Macros to loop over axes
This commit is contained in:
parent
a3b5d5eb65
commit
4e67a85a5d
4 changed files with 32 additions and 30 deletions
|
@ -1524,8 +1524,7 @@ static void set_axis_is_at_home(AxisEnum axis) {
|
||||||
if (axis == X_AXIS || axis == Y_AXIS) {
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
||||||
|
|
||||||
float homeposition[3];
|
float homeposition[3];
|
||||||
for (uint8_t i = X_AXIS; i <= Z_AXIS; i++)
|
LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
||||||
homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
|
|
||||||
|
|
||||||
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
||||||
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
||||||
|
@ -2597,7 +2596,7 @@ static void homeaxis(AxisEnum axis) {
|
||||||
* - Set the feedrate, if included
|
* - Set the feedrate, if included
|
||||||
*/
|
*/
|
||||||
void gcode_get_destination() {
|
void gcode_get_destination() {
|
||||||
for (int i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
if (code_seen(axis_codes[i]))
|
if (code_seen(axis_codes[i]))
|
||||||
destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
||||||
else
|
else
|
||||||
|
@ -3900,7 +3899,7 @@ inline void gcode_G92() {
|
||||||
if (!didE) stepper.synchronize();
|
if (!didE) stepper.synchronize();
|
||||||
|
|
||||||
bool didXYZ = false;
|
bool didXYZ = false;
|
||||||
for (int i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
if (code_seen(axis_codes[i])) {
|
if (code_seen(axis_codes[i])) {
|
||||||
float p = current_position[i],
|
float p = current_position[i],
|
||||||
v = code_value_axis_units(i);
|
v = code_value_axis_units(i);
|
||||||
|
@ -5147,7 +5146,7 @@ inline void gcode_M85() {
|
||||||
* (Follows the same syntax as G92)
|
* (Follows the same syntax as G92)
|
||||||
*/
|
*/
|
||||||
inline void gcode_M92() {
|
inline void gcode_M92() {
|
||||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
if (code_seen(axis_codes[i])) {
|
if (code_seen(axis_codes[i])) {
|
||||||
if (i == E_AXIS) {
|
if (i == E_AXIS) {
|
||||||
float value = code_value_per_axis_unit(i);
|
float value = code_value_per_axis_unit(i);
|
||||||
|
@ -5339,7 +5338,7 @@ inline void gcode_M200() {
|
||||||
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||||
*/
|
*/
|
||||||
inline void gcode_M201() {
|
inline void gcode_M201() {
|
||||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
if (code_seen(axis_codes[i])) {
|
if (code_seen(axis_codes[i])) {
|
||||||
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
|
planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
|
||||||
}
|
}
|
||||||
|
@ -5350,7 +5349,7 @@ inline void gcode_M201() {
|
||||||
|
|
||||||
#if 0 // Not used for Sprinter/grbl gen6
|
#if 0 // Not used for Sprinter/grbl gen6
|
||||||
inline void gcode_M202() {
|
inline void gcode_M202() {
|
||||||
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
|
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -5361,7 +5360,7 @@ inline void gcode_M201() {
|
||||||
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
||||||
*/
|
*/
|
||||||
inline void gcode_M203() {
|
inline void gcode_M203() {
|
||||||
for (int8_t i = 0; i < NUM_AXIS; i++)
|
LOOP_XYZE(i)
|
||||||
if (code_seen(axis_codes[i]))
|
if (code_seen(axis_codes[i]))
|
||||||
planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
|
planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
|
||||||
}
|
}
|
||||||
|
@ -5421,7 +5420,7 @@ inline void gcode_M205() {
|
||||||
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
||||||
*/
|
*/
|
||||||
inline void gcode_M206() {
|
inline void gcode_M206() {
|
||||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
|
LOOP_XYZ(i)
|
||||||
if (code_seen(axis_codes[i]))
|
if (code_seen(axis_codes[i]))
|
||||||
set_home_offset((AxisEnum)i, code_value_axis_units(i));
|
set_home_offset((AxisEnum)i, code_value_axis_units(i));
|
||||||
|
|
||||||
|
@ -5463,7 +5462,7 @@ inline void gcode_M206() {
|
||||||
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
||||||
}
|
}
|
||||||
#endif
|
#endif
|
||||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
LOOP_XYZ(i) {
|
||||||
if (code_seen(axis_codes[i])) {
|
if (code_seen(axis_codes[i])) {
|
||||||
endstop_adj[i] = code_value_axis_units(i);
|
endstop_adj[i] = code_value_axis_units(i);
|
||||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||||
|
@ -5955,7 +5954,7 @@ inline void gcode_M303() {
|
||||||
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
||||||
*/
|
*/
|
||||||
inline void gcode_M365() {
|
inline void gcode_M365() {
|
||||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
|
LOOP_XYZ(i)
|
||||||
if (code_seen(axis_codes[i]))
|
if (code_seen(axis_codes[i]))
|
||||||
axis_scaling[i] = code_value_float();
|
axis_scaling[i] = code_value_float();
|
||||||
}
|
}
|
||||||
|
@ -6155,7 +6154,7 @@ void quickstop_stepper() {
|
||||||
*/
|
*/
|
||||||
inline void gcode_M428() {
|
inline void gcode_M428() {
|
||||||
bool err = false;
|
bool err = false;
|
||||||
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
LOOP_XYZ(i) {
|
||||||
if (axis_homed[i]) {
|
if (axis_homed[i]) {
|
||||||
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
|
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
|
||||||
diff = current_position[i] - LOGICAL_POSITION(base, i);
|
diff = current_position[i] - LOGICAL_POSITION(base, i);
|
||||||
|
@ -6285,7 +6284,7 @@ inline void gcode_M503() {
|
||||||
float lastpos[NUM_AXIS];
|
float lastpos[NUM_AXIS];
|
||||||
|
|
||||||
// Save current position of all axes
|
// Save current position of all axes
|
||||||
for (uint8_t i = 0; i < NUM_AXIS; i++)
|
LOOP_XYZE(i)
|
||||||
lastpos[i] = destination[i] = current_position[i];
|
lastpos[i] = destination[i] = current_position[i];
|
||||||
|
|
||||||
// Define runplan for move axes
|
// Define runplan for move axes
|
||||||
|
@ -6506,7 +6505,7 @@ inline void gcode_M503() {
|
||||||
*/
|
*/
|
||||||
inline void gcode_M907() {
|
inline void gcode_M907() {
|
||||||
#if HAS_DIGIPOTSS
|
#if HAS_DIGIPOTSS
|
||||||
for (int i = 0; i < NUM_AXIS; i++)
|
LOOP_XYZE(i)
|
||||||
if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
|
if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
|
||||||
if (code_seen('B')) stepper.digipot_current(4, code_value_int());
|
if (code_seen('B')) stepper.digipot_current(4, code_value_int());
|
||||||
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
|
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
|
||||||
|
@ -6522,7 +6521,7 @@ inline void gcode_M907() {
|
||||||
#endif
|
#endif
|
||||||
#if ENABLED(DIGIPOT_I2C)
|
#if ENABLED(DIGIPOT_I2C)
|
||||||
// this one uses actual amps in floating point
|
// this one uses actual amps in floating point
|
||||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
|
||||||
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
||||||
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
|
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
|
||||||
#endif
|
#endif
|
||||||
|
@ -6531,7 +6530,7 @@ inline void gcode_M907() {
|
||||||
float dac_percent = code_value_float();
|
float dac_percent = code_value_float();
|
||||||
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
||||||
}
|
}
|
||||||
for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -6570,7 +6569,7 @@ inline void gcode_M907() {
|
||||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||||
inline void gcode_M350() {
|
inline void gcode_M350() {
|
||||||
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
|
if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
|
||||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
|
||||||
if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
|
if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
|
||||||
stepper.microstep_readings();
|
stepper.microstep_readings();
|
||||||
}
|
}
|
||||||
|
@ -6582,11 +6581,11 @@ inline void gcode_M907() {
|
||||||
inline void gcode_M351() {
|
inline void gcode_M351() {
|
||||||
if (code_seen('S')) switch (code_value_byte()) {
|
if (code_seen('S')) switch (code_value_byte()) {
|
||||||
case 1:
|
case 1:
|
||||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
|
||||||
if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
|
if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
|
||||||
break;
|
break;
|
||||||
case 2:
|
case 2:
|
||||||
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
|
LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
|
||||||
if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
|
if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
@ -8013,7 +8012,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
||||||
|
|
||||||
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
|
inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
|
||||||
float difference[NUM_AXIS];
|
float difference[NUM_AXIS];
|
||||||
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
|
LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
|
||||||
|
|
||||||
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
||||||
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
||||||
|
@ -8031,7 +8030,7 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_
|
||||||
|
|
||||||
float fraction = float(s) * inv_steps;
|
float fraction = float(s) * inv_steps;
|
||||||
|
|
||||||
for (int8_t i = 0; i < NUM_AXIS; i++)
|
LOOP_XYZE(i)
|
||||||
target[i] = current_position[i] + difference[i] * fraction;
|
target[i] = current_position[i] + difference[i] * fraction;
|
||||||
|
|
||||||
inverse_kinematics(target);
|
inverse_kinematics(target);
|
||||||
|
|
|
@ -563,7 +563,7 @@ void Config_ResetDefault() {
|
||||||
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
|
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
|
||||||
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
float tmp2[] = DEFAULT_MAX_FEEDRATE;
|
||||||
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
long tmp3[] = DEFAULT_MAX_ACCELERATION;
|
||||||
for (uint8_t i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
planner.axis_steps_per_mm[i] = tmp1[i];
|
planner.axis_steps_per_mm[i] = tmp1[i];
|
||||||
planner.max_feedrate_mm_s[i] = tmp2[i];
|
planner.max_feedrate_mm_s[i] = tmp2[i];
|
||||||
planner.max_acceleration_mm_per_s2[i] = tmp3[i];
|
planner.max_acceleration_mm_per_s2[i] = tmp3[i];
|
||||||
|
|
|
@ -45,6 +45,9 @@ enum AxisEnum {
|
||||||
Z_HEAD = 5
|
Z_HEAD = 5
|
||||||
};
|
};
|
||||||
|
|
||||||
|
#define LOOP_XYZ(VAR) for (uint8_t VAR=X_AXIS; VAR<=Z_AXIS; VAR++)
|
||||||
|
#define LOOP_XYZE(VAR) for (uint8_t VAR=X_AXIS; VAR<=E_AXIS; VAR++)
|
||||||
|
|
||||||
typedef enum {
|
typedef enum {
|
||||||
LINEARUNIT_MM,
|
LINEARUNIT_MM,
|
||||||
LINEARUNIT_INCH
|
LINEARUNIT_INCH
|
||||||
|
|
|
@ -134,7 +134,7 @@ Planner::Planner() { init(); }
|
||||||
void Planner::init() {
|
void Planner::init() {
|
||||||
block_buffer_head = block_buffer_tail = 0;
|
block_buffer_head = block_buffer_tail = 0;
|
||||||
memset(position, 0, sizeof(position)); // clear position
|
memset(position, 0, sizeof(position)); // clear position
|
||||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
||||||
previous_nominal_speed = 0.0;
|
previous_nominal_speed = 0.0;
|
||||||
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
||||||
bed_level_matrix.set_to_identity();
|
bed_level_matrix.set_to_identity();
|
||||||
|
@ -423,7 +423,7 @@ void Planner::check_axes_activity() {
|
||||||
|
|
||||||
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
|
||||||
block = &block_buffer[b];
|
block = &block_buffer[b];
|
||||||
for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
|
LOOP_XYZE(i) if (block->steps[i]) axis_active[i]++;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
#if ENABLED(DISABLE_X)
|
#if ENABLED(DISABLE_X)
|
||||||
|
@ -893,7 +893,7 @@ void Planner::check_axes_activity() {
|
||||||
// Calculate and limit speed in mm/sec for each axis
|
// Calculate and limit speed in mm/sec for each axis
|
||||||
float current_speed[NUM_AXIS];
|
float current_speed[NUM_AXIS];
|
||||||
float speed_factor = 1.0; //factor <=1 do decrease speed
|
float speed_factor = 1.0; //factor <=1 do decrease speed
|
||||||
for (int i = 0; i < NUM_AXIS; i++) {
|
LOOP_XYZE(i) {
|
||||||
current_speed[i] = delta_mm[i] * inverse_second;
|
current_speed[i] = delta_mm[i] * inverse_second;
|
||||||
float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
|
float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
|
||||||
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
|
if (cs > mf) speed_factor = min(speed_factor, mf / cs);
|
||||||
|
@ -939,7 +939,7 @@ void Planner::check_axes_activity() {
|
||||||
|
|
||||||
// Correct the speed
|
// Correct the speed
|
||||||
if (speed_factor < 1.0) {
|
if (speed_factor < 1.0) {
|
||||||
for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
|
LOOP_XYZE(i) current_speed[i] *= speed_factor;
|
||||||
block->nominal_speed *= speed_factor;
|
block->nominal_speed *= speed_factor;
|
||||||
block->nominal_rate *= speed_factor;
|
block->nominal_rate *= speed_factor;
|
||||||
}
|
}
|
||||||
|
@ -1051,7 +1051,7 @@ void Planner::check_axes_activity() {
|
||||||
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
block->recalculate_flag = true; // Always calculate trapezoid for new block
|
||||||
|
|
||||||
// Update previous path unit_vector and nominal speed
|
// Update previous path unit_vector and nominal speed
|
||||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
|
LOOP_XYZE(i) previous_speed[i] = current_speed[i];
|
||||||
previous_nominal_speed = block->nominal_speed;
|
previous_nominal_speed = block->nominal_speed;
|
||||||
|
|
||||||
#if ENABLED(LIN_ADVANCE)
|
#if ENABLED(LIN_ADVANCE)
|
||||||
|
@ -1098,7 +1098,7 @@ void Planner::check_axes_activity() {
|
||||||
block_buffer_head = next_buffer_head;
|
block_buffer_head = next_buffer_head;
|
||||||
|
|
||||||
// Update position
|
// Update position
|
||||||
for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
|
LOOP_XYZE(i) position[i] = target[i];
|
||||||
|
|
||||||
recalculate();
|
recalculate();
|
||||||
|
|
||||||
|
@ -1155,7 +1155,7 @@ void Planner::check_axes_activity() {
|
||||||
stepper.set_position(nx, ny, nz, ne);
|
stepper.set_position(nx, ny, nz, ne);
|
||||||
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
|
||||||
|
|
||||||
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0;
|
LOOP_XYZE(i) previous_speed[i] = 0.0;
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -1168,7 +1168,7 @@ void Planner::set_e_position_mm(const float& e) {
|
||||||
|
|
||||||
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
|
||||||
void Planner::reset_acceleration_rates() {
|
void Planner::reset_acceleration_rates() {
|
||||||
for (int i = 0; i < NUM_AXIS; i++)
|
LOOP_XYZE(i)
|
||||||
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Reference in a new issue