Temperature updates for parity with 1.1.x

This commit is contained in:
Scott Lahteine 2018-01-01 18:24:54 -06:00
parent 39e5fabfa9
commit 5e01ee8adf
2 changed files with 125 additions and 111 deletions

View file

@ -244,11 +244,11 @@ uint8_t Temperature::soft_pwm_amount[HOTENDS],
; ;
const int8_t watch_temp_period = const int8_t watch_temp_period =
#if ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP) #if ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) && ENABLED(THERMAL_PROTECTION_HOTENDS) && ENABLED(PIDTEMP)
hotend < 0 ? THERMAL_PROTECTION_BED_PERIOD : THERMAL_PROTECTION_PERIOD hotend < 0 ? WATCH_BED_TEMP_PERIOD : WATCH_TEMP_PERIOD
#elif ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED) #elif ENABLED(THERMAL_PROTECTION_BED) && ENABLED(PIDTEMPBED)
THERMAL_PROTECTION_BED_PERIOD WATCH_BED_TEMP_PERIOD
#else #else
THERMAL_PROTECTION_PERIOD WATCH_TEMP_PERIOD
#endif #endif
; ;
const int8_t watch_temp_increase = const int8_t watch_temp_increase =
@ -437,7 +437,9 @@ uint8_t Temperature::soft_pwm_amount[HOTENDS],
next_watch_temp = input + watch_temp_increase; next_watch_temp = input + watch_temp_increase;
temp_change_ms = ms + watch_temp_period * 1000UL; temp_change_ms = ms + watch_temp_period * 1000UL;
} }
else if ((!heated && ELAPSED(ms, temp_change_ms)) || (heated && input < temp - MAX_OVERSHOOT_PID_AUTOTUNE)) else if (!heated && ELAPSED(ms, temp_change_ms))
_temp_error(hotend, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
else if (heated && input < temp - MAX_OVERSHOOT_PID_AUTOTUNE)
_temp_error(hotend, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY)); _temp_error(hotend, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
#endif #endif
} // every 2 seconds } // every 2 seconds
@ -834,10 +836,8 @@ void Temperature::manage_heater() {
#endif #endif
#if HEATER_IDLE_HANDLER #if HEATER_IDLE_HANDLER
if (bed_idle_timeout_exceeded) if (bed_idle_timeout_exceeded) {
{
soft_pwm_amount_bed = 0; soft_pwm_amount_bed = 0;
#if DISABLED(PIDTEMPBED) #if DISABLED(PIDTEMPBED)
WRITE_HEATER_BED(LOW); WRITE_HEATER_BED(LOW);
#endif #endif
@ -847,23 +847,17 @@ void Temperature::manage_heater() {
{ {
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0; soft_pwm_amount_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)get_pid_output_bed() >> 1 : 0;
#else
#elif ENABLED(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct band // Check if temperature is within the correct band
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) { if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
#if ENABLED(BED_LIMIT_SWITCHING)
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS) if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_amount_bed = 0; soft_pwm_amount_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS)) else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
soft_pwm_amount_bed = MAX_BED_POWER >> 1; soft_pwm_amount_bed = MAX_BED_POWER >> 1;
}
else {
soft_pwm_amount_bed = 0;
WRITE_HEATER_BED(LOW);
}
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0; soft_pwm_amount_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
#endif
} }
else { else {
soft_pwm_amount_bed = 0; soft_pwm_amount_bed = 0;
@ -878,7 +872,7 @@ void Temperature::manage_heater() {
// Derived from RepRap FiveD extruder::getTemperature() // Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement. // For hot end temperature measurement.
float Temperature::analog2temp(int raw, uint8_t e) { float Temperature::analog2temp(const int raw, const uint8_t e) {
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (e > HOTENDS) if (e > HOTENDS)
#else #else
@ -919,6 +913,7 @@ float Temperature::analog2temp(int raw, uint8_t e) {
return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET; return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
} }
#if HAS_TEMP_BED
// Derived from RepRap FiveD extruder::getTemperature() // Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement. // For bed temperature measurement.
float Temperature::analog2tempBed(const int raw) { float Temperature::analog2tempBed(const int raw) {
@ -952,6 +947,7 @@ float Temperature::analog2tempBed(const int raw) {
#endif #endif
} }
#endif // HAS_TEMP_BED
/** /**
* Get the raw values into the actual temperatures. * Get the raw values into the actual temperatures.
@ -1236,6 +1232,7 @@ void Temperature::init() {
#endif // HOTENDS > 2 #endif // HOTENDS > 2
#endif // HOTENDS > 1 #endif // HOTENDS > 1
#if HAS_TEMP_BED
#ifdef BED_MINTEMP #ifdef BED_MINTEMP
while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) { while (analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
@ -1254,6 +1251,7 @@ void Temperature::init() {
#endif #endif
} }
#endif // BED_MAXTEMP #endif // BED_MAXTEMP
#endif // HAS_TEMP_BED
#if ENABLED(PROBING_HEATERS_OFF) #if ENABLED(PROBING_HEATERS_OFF)
paused = false; paused = false;
@ -1348,7 +1346,7 @@ void Temperature::init() {
millis_t Temperature::thermal_runaway_bed_timer; millis_t Temperature::thermal_runaway_bed_timer;
#endif #endif
void Temperature::thermal_runaway_protection(Temperature::TRState * const state, millis_t * const timer, const float current, const float target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) { void Temperature::thermal_runaway_protection(Temperature::TRState * const state, millis_t * const timer, const float &current, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc) {
static float tr_target_temperature[HOTENDS + 1] = { 0.0 }; static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
@ -1371,23 +1369,23 @@ void Temperature::init() {
#if HEATER_IDLE_HANDLER #if HEATER_IDLE_HANDLER
// If the heater idle timeout expires, restart // If the heater idle timeout expires, restart
if (heater_id >= 0 && heater_idle_timeout_exceeded[heater_id]) { if ((heater_id >= 0 && heater_idle_timeout_exceeded[heater_id])
*state = TRInactive;
tr_target_temperature[heater_index] = 0;
}
#if HAS_TEMP_BED #if HAS_TEMP_BED
else if (heater_id < 0 && bed_idle_timeout_exceeded) { || (heater_id < 0 && bed_idle_timeout_exceeded)
#endif
) {
*state = TRInactive; *state = TRInactive;
tr_target_temperature[heater_index] = 0; tr_target_temperature[heater_index] = 0;
} }
#endif
else else
#endif #endif
{
// If the target temperature changes, restart // If the target temperature changes, restart
if (tr_target_temperature[heater_index] != target) { if (tr_target_temperature[heater_index] != target) {
tr_target_temperature[heater_index] = target; tr_target_temperature[heater_index] = target;
*state = target > 0 ? TRFirstHeating : TRInactive; *state = target > 0 ? TRFirstHeating : TRInactive;
} }
}
switch (*state) { switch (*state) {
// Inactive state waits for a target temperature to be set // Inactive state waits for a target temperature to be set
@ -2172,19 +2170,19 @@ void Temperature::isr() {
); );
#endif #endif
#if HAS_TEMP_BED #if HAS_TEMP_BED
print_heater_state(degBed(), degTargetBed(), print_heater_state(degBed(), degTargetBed()
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
rawBedTemp(), , rawBedTemp()
#endif #endif
-1 // BED , -1 // BED
); );
#endif #endif
#if HOTENDS > 1 #if HOTENDS > 1
HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e), HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e)
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
rawHotendTemp(e), , rawHotendTemp(e)
#endif #endif
e , e
); );
#endif #endif
SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLPGM(" @:");

View file

@ -170,14 +170,22 @@ class Temperature {
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION)
static bool allow_cold_extrude; static bool allow_cold_extrude;
static int16_t extrude_min_temp; static int16_t extrude_min_temp;
static bool tooColdToExtrude(uint8_t e) { FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp; return tooCold(degHotend(HOTEND_INDEX));
}
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) {
#if HOTENDS == 1
UNUSED(e);
#endif
return tooCold(degTargetHotend(HOTEND_INDEX));
} }
#else #else
static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; } FORCE_INLINE static bool tooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t e) { UNUSED(e); return false; }
#endif #endif
private: private:
@ -285,8 +293,11 @@ class Temperature {
/** /**
* Static (class) methods * Static (class) methods
*/ */
static float analog2temp(int raw, uint8_t e); static float analog2temp(const int raw, const uint8_t e);
static float analog2tempBed(int raw);
#if HAS_TEMP_BED
static float analog2tempBed(const int raw);
#endif
/** /**
* Called from the Temperature ISR * Called from the Temperature ISR
@ -302,19 +313,19 @@ class Temperature {
* Preheating hotends * Preheating hotends
*/ */
#ifdef MILLISECONDS_PREHEAT_TIME #ifdef MILLISECONDS_PREHEAT_TIME
static bool is_preheating(uint8_t e) { static bool is_preheating(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]); return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
} }
static void start_preheat_time(uint8_t e) { static void start_preheat_time(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME; preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
} }
static void reset_preheat_time(uint8_t e) { static void reset_preheat_time(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
@ -329,36 +340,37 @@ class Temperature {
static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
#endif #endif
//high level conversion routines, for use outside of temperature.cpp //high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius
static float degHotend(uint8_t e) { FORCE_INLINE static float degHotend(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return current_temperature[HOTEND_INDEX]; return current_temperature[HOTEND_INDEX];
} }
static float degBed() { return current_temperature_bed; } FORCE_INLINE static float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
static int16_t rawHotendTemp(uint8_t e) { FORCE_INLINE static int16_t rawHotendTemp(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return current_temperature_raw[HOTEND_INDEX]; return current_temperature_raw[HOTEND_INDEX];
} }
static int16_t rawBedTemp() { return current_temperature_bed_raw; } FORCE_INLINE static int16_t rawBedTemp() { return current_temperature_bed_raw; }
#endif #endif
static int16_t degTargetHotend(uint8_t e) { FORCE_INLINE static int16_t degTargetHotend(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return target_temperature[HOTEND_INDEX]; return target_temperature[HOTEND_INDEX];
} }
static int16_t degTargetBed() { return target_temperature_bed; } FORCE_INLINE static int16_t degTargetBed() { return target_temperature_bed; }
#if WATCH_HOTENDS #if WATCH_HOTENDS
static void start_watching_heater(const uint8_t e = 0); static void start_watching_heater(const uint8_t e = 0);
@ -399,21 +411,25 @@ class Temperature {
#endif #endif
} }
static bool isHeatingHotend(uint8_t e) { FORCE_INLINE static bool isHeatingHotend(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX]; return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
} }
static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; } FORCE_INLINE static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
static bool isCoolingHotend(uint8_t e) { FORCE_INLINE static bool isCoolingHotend(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX]; return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
} }
static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; } FORCE_INLINE static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
FORCE_INLINE static bool wait_for_heating(const uint8_t e) {
return degTargetHotend(e) > TEMP_HYSTERESIS && abs(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
}
/** /**
* The software PWM power for a heater * The software PWM power for a heater
@ -480,11 +496,12 @@ class Temperature {
#if ENABLED(PROBING_HEATERS_OFF) #if ENABLED(PROBING_HEATERS_OFF)
static void pause(const bool p); static void pause(const bool p);
static bool is_paused() { return paused; } FORCE_INLINE static bool is_paused() { return paused; }
#endif #endif
#if HEATER_IDLE_HANDLER #if HEATER_IDLE_HANDLER
static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
static void start_heater_idle_timer(const uint8_t e, const millis_t timeout_ms) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
@ -492,7 +509,7 @@ class Temperature {
heater_idle_timeout_exceeded[HOTEND_INDEX] = false; heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
} }
static void reset_heater_idle_timer(uint8_t e) { static void reset_heater_idle_timer(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
@ -503,7 +520,7 @@ class Temperature {
#endif #endif
} }
static bool is_heater_idle(uint8_t e) { FORCE_INLINE static bool is_heater_idle(const uint8_t e) {
#if HOTENDS == 1 #if HOTENDS == 1
UNUSED(e); UNUSED(e);
#endif #endif
@ -511,7 +528,7 @@ class Temperature {
} }
#if HAS_TEMP_BED #if HAS_TEMP_BED
static void start_bed_idle_timer(millis_t timeout_ms) { static void start_bed_idle_timer(const millis_t timeout_ms) {
bed_idle_timeout_ms = millis() + timeout_ms; bed_idle_timeout_ms = millis() + timeout_ms;
bed_idle_timeout_exceeded = false; bed_idle_timeout_exceeded = false;
} }
@ -524,12 +541,11 @@ class Temperature {
#endif #endif
} }
static bool is_bed_idle() { FORCE_INLINE static bool is_bed_idle() { return bed_idle_timeout_exceeded; }
return bed_idle_timeout_exceeded;
}
#endif
#endif #endif
#endif // HEATER_IDLE_HANDLER
#if HAS_TEMP_HOTEND || HAS_TEMP_BED #if HAS_TEMP_HOTEND || HAS_TEMP_BED
static void print_heaterstates(); static void print_heaterstates();
#if ENABLED(AUTO_REPORT_TEMPERATURES) #if ENABLED(AUTO_REPORT_TEMPERATURES)
@ -574,7 +590,7 @@ class Temperature {
typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate; typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float current, const float target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc); static void thermal_runaway_protection(TRState * const state, millis_t * const timer, const float &current, const float &target, const int8_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
#if ENABLED(THERMAL_PROTECTION_HOTENDS) #if ENABLED(THERMAL_PROTECTION_HOTENDS)
static TRState thermal_runaway_state_machine[HOTENDS]; static TRState thermal_runaway_state_machine[HOTENDS];