Z);
|
||||
#ifndef ADVANCE
|
||||
counter_e += current_block->steps_e;
|
||||
if (counter_e > 0) {
|
||||
WRITE_E_STEP(!INVERT_E_STEP_PIN);
|
||||
counter_e -= current_block->step_event_count;
|
||||
count_position[E_AXIS] += count_direction[E_AXIS];
|
||||
WRITE_E_STEP(INVERT_E_STEP_PIN);
|
||||
}
|
||||
#endif //!ADVANCE
|
||||
#endif // CONFIG_STEPPERS_TOSHIBA
|
||||
step_events_completed += 1;
|
||||
if(step_events_completed >= current_block->step_event_count) break;
|
||||
APPLY_MOVEMENT(e, E);
|
||||
#endif
|
||||
|
||||
#endif // CONFIG_STEPPERS_TOSHIBA
|
||||
step_events_completed++;
|
||||
if (step_events_completed >= current_block->step_event_count) break;
|
||||
}
|
||||
// Calculare new timer value
|
||||
unsigned short timer;
|
||||
|
@ -688,7 +572,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
acc_step_rate += current_block->initial_rate;
|
||||
|
||||
// upper limit
|
||||
if(acc_step_rate > current_block->nominal_rate)
|
||||
if (acc_step_rate > current_block->nominal_rate)
|
||||
acc_step_rate = current_block->nominal_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
|
@ -699,7 +583,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
for(int8_t i=0; i < step_loops; i++) {
|
||||
advance += advance_rate;
|
||||
}
|
||||
//if(advance > current_block->advance) advance = current_block->advance;
|
||||
//if (advance > current_block->advance) advance = current_block->advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
|
@ -709,7 +593,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
||||
MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
|
||||
|
||||
if(step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||
if (step_rate > acc_step_rate) { // Check step_rate stays positive
|
||||
step_rate = current_block->final_rate;
|
||||
}
|
||||
else {
|
||||
|
@ -717,7 +601,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
}
|
||||
|
||||
// lower limit
|
||||
if(step_rate < current_block->final_rate)
|
||||
if (step_rate < current_block->final_rate)
|
||||
step_rate = current_block->final_rate;
|
||||
|
||||
// step_rate to timer interval
|
||||
|
@ -728,7 +612,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
for(int8_t i=0; i < step_loops; i++) {
|
||||
advance -= advance_rate;
|
||||
}
|
||||
if(advance < final_advance) advance = final_advance;
|
||||
if (advance < final_advance) advance = final_advance;
|
||||
// Do E steps + advance steps
|
||||
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
|
||||
old_advance = advance >>8;
|
||||
|
@ -759,7 +643,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
// Set E direction (Depends on E direction + advance)
|
||||
for(unsigned char i=0; i<4;i++) {
|
||||
if (e_steps[0] != 0) {
|
||||
E0_STEP_WRITE( INVERT_E_STEP_PIN);
|
||||
E0_STEP_WRITE(INVERT_E_STEP_PIN);
|
||||
if (e_steps[0] < 0) {
|
||||
E0_DIR_WRITE(INVERT_E0_DIR);
|
||||
e_steps[0]++;
|
||||
|
@ -821,8 +705,7 @@ ISR(TIMER1_COMPA_vect)
|
|||
}
|
||||
#endif // ADVANCE
|
||||
|
||||
void st_init()
|
||||
{
|
||||
void st_init() {
|
||||
digipot_init(); //Initialize Digipot Motor Current
|
||||
microstep_init(); //Initialize Microstepping Pins
|
||||
|
||||
|
@ -835,186 +718,173 @@ void st_init()
|
|||
L6470_init();
|
||||
#endif
|
||||
|
||||
|
||||
//Initialize Dir Pins
|
||||
#if defined(X_DIR_PIN) && X_DIR_PIN > -1
|
||||
// Initialize Dir Pins
|
||||
#if defined(X_DIR_PIN) && X_DIR_PIN >= 0
|
||||
X_DIR_INIT;
|
||||
#endif
|
||||
#if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
|
||||
#if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
|
||||
X2_DIR_INIT;
|
||||
#endif
|
||||
#if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
|
||||
#if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
|
||||
Y_DIR_INIT;
|
||||
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
|
||||
Y2_DIR_INIT;
|
||||
#endif
|
||||
#endif
|
||||
#if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
|
||||
#if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
|
||||
Z_DIR_INIT;
|
||||
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
|
||||
Z2_DIR_INIT;
|
||||
#endif
|
||||
#endif
|
||||
#if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
|
||||
#if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
|
||||
E0_DIR_INIT;
|
||||
#endif
|
||||
#if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
|
||||
#if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
|
||||
E1_DIR_INIT;
|
||||
#endif
|
||||
#if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
|
||||
#if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
|
||||
E2_DIR_INIT;
|
||||
#endif
|
||||
#if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
|
||||
#if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
|
||||
E3_DIR_INIT;
|
||||
#endif
|
||||
|
||||
//Initialize Enable Pins - steppers default to disabled.
|
||||
|
||||
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
|
||||
#if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
|
||||
X_ENABLE_INIT;
|
||||
if(!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
||||
if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
|
||||
#if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
|
||||
X2_ENABLE_INIT;
|
||||
if(!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
||||
if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
|
||||
#if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
|
||||
Y_ENABLE_INIT;
|
||||
if(!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
||||
if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
|
||||
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
|
||||
Y2_ENABLE_INIT;
|
||||
if(!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
||||
if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#endif
|
||||
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
|
||||
#if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
|
||||
Z_ENABLE_INIT;
|
||||
if(!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
||||
if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
|
||||
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
|
||||
Z2_ENABLE_INIT;
|
||||
if(!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
||||
if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#endif
|
||||
#if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
|
||||
#if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
|
||||
E0_ENABLE_INIT;
|
||||
if(!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
||||
if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
|
||||
#if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
|
||||
E1_ENABLE_INIT;
|
||||
if(!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
||||
if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
|
||||
#if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
|
||||
E2_ENABLE_INIT;
|
||||
if(!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
||||
if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
#if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
|
||||
#if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
|
||||
E3_ENABLE_INIT;
|
||||
if(!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
||||
if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
|
||||
#endif
|
||||
|
||||
//endstops and pullups
|
||||
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
|
||||
#if defined(X_MIN_PIN) && X_MIN_PIN >= 0
|
||||
SET_INPUT(X_MIN_PIN);
|
||||
#ifdef ENDSTOPPULLUP_XMIN
|
||||
WRITE(X_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
|
||||
#if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
|
||||
SET_INPUT(Y_MIN_PIN);
|
||||
#ifdef ENDSTOPPULLUP_YMIN
|
||||
WRITE(Y_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
|
||||
#if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
|
||||
SET_INPUT(Z_MIN_PIN);
|
||||
#ifdef ENDSTOPPULLUP_ZMIN
|
||||
WRITE(Z_MIN_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
|
||||
#if defined(X_MAX_PIN) && X_MAX_PIN >= 0
|
||||
SET_INPUT(X_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_XMAX
|
||||
WRITE(X_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
|
||||
#if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
|
||||
SET_INPUT(Y_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_YMAX
|
||||
WRITE(Y_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
|
||||
#if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
|
||||
SET_INPUT(Z_MAX_PIN);
|
||||
#ifdef ENDSTOPPULLUP_ZMAX
|
||||
WRITE(Z_MAX_PIN,HIGH);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#define AXIS_INIT(axis, AXIS, PIN) \
|
||||
AXIS ##_STEP_INIT; \
|
||||
AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
|
||||
disable_## axis()
|
||||
|
||||
//Initialize Step Pins
|
||||
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
|
||||
X_STEP_INIT;
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
disable_x();
|
||||
#define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
|
||||
|
||||
// Initialize Step Pins
|
||||
#if defined(X_STEP_PIN) && X_STEP_PIN >= 0
|
||||
AXIS_INIT(x, X, X);
|
||||
#endif
|
||||
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
|
||||
X2_STEP_INIT;
|
||||
X2_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
disable_x();
|
||||
#if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
|
||||
AXIS_INIT(x, X2, X);
|
||||
#endif
|
||||
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
|
||||
Y_STEP_INIT;
|
||||
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
|
||||
#if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
|
||||
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
|
||||
Y2_STEP_INIT;
|
||||
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
disable_y();
|
||||
AXIS_INIT(y, Y, Y);
|
||||
#endif
|
||||
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
|
||||
Z_STEP_INIT;
|
||||
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
|
||||
#if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
|
||||
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
|
||||
Z2_STEP_INIT;
|
||||
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
disable_z();
|
||||
AXIS_INIT(z, Z, Z);
|
||||
#endif
|
||||
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
|
||||
E0_STEP_INIT;
|
||||
E0_STEP_WRITE(INVERT_E_STEP_PIN);
|
||||
disable_e0();
|
||||
#if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
|
||||
E_AXIS_INIT(0);
|
||||
#endif
|
||||
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
|
||||
E1_STEP_INIT;
|
||||
E1_STEP_WRITE(INVERT_E_STEP_PIN);
|
||||
disable_e1();
|
||||
#if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
|
||||
E_AXIS_INIT(1);
|
||||
#endif
|
||||
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
|
||||
E2_STEP_INIT;
|
||||
E2_STEP_WRITE(INVERT_E_STEP_PIN);
|
||||
disable_e2();
|
||||
#if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
|
||||
E_AXIS_INIT(2);
|
||||
#endif
|
||||
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
|
||||
E3_STEP_INIT;
|
||||
E3_STEP_WRITE(INVERT_E_STEP_PIN);
|
||||
disable_e3();
|
||||
#if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
|
||||
E_AXIS_INIT(3);
|
||||
#endif
|
||||
|
||||
// waveform generation = 0100 = CTC
|
||||
TCCR1B &= ~(1<<WGM13);
|
||||
TCCR1B |= (1<<WGM12);
|
||||
TCCR1A &= ~(1<<WGM11);
|
||||
TCCR1A &= ~(1<<WGM10);
|
||||
TCCR1B &= ~BIT(WGM13);
|
||||
TCCR1B |= BIT(WGM12);
|
||||
TCCR1A &= ~BIT(WGM11);
|
||||
TCCR1A &= ~BIT(WGM10);
|
||||
|
||||
// output mode = 00 (disconnected)
|
||||
TCCR1A &= ~(3<<COM1A0);
|
||||
|
@ -1033,14 +903,14 @@ void st_init()
|
|||
|
||||
#ifdef ADVANCE
|
||||
#if defined(TCCR0A) && defined(WGM01)
|
||||
TCCR0A &= ~(1<<WGM01);
|
||||
TCCR0A &= ~(1<<WGM00);
|
||||
TCCR0A &= ~BIT(WGM01);
|
||||
TCCR0A &= ~BIT(WGM00);
|
||||
#endif
|
||||
e_steps[0] = 0;
|
||||
e_steps[1] = 0;
|
||||
e_steps[2] = 0;
|
||||
e_steps[3] = 0;
|
||||
TIMSK0 |= (1<<OCIE0A);
|
||||
TIMSK0 |= BIT(OCIE0A);
|
||||
#endif //ADVANCE
|
||||
|
||||
enable_endstops(true); // Start with endstops active. After homing they can be disabled
|
||||
|
@ -1049,17 +919,15 @@ void st_init()
|
|||
|
||||
|
||||
// Block until all buffered steps are executed
|
||||
void st_synchronize()
|
||||
{
|
||||
while( blocks_queued()) {
|
||||
void st_synchronize() {
|
||||
while (blocks_queued()) {
|
||||
manage_heater();
|
||||
manage_inactivity();
|
||||
lcd_update();
|
||||
}
|
||||
}
|
||||
|
||||
void st_set_position(const long &x, const long &y, const long &z, const long &e)
|
||||
{
|
||||
void st_set_position(const long &x, const long &y, const long &z, const long &e) {
|
||||
CRITICAL_SECTION_START;
|
||||
count_position[X_AXIS] = x;
|
||||
count_position[Y_AXIS] = y;
|
||||
|
@ -1068,15 +936,13 @@ void st_set_position(const long &x, const long &y, const long &z, const long &e)
|
|||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
void st_set_e_position(const long &e)
|
||||
{
|
||||
void st_set_e_position(const long &e) {
|
||||
CRITICAL_SECTION_START;
|
||||
count_position[E_AXIS] = e;
|
||||
CRITICAL_SECTION_END;
|
||||
}
|
||||
|
||||
long st_get_position(uint8_t axis)
|
||||
{
|
||||
long st_get_position(uint8_t axis) {
|
||||
long count_pos;
|
||||
CRITICAL_SECTION_START;
|
||||
count_pos = count_position[axis];
|
||||
|
@ -1085,15 +951,15 @@ long st_get_position(uint8_t axis)
|
|||
}
|
||||
|
||||
#ifdef ENABLE_AUTO_BED_LEVELING
|
||||
float st_get_position_mm(uint8_t axis)
|
||||
{
|
||||
|
||||
float st_get_position_mm(uint8_t axis) {
|
||||
float steper_position_in_steps = st_get_position(axis);
|
||||
return steper_position_in_steps / axis_steps_per_unit[axis];
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ENABLE_AUTO_BED_LEVELING
|
||||
|
||||
void finishAndDisableSteppers()
|
||||
{
|
||||
void finishAndDisableSteppers() {
|
||||
st_synchronize();
|
||||
disable_x();
|
||||
disable_y();
|
||||
|
@ -1104,162 +970,85 @@ void finishAndDisableSteppers()
|
|||
disable_e3();
|
||||
}
|
||||
|
||||
void quickStop()
|
||||
{
|
||||
void quickStop() {
|
||||
DISABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
while(blocks_queued())
|
||||
plan_discard_current_block();
|
||||
while (blocks_queued()) plan_discard_current_block();
|
||||
current_block = NULL;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
}
|
||||
|
||||
#ifdef BABYSTEPPING
|
||||
|
||||
// MUST ONLY BE CALLED BY AN ISR,
|
||||
// No other ISR should ever interrupt this!
|
||||
void babystep(const uint8_t axis, const bool direction) {
|
||||
|
||||
#define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
|
||||
enable_## axis(); \
|
||||
uint8_t old_pin = AXIS ##_DIR_READ; \
|
||||
AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
|
||||
AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
|
||||
_delay_us(1U); \
|
||||
AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
|
||||
AXIS ##_APPLY_DIR(old_pin, true); \
|
||||
}
|
||||
|
||||
switch(axis) {
|
||||
|
||||
void babystep(const uint8_t axis,const bool direction)
|
||||
{
|
||||
//MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
|
||||
//store initial pin states
|
||||
switch(axis)
|
||||
{
|
||||
case X_AXIS:
|
||||
{
|
||||
BABYSTEP_AXIS(x, X, false);
|
||||
break;
|
||||
|
||||
case Y_AXIS:
|
||||
BABYSTEP_AXIS(y, Y, false);
|
||||
break;
|
||||
|
||||
case Z_AXIS: {
|
||||
|
||||
#ifndef DELTA
|
||||
|
||||
BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
|
||||
|
||||
#else // DELTA
|
||||
|
||||
bool z_direction = direction ^ BABYSTEP_INVERT_Z;
|
||||
|
||||
enable_x();
|
||||
uint8_t old_x_dir_pin= X_DIR_READ; //if dualzstepper, both point to same direction.
|
||||
|
||||
enable_y();
|
||||
enable_z();
|
||||
uint8_t old_x_dir_pin = X_DIR_READ,
|
||||
old_y_dir_pin = Y_DIR_READ,
|
||||
old_z_dir_pin = Z_DIR_READ;
|
||||
//setup new step
|
||||
X_DIR_WRITE((INVERT_X_DIR)^direction);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
X2_DIR_WRITE((INVERT_X_DIR)^direction);
|
||||
#endif
|
||||
|
||||
X_DIR_WRITE(INVERT_X_DIR^z_direction);
|
||||
Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
|
||||
Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
|
||||
//perform step
|
||||
X_STEP_WRITE(!INVERT_X_STEP_PIN);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
X2_STEP_WRITE(!INVERT_X_STEP_PIN);
|
||||
#endif
|
||||
|
||||
_delay_us(1U); // wait 1 microsecond
|
||||
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
X2_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
#endif
|
||||
|
||||
//get old pin state back.
|
||||
X_DIR_WRITE(old_x_dir_pin);
|
||||
#ifdef DUAL_X_CARRIAGE
|
||||
X2_DIR_WRITE(old_x_dir_pin);
|
||||
#endif
|
||||
|
||||
}
|
||||
break;
|
||||
case Y_AXIS:
|
||||
{
|
||||
enable_y();
|
||||
uint8_t old_y_dir_pin= Y_DIR_READ; //if dualzstepper, both point to same direction.
|
||||
|
||||
//setup new step
|
||||
Y_DIR_WRITE((INVERT_Y_DIR)^direction);
|
||||
#ifdef DUAL_Y_CARRIAGE
|
||||
Y2_DIR_WRITE((INVERT_Y_DIR)^direction);
|
||||
#endif
|
||||
|
||||
//perform step
|
||||
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
||||
#ifdef DUAL_Y_CARRIAGE
|
||||
Y2_STEP_WRITE( !INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
|
||||
_delay_us(1U); // wait 1 microsecond
|
||||
|
||||
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
#ifdef DUAL_Y_CARRIAGE
|
||||
Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
#endif
|
||||
|
||||
//get old pin state back.
|
||||
Y_DIR_WRITE(old_y_dir_pin);
|
||||
#ifdef DUAL_Y_CARRIAGE
|
||||
Y2_DIR_WRITE(old_y_dir_pin);
|
||||
#endif
|
||||
|
||||
}
|
||||
break;
|
||||
|
||||
#ifndef DELTA
|
||||
case Z_AXIS:
|
||||
{
|
||||
enable_z();
|
||||
uint8_t old_z_dir_pin= Z_DIR_READ; //if dualzstepper, both point to same direction.
|
||||
//setup new step
|
||||
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
|
||||
#endif
|
||||
//perform step
|
||||
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_STEP_WRITE( !INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
|
||||
_delay_us(1U); // wait 1 microsecond
|
||||
|
||||
Z_STEP_WRITE( INVERT_Z_STEP_PIN);
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
|
||||
#endif
|
||||
|
||||
//get old pin state back.
|
||||
Z_DIR_WRITE(old_z_dir_pin);
|
||||
#ifdef Z_DUAL_STEPPER_DRIVERS
|
||||
Z2_DIR_WRITE(old_z_dir_pin);
|
||||
#endif
|
||||
|
||||
}
|
||||
break;
|
||||
#else //DELTA
|
||||
case Z_AXIS:
|
||||
{
|
||||
enable_x();
|
||||
enable_y();
|
||||
enable_z();
|
||||
uint8_t old_x_dir_pin= X_DIR_READ;
|
||||
uint8_t old_y_dir_pin= Y_DIR_READ;
|
||||
uint8_t old_z_dir_pin= Z_DIR_READ;
|
||||
//setup new step
|
||||
X_DIR_WRITE((INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
|
||||
Y_DIR_WRITE((INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
|
||||
Z_DIR_WRITE((INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
|
||||
|
||||
//perform step
|
||||
X_STEP_WRITE( !INVERT_X_STEP_PIN);
|
||||
Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
|
||||
Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
|
||||
|
||||
_delay_us(1U); // wait 1 microsecond
|
||||
|
||||
_delay_us(1U);
|
||||
X_STEP_WRITE(INVERT_X_STEP_PIN);
|
||||
Y_STEP_WRITE(INVERT_Y_STEP_PIN);
|
||||
Z_STEP_WRITE(INVERT_Z_STEP_PIN);
|
||||
|
||||
//get old pin state back.
|
||||
X_DIR_WRITE(old_x_dir_pin);
|
||||
Y_DIR_WRITE(old_y_dir_pin);
|
||||
Z_DIR_WRITE(old_z_dir_pin);
|
||||
|
||||
}
|
||||
break;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
} break;
|
||||
|
||||
default: break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif //BABYSTEPPING
|
||||
|
||||
void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
|
||||
{
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
// From Arduino DigitalPotControl example
|
||||
void digitalPotWrite(int address, int value) {
|
||||
#if HAS_DIGIPOTSS
|
||||
digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
|
||||
SPI.transfer(address); // send in the address and value via SPI:
|
||||
SPI.transfer(value);
|
||||
|
@ -1268,16 +1057,17 @@ void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl e
|
|||
#endif
|
||||
}
|
||||
|
||||
void digipot_init() //Initialize Digipot Motor Current
|
||||
{
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
// Initialize Digipot Motor Current
|
||||
void digipot_init() {
|
||||
#if HAS_DIGIPOTSS
|
||||
const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
|
||||
|
||||
SPI.begin();
|
||||
pinMode(DIGIPOTSS_PIN, OUTPUT);
|
||||
for(int i=0;i<=4;i++)
|
||||
for (int i = 0; i <= 4; i++) {
|
||||
//digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
|
||||
digipot_current(i,digipot_motor_current[i]);
|
||||
}
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
||||
pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
|
||||
|
@ -1291,29 +1081,29 @@ void digipot_init() //Initialize Digipot Motor Current
|
|||
#endif
|
||||
}
|
||||
|
||||
void digipot_current(uint8_t driver, int current)
|
||||
{
|
||||
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
|
||||
void digipot_current(uint8_t driver, int current) {
|
||||
#if HAS_DIGIPOTSS
|
||||
const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
|
||||
digitalPotWrite(digipot_ch[driver], current);
|
||||
#endif
|
||||
#ifdef MOTOR_CURRENT_PWM_XY_PIN
|
||||
if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
|
||||
if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
|
||||
if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
|
||||
switch(driver) {
|
||||
case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
|
||||
case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
|
||||
case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
void microstep_init()
|
||||
{
|
||||
void microstep_init() {
|
||||
const uint8_t microstep_modes[] = MICROSTEP_MODES;
|
||||
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||
pinMode(E1_MS1_PIN,OUTPUT);
|
||||
pinMode(E1_MS2_PIN,OUTPUT);
|
||||
#endif
|
||||
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
|
||||
#if defined(X_MS1_PIN) && X_MS1_PIN >= 0
|
||||
pinMode(X_MS1_PIN,OUTPUT);
|
||||
pinMode(X_MS2_PIN,OUTPUT);
|
||||
pinMode(Y_MS1_PIN,OUTPUT);
|
||||
|
@ -1322,38 +1112,33 @@ void microstep_init()
|
|||
pinMode(Z_MS2_PIN,OUTPUT);
|
||||
pinMode(E0_MS1_PIN,OUTPUT);
|
||||
pinMode(E0_MS2_PIN,OUTPUT);
|
||||
for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
|
||||
for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
|
||||
#endif
|
||||
}
|
||||
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
|
||||
{
|
||||
if(ms1 > -1) switch(driver)
|
||||
{
|
||||
case 0: digitalWrite( X_MS1_PIN,ms1); break;
|
||||
case 1: digitalWrite( Y_MS1_PIN,ms1); break;
|
||||
case 2: digitalWrite( Z_MS1_PIN,ms1); break;
|
||||
case 3: digitalWrite(E0_MS1_PIN,ms1); break;
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
|
||||
case 4: digitalWrite(E1_MS1_PIN,ms1); break;
|
||||
void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
|
||||
if (ms1 >= 0) switch(driver) {
|
||||
case 0: digitalWrite(X_MS1_PIN, ms1); break;
|
||||
case 1: digitalWrite(Y_MS1_PIN, ms1); break;
|
||||
case 2: digitalWrite(Z_MS1_PIN, ms1); break;
|
||||
case 3: digitalWrite(E0_MS1_PIN, ms1); break;
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||
case 4: digitalWrite(E1_MS1_PIN, ms1); break;
|
||||
#endif
|
||||
}
|
||||
if(ms2 > -1) switch(driver)
|
||||
{
|
||||
case 0: digitalWrite( X_MS2_PIN,ms2); break;
|
||||
case 1: digitalWrite( Y_MS2_PIN,ms2); break;
|
||||
case 2: digitalWrite( Z_MS2_PIN,ms2); break;
|
||||
case 3: digitalWrite(E0_MS2_PIN,ms2); break;
|
||||
#if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
|
||||
case 4: digitalWrite(E1_MS2_PIN,ms2); break;
|
||||
if (ms2 >= 0) switch(driver) {
|
||||
case 0: digitalWrite(X_MS2_PIN, ms2); break;
|
||||
case 1: digitalWrite(Y_MS2_PIN, ms2); break;
|
||||
case 2: digitalWrite(Z_MS2_PIN, ms2); break;
|
||||
case 3: digitalWrite(E0_MS2_PIN, ms2); break;
|
||||
#if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
|
||||
case 4: digitalWrite(E1_MS2_PIN, ms2); break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping_mode)
|
||||
{
|
||||
switch(stepping_mode)
|
||||
{
|
||||
void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
|
||||
switch(stepping_mode) {
|
||||
case 1: microstep_ms(driver,MICROSTEP1); break;
|
||||
case 2: microstep_ms(driver,MICROSTEP2); break;
|
||||
case 4: microstep_ms(driver,MICROSTEP4); break;
|
||||
|
@ -1362,24 +1147,23 @@ void microstep_mode(uint8_t driver, uint8_t stepping_mode)
|
|||
}
|
||||
}
|
||||
|
||||
void microstep_readings()
|
||||
{
|
||||
void microstep_readings() {
|
||||
SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
|
||||
SERIAL_PROTOCOLPGM("X: ");
|
||||
SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
|
||||
SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
|
||||
SERIAL_PROTOCOLPGM("Y: ");
|
||||
SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
|
||||
SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
|
||||
SERIAL_PROTOCOLPGM("Z: ");
|
||||
SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
|
||||
SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
|
||||
SERIAL_PROTOCOLPGM("E0: ");
|
||||
SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
|
||||
SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
|
||||
#if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
|
||||
SERIAL_PROTOCOLPGM("E1: ");
|
||||
SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
|
||||
SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
|
||||
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -25,26 +25,26 @@
|
|||
#include "stepper_indirection.h"
|
||||
|
||||
#if EXTRUDERS > 3
|
||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
||||
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 3) { E3_STEP_WRITE(v); } else { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}}
|
||||
#define NORM_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE( !INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}}
|
||||
#define REV_E_DIR() { if(current_block->active_extruder == 3) { E3_DIR_WRITE(INVERT_E3_DIR); } else { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}}
|
||||
#elif EXTRUDERS > 2
|
||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
||||
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 2) { E2_STEP_WRITE(v); } else { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}}
|
||||
#define NORM_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(!INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}}
|
||||
#define REV_E_DIR() { if(current_block->active_extruder == 2) { E2_DIR_WRITE(INVERT_E2_DIR); } else { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}}
|
||||
#elif EXTRUDERS > 1
|
||||
#ifndef DUAL_X_CARRIAGE
|
||||
#define WRITE_E_STEP(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define E_STEP_WRITE(v) { if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define NORM_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
||||
#define REV_E_DIR() { if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
||||
#else
|
||||
extern bool extruder_duplication_enabled;
|
||||
#define WRITE_E_STEP(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define E_STEP_WRITE(v) { if(extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if(current_block->active_extruder == 1) { E1_STEP_WRITE(v); } else { E0_STEP_WRITE(v); }}
|
||||
#define NORM_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(!INVERT_E1_DIR); } else { E0_DIR_WRITE(!INVERT_E0_DIR); }}
|
||||
#define REV_E_DIR() { if(extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if(current_block->active_extruder == 1) { E1_DIR_WRITE(INVERT_E1_DIR); } else { E0_DIR_WRITE(INVERT_E0_DIR); }}
|
||||
#endif
|
||||
#else
|
||||
#define WRITE_E_STEP(v) E0_STEP_WRITE(v)
|
||||
#define E_STEP_WRITE(v) E0_STEP_WRITE(v)
|
||||
#define NORM_E_DIR() E0_DIR_WRITE(!INVERT_E0_DIR)
|
||||
#define REV_E_DIR() E0_DIR_WRITE(INVERT_E0_DIR)
|
||||
#endif
|
||||
|
|
|
@ -75,6 +75,10 @@
|
|||
//============================= public variables ============================
|
||||
//===========================================================================
|
||||
|
||||
#ifdef K1 // Defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
#endif
|
||||
|
||||
// Sampling period of the temperature routine
|
||||
#ifdef PID_dT
|
||||
#undef PID_dT
|
||||
|
@ -127,8 +131,6 @@ static volatile bool temp_meas_ready = false;
|
|||
static float pid_error[EXTRUDERS];
|
||||
static float temp_iState_min[EXTRUDERS];
|
||||
static float temp_iState_max[EXTRUDERS];
|
||||
// static float pid_input[EXTRUDERS];
|
||||
// static float pid_output[EXTRUDERS];
|
||||
static bool pid_reset[EXTRUDERS];
|
||||
#endif //PIDTEMP
|
||||
#ifdef PIDTEMPBED
|
||||
|
@ -546,12 +548,102 @@ void bed_max_temp_error(void) {
|
|||
_temp_error(-1, MSG_MAXTEMP_BED_OFF, MSG_ERR_MAXTEMP_BED);
|
||||
}
|
||||
|
||||
float get_pid_output(int e) {
|
||||
float pid_output;
|
||||
#ifdef PIDTEMP
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error[e] = target_temperature[e] - current_temperature[e];
|
||||
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
||||
pid_output = BANG_MAX;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
||||
pid_output = 0;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else {
|
||||
if (pid_reset[e]) {
|
||||
temp_iState[e] = 0.0;
|
||||
pid_reset[e] = false;
|
||||
}
|
||||
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
|
||||
temp_iState[e] += pid_error[e];
|
||||
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
||||
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
|
||||
|
||||
dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
|
||||
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
|
||||
if (pid_output > PID_MAX) {
|
||||
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = PID_MAX;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
}
|
||||
temp_dState[e] = current_temperature[e];
|
||||
#else
|
||||
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||||
#endif //PID_OPENLOOP
|
||||
|
||||
#ifdef PID_DEBUG
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_PID_DEBUG);
|
||||
SERIAL_ECHO(e);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
|
||||
SERIAL_ECHO(current_temperature[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
|
||||
SERIAL_ECHO(pid_output);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
|
||||
SERIAL_ECHO(pTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
|
||||
SERIAL_ECHO(iTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
|
||||
SERIAL_ECHOLN(dTerm[e]);
|
||||
#endif //PID_DEBUG
|
||||
|
||||
#else /* PID off */
|
||||
pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
|
||||
#endif
|
||||
|
||||
return pid_output;
|
||||
}
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
float get_pid_output_bed() {
|
||||
float pid_output;
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error_bed = target_temperature_bed - current_temperature_bed;
|
||||
pTerm_bed = bedKp * pid_error_bed;
|
||||
temp_iState_bed += pid_error_bed;
|
||||
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
||||
iTerm_bed = bedKi * temp_iState_bed;
|
||||
|
||||
dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
|
||||
temp_dState_bed = current_temperature_bed;
|
||||
|
||||
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
||||
if (pid_output > MAX_BED_POWER) {
|
||||
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = MAX_BED_POWER;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
#else
|
||||
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
||||
#endif // PID_OPENLOOP
|
||||
|
||||
return pid_output;
|
||||
}
|
||||
#endif
|
||||
|
||||
void manage_heater() {
|
||||
|
||||
if (!temp_meas_ready) return;
|
||||
|
||||
float pid_input, pid_output;
|
||||
|
||||
updateTemperaturesFromRawValues();
|
||||
|
||||
#ifdef HEATER_0_USES_MAX6675
|
||||
|
@ -569,69 +661,7 @@ void manage_heater() {
|
|||
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
|
||||
#endif
|
||||
|
||||
#ifdef PIDTEMP
|
||||
pid_input = current_temperature[e];
|
||||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error[e] = target_temperature[e] - pid_input;
|
||||
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
||||
pid_output = BANG_MAX;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
||||
pid_output = 0;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else {
|
||||
if (pid_reset[e] == true) {
|
||||
temp_iState[e] = 0.0;
|
||||
pid_reset[e] = false;
|
||||
}
|
||||
pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
|
||||
temp_iState[e] += pid_error[e];
|
||||
temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
|
||||
iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
|
||||
|
||||
//K1 defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e])) * K2 + (K1 * dTerm[e]);
|
||||
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
|
||||
if (pid_output > PID_MAX) {
|
||||
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = PID_MAX;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
}
|
||||
temp_dState[e] = pid_input;
|
||||
#else
|
||||
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||||
#endif //PID_OPENLOOP
|
||||
|
||||
#ifdef PID_DEBUG
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(MSG_PID_DEBUG);
|
||||
SERIAL_ECHO(e);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
|
||||
SERIAL_ECHO(pid_input);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
|
||||
SERIAL_ECHO(pid_output);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
|
||||
SERIAL_ECHO(pTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
|
||||
SERIAL_ECHO(iTerm[e]);
|
||||
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
|
||||
SERIAL_ECHOLN(dTerm[e]);
|
||||
#endif //PID_DEBUG
|
||||
|
||||
#else /* PID off */
|
||||
|
||||
pid_output = 0;
|
||||
if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX;
|
||||
|
||||
#endif
|
||||
float pid_output = get_pid_output(e);
|
||||
|
||||
// Check if temperature is within the correct range
|
||||
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
|
||||
|
@ -678,33 +708,7 @@ void manage_heater() {
|
|||
#endif
|
||||
|
||||
#ifdef PIDTEMPBED
|
||||
pid_input = current_temperature_bed;
|
||||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error_bed = target_temperature_bed - pid_input;
|
||||
pTerm_bed = bedKp * pid_error_bed;
|
||||
temp_iState_bed += pid_error_bed;
|
||||
temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
|
||||
iTerm_bed = bedKi * temp_iState_bed;
|
||||
|
||||
//K1 defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
dTerm_bed = (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
|
||||
temp_dState_bed = pid_input;
|
||||
|
||||
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
||||
if (pid_output > MAX_BED_POWER) {
|
||||
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = MAX_BED_POWER;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
|
||||
#else
|
||||
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
||||
#endif //PID_OPENLOOP
|
||||
float pid_output = get_pid_output_bed();
|
||||
|
||||
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
|
||||
|
||||
|
@ -878,8 +882,8 @@ void tp_init()
|
|||
{
|
||||
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||||
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
||||
MCUCR=(1<<JTD);
|
||||
MCUCR=(1<<JTD);
|
||||
MCUCR=BIT(JTD);
|
||||
MCUCR=BIT(JTD);
|
||||
#endif
|
||||
|
||||
// Finish init of mult extruder arrays
|
||||
|
@ -937,13 +941,13 @@ void tp_init()
|
|||
#endif //HEATER_0_USES_MAX6675
|
||||
|
||||
#ifdef DIDR2
|
||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
|
||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
|
||||
#else
|
||||
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
|
||||
#define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
|
||||
#endif
|
||||
|
||||
// Set analog inputs
|
||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
||||
ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
|
||||
DIDR0 = 0;
|
||||
#ifdef DIDR2
|
||||
DIDR2 = 0;
|
||||
|
@ -970,7 +974,7 @@ void tp_init()
|
|||
// Use timer0 for temperature measurement
|
||||
// Interleave temperature interrupt with millies interrupt
|
||||
OCR0B = 128;
|
||||
TIMSK0 |= (1<<OCIE0B);
|
||||
TIMSK0 |= BIT(OCIE0B);
|
||||
|
||||
// Wait for temperature measurement to settle
|
||||
delay(250);
|
||||
|
@ -1174,12 +1178,12 @@ void disable_heater() {
|
|||
max6675_temp = 0;
|
||||
|
||||
#ifdef PRR
|
||||
PRR &= ~(1<<PRSPI);
|
||||
PRR &= ~BIT(PRSPI);
|
||||
#elif defined(PRR0)
|
||||
PRR0 &= ~(1<<PRSPI);
|
||||
PRR0 &= ~BIT(PRSPI);
|
||||
#endif
|
||||
|
||||
SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
|
||||
SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
|
||||
|
||||
// enable TT_MAX6675
|
||||
WRITE(MAX6675_SS, 0);
|
||||
|
@ -1190,13 +1194,13 @@ void disable_heater() {
|
|||
|
||||
// read MSB
|
||||
SPDR = 0;
|
||||
for (;(SPSR & (1<<SPIF)) == 0;);
|
||||
for (;(SPSR & BIT(SPIF)) == 0;);
|
||||
max6675_temp = SPDR;
|
||||
max6675_temp <<= 8;
|
||||
|
||||
// read LSB
|
||||
SPDR = 0;
|
||||
for (;(SPSR & (1<<SPIF)) == 0;);
|
||||
for (;(SPSR & BIT(SPIF)) == 0;);
|
||||
max6675_temp |= SPDR;
|
||||
|
||||
// disable TT_MAX6675
|
||||
|
@ -1246,7 +1250,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
static unsigned long raw_temp_3_value = 0;
|
||||
static unsigned long raw_temp_bed_value = 0;
|
||||
static TempState temp_state = StartupDelay;
|
||||
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
|
||||
static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
|
||||
|
||||
// Static members for each heater
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
|
@ -1331,7 +1335,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
||||
#endif
|
||||
|
||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
||||
pwm_count += BIT(SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
|
||||
#else // SLOW_PWM_HEATERS
|
||||
|
@ -1412,7 +1416,7 @@ ISR(TIMER0_COMPB_vect) {
|
|||
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
|
||||
#endif //FAN_SOFT_PWM
|
||||
|
||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
||||
pwm_count += BIT(SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
|
||||
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
||||
|
@ -1438,9 +1442,9 @@ ISR(TIMER0_COMPB_vect) {
|
|||
|
||||
#endif // SLOW_PWM_HEATERS
|
||||
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
|
||||
#ifdef MUX5
|
||||
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#else
|
||||
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#endif
|
||||
|
|
|
@ -1426,7 +1426,7 @@ void lcd_buttons_update() {
|
|||
WRITE(SHIFT_LD, HIGH);
|
||||
for(int8_t i = 0; i < 8; i++) {
|
||||
newbutton_reprapworld_keypad >>= 1;
|
||||
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7);
|
||||
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= BIT(7);
|
||||
WRITE(SHIFT_CLK, HIGH);
|
||||
WRITE(SHIFT_CLK, LOW);
|
||||
}
|
||||
|
@ -1439,7 +1439,7 @@ void lcd_buttons_update() {
|
|||
unsigned char tmp_buttons = 0;
|
||||
for(int8_t i=0; i<8; i++) {
|
||||
newbutton >>= 1;
|
||||
if (READ(SHIFT_OUT)) newbutton |= (1 << 7);
|
||||
if (READ(SHIFT_OUT)) newbutton |= BIT(7);
|
||||
WRITE(SHIFT_CLK, HIGH);
|
||||
WRITE(SHIFT_CLK, LOW);
|
||||
}
|
||||
|
|
|
@ -57,20 +57,20 @@
|
|||
void lcd_ignore_click(bool b=true);
|
||||
|
||||
#ifdef NEWPANEL
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_C BIT(BLEN_C)
|
||||
#define EN_B BIT(BLEN_B)
|
||||
#define EN_A BIT(BLEN_A)
|
||||
|
||||
#define LCD_CLICKED (buttons&EN_C)
|
||||
#ifdef REPRAPWORLD_KEYPAD
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<BLEN_REPRAPWORLD_KEYPAD_F3)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<BLEN_REPRAPWORLD_KEYPAD_F2)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<BLEN_REPRAPWORLD_KEYPAD_F1)
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP (1<<BLEN_REPRAPWORLD_KEYPAD_UP)
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 BIT(BLEN_REPRAPWORLD_KEYPAD_F3)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 BIT(BLEN_REPRAPWORLD_KEYPAD_F2)
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 BIT(BLEN_REPRAPWORLD_KEYPAD_F1)
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP BIT(BLEN_REPRAPWORLD_KEYPAD_UP)
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT(BLEN_REPRAPWORLD_KEYPAD_RIGHT)
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT(BLEN_REPRAPWORLD_KEYPAD_MIDDLE)
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT(BLEN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT(BLEN_REPRAPWORLD_KEYPAD_LEFT)
|
||||
|
||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F1))
|
||||
#define REPRAPWORLD_KEYPAD_MOVE_Z_UP (buttons_reprapworld_keypad&EN_REPRAPWORLD_KEYPAD_F2)
|
||||
|
@ -83,14 +83,14 @@
|
|||
#endif //REPRAPWORLD_KEYPAD
|
||||
#else
|
||||
//atomic, do not change
|
||||
#define B_LE (1<<BL_LE)
|
||||
#define B_UP (1<<BL_UP)
|
||||
#define B_MI (1<<BL_MI)
|
||||
#define B_DW (1<<BL_DW)
|
||||
#define B_RI (1<<BL_RI)
|
||||
#define B_ST (1<<BL_ST)
|
||||
#define EN_B (1<<BLEN_B)
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define B_LE BIT(BL_LE)
|
||||
#define B_UP BIT(BL_UP)
|
||||
#define B_MI BIT(BL_MI)
|
||||
#define B_DW BIT(BL_DW)
|
||||
#define B_RI BIT(BL_RI)
|
||||
#define B_ST BIT(BL_ST)
|
||||
#define EN_B BIT(BLEN_B)
|
||||
#define EN_A BIT(BLEN_A)
|
||||
|
||||
#define LCD_CLICKED ((buttons&B_MI)||(buttons&B_ST))
|
||||
#endif//NEWPANEL
|
||||
|
|
|
@ -24,13 +24,13 @@
|
|||
#define BLEN_B 1
|
||||
#define BLEN_A 0
|
||||
|
||||
#define EN_B (1<<BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
|
||||
#define EN_A (1<<BLEN_A)
|
||||
#define EN_B BIT(BLEN_B) // The two encoder pins are connected through BTN_EN1 and BTN_EN2
|
||||
#define EN_A BIT(BLEN_A)
|
||||
|
||||
#if defined(BTN_ENC) && BTN_ENC > -1
|
||||
// encoder click is directly connected
|
||||
#define BLEN_C 2
|
||||
#define EN_C (1<<BLEN_C)
|
||||
#define EN_C BIT(BLEN_C)
|
||||
#endif
|
||||
|
||||
//
|
||||
|
@ -85,14 +85,14 @@
|
|||
|
||||
#define REPRAPWORLD_BTN_OFFSET 3 // bit offset into buttons for shift register values
|
||||
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 (1<<(BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 (1<<(BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 (1<<(BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP (1<<(BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT (1<<(BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE (1<<(BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN (1<<(BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT (1<<(BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F3 BIT((BLEN_REPRAPWORLD_KEYPAD_F3+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F2 BIT((BLEN_REPRAPWORLD_KEYPAD_F2+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_F1 BIT((BLEN_REPRAPWORLD_KEYPAD_F1+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_UP BIT((BLEN_REPRAPWORLD_KEYPAD_UP+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_RIGHT BIT((BLEN_REPRAPWORLD_KEYPAD_RIGHT+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_MIDDLE BIT((BLEN_REPRAPWORLD_KEYPAD_MIDDLE+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_DOWN BIT((BLEN_REPRAPWORLD_KEYPAD_DOWN+REPRAPWORLD_BTN_OFFSET))
|
||||
#define EN_REPRAPWORLD_KEYPAD_LEFT BIT((BLEN_REPRAPWORLD_KEYPAD_LEFT+REPRAPWORLD_BTN_OFFSET))
|
||||
|
||||
#define LCD_CLICKED ((buttons&EN_C) || (buttons&EN_REPRAPWORLD_KEYPAD_F1))
|
||||
#define REPRAPWORLD_KEYPAD_MOVE_Y_DOWN (buttons&EN_REPRAPWORLD_KEYPAD_DOWN)
|
||||
|
@ -113,12 +113,12 @@
|
|||
#define BL_ST 2
|
||||
|
||||
//automatic, do not change
|
||||
#define B_LE (1<<BL_LE)
|
||||
#define B_UP (1<<BL_UP)
|
||||
#define B_MI (1<<BL_MI)
|
||||
#define B_DW (1<<BL_DW)
|
||||
#define B_RI (1<<BL_RI)
|
||||
#define B_ST (1<<BL_ST)
|
||||
#define B_LE BIT(BL_LE)
|
||||
#define B_UP BIT(BL_UP)
|
||||
#define B_MI BIT(BL_MI)
|
||||
#define B_DW BIT(BL_DW)
|
||||
#define B_RI BIT(BL_RI)
|
||||
#define B_ST BIT(BL_ST)
|
||||
|
||||
#define LCD_CLICKED (buttons&(B_MI|B_ST))
|
||||
#endif
|
||||
|
|
|
@ -27,9 +27,15 @@ static void ST7920_SWSPI_SND_8BIT(uint8_t val)
|
|||
for( i=0; i<8; i++ )
|
||||
{
|
||||
WRITE(ST7920_CLK_PIN,0);
|
||||
#if F_CPU == 20000000
|
||||
__asm__("nop\n\t");
|
||||
#endif
|
||||
WRITE(ST7920_DAT_PIN,val&0x80);
|
||||
val<<=1;
|
||||
WRITE(ST7920_CLK_PIN,1);
|
||||
#if F_CPU == 20000000
|
||||
__asm__("nop\n\t""nop\n\t");
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -79,11 +79,11 @@ void vector_3::debug(char* title)
|
|||
{
|
||||
SERIAL_PROTOCOL(title);
|
||||
SERIAL_PROTOCOLPGM(" x: ");
|
||||
SERIAL_PROTOCOL(x);
|
||||
SERIAL_PROTOCOL_F(x, 6);
|
||||
SERIAL_PROTOCOLPGM(" y: ");
|
||||
SERIAL_PROTOCOL(y);
|
||||
SERIAL_PROTOCOL_F(y, 6);
|
||||
SERIAL_PROTOCOLPGM(" z: ");
|
||||
SERIAL_PROTOCOL(z);
|
||||
SERIAL_PROTOCOL_F(z, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
|
||||
|
@ -150,7 +150,7 @@ void matrix_3x3::debug(char* title) {
|
|||
int count = 0;
|
||||
for(int i=0; i<3; i++) {
|
||||
for(int j=0; j<3; j++) {
|
||||
SERIAL_PROTOCOL(matrix[count] + 0.0001);
|
||||
SERIAL_PROTOCOL_F(matrix[count], 6);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
count++;
|
||||
}
|
||||
|
|
Reference in a new issue