Fix G34, add HOME_AFTER_G34 option (#17108)
Co-authored-by: Scott Lahteine <github@thinkyhead.com>
This commit is contained in:
parent
e7004550c4
commit
627aa8db2d
5 changed files with 39 additions and 21 deletions
|
@ -718,6 +718,9 @@
|
||||||
#define Z_STEPPER_ALIGN_ITERATIONS 5 // Number of iterations to apply during alignment
|
#define Z_STEPPER_ALIGN_ITERATIONS 5 // Number of iterations to apply during alignment
|
||||||
#define Z_STEPPER_ALIGN_ACC 0.02 // Stop iterating early if the accuracy is better than this
|
#define Z_STEPPER_ALIGN_ACC 0.02 // Stop iterating early if the accuracy is better than this
|
||||||
#define RESTORE_LEVELING_AFTER_G34 // Restore leveling after G34 is done?
|
#define RESTORE_LEVELING_AFTER_G34 // Restore leveling after G34 is done?
|
||||||
|
// After G34, re-home Z (G28 Z) or just calculate it from the last probe heights?
|
||||||
|
// Re-homing might be more precise in reproducing the actual 'G28 Z' homing height, especially on an uneven bed.
|
||||||
|
#define HOME_AFTER_G34
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// @section motion
|
// @section motion
|
||||||
|
|
|
@ -141,11 +141,11 @@ void GcodeSuite::G34() {
|
||||||
// iteration this will be re-calculated based on the actual bed position
|
// iteration this will be re-calculated based on the actual bed position
|
||||||
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * (
|
float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * (
|
||||||
#if NUM_Z_STEPPER_DRIVERS == 3
|
#if NUM_Z_STEPPER_DRIVERS == 3
|
||||||
SQRT(_MAX(HYPOT2(z_stepper_align.xy[0].x - z_stepper_align.xy[0].y, z_stepper_align.xy[1].x - z_stepper_align.xy[1].y),
|
SQRT(_MAX(HYPOT2(z_stepper_align.xy[0].x - z_stepper_align.xy[1].x, z_stepper_align.xy[0].y - z_stepper_align.xy[1].y),
|
||||||
HYPOT2(z_stepper_align.xy[1].x - z_stepper_align.xy[1].y, z_stepper_align.xy[2].x - z_stepper_align.xy[2].y),
|
HYPOT2(z_stepper_align.xy[1].x - z_stepper_align.xy[2].x, z_stepper_align.xy[1].y - z_stepper_align.xy[2].y),
|
||||||
HYPOT2(z_stepper_align.xy[2].x - z_stepper_align.xy[2].y, z_stepper_align.xy[0].x - z_stepper_align.xy[0].y)))
|
HYPOT2(z_stepper_align.xy[2].x - z_stepper_align.xy[0].x, z_stepper_align.xy[2].y - z_stepper_align.xy[0].y)))
|
||||||
#else
|
#else
|
||||||
HYPOT(z_stepper_align.xy[0].x - z_stepper_align.xy[0].y, z_stepper_align.xy[1].x - z_stepper_align.xy[1].y)
|
HYPOT(z_stepper_align.xy[0].x - z_stepper_align.xy[1].x, z_stepper_align.xy[0].y - z_stepper_align.xy[1].y)
|
||||||
#endif
|
#endif
|
||||||
);
|
);
|
||||||
|
|
||||||
|
@ -156,6 +156,7 @@ void GcodeSuite::G34() {
|
||||||
current_position.z += z_probe * 0.5f;
|
current_position.z += z_probe * 0.5f;
|
||||||
sync_plan_position();
|
sync_plan_position();
|
||||||
// Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
|
// Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
|
||||||
|
// This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
|
||||||
|
|
||||||
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
||||||
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f);
|
float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f);
|
||||||
|
@ -166,8 +167,10 @@ void GcodeSuite::G34() {
|
||||||
z_maxdiff = 0.0f,
|
z_maxdiff = 0.0f,
|
||||||
amplification = z_auto_align_amplification;
|
amplification = z_auto_align_amplification;
|
||||||
|
|
||||||
|
// These are needed after the for-loop
|
||||||
uint8_t iteration;
|
uint8_t iteration;
|
||||||
bool err_break = false;
|
bool err_break = false;
|
||||||
|
float z_measured_min;
|
||||||
|
|
||||||
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
#if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
|
||||||
bool adjustment_reverse = false;
|
bool adjustment_reverse = false;
|
||||||
|
@ -181,8 +184,8 @@ void GcodeSuite::G34() {
|
||||||
SERIAL_ECHOLNPAIR("\nITERATION: ", int(iteration + 1));
|
SERIAL_ECHOLNPAIR("\nITERATION: ", int(iteration + 1));
|
||||||
|
|
||||||
// Initialize minimum value
|
// Initialize minimum value
|
||||||
float z_measured_min = 100000.0f,
|
z_measured_min = 100000.0f;
|
||||||
z_measured_max = -100000.0f;
|
float z_measured_max = -100000.0f;
|
||||||
|
|
||||||
// Probe all positions (one per Z-Stepper)
|
// Probe all positions (one per Z-Stepper)
|
||||||
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
||||||
|
@ -238,14 +241,14 @@ void GcodeSuite::G34() {
|
||||||
linear_fit_data lfd;
|
linear_fit_data lfd;
|
||||||
incremental_LSF_reset(&lfd);
|
incremental_LSF_reset(&lfd);
|
||||||
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
||||||
SERIAL_ECHOLNPAIR("PROBEPT_", i + '1', ": ", z_measured[i]);
|
SERIAL_ECHOLNPAIR("PROBEPT_", ('0' + i), ": ", z_measured[i]);
|
||||||
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
|
incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
|
||||||
}
|
}
|
||||||
finish_incremental_LSF(&lfd);
|
finish_incremental_LSF(&lfd);
|
||||||
|
|
||||||
z_measured_min = 100000.0f;
|
z_measured_min = 100000.0f;
|
||||||
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
|
||||||
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y);
|
z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
|
||||||
z_measured_min = _MIN(z_measured_min, z_measured[i]);
|
z_measured_min = _MIN(z_measured_min, z_measured[i]);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -345,7 +348,11 @@ void GcodeSuite::G34() {
|
||||||
|
|
||||||
} // for (iteration)
|
} // for (iteration)
|
||||||
|
|
||||||
if (err_break) { SERIAL_ECHOLNPGM("G34 aborted."); break; }
|
if (err_break) {
|
||||||
|
SERIAL_ECHOLNPGM("G34 aborted.");
|
||||||
|
set_axis_not_trusted(Z_AXIS); // The Z coordinate is messed up now
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " iterations of ", int(z_auto_align_iterations));
|
SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " iterations of ", int(z_auto_align_iterations));
|
||||||
SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
|
SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
|
||||||
|
@ -363,15 +370,23 @@ void GcodeSuite::G34() {
|
||||||
set_bed_leveling_enabled(leveling_was_active);
|
set_bed_leveling_enabled(leveling_was_active);
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// After this operation the z position needs correction
|
|
||||||
set_axis_is_not_at_home(Z_AXIS);
|
|
||||||
|
|
||||||
// Stow the probe, as the last call to probe.probe_at_point(...) left
|
// Stow the probe, as the last call to probe.probe_at_point(...) left
|
||||||
// the probe deployed if it was successful.
|
// the probe deployed if it was successful.
|
||||||
probe.stow();
|
probe.stow();
|
||||||
|
|
||||||
// Home Z after the alignment procedure
|
#if ENABLED(HOME_AFTER_G34)
|
||||||
process_subcommands_now_P(PSTR("G28 Z"));
|
// After this operation the z position needs correction
|
||||||
|
set_axis_not_trusted(Z_AXIS);
|
||||||
|
|
||||||
|
// Home Z after the alignment procedure
|
||||||
|
process_subcommands_now_P(PSTR("G28Z"));
|
||||||
|
#else
|
||||||
|
// Use the probed height from the last iteration to determine the Z height.
|
||||||
|
// z_measured_min is used, because all steppers are aligned to z_measured_min.
|
||||||
|
// Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
|
||||||
|
current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
|
||||||
|
sync_plan_position();
|
||||||
|
#endif
|
||||||
|
|
||||||
}while(0);
|
}while(0);
|
||||||
|
|
||||||
|
|
|
@ -393,9 +393,9 @@ void menu_motion() {
|
||||||
//
|
//
|
||||||
GCODES_ITEM(MSG_AUTO_HOME, G28_STR);
|
GCODES_ITEM(MSG_AUTO_HOME, G28_STR);
|
||||||
#if ENABLED(INDIVIDUAL_AXIS_HOMING_MENU)
|
#if ENABLED(INDIVIDUAL_AXIS_HOMING_MENU)
|
||||||
GCODES_ITEM(MSG_AUTO_HOME_X, PSTR("G28 X"));
|
GCODES_ITEM(MSG_AUTO_HOME_X, PSTR("G28X"));
|
||||||
GCODES_ITEM(MSG_AUTO_HOME_Y, PSTR("G28 Y"));
|
GCODES_ITEM(MSG_AUTO_HOME_Y, PSTR("G28Y"));
|
||||||
GCODES_ITEM(MSG_AUTO_HOME_Z, PSTR("G28 Z"));
|
GCODES_ITEM(MSG_AUTO_HOME_Z, PSTR("G28Z"));
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
//
|
//
|
||||||
|
|
|
@ -1460,13 +1460,13 @@ void set_axis_is_at_home(const AxisEnum axis) {
|
||||||
/**
|
/**
|
||||||
* Set an axis' to be unhomed.
|
* Set an axis' to be unhomed.
|
||||||
*/
|
*/
|
||||||
void set_axis_is_not_at_home(const AxisEnum axis) {
|
void set_axis_not_trusted(const AxisEnum axis) {
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_is_not_at_home(", axis_codes[axis], ")");
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(">>> set_axis_not_trusted(", axis_codes[axis], ")");
|
||||||
|
|
||||||
CBI(axis_known_position, axis);
|
CBI(axis_known_position, axis);
|
||||||
CBI(axis_homed, axis);
|
CBI(axis_homed, axis);
|
||||||
|
|
||||||
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_is_not_at_home(", axis_codes[axis], ")");
|
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("<<< set_axis_not_trusted(", axis_codes[axis], ")");
|
||||||
|
|
||||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||||
I2CPEM.unhomed(axis);
|
I2CPEM.unhomed(axis);
|
||||||
|
|
|
@ -244,7 +244,7 @@ bool axis_unhomed_error(uint8_t axis_bits=0x07);
|
||||||
|
|
||||||
void set_axis_is_at_home(const AxisEnum axis);
|
void set_axis_is_at_home(const AxisEnum axis);
|
||||||
|
|
||||||
void set_axis_is_not_at_home(const AxisEnum axis);
|
void set_axis_not_trusted(const AxisEnum axis);
|
||||||
|
|
||||||
void homeaxis(const AxisEnum axis);
|
void homeaxis(const AxisEnum axis);
|
||||||
|
|
||||||
|
|
Reference in a new issue