Implement Dry-Run mode in G29

It just probe all the bed without appliying the matrix.
Useful after a first G29 to check the topology.
This commit is contained in:
alexborro 2015-03-25 11:12:30 -03:00
parent 80ae160c26
commit 55025558dc

View file

@ -1168,6 +1168,7 @@ static void run_z_probe() {
zPosition += home_retract_mm(Z_AXIS); zPosition += home_retract_mm(Z_AXIS);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
endstops_hit_on_purpose();
// move back down slowly to find bed // move back down slowly to find bed
@ -1185,6 +1186,7 @@ static void run_z_probe() {
zPosition -= home_retract_mm(Z_AXIS) * 2; zPosition -= home_retract_mm(Z_AXIS) * 2;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
st_synchronize(); st_synchronize();
endstops_hit_on_purpose();
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS); current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
// make sure the planner knows where we are as it may be a bit different than we last said to move to // make sure the planner knows where we are as it may be a bit different than we last said to move to
@ -1389,11 +1391,11 @@ static float probe_pt(float x, float y, float z_before, ProbeAction retract_acti
if (verbose_level > 2) { if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(MSG_BED); SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" X: "); SERIAL_PROTOCOLPGM(" X: ");
SERIAL_PROTOCOL(x + 0.0001); SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(y + 0.0001); SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(measured_z + 0.0001); SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL; SERIAL_EOL;
} }
return measured_z; return measured_z;
@ -2109,6 +2111,9 @@ inline void gcode_G28() {
* *
* S Set the XY travel speed between probe points (in mm/min) * S Set the XY travel speed between probe points (in mm/min)
* *
* D Dry-Run mode. Just evaluate the bed Topology - It does not apply or clean the rotation Matrix
* Useful to check the topology after a first run of G29.
*
* V Set the verbose level (0-4). Example: "G29 V3" * V Set the verbose level (0-4). Example: "G29 V3"
* *
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
@ -2150,6 +2155,7 @@ inline void gcode_G28() {
} }
} }
bool dryrun = code_seen('D') || code_seen('d');
bool enhanced_g29 = code_seen('E') || code_seen('e'); bool enhanced_g29 = code_seen('E') || code_seen('e');
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
@ -2159,7 +2165,10 @@ inline void gcode_G28() {
#endif #endif
if (verbose_level > 0) if (verbose_level > 0)
{
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n"); SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
}
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS; int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
#ifndef DELTA #ifndef DELTA
@ -2216,6 +2225,8 @@ inline void gcode_G28() {
st_synchronize(); st_synchronize();
if (!dryrun)
{
#ifdef DELTA #ifdef DELTA
reset_bed_level(); reset_bed_level();
#else #else
@ -2226,11 +2237,14 @@ inline void gcode_G28() {
plan_bed_level_matrix.set_to_identity(); plan_bed_level_matrix.set_to_identity();
vector_3 uncorrected_position = plan_get_position(); vector_3 uncorrected_position = plan_get_position();
// uncorrected_position.debug("position during G29"); // uncorrected_position.debug("position during G29");
current_position[X_AXIS] = uncorrected_position.x; current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y; current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z; current_position[Z_AXIS] = uncorrected_position.z;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif #endif
}
setup_for_endstop_move(); setup_for_endstop_move();
@ -2381,12 +2395,12 @@ inline void gcode_G28() {
} //do_topography_map } //do_topography_map
set_bed_level_equation_lsq(plane_equation_coefficients); if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients); free(plane_equation_coefficients);
#else #else //Delta
extrapolate_unprobed_bed_level(); if (!dryrun) extrapolate_unprobed_bed_level();
print_bed_level(); print_bed_level();
#endif #endif //Delta
#else // !AUTO_BED_LEVELING_GRID #else // !AUTO_BED_LEVELING_GRID
@ -2405,17 +2419,18 @@ inline void gcode_G28() {
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level); z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeEngageAndRetract, verbose_level);
} }
clean_up_after_endstop_move(); clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID #endif // !AUTO_BED_LEVELING_GRID
#ifndef DELTA #ifndef DELTA
if (verbose_level > 0) if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
// Correct the Z height difference from z-probe position and hotend tip position. // Correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected. // When the bed is uneven, this height must be corrected.
if (!dryrun)
{
real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane) real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER; x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER; y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
@ -2424,6 +2439,7 @@ inline void gcode_G28() {
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#endif #endif
#ifdef Z_PROBE_SLED #ifdef Z_PROBE_SLED