Merge pull request #8115 from thinkyhead/bf2_autotune_G33

[2.0.x] G33 Autotune calibration update
This commit is contained in:
Scott Lahteine 2017-10-27 02:42:17 -05:00 committed by GitHub
commit 55653dce63
8 changed files with 354 additions and 156 deletions

View file

@ -13,4 +13,3 @@ Configuration files for Micromake C1 with…
- 128 STEPS configured with jumper on the motherboard (all open for 128 Steps).
- Capacitive Probe (Adjust offsets at your convenience)
- French language with no accents for Japanese LCD.

View file

@ -496,6 +496,12 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A1'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

View file

@ -496,6 +496,12 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A1'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

View file

@ -486,6 +486,12 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A1'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

View file

@ -486,6 +486,12 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A1'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

View file

@ -472,6 +472,12 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A1'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

View file

@ -490,6 +490,12 @@
#if ENABLED(DELTA_AUTO_CALIBRATION)
// set the default number of probe points : n*n (1 -> 7)
#define DELTA_CALIBRATION_DEFAULT_POINTS 4
// Enable and set these values based on results of 'G33 A1'
//#define H_FACTOR 1.01
//#define R_FACTOR 2.61
//#define A_FACTOR 0.87
#endif
#if ENABLED(DELTA_AUTO_CALIBRATION) || ENABLED(DELTA_CALIBRATION_MENU)

View file

@ -37,35 +37,6 @@
#include "../../feature/bedlevel/bedlevel.h"
#endif
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, endstops, delta radius, and tower angles.
*
* Parameters:
*
* Pn Number of probe points:
*
* P0 No probe. Normalize only.
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops, and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P7 Probe all positions at different locations and average them.
*
* T0 Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and takes the best result
*
* Vn Verbose level:
*
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
*
* E Engage the probe for each point
*/
static void print_signed_float(const char * const prefix, const float &f) {
SERIAL_PROTOCOLPGM(" ");
serialprintPGM(prefix);
@ -80,18 +51,52 @@ static void print_G33_settings(const bool end_stops, const bool tower_angles) {
print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
if (end_stops && tower_angles) {
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
if (tower_angles) {
SERIAL_PROTOCOLPGM(".Tower angle : ");
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
}
if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
}
SERIAL_EOL();
}
static void print_G33_results(const float z_at_pt[13], const bool tower_points, const bool opposite_points) {
SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_at_pt[0]);
if (tower_points) {
print_signed_float(PSTR(" x"), z_at_pt[1]);
print_signed_float(PSTR(" y"), z_at_pt[5]);
print_signed_float(PSTR(" z"), z_at_pt[9]);
}
if (tower_points && opposite_points) {
SERIAL_EOL();
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
if (opposite_points) {
print_signed_float(PSTR("yz"), z_at_pt[7]);
print_signed_float(PSTR("zx"), z_at_pt[11]);
print_signed_float(PSTR("xy"), z_at_pt[3]);
}
SERIAL_EOL();
}
/**
* After G33:
* - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
* - Stow the probe
* - Restore endstops state
* - Select the old tool, if needed
*/
static void G33_cleanup(
#if HOTENDS > 1
const uint8_t old_tool_index
@ -107,6 +112,216 @@ static void G33_cleanup(
#endif
}
static float probe_G33_points(float z_at_pt[13], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
const bool _0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1,
_4p_calibration = probe_points == 2,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3 || probe_points == 0,
_7p_half_circle = probe_points == 3,
_7p_double_circle = probe_points == 5,
_7p_triple_circle = probe_points == 6,
_7p_quadruple_circle = probe_points == 7,
_7p_intermed_points = probe_points >= 4,
_7p_multi_circle = probe_points >= 5;
#if DISABLED(PROBE_MANUALLY)
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
#endif
for (uint8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] = 0.0;
if (!_0p_calibration) {
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
#if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(0, 0);
#else
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
#endif
}
if (_7p_calibration) { // probe extra center points
for (int8_t axis = _7p_multi_circle ? COUNT(z_at_pt) - 2 : COUNT(z_at_pt) - 4; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
#if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
#endif
}
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
}
if (!_1p_calibration) { // probe the radius
bool zig_zag = true;
const uint8_t start = _4p_opposite_points ? 3 : 1,
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
for (uint8_t axis = start; axis < COUNT(z_at_pt); axis += step) {
const float zigadd = (zig_zag ? 0.5 : 0.0),
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
_7p_triple_circle ? zigadd + 0.5 :
_7p_double_circle ? zigadd : 0;
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
const float a = RADIANS(180 + 30 * axis),
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
#if ENABLED(PROBE_MANUALLY)
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
#endif
}
zig_zag = !zig_zag;
z_at_pt[axis] /= (2 * offset_circles + 1);
}
}
if (_7p_intermed_points) // average intermediates to tower and opposites
for (uint8_t axis = 1; axis < COUNT(z_at_pt); axis += 2)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
float S1 = z_at_pt[0],
S2 = sq(z_at_pt[0]);
int16_t N = 1;
if (!_1p_calibration) // std dev from zero plane
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < COUNT(z_at_pt); axis += (_4p_calibration ? 4 : 2)) {
S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]);
N++;
}
return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
}
return 0.00001;
}
#if DISABLED(PROBE_MANUALLY)
static void G33_auto_tune() {
float z_at_pt[13] = { 0.0 },
z_at_pt_base[13] = { 0.0 },
z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z06(I) ZP(6, I)
#define Z03(I) ZP(3, I)
#define Z02(I) ZP(2, I)
#define Z01(I) ZP(1, I)
#define Z32(I) ZP(3/2, I)
SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
SERIAL_EOL();
probe_G33_points(z_at_pt_base, 3, true, false);
print_G33_results(z_at_pt_base, true, true);
LOOP_XYZ(axis) {
delta_endstop_adj[axis] -= 1.0;
endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning E");
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i];
print_G33_results(z_at_pt, true, true);
delta_endstop_adj[axis] += 1.0;
switch (axis) {
case A_AXIS :
h_fac += 4.0 / (Z03(0) +Z01(1) +Z32(11) +Z32(3)); // Offset by X-tower end-stop
break;
case B_AXIS :
h_fac += 4.0 / (Z03(0) +Z01(5) +Z32(7) +Z32(3)); // Offset by Y-tower end-stop
break;
case C_AXIS :
h_fac += 4.0 / (Z03(0) +Z01(9) +Z32(7) +Z32(11) ); // Offset by Z-tower end-stop
break;
}
}
h_fac /= 3.0;
h_fac *= norm; // Normalize to 1.02 for Kossel mini
for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
delta_radius += 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning R");
SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i];
print_G33_results(z_at_pt, true, true);
delta_radius -= 1.0 * zig_zag;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
r_fac -= zig_zag * 6.0 / (Z03(1) + Z03(5) + Z03(9) + Z03(7) + Z03(11) + Z03(3)); // Offset by delta radius
}
r_fac /= 2.0;
r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
LOOP_XYZ(axis) {
delta_tower_angle_trim[axis] += 1.0;
delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
SERIAL_PROTOCOLPGM("Tuning T");
SERIAL_CHAR(tolower(axis_codes[axis]));
SERIAL_EOL();
probe_G33_points(z_at_pt, 3, true, false);
for (int8_t i = 0; i < COUNT(z_at_pt); i++) z_at_pt[i] -= z_at_pt_base[i];
print_G33_results(z_at_pt, true, true);
delta_tower_angle_trim[axis] -= 1.0;
delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
home_offset[Z_AXIS] -= z_temp;
LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
recalc_delta_settings(delta_radius, delta_diagonal_rod, delta_tower_angle_trim);
switch (axis) {
case A_AXIS :
a_fac += 4.0 / ( Z06(5) -Z06(9) +Z06(11) -Z06(3)); // Offset by alpha tower angle
break;
case B_AXIS :
a_fac += 4.0 / (-Z06(1) +Z06(9) -Z06(7) +Z06(3)); // Offset by beta tower angle
break;
case C_AXIS :
a_fac += 4.0 / (Z06(1) -Z06(5) +Z06(7) -Z06(11) ); // Offset by gamma tower angle
break;
}
}
a_fac /= 3.0;
a_fac *= norm; // Normalize to 0.83 for Kossel mini
endstops.enable(true);
if (!home_delta()) return;
endstops.not_homing();
print_signed_float(PSTR( "H_FACTOR: "), h_fac);
print_signed_float(PSTR(" R_FACTOR: "), r_fac);
print_signed_float(PSTR(" A_FACTOR: "), a_fac);
SERIAL_EOL();
SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
SERIAL_EOL();
}
#endif // !PROBE_MANUALLY
/**
* G33 - Delta '1-4-7-point' Auto-Calibration
* Calibrate height, endstops, delta radius, and tower angles.
@ -114,21 +329,21 @@ static void G33_cleanup(
* Parameters:
*
* Pn Number of probe points:
*
* P0 No probe. Normalize only.
* P1 Probe center and set height only.
* P2 Probe center and towers. Set height, endstops, and delta radius.
* P2 Probe center and towers. Set height, endstops and delta radius.
* P3 Probe all positions: center, towers and opposite towers. Set all.
* P4-P7 Probe all positions at different locations and average them.
*
* T0 Don't calibrate tower angle corrections
* T Don't calibrate tower angle corrections
*
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
*
* Fn Force to run at least n iterations and takes the best result
*
* Vn Verbose level:
* A Auto tune calibartion factors (set in Configuration.h)
*
* Vn Verbose level:
* V0 Dry-run mode. Report settings and probe results. No calibration.
* V1 Report settings
* V2 Report settings and probe results
@ -162,26 +377,24 @@ void GcodeSuite::G33() {
}
const bool towers_set = !parser.boolval('T'),
auto_tune = parser.boolval('A'),
stow_after_each = parser.boolval('E'),
_0p_calibration = probe_points == 0,
_1p_calibration = probe_points == 1,
_4p_calibration = probe_points == 2,
_4p_towers_points = _4p_calibration && towers_set,
_4p_opposite_points = _4p_calibration && !towers_set,
_7p_calibration = probe_points >= 3 || _0p_calibration,
_7p_half_circle = probe_points == 3,
_tower_results = (_4p_calibration && towers_set)
|| probe_points >= 3 || probe_points == 0,
_opposite_results = (_4p_calibration && !towers_set)
|| probe_points >= 3 || probe_points == 0,
_endstop_results = probe_points != 1,
_angle_results = (probe_points >= 3 || probe_points == 0) && towers_set,
_7p_double_circle = probe_points == 5,
_7p_triple_circle = probe_points == 6,
_7p_quadruple_circle = probe_points == 7,
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
_7p_quadruple_circle = probe_points == 7;
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
int8_t iterations = 0;
float test_precision,
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
zero_std_dev_old = zero_std_dev,
zero_std_dev_min = zero_std_dev,
e_old[ABC] = {
delta_endstop_adj[A_AXIS],
@ -196,12 +409,14 @@ void GcodeSuite::G33() {
delta_tower_angle_trim[C_AXIS]
};
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
const float circles = (_7p_quadruple_circle ? 1.5 :
_7p_triple_circle ? 1.0 :
_7p_double_circle ? 0.5 : 0),
r = (1 + circles * 0.1) * delta_calibration_radius;
for (uint8_t axis = 1; axis < 13; ++axis) {
for (uint8_t axis = 1; axis <= 12; ++axis) {
const float a = RADIANS(180 + 30 * axis);
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
@ -209,7 +424,6 @@ void GcodeSuite::G33() {
}
}
}
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
stepper.synchronize();
#if HAS_LEVELING
@ -232,7 +446,17 @@ void GcodeSuite::G33() {
endstops.not_homing();
}
// print settings
if (auto_tune) {
#if ENABLED(PROBE_MANUALLY)
SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
#else
G33_auto_tune();
#endif
G33_CLEANUP();
return;
}
// Report settings
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
serialprintPGM(checkingac);
@ -240,78 +464,19 @@ void GcodeSuite::G33() {
SERIAL_EOL();
lcd_setstatusPGM(checkingac);
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
print_G33_settings(_endstop_results, _angle_results);
do {
float z_at_pt[13] = { 0.0 };
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
test_precision = zero_std_dev;
iterations++;
// Probe the points
if (!_0p_calibration){
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
#if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(0, 0);
#else
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
if (isnan(z_at_pt[0])) return G33_CLEANUP();
#endif
}
if (_7p_calibration) { // probe extra center points
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
#if ENABLED(PROBE_MANUALLY)
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
if (isnan(z_at_pt[0])) return G33_CLEANUP();
#endif
}
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
}
if (!_1p_calibration) { // probe the radius
bool zig_zag = true;
const uint8_t start = _4p_opposite_points ? 3 : 1,
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
for (uint8_t axis = start; axis < 13; axis += step) {
const float zigadd = (zig_zag ? 0.5 : 0.0),
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
_7p_triple_circle ? zigadd + 0.5 :
_7p_double_circle ? zigadd : 0;
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
const float a = RADIANS(180 + 30 * axis),
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
#if ENABLED(PROBE_MANUALLY)
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
#else
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
#endif
}
zig_zag = !zig_zag;
z_at_pt[axis] /= (2 * offset_circles + 1);
}
}
if (_7p_intermed_points) // average intermediates to tower and opposites
for (uint8_t axis = 1; axis < 13; axis += 2)
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
}
float S1 = z_at_pt[0],
S2 = sq(z_at_pt[0]);
int16_t N = 1;
if (!_1p_calibration) // std dev from zero plane
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
S1 += z_at_pt[axis];
S2 += sq(z_at_pt[axis]);
N++;
}
zero_std_dev_old = zero_std_dev;
zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
// Solve matrices
@ -325,9 +490,24 @@ void GcodeSuite::G33() {
float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
const float r_diff = delta_radius - delta_calibration_radius,
h_factor = (1.00 + r_diff * 0.001) / 6.0, // 1.02 for r_diff = 20mm
r_factor = (-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff))) / 6.0, // 2.25 for r_diff = 20mm
a_factor = (66.66 / delta_calibration_radius) / (iterations == 1 ? 16.0 : 2.0); // 0.83 for cal_rd = 80mm
h_factor = 1 / 6.0 *
#ifdef H_FACTOR
(H_FACTOR), // Set in Configuration.h
#else
(1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
#endif
r_factor = 1 / 6.0 *
#ifdef R_FACTOR
-(R_FACTOR), // Set in Configuration.h
#else
-(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
#endif
a_factor = 1 / 6.0 *
#ifdef A_FACTOR
(A_FACTOR); // Set in Configuration.h
#else
(66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
#endif
#define ZP(N,I) ((N) * z_at_pt[I])
#define Z6(I) ZP(6, I)
@ -341,15 +521,11 @@ void GcodeSuite::G33() {
switch (probe_points) {
case 0:
#if DISABLED(PROBE_MANUALLY)
test_precision = 0.00; // forced end
#endif
break;
case 1:
#if DISABLED(PROBE_MANUALLY)
test_precision = 0.00; // forced end
#endif
LOOP_XYZ(axis) e_delta[axis] = Z1(0);
break;
@ -375,9 +551,9 @@ void GcodeSuite::G33() {
r_delta = (Z6(0) - Z1(1) - Z1(5) - Z1(9) - Z1(7) - Z1(11) - Z1(3)) * r_factor;
if (towers_set) {
t_delta[A_AXIS] = ( - Z2(5) + Z2(9) - Z2(11) + Z2(3)) * a_factor;
t_delta[B_AXIS] = ( Z2(1) - Z2(9) + Z2(7) - Z2(3)) * a_factor;
t_delta[C_AXIS] = (-Z2(1) + Z2(5) - Z2(7) + Z2(11) ) * a_factor;
t_delta[A_AXIS] = ( - Z4(5) + Z4(9) - Z4(11) + Z4(3)) * a_factor;
t_delta[B_AXIS] = ( Z4(1) - Z4(9) + Z4(7) - Z4(3)) * a_factor;
t_delta[C_AXIS] = (-Z4(1) + Z4(5) - Z4(7) + Z4(11) ) * a_factor;
e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
@ -395,11 +571,14 @@ void GcodeSuite::G33() {
home_offset[Z_AXIS] = zh_old;
COPY(delta_tower_angle_trim, ta_old);
}
if (verbose_level != 0) { // !dry run
// normalise angles to least squares
if (_angle_results) {
float a_sum = 0.0;
LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
}
// adjust delta_height and endstops by the max amount
const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
@ -411,30 +590,13 @@ void GcodeSuite::G33() {
// print report
if (verbose_level != 1) {
SERIAL_PROTOCOLPGM(". ");
print_signed_float(PSTR("c"), z_at_pt[0]);
if (_4p_towers_points || _7p_calibration) {
print_signed_float(PSTR(" x"), z_at_pt[1]);
print_signed_float(PSTR(" y"), z_at_pt[5]);
print_signed_float(PSTR(" z"), z_at_pt[9]);
}
if (!_4p_opposite_points) SERIAL_EOL();
if ((_4p_opposite_points) || _7p_calibration) {
if (_7p_calibration) {
SERIAL_CHAR('.');
SERIAL_PROTOCOL_SP(13);
}
print_signed_float(PSTR(" yz"), z_at_pt[7]);
print_signed_float(PSTR("zx"), z_at_pt[11]);
print_signed_float(PSTR("xy"), z_at_pt[3]);
SERIAL_EOL();
}
}
if (verbose_level != 1)
print_G33_results(z_at_pt, _tower_results, _opposite_results);
if (verbose_level != 0) { // !dry run
if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
SERIAL_PROTOCOLPGM("Calibration OK");
SERIAL_PROTOCOL_SP(36);
SERIAL_PROTOCOL_SP(32);
#if DISABLED(PROBE_MANUALLY)
if (zero_std_dev >= test_precision && !_1p_calibration)
SERIAL_PROTOCOLPGM("rolling back.");
@ -452,7 +614,7 @@ void GcodeSuite::G33() {
else
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
lcd_setstatus(mess);
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
print_G33_settings(_endstop_results, _angle_results);
serialprintPGM(save_message);
SERIAL_EOL();
}
@ -463,18 +625,18 @@ void GcodeSuite::G33() {
else
sprintf_P(mess, PSTR("No convergence"));
SERIAL_PROTOCOL(mess);
SERIAL_PROTOCOL_SP(36);
SERIAL_PROTOCOL_SP(32);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
lcd_setstatus(mess);
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
print_G33_settings(_endstop_results, _angle_results);
}
}
else { // dry run
const char *enddryrun = PSTR("End DRY-RUN");
serialprintPGM(enddryrun);
SERIAL_PROTOCOL_SP(39);
SERIAL_PROTOCOL_SP(35);
SERIAL_PROTOCOLPGM("std dev:");
SERIAL_PROTOCOL_F(zero_std_dev, 3);
SERIAL_EOL();
@ -490,7 +652,8 @@ void GcodeSuite::G33() {
}
endstops.enable(true);
home_delta();
if (!home_delta())
return;
endstops.not_homing();
}