Implement NO_WORKSPACE_OFFSETS

This commit is contained in:
Scott Lahteine 2017-03-04 18:01:33 -06:00
parent 05abe853f9
commit 5f7e85398b
3 changed files with 224 additions and 162 deletions

View file

@ -275,27 +275,18 @@ extern volatile bool wait_for_heatup;
#endif #endif
extern float current_position[NUM_AXIS]; extern float current_position[NUM_AXIS];
extern float position_shift[XYZ];
extern float home_offset[XYZ];
#if HOTENDS > 1 // Workspace offsets
extern float hotend_offset[XYZ][HOTENDS]; #if DISABLED(NO_WORKSPACE_OFFSETS)
#endif extern float position_shift[XYZ];
extern float home_offset[XYZ];
// Software Endstops #define LOGICAL_POSITION(POS, AXIS) ((POS) + home_offset[AXIS] + position_shift[AXIS])
void update_software_endstops(AxisEnum axis); #define RAW_POSITION(POS, AXIS) ((POS) - home_offset[AXIS] - position_shift[AXIS])
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else #else
#define soft_endstops_enabled false #define LOGICAL_POSITION(POS, AXIS) (POS)
#define clamp_to_software_endstops(x) NOOP #define RAW_POSITION(POS, AXIS) (POS)
#endif #endif
extern float soft_endstop_min[XYZ];
extern float soft_endstop_max[XYZ];
#define LOGICAL_POSITION(POS, AXIS) ((POS) + home_offset[AXIS] + position_shift[AXIS])
#define RAW_POSITION(POS, AXIS) ((POS) - home_offset[AXIS] - position_shift[AXIS])
#define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS) #define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS)
#define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS) #define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS)
#define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS) #define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS)
@ -304,6 +295,26 @@ extern float soft_endstop_max[XYZ];
#define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS) #define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS)
#define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS) #define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS)
#if HOTENDS > 1
extern float hotend_offset[XYZ][HOTENDS];
#endif
// Software Endstops
extern float soft_endstop_min[XYZ];
extern float soft_endstop_max[XYZ];
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
extern bool soft_endstops_enabled;
void clamp_to_software_endstops(float target[XYZ]);
#else
#define soft_endstops_enabled false
#define clamp_to_software_endstops(x) NOOP
#endif
#if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
void update_software_endstops(const AxisEnum axis);
#endif
// GCode support for external objects // GCode support for external objects
bool code_seen(char); bool code_seen(char);
int code_value_int(); int code_value_int();

View file

@ -396,12 +396,16 @@ bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA), float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
// The distance that XYZ has been offset by G92. Reset by G28. #if DISABLED(NO_WORKSPACE_OFFSETS)
float position_shift[XYZ] = { 0 };
// This offset is added to the configured home position. // The distance that XYZ has been offset by G92. Reset by G28.
// Set by M206, M428, or menu item. Saved to EEPROM. float position_shift[XYZ] = { 0 };
float home_offset[XYZ] = { 0 };
// This offset is added to the configured home position.
// Set by M206, M428, or menu item. Saved to EEPROM.
float home_offset[XYZ] = { 0 };
#endif
// Software Endstops are based on the configured limits. // Software Endstops are based on the configured limits.
#if ENABLED(min_software_endstops) || ENABLED(max_software_endstops) #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
@ -1333,76 +1337,83 @@ bool get_target_extruder_from_command(int code) {
#endif // DUAL_X_CARRIAGE #endif // DUAL_X_CARRIAGE
/** #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
* Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(AxisEnum axis) {
float offs = LOGICAL_POSITION(0, axis);
#if ENABLED(DUAL_X_CARRIAGE) /**
if (axis == X_AXIS) { * Software endstops can be used to monitor the open end of
* an axis that has a hardware endstop on the other end. Or
* they can prevent axes from moving past endstops and grinding.
*
* To keep doing their job as the coordinate system changes,
* the software endstop positions must be refreshed to remain
* at the same positions relative to the machine.
*/
void update_software_endstops(const AxisEnum axis) {
const float offs = LOGICAL_POSITION(0, axis);
// In Dual X mode hotend_offset[X] is T1's home position #if ENABLED(DUAL_X_CARRIAGE)
float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS); if (axis == X_AXIS) {
if (active_extruder != 0) { // In Dual X mode hotend_offset[X] is T1's home position
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger) float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
soft_endstop_max[X_AXIS] = dual_max_x + offs; if (active_extruder != 0) {
// T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
soft_endstop_max[X_AXIS] = dual_max_x + offs;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
// In Duplication Mode, T0 can move as far left as X_MIN_POS
// but not so far to the right that T1 would move past the end
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
}
else {
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
}
} }
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { #else
// In Duplication Mode, T0 can move as far left as X_MIN_POS soft_endstop_min[axis] = base_min_pos(axis) + offs;
// but not so far to the right that T1 would move past the end soft_endstop_max[axis] = base_max_pos(axis) + offs;
soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs; #endif
soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("For ", axis_codes[axis]);
#if DISABLED(NO_WORKSPACE_OFFSETS)
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
#endif
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
} }
else { #endif
// In other modes, T0 can move from X_MIN_POS to X_MAX_POS
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
}
}
#else
soft_endstop_min[axis] = base_min_pos(axis) + offs;
soft_endstop_max[axis] = base_max_pos(axis) + offs;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DELTA)
if (DEBUGGING(LEVELING)) { if (axis == Z_AXIS)
SERIAL_ECHOPAIR("For ", axis_codes[axis]); delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]); #endif
SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]); }
SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
}
#endif
#if ENABLED(DELTA) #endif // NO_WORKSPACE_OFFSETS
if (axis == Z_AXIS)
delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
#endif
} #if DISABLED(NO_WORKSPACE_OFFSETS)
/**
/** * Change the home offset for an axis, update the current
* Change the home offset for an axis, update the current * position and the software endstops to retain the same
* position and the software endstops to retain the same * relative distance to the new home.
* relative distance to the new home. *
* * Since this changes the current_position, code should
* Since this changes the current_position, code should * call sync_plan_position soon after this.
* call sync_plan_position soon after this. */
*/ static void set_home_offset(AxisEnum axis, float v) {
static void set_home_offset(AxisEnum axis, float v) { current_position[axis] += v - home_offset[axis];
current_position[axis] += v - home_offset[axis]; home_offset[axis] = v;
home_offset[axis] = v; update_software_endstops(axis);
update_software_endstops(axis); }
} #endif // NO_WORKSPACE_OFFSETS
/** /**
* Set an axis' current position to its home position (after homing). * Set an axis' current position to its home position (after homing).
@ -1433,8 +1444,10 @@ static void set_axis_is_at_home(AxisEnum axis) {
axis_known_position[axis] = axis_homed[axis] = true; axis_known_position[axis] = axis_homed[axis] = true;
position_shift[axis] = 0; #if DISABLED(NO_WORKSPACE_OFFSETS)
update_software_endstops(axis); position_shift[axis] = 0;
update_software_endstops(axis);
#endif
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) { if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
@ -1507,8 +1520,10 @@ static void set_axis_is_at_home(AxisEnum axis) {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) { if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]); #if DISABLED(NO_WORKSPACE_OFFSETS)
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]); SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
#endif
DEBUG_POS("", current_position); DEBUG_POS("", current_position);
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]); SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
SERIAL_CHAR(')'); SERIAL_CHAR(')');
@ -4603,8 +4618,10 @@ inline void gcode_G92() {
if (i != E_AXIS) { if (i != E_AXIS) {
didXYZ = true; didXYZ = true;
position_shift[i] += v - p; // Offset the coordinate space #if DISABLED(NO_WORKSPACE_OFFSETS)
update_software_endstops((AxisEnum)i); position_shift[i] += v - p; // Offset the coordinate space
update_software_endstops((AxisEnum)i);
#endif
} }
#endif #endif
} }
@ -6334,22 +6351,26 @@ inline void gcode_M205() {
if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS); if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
} }
/** #if DISABLED(NO_WORKSPACE_OFFSETS)
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/
inline void gcode_M206() {
LOOP_XYZ(i)
if (code_seen(axis_codes[i]))
set_home_offset((AxisEnum)i, code_value_axis_units(i));
#if ENABLED(MORGAN_SCARA) /**
if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi */
#endif inline void gcode_M206() {
LOOP_XYZ(i)
if (code_seen(axis_codes[i]))
set_home_offset((AxisEnum)i, code_value_axis_units(i));
SYNC_PLAN_POSITION_KINEMATIC(); #if ENABLED(MORGAN_SCARA)
report_current_position(); if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
} if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
#endif
SYNC_PLAN_POSITION_KINEMATIC();
report_current_position();
}
#endif // NO_WORKSPACE_OFFSETS
#if ENABLED(DELTA) #if ENABLED(DELTA)
/** /**
@ -7173,45 +7194,49 @@ void quickstop_stepper() {
#endif #endif
/** #if DISABLED(NO_WORKSPACE_OFFSETS)
* M428: Set home_offset based on the distance between the
* current_position and the nearest "reference point." /**
* If an axis is past center its endstop position * M428: Set home_offset based on the distance between the
* is the reference-point. Otherwise it uses 0. This allows * current_position and the nearest "reference point."
* the Z offset to be set near the bed when using a max endstop. * If an axis is past center its endstop position
* * is the reference-point. Otherwise it uses 0. This allows
* M428 can't be used more than 2cm away from 0 or an endstop. * the Z offset to be set near the bed when using a max endstop.
* *
* Use M206 to set these values directly. * M428 can't be used more than 2cm away from 0 or an endstop.
*/ *
inline void gcode_M428() { * Use M206 to set these values directly.
bool err = false; */
LOOP_XYZ(i) { inline void gcode_M428() {
if (axis_homed[i]) { bool err = false;
float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0, LOOP_XYZ(i) {
diff = current_position[i] - LOGICAL_POSITION(base, i); if (axis_homed[i]) {
if (diff > -20 && diff < 20) { float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
set_home_offset((AxisEnum)i, home_offset[i] - diff); diff = current_position[i] - LOGICAL_POSITION(base, i);
} if (diff > -20 && diff < 20) {
else { set_home_offset((AxisEnum)i, home_offset[i] - diff);
SERIAL_ERROR_START; }
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR); else {
LCD_ALERTMESSAGEPGM("Err: Too far!"); SERIAL_ERROR_START;
BUZZ(200, 40); SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
err = true; LCD_ALERTMESSAGEPGM("Err: Too far!");
break; BUZZ(200, 40);
err = true;
break;
}
} }
} }
if (!err) {
SYNC_PLAN_POSITION_KINEMATIC();
report_current_position();
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
BUZZ(200, 659);
BUZZ(200, 698);
}
} }
if (!err) { #endif // NO_WORKSPACE_OFFSETS
SYNC_PLAN_POSITION_KINEMATIC();
report_current_position();
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
BUZZ(200, 659);
BUZZ(200, 698);
}
}
/** /**
* M500: Store settings in EEPROM * M500: Store settings in EEPROM
@ -8081,10 +8106,14 @@ void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool n
// The newly-selected extruder XY is actually at... // The newly-selected extruder XY is actually at...
current_position[X_AXIS] += xydiff[X_AXIS]; current_position[X_AXIS] += xydiff[X_AXIS];
current_position[Y_AXIS] += xydiff[Y_AXIS]; current_position[Y_AXIS] += xydiff[Y_AXIS];
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) { #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE)
position_shift[i] += xydiff[i]; for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
update_software_endstops((AxisEnum)i); #if DISABLED(NO_WORKSPACE_OFFSETS)
} position_shift[i] += xydiff[i];
#endif
update_software_endstops((AxisEnum)i);
}
#endif
// Set the new active extruder // Set the new active extruder
active_extruder = tmp_extruder; active_extruder = tmp_extruder;
@ -8639,9 +8668,12 @@ void process_next_command() {
case 205: //M205: Set advanced settings case 205: //M205: Set advanced settings
gcode_M205(); gcode_M205();
break; break;
case 206: // M206: Set home offsets
gcode_M206(); #if DISABLED(NO_WORKSPACE_OFFSETS)
break; case 206: // M206: Set home offsets
gcode_M206();
break;
#endif
#if ENABLED(DELTA) #if ENABLED(DELTA)
case 665: // M665: Set delta configurations case 665: // M665: Set delta configurations
@ -8805,9 +8837,11 @@ void process_next_command() {
break; break;
#endif #endif
case 428: // M428: Apply current_position to home_offset #if DISABLED(NO_WORKSPACE_OFFSETS)
gcode_M428(); case 428: // M428: Apply current_position to home_offset
break; gcode_M428();
break;
#endif
case 500: // M500: Store settings in EEPROM case 500: // M500: Store settings in EEPROM
gcode_M500(); gcode_M500();
@ -10488,8 +10522,12 @@ void setup() {
// This also updates variables in the planner, elsewhere // This also updates variables in the planner, elsewhere
Config_RetrieveSettings(); Config_RetrieveSettings();
// Initialize current position based on home_offset #if DISABLED(NO_WORKSPACE_OFFSETS)
memcpy(current_position, home_offset, sizeof(home_offset)); // Initialize current position based on home_offset
memcpy(current_position, home_offset, sizeof(home_offset));
#else
ZERO(current_position);
#endif
// Vital to init stepper/planner equivalent for current_position // Vital to init stepper/planner equivalent for current_position
SYNC_PLAN_POSITION_KINEMATIC(); SYNC_PLAN_POSITION_KINEMATIC();

View file

@ -171,8 +171,10 @@ void Config_Postprocess() {
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
// Software endstops depend on home_offset #if DISABLED(NO_WORKSPACE_OFFSETS) || ENABLED(DUAL_X_CARRIAGE) || ENABLED(DELTA)
LOOP_XYZ(i) update_software_endstops((AxisEnum)i); // Software endstops depend on home_offset
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
#endif
} }
#if ENABLED(EEPROM_SETTINGS) #if ENABLED(EEPROM_SETTINGS)
@ -251,6 +253,9 @@ void Config_Postprocess() {
EEPROM_WRITE(planner.min_travel_feedrate_mm_s); EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
EEPROM_WRITE(planner.min_segment_time); EEPROM_WRITE(planner.min_segment_time);
EEPROM_WRITE(planner.max_jerk); EEPROM_WRITE(planner.max_jerk);
#if ENABLED(NO_WORKSPACE_OFFSETS)
float home_offset[XYZ] = { 0 };
#endif
EEPROM_WRITE(home_offset); EEPROM_WRITE(home_offset);
#if HOTENDS > 1 #if HOTENDS > 1
@ -498,6 +503,10 @@ void Config_Postprocess() {
EEPROM_READ(planner.min_travel_feedrate_mm_s); EEPROM_READ(planner.min_travel_feedrate_mm_s);
EEPROM_READ(planner.min_segment_time); EEPROM_READ(planner.min_segment_time);
EEPROM_READ(planner.max_jerk); EEPROM_READ(planner.max_jerk);
#if ENABLED(NO_WORKSPACE_OFFSETS)
float home_offset[XYZ];
#endif
EEPROM_READ(home_offset); EEPROM_READ(home_offset);
#if HOTENDS > 1 #if HOTENDS > 1
@ -726,7 +735,9 @@ void Config_ResetDefault() {
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK; planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK; planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
planner.max_jerk[E_AXIS] = DEFAULT_EJERK; planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0; #if DISABLED(NO_WORKSPACE_OFFSETS)
ZERO(home_offset);
#endif
#if HOTENDS > 1 #if HOTENDS > 1
constexpr float tmp4[XYZ][HOTENDS] = { constexpr float tmp4[XYZ][HOTENDS] = {
@ -937,15 +948,17 @@ void Config_ResetDefault() {
SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]); SERIAL_ECHOPAIR(" E", planner.max_jerk[E_AXIS]);
SERIAL_EOL; SERIAL_EOL;
CONFIG_ECHO_START; #if DISABLED(NO_WORKSPACE_OFFSETS)
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm)");
CONFIG_ECHO_START; CONFIG_ECHO_START;
} if (!forReplay) {
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]); SERIAL_ECHOLNPGM("Home offset (mm)");
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]); CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]); }
SERIAL_EOL; SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS]);
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS]);
SERIAL_EOL;
#endif
#if HOTENDS > 1 #if HOTENDS > 1
CONFIG_ECHO_START; CONFIG_ECHO_START;