Merge pull request #6827 from thinkyhead/bf_day_ending_in_y

Make UBL a complete singleton
This commit is contained in:
Scott Lahteine 2017-05-22 17:51:03 -05:00 committed by GitHub
commit 62d8e35adc
21 changed files with 635 additions and 629 deletions

View file

@ -135,64 +135,78 @@
float code_value_axis_units(const AxisEnum axis);
bool code_value_bool();
bool code_has_value();
void lcd_init();
void lcd_setstatuspgm(const char* const message, const uint8_t level);
void sync_plan_position_e();
void chirp_at_user();
// Private functions
void un_retract_filament(float where[XYZE]);
void retract_filament(float where[XYZE]);
bool look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
bool turn_on_heaters();
bool prime_nozzle();
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
float g26_e_axis_feedrate = 0.020,
random_deviation = 0.0,
layer_height = LAYER_HEIGHT;
random_deviation = 0.0;
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state.
float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
retraction_multiplier = RETRACTION_MULTIPLIER,
nozzle = NOZZLE,
filament_diameter = FILAMENT,
prime_length = PRIME_LENGTH,
x_pos, y_pos,
ooze_amount = OOZE_AMOUNT;
float unified_bed_leveling::g26_extrusion_multiplier,
unified_bed_leveling::g26_retraction_multiplier,
unified_bed_leveling::g26_nozzle,
unified_bed_leveling::g26_filament_diameter,
unified_bed_leveling::g26_layer_height,
unified_bed_leveling::g26_prime_length,
unified_bed_leveling::g26_x_pos,
unified_bed_leveling::g26_y_pos,
unified_bed_leveling::g26_ooze_amount;
static int16_t bed_temp = BED_TEMP,
hotend_temp = HOTEND_TEMP;
int16_t unified_bed_leveling::g26_bed_temp,
unified_bed_leveling::g26_hotend_temp;
static int8_t prime_flag = 0;
int8_t unified_bed_leveling::g26_prime_flag;
static bool continue_with_closest, keep_heaters_on;
bool unified_bed_leveling::g26_continue_with_closest,
unified_bed_leveling::g26_keep_heaters_on;
static int16_t g26_repeats;
int16_t unified_bed_leveling::g26_repeats;
void G26_line_to_destination(const float &feed_rate) {
void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate
prepare_move_to_destination(); // will ultimately call ubl_line_to_destination_cartesian or ubl_prepare_linear_move_to for UBL_DELTA
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
feedrate_mm_s = save_feedrate; // restore global feed rate
}
/**
* Detect ubl_lcd_clicked, debounce it, and return true for cancel
*/
bool user_canceled() {
if (!ubl_lcd_clicked()) return false;
safe_delay(10); // Wait for click to settle
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
lcd_reset_alert_level();
while (!ubl_lcd_clicked()) idle(); // Wait for button release
// If the button is suddenly pressed again,
// ask the user to resolve the issue
lcd_setstatuspgm(PSTR("Release button"), 99); // will never appear...
while (ubl_lcd_clicked()) idle(); // unless this loop happens
lcd_setstatuspgm(PSTR(""));
return true;
}
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void gcode_G26() {
void unified_bed_leveling::G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle;
int i, xi, yi;
@ -213,7 +227,7 @@
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
if (prime_flag && prime_nozzle()) goto LEAVE;
if (g26_prime_flag && prime_nozzle()) goto LEAVE;
/**
* Bed is preheated
@ -231,11 +245,11 @@
// Move nozzle to the specified height for the first layer
set_destination_to_current();
destination[Z_AXIS] = layer_height;
destination[Z_AXIS] = g26_layer_height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], g26_ooze_amount);
ubl.has_control_of_lcd_panel = true;
has_control_of_lcd_panel = true;
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/**
@ -249,13 +263,13 @@
}
do {
location = continue_with_closest
location = g26_continue_with_closest
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
circle_y = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
const float circle_x = mesh_index_to_xpos(location.x_index),
circle_y = mesh_index_to_ypos(location.y_index);
// If this mesh location is outside the printable_radius, skip it.
@ -264,7 +278,7 @@
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index;
if (ubl.g26_debug_flag) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_CHAR(')');
@ -300,25 +314,7 @@
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including ubl_G29.cpp). This
// should be redone and compressed.
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
}
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
}
goto LEAVE;
}
if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
@ -338,7 +334,7 @@
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif
//if (ubl.g26_debug_flag) {
//if (g26_debug_flag) {
// char ccc, *cptr, seg_msg[50], seg_num[10];
// strcpy(seg_msg, " segment: ");
// strcpy(seg_num, " \n");
@ -349,7 +345,7 @@
// debug_current_and_destination(seg_msg);
//}
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
}
if (look_for_lines_to_connect())
@ -368,16 +364,16 @@
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
//debug_current_and_destination(PSTR("done doing Z-Raise."));
destination[X_AXIS] = x_pos; // Move back to the starting position
destination[Y_AXIS] = y_pos;
destination[X_AXIS] = g26_x_pos; // Move back to the starting position
destination[Y_AXIS] = g26_y_pos;
//destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move."));
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!keep_heaters_on) {
if (!g26_keep_heaters_on) {
#if HAS_TEMP_BED
thermalManager.setTargetBed(0);
#endif
@ -385,14 +381,13 @@
}
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
@ -401,8 +396,8 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) {
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]), // We found a circle that needs to be printed
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
my = mesh_index_to_ypos(j);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
@ -411,7 +406,7 @@
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
@ -430,34 +425,16 @@
return return_val;
}
bool look_for_lines_to_connect() {
bool unified_bed_leveling::look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including ubl_G29.cpp). This
// should be redone and compressed.
if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
#if ENABLED(ULTRA_LCD)
lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR(""));
}
while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
idle(); // Encoder Wheel if that is why we are leaving
lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
}
return true;
}
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
@ -466,16 +443,16 @@
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = pgm_read_float(&ubl.mesh_index_to_xpos[ i ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = pgm_read_float(&ubl.mesh_index_to_xpos[i + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(pgm_read_float(&ubl.mesh_index_to_ypos[j]), Y_MIN_POS + 1, Y_MAX_POS - 1);
sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (ubl.g26_debug_flag) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
@ -485,7 +462,7 @@
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
}
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
}
@ -500,16 +477,16 @@
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = pgm_read_float(&ubl.mesh_index_to_ypos[ j ]) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = pgm_read_float(&ubl.mesh_index_to_ypos[j + 1]) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(pgm_read_float(&ubl.mesh_index_to_xpos[i]), X_MIN_POS + 1, X_MAX_POS - 1);
sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
if (ubl.g26_debug_flag) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
@ -518,7 +495,7 @@
SERIAL_EOL;
debug_current_and_destination(PSTR("Connecting vertical line."));
}
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
}
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
}
@ -530,7 +507,7 @@
return false;
}
void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
@ -552,10 +529,10 @@
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract()
// Yes: a 'normal' movement. No: a retract() or recover()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
@ -568,16 +545,16 @@
}
void retract_filament(float where[XYZE]) {
void unified_bed_leveling::retract_filament(float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * g26_retraction_multiplier);
}
}
void un_retract_filament(float where[XYZE]) {
void unified_bed_leveling::recover_filament(float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * g26_retraction_multiplier);
g26_retracted = false;
}
}
@ -597,7 +574,7 @@
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
@ -625,9 +602,9 @@
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
un_retract_filament(destination);
recover_filament(destination);
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
@ -636,33 +613,33 @@
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool parse_G26_parameters() {
bool unified_bed_leveling::parse_G26_parameters() {
extrusion_multiplier = EXTRUSION_MULTIPLIER;
retraction_multiplier = RETRACTION_MULTIPLIER;
nozzle = NOZZLE;
filament_diameter = FILAMENT;
layer_height = LAYER_HEIGHT;
prime_length = PRIME_LENGTH;
bed_temp = BED_TEMP;
hotend_temp = HOTEND_TEMP;
prime_flag = 0;
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
g26_nozzle = NOZZLE;
g26_filament_diameter = FILAMENT;
g26_layer_height = LAYER_HEIGHT;
g26_prime_length = PRIME_LENGTH;
g26_bed_temp = BED_TEMP;
g26_hotend_temp = HOTEND_TEMP;
g26_prime_flag = 0;
ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
keep_heaters_on = code_seen('K') && code_value_bool();
continue_with_closest = code_seen('C') && code_value_bool();
g26_ooze_amount = code_seen('O') && code_has_value() ? code_value_linear_units() : OOZE_AMOUNT;
g26_keep_heaters_on = code_seen('K') && code_value_bool();
g26_continue_with_closest = code_seen('C') && code_value_bool();
if (code_seen('B')) {
bed_temp = code_value_temp_abs();
if (!WITHIN(bed_temp, 15, 140)) {
g26_bed_temp = code_value_temp_abs();
if (!WITHIN(g26_bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (code_seen('L')) {
layer_height = code_value_linear_units();
if (!WITHIN(layer_height, 0.0, 2.0)) {
g26_layer_height = code_value_linear_units();
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
@ -670,8 +647,8 @@
if (code_seen('Q')) {
if (code_has_value()) {
retraction_multiplier = code_value_float();
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
g26_retraction_multiplier = code_value_float();
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
@ -683,8 +660,8 @@
}
if (code_seen('S')) {
nozzle = code_value_float();
if (!WITHIN(nozzle, 0.1, 1.0)) {
g26_nozzle = code_value_float();
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
@ -692,11 +669,11 @@
if (code_seen('P')) {
if (!code_has_value())
prime_flag = -1;
g26_prime_flag = -1;
else {
prime_flag++;
prime_length = code_value_linear_units();
if (!WITHIN(prime_length, 0.0, 25.0)) {
g26_prime_flag++;
g26_prime_length = code_value_linear_units();
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
@ -704,21 +681,21 @@
}
if (code_seen('F')) {
filament_diameter = code_value_linear_units();
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
g26_filament_diameter = code_value_linear_units();
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
if (code_seen('H')) {
hotend_temp = code_value_temp_abs();
if (!WITHIN(hotend_temp, 165, 280)) {
g26_hotend_temp = code_value_temp_abs();
if (!WITHIN(g26_hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
@ -735,9 +712,9 @@
return UBL_ERR;
}
x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
if (!position_is_reachable_xy(x_pos, y_pos)) {
g26_x_pos = code_seen('X') ? code_value_linear_units() : current_position[X_AXIS];
g26_y_pos = code_seen('Y') ? code_value_linear_units() : current_position[Y_AXIS];
if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return UBL_ERR;
}
@ -745,12 +722,12 @@
/**
* Wait until all parameters are verified before altering the state!
*/
ubl.state.active = !code_seen('D');
state.active = !code_seen('D');
return UBL_OK;
}
bool exit_from_g26() {
bool unified_bed_leveling::exit_from_g26() {
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
while (ubl_lcd_clicked()) idle();
@ -761,18 +738,18 @@
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool turn_on_heaters() {
bool unified_bed_leveling::turn_on_heaters() {
millis_t next;
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (bed_temp > 25) {
if (g26_bed_temp > 25) {
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback();
#endif
ubl.has_control_of_lcd_panel = true;
thermalManager.setTargetBed(bed_temp);
has_control_of_lcd_panel = true;
thermalManager.setTargetBed(g26_bed_temp);
next = millis() + 5000UL;
while (abs(thermalManager.degBed() - bed_temp) > 3) {
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
@ -788,8 +765,8 @@
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26();
if (PENDING(millis(), next)) {
next = millis() + 5000UL;
@ -810,19 +787,19 @@
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
bool unified_bed_leveling::prime_nozzle() {
float Total_Prime = 0.0;
if (prime_flag == -1) { // The user wants to control how much filament gets purged
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
ubl.has_control_of_lcd_panel = true;
has_control_of_lcd_panel = true;
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
set_destination_to_current();
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
chirp_at_user();
@ -850,7 +827,7 @@
lcd_quick_feedback();
#endif
ubl.has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
}
else {
@ -859,7 +836,7 @@
lcd_quick_feedback();
#endif
set_destination_to_current();
destination[E_AXIS] += prime_length;
destination[E_AXIS] += g26_prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize();
set_destination_to_current();

View file

@ -2355,7 +2355,7 @@ static void clean_up_after_endstop_or_probe_move() {
* - Raise to the BETWEEN height
* - Return the probed Z position
*/
float probe_pt(const float x, const float y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
float probe_pt(const float &x, const float &y, const bool stow/*=true*/, const int verbose_level/*=1*/) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(">>> probe_pt(", x);
@ -3416,8 +3416,8 @@ inline void gcode_G7(
return;
}
destination[X_AXIS] = hasI ? pgm_read_float(&ubl.mesh_index_to_xpos[ix]) : current_position[X_AXIS];
destination[Y_AXIS] = hasJ ? pgm_read_float(&ubl.mesh_index_to_ypos[iy]) : current_position[Y_AXIS];
destination[X_AXIS] = hasI ? ubl.mesh_index_to_xpos(ix) : current_position[X_AXIS];
destination[Y_AXIS] = hasJ ? ubl.mesh_index_to_ypos(iy) : current_position[Y_AXIS];
destination[Z_AXIS] = current_position[Z_AXIS]; //todo: perhaps add Z-move support?
destination[E_AXIS] = current_position[E_AXIS];
@ -8704,7 +8704,7 @@ void quickstop_stepper() {
const bool hasZ = code_seen('Z'), hasQ = !hasZ && code_seen('Q');
if (hasC) {
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
ix = location.x_index;
iy = location.y_index;
}
@ -11467,7 +11467,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#if ENABLED(AUTO_BED_LEVELING_UBL)
const float fr_scaled = MMS_SCALED(feedrate_mm_s);
if (ubl.state.active) {
ubl_line_to_destination_cartesian(fr_scaled, active_extruder);
ubl.line_to_destination_cartesian(fr_scaled, active_extruder);
return true;
}
else
@ -11612,14 +11612,14 @@ void prepare_move_to_destination() {
if (
#if IS_KINEMATIC
#if UBL_DELTA
ubl_prepare_linear_move_to(destination, feedrate_mm_s)
ubl.prepare_linear_move_to(destination, feedrate_mm_s)
#else
prepare_kinematic_move_to(destination)
#endif
#elif ENABLED(DUAL_X_CARRIAGE)
prepare_move_to_destination_dualx()
#elif UBL_DELTA // will work for CARTESIAN too (smaller segments follow mesh more closely)
ubl_prepare_linear_move_to(destination, feedrate_mm_s)
ubl.prepare_linear_move_to(destination, feedrate_mm_s)
#else
prepare_move_to_destination_cartesian()
#endif

View file

@ -21,8 +21,9 @@
*/
/**
* Contributed by Triffid_Hunter, modified by Kliment, extended by the Marlin team
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
* Fast I/O Routines
* Use direct port manipulation to save scads of processor time.
* Contributed by Triffid_Hunter. Modified by Kliment and the Marlin team.
*/
#ifndef _FASTIO_ARDUINO_H
@ -30,15 +31,14 @@
#include <avr/io.h>
/**
* Include Ports and Functions
*/
/**
* Enable this option to use Teensy++ 2.0 assignments for AT90USB processors.
*/
//#define AT90USBxx_TEENSYPP_ASSIGNMENTS
/**
* Include Ports and Functions
*/
#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328__) || defined(__AVR_ATmega328P__)
#include "fastio_168.h"
#elif defined(__AVR_ATmega644__) || defined(__AVR_ATmega644P__) || defined(__AVR_ATmega644PA__) || defined(__AVR_ATmega1284P__)
@ -58,13 +58,15 @@
#endif
#ifndef _BV
#define _BV(PIN) (1 << PIN)
#define _BV(PIN) (1UL << PIN)
#endif
/**
* Magic I/O routines
*
* Now you can simply SET_OUTPUT(PIN); WRITE(PIN, HIGH); WRITE(PIN, LOW);
*
* Why double up on these macros? see http://gcc.gnu.org/onlinedocs/cpp/Stringification.html
*/
#define _READ(IO) ((bool)(DIO ## IO ## _RPORT & _BV(DIO ## IO ## _PIN)))

View file

@ -679,5 +679,4 @@
#define PF7_PWM NULL
#define PF7_DDR DDRF
#endif // AT90USBxx_TEENSYPP_ASSIGNMENTS Teensyduino assignments
#endif // _FASTIO_AT90USB

View file

@ -52,7 +52,7 @@ void inline incremental_LSF_reset(struct linear_fit_data *lsf) {
memset(lsf, 0, sizeof(linear_fit_data));
}
void inline incremental_WLSF(struct linear_fit_data *lsf, float x, float y, float z, float w) {
void inline incremental_WLSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z, const float &w) {
// weight each accumulator by factor w, including the "number" of samples
// (analagous to calling inc_LSF twice with same values to weight it by 2X)
lsf->xbar += w * x;
@ -65,11 +65,11 @@ void inline incremental_WLSF(struct linear_fit_data *lsf, float x, float y, floa
lsf->xzbar += w * x * z;
lsf->yzbar += w * y * z;
lsf->N += w;
lsf->max_absx = max(fabs( w * x ), lsf->max_absx);
lsf->max_absy = max(fabs( w * y ), lsf->max_absy);
lsf->max_absx = max(fabs(w * x), lsf->max_absx);
lsf->max_absy = max(fabs(w * y), lsf->max_absy);
}
void inline incremental_LSF(struct linear_fit_data *lsf, float x, float y, float z) {
void inline incremental_LSF(struct linear_fit_data *lsf, const float &x, const float &y, const float &z) {
lsf->xbar += x;
lsf->ybar += y;
lsf->zbar += z;

View file

@ -29,12 +29,12 @@
#define XYZ 3
#define FORCE_INLINE __attribute__((always_inline)) inline
#define _O0 __attribute__((optimize("O0")))
#define _Os __attribute__((optimize("Os")))
#define _O1 __attribute__((optimize("O1")))
#define _O2 __attribute__((optimize("O2")))
#define _O3 __attribute__((optimize("O3")))
#define _UNUSED __attribute__((unused))
#define _O0 __attribute__((optimize("O0")))
#define _Os __attribute__((optimize("Os")))
#define _O1 __attribute__((optimize("O1")))
#define _O2 __attribute__((optimize("O2")))
#define _O3 __attribute__((optimize("O3")))
// Bracket code that shouldn't be interrupted
#ifndef CRITICAL_SECTION_START

View file

@ -12,9 +12,9 @@
* @param strokes number of strokes to execute
*/
void Nozzle::stroke(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &end,
__attribute__((unused)) uint8_t const &strokes
_UNUSED point_t const &start,
_UNUSED point_t const &end,
_UNUSED uint8_t const &strokes
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
@ -56,10 +56,10 @@ void Nozzle::stroke(
* @param objects number of objects to create
*/
void Nozzle::zigzag(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &end,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) uint8_t const &objects
_UNUSED point_t const &start,
_UNUSED point_t const &end,
_UNUSED uint8_t const &strokes,
_UNUSED uint8_t const &objects
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
const float A = nozzle_clean_horizontal ? nozzle_clean_height : nozzle_clean_length, // [twice the] Amplitude
@ -114,10 +114,10 @@ void Nozzle::zigzag(
* @param radius radius of circle
*/
void Nozzle::circle(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &middle,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) float const &radius
_UNUSED point_t const &start,
_UNUSED point_t const &middle,
_UNUSED uint8_t const &strokes,
_UNUSED float const &radius
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
if (strokes == 0) return;
@ -177,10 +177,10 @@ void Nozzle::circle(
* @param argument depends on the cleaning pattern
*/
void Nozzle::clean(
__attribute__((unused)) uint8_t const &pattern,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) float const &radius,
__attribute__((unused)) uint8_t const &objects
_UNUSED uint8_t const &pattern,
_UNUSED uint8_t const &strokes,
_UNUSED float const &radius,
_UNUSED uint8_t const &objects
) {
#if ENABLED(NOZZLE_CLEAN_FEATURE)
#if ENABLED(DELTA)
@ -209,7 +209,7 @@ void Nozzle::clean(
}
void Nozzle::park(
__attribute__((unused)) uint8_t const &z_action
_UNUSED uint8_t const &z_action
) {
#if ENABLED(NOZZLE_PARK_FEATURE)
float const z = current_position[Z_AXIS];

View file

@ -50,10 +50,10 @@ class Nozzle {
* @param strokes number of strokes to execute
*/
static void stroke(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &end,
__attribute__((unused)) uint8_t const &strokes
) __attribute__((optimize ("Os")));
_UNUSED point_t const &start,
_UNUSED point_t const &end,
_UNUSED uint8_t const &strokes
) _Os;
/**
* @brief Zig-zag clean pattern
@ -65,11 +65,11 @@ class Nozzle {
* @param objects number of objects to create
*/
static void zigzag(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &end,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) uint8_t const &objects
) __attribute__((optimize ("Os")));
_UNUSED point_t const &start,
_UNUSED point_t const &end,
_UNUSED uint8_t const &strokes,
_UNUSED uint8_t const &objects
) _Os;
/**
* @brief Circular clean pattern
@ -80,11 +80,11 @@ class Nozzle {
* @param radius radius of circle
*/
static void circle(
__attribute__((unused)) point_t const &start,
__attribute__((unused)) point_t const &middle,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) float const &radius
) __attribute__((optimize ("Os")));
_UNUSED point_t const &start,
_UNUSED point_t const &middle,
_UNUSED uint8_t const &strokes,
_UNUSED float const &radius
) _Os;
public:
/**
@ -95,15 +95,15 @@ class Nozzle {
* @param argument depends on the cleaning pattern
*/
static void clean(
__attribute__((unused)) uint8_t const &pattern,
__attribute__((unused)) uint8_t const &strokes,
__attribute__((unused)) float const &radius,
__attribute__((unused)) uint8_t const &objects = 0
) __attribute__((optimize ("Os")));
_UNUSED uint8_t const &pattern,
_UNUSED uint8_t const &strokes,
_UNUSED float const &radius,
_UNUSED uint8_t const &objects = 0
) _Os;
static void park(
__attribute__((unused)) uint8_t const &z_action
) __attribute__((optimize ("Os")));
_UNUSED uint8_t const &z_action
) _Os;
};
#endif

View file

@ -27,37 +27,26 @@
#include "softspi.h"
template<uint8_t MisoPin, uint8_t MosiPin, uint8_t SckPin>
class Spi {
static SoftSPI<MisoPin, MosiPin, SckPin> softSpi;
class SPI {
static SoftSPI<MisoPin, MosiPin, SckPin> softSPI;
public:
inline __attribute__((always_inline))
static void init() {
softSpi.begin();
}
inline __attribute__((always_inline))
static void send(uint8_t data) {
softSpi.send(data);
}
inline __attribute__((always_inline))
static uint8_t receive() {
return softSpi.receive();
}
FORCE_INLINE static void init() { softSPI.begin(); }
FORCE_INLINE static void send(uint8_t data) { softSPI.send(data); }
FORCE_INLINE static uint8_t receive() { return softSPI.receive(); }
};
//hardware spi
// Hardware SPI
template<>
class Spi<MISO_PIN, MOSI_PIN, SCK_PIN> {
class SPI<MISO_PIN, MOSI_PIN, SCK_PIN> {
public:
inline __attribute__((always_inline))
static void init() {
FORCE_INLINE static void init() {
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN, HIGH);
}
inline __attribute__((always_inline))
static uint8_t receive() {
FORCE_INLINE static uint8_t receive() {
SPDR = 0;
for (;!TEST(SPSR, SPIF););
return SPDR;
@ -65,4 +54,4 @@ class Spi<MISO_PIN, MOSI_PIN, SCK_PIN> {
};
#endif
#endif // __SPI_H__

View file

@ -935,7 +935,7 @@ void Temperature::updateTemperaturesFromRawValues() {
#ifndef MAX6675_DO_PIN
#define MAX6675_DO_PIN MISO_PIN
#endif
Spi<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
SPI<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
#endif
/**

View file

@ -288,8 +288,7 @@ class Temperature {
/**
* Call periodically to manage heaters
*/
//static void manage_heater(); // changed to address compiler error
static void manage_heater() __attribute__((__optimize__("O2")));
static void manage_heater() _O2; // Added _O2 to work around a compiler error
/**
* Preheating hotends

View file

@ -69,8 +69,8 @@
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr float unified_bed_leveling::mesh_index_to_xpos[16],
unified_bed_leveling::mesh_index_to_ypos[16];
constexpr float unified_bed_leveling::_mesh_index_to_xpos[16],
unified_bed_leveling::_mesh_index_to_ypos[16];
bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false;
@ -117,8 +117,8 @@
SERIAL_EOL;
}
const float current_xi = ubl.get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = ubl.get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
const float current_xi = get_cell_index_x(current_position[X_AXIS] + (MESH_X_DIST) / 2.0),
current_yi = get_cell_index_y(current_position[Y_AXIS] + (MESH_Y_DIST) / 2.0);
for (int8_t j = GRID_MAX_POINTS_Y - 1; j >= 0; j--) {
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {

View file

@ -53,30 +53,16 @@
// ubl_motion.cpp
void debug_current_and_destination(const char * const title);
void ubl_line_to_destination_cartesian(const float&, uint8_t);
bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate );
// ubl_G29.cpp
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
void dump(char * const str, const float &f);
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
float measure_business_card_thickness(float&);
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
void shift_mesh_height();
void fine_tune_mesh(const float&, const float&, const bool);
bool g29_parameter_parsing();
void g29_eeprom_dump();
void g29_compare_current_mesh_to_stored_mesh();
// External references
char *ftostr43sign(const float&, char);
bool ubl_lcd_clicked();
void home_all_axes();
void gcode_G26();
void gcode_G29();
extern uint8_t ubl_cnt;
@ -101,26 +87,81 @@
static float last_specified_z;
static int g29_verbose_level,
g29_phase_value,
g29_repetition_cnt,
g29_storage_slot,
g29_map_type,
g29_grid_size;
static bool g29_c_flag, g29_x_flag, g29_y_flag;
static float g29_x_pos, g29_y_pos,
g29_card_thickness,
g29_constant;
#if ENABLED(UBL_G26_MESH_VALIDATION)
static float g26_extrusion_multiplier,
g26_retraction_multiplier,
g26_nozzle,
g26_filament_diameter,
g26_prime_length,
g26_x_pos, g26_y_pos,
g26_ooze_amount,
g26_layer_height;
static int16_t g26_bed_temp,
g26_hotend_temp,
g26_repeats;
static int8_t g26_prime_flag;
static bool g26_continue_with_closest, g26_keep_heaters_on;
#endif
static float measure_point_with_encoder();
static float measure_business_card_thickness(float&);
static bool g29_parameter_parsing();
static void find_mean_mesh_height();
static void shift_mesh_height();
static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
static void g29_what_command();
static void g29_eeprom_dump();
static void g29_compare_current_mesh_to_stored_mesh();
static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
static void smart_fill_mesh();
#if ENABLED(UBL_G26_MESH_VALIDATION)
static bool exit_from_g26();
static bool parse_G26_parameters();
static void G26_line_to_destination(const float &feed_rate);
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static bool look_for_lines_to_connect();
static bool turn_on_heaters();
static bool prime_nozzle();
static void retract_filament(float where[XYZE]);
static void recover_filament(float where[XYZE]);
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
static void move_to(const float&, const float&, const float&, const float&);
#endif
public:
void echo_name();
void report_state();
void find_mean_mesh_height();
void shift_mesh_height();
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
void save_ubl_active_state_and_disable();
void restore_ubl_active_state_and_leave();
void g29_what_command();
void g29_eeprom_dump();
void g29_compare_current_mesh_to_stored_mesh();
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
void smart_fill_mesh();
void display_map(const int);
void reset();
void invalidate();
bool sanity_check();
static void echo_name();
static void report_state();
static void save_ubl_active_state_and_disable();
static void restore_ubl_active_state_and_leave();
static void display_map(const int);
static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
static void reset();
static void invalidate();
static bool sanity_check();
static void G29() _O0; // O0 for no optimization
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
#if ENABLED(UBL_G26_MESH_VALIDATION)
static void G26();
#endif
static ubl_state state;
@ -128,7 +169,7 @@
// 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
// until determinism prevails
constexpr static float mesh_index_to_xpos[16] PROGMEM = {
constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
@ -139,7 +180,7 @@
UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
};
constexpr static float mesh_index_to_ypos[16] PROGMEM = {
constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
@ -156,16 +197,16 @@
unified_bed_leveling();
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
int8_t get_cell_index_x(const float &x) {
static int8_t get_cell_index_x(const float &x) {
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
int8_t get_cell_index_y(const float &y) {
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
@ -173,12 +214,12 @@
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
int8_t find_closest_x_index(const float &x) {
static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
}
int8_t find_closest_y_index(const float &y) {
static int8_t find_closest_y_index(const float &y) {
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
}
@ -198,7 +239,7 @@
* It is fairly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
}
@ -206,7 +247,7 @@
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
*/
inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
@ -217,7 +258,7 @@
return NAN;
}
const float xratio = (RAW_X_POSITION(lx0) - pgm_read_float(&mesh_index_to_xpos[x1_i])) * (1.0 / (MESH_X_DIST)),
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi];
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
@ -226,7 +267,7 @@
//
// See comments above for z_correction_for_x_on_horizontal_mesh_line
//
inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
@ -237,7 +278,7 @@
return NAN;
}
const float yratio = (RAW_Y_POSITION(ly0) - pgm_read_float(&mesh_index_to_ypos[y1_i])) * (1.0 / (MESH_Y_DIST)),
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i];
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
@ -249,7 +290,7 @@
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
float get_z_correction(const float &lx0, const float &ly0) {
static float get_z_correction(const float &lx0, const float &ly0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
@ -268,16 +309,16 @@
}
const float z1 = calc_z0(RAW_X_POSITION(lx0),
pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy],
pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy]);
mesh_index_to_xpos(cx), z_values[cx][cy],
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
const float z2 = calc_z0(RAW_X_POSITION(lx0),
pgm_read_float(&mesh_index_to_xpos[cx]), z_values[cx][cy + 1],
pgm_read_float(&mesh_index_to_xpos[cx + 1]), z_values[cx + 1][cy + 1]);
mesh_index_to_xpos(cx), z_values[cx][cy + 1],
mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
float z0 = calc_z0(RAW_Y_POSITION(ly0),
pgm_read_float(&mesh_index_to_ypos[cy]), z1,
pgm_read_float(&mesh_index_to_ypos[cy + 1]), z2);
mesh_index_to_ypos(cy), z1,
mesh_index_to_ypos(cy + 1), z2);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
@ -324,7 +365,7 @@
* Returns 0.0 if Z is past the specified 'Fade Height'.
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
inline float fade_scaling_factor_for_z(const float &lz) {
static inline float fade_scaling_factor_for_z(const float &lz) {
if (planner.z_fade_height == 0.0) return 1.0;
static float fade_scaling_factor = 1.0;
const float rz = RAW_Z_POSITION(lz);
@ -338,14 +379,24 @@
return fade_scaling_factor;
}
#else
inline float fade_scaling_factor_for_z(const float &lz) {
return 1.0;
}
FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
#endif
FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_xpos[i]); }
FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_ypos[i]); }
static bool prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate);
static void line_to_destination_cartesian(const float &fr, uint8_t e);
}; // class unified_bed_leveling
extern unified_bed_leveling ubl;
#if ENABLED(UBL_G26_MESH_VALIDATION)
FORCE_INLINE void gcode_G26() { ubl.G26(); }
#endif
FORCE_INLINE void gcode_G29() { ubl.G29(); }
#endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H

View file

@ -36,8 +36,7 @@
#define UBL_G29_P31
extern float destination[XYZE];
extern float current_position[XYZE];
extern float destination[XYZE], current_position[XYZE];
void lcd_return_to_status();
bool lcd_clicked();
@ -52,20 +51,31 @@
extern uint8_t code_value_byte();
extern bool code_value_bool();
extern bool code_has_value();
extern float probe_pt(float x, float y, bool, int);
extern float probe_pt(const float &x, const float &y, bool, int);
extern bool set_probe_deployed(bool);
void smart_fill_mesh();
void smart_fill_wlsf(float);
float measure_business_card_thickness(float &in_height);
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
bool ProbeStay = true;
#define SIZE_OF_LITTLE_RAISE 1
#define BIG_RAISE_NOT_NEEDED 0
extern void lcd_status_screen();
typedef void (*screenFunc_t)();
extern void lcd_goto_screen(screenFunc_t screen, const uint32_t encoder = 0);
extern void lcd_setstatus(const char* message, const bool persist);
extern void lcd_setstatuspgm(const char* message, const uint8_t level);
int unified_bed_leveling::g29_verbose_level,
unified_bed_leveling::g29_phase_value,
unified_bed_leveling::g29_repetition_cnt,
unified_bed_leveling::g29_storage_slot = 0,
unified_bed_leveling::g29_map_type,
unified_bed_leveling::g29_grid_size;
bool unified_bed_leveling::g29_c_flag,
unified_bed_leveling::g29_x_flag,
unified_bed_leveling::g29_y_flag;
float unified_bed_leveling::g29_x_pos,
unified_bed_leveling::g29_y_pos,
unified_bed_leveling::g29_card_thickness = 0.0,
unified_bed_leveling::g29_constant = 0.0;
/**
* G29: Unified Bed Leveling by Roxy
@ -304,16 +314,7 @@
* we now have the functionality and features of all three systems combined.
*/
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
static int g29_verbose_level, phase_value, repetition_cnt,
storage_slot = 0, map_type, grid_size;
static bool repeat_flag, c_flag, x_flag, y_flag;
static float x_pos, y_pos, card_thickness = 0.0, ubl_constant = 0.0;
extern void lcd_setstatus(const char* message, const bool persist);
extern void lcd_setstatuspgm(const char* message, const uint8_t level);
void _O0 gcode_G29() {
void unified_bed_leveling::G29() {
if (!settings.calc_num_meshes()) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
@ -340,15 +341,15 @@
// it directly specifies the repetition count and does not use the 'R' parameter.
if (code_seen('I')) {
uint8_t cnt = 0;
repetition_cnt = code_has_value() ? code_value_int() : 1;
while (repetition_cnt--) {
g29_repetition_cnt = code_has_value() ? code_value_int() : 1;
while (g29_repetition_cnt--) {
if (cnt > 20) { cnt = 0; idle(); }
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate
}
ubl.z_values[location.x_index][location.y_index] = NAN;
z_values[location.x_index][location.y_index] = NAN;
cnt++;
}
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
@ -370,30 +371,30 @@
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) { // a poorly calibrated Delta.
const float p1 = 0.5 * (GRID_MAX_POINTS_X) - x,
p2 = 0.5 * (GRID_MAX_POINTS_Y) - y;
ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
z_values[x][y] += 2.0 * HYPOT(p1, p2);
}
}
break;
case 1:
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) { // Create a diagonal line several Mesh cells thick that is raised
ubl.z_values[x][x] += 9.999;
ubl.z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
z_values[x][x] += 9.999;
z_values[x][x + (x < GRID_MAX_POINTS_Y - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
}
break;
case 2:
// Allow the user to specify the height because 10mm is a little extreme in some cases.
for (uint8_t x = (GRID_MAX_POINTS_X) / 3; x < 2 * (GRID_MAX_POINTS_X) / 3; x++) // Create a rectangular raised area in
for (uint8_t y = (GRID_MAX_POINTS_Y) / 3; y < 2 * (GRID_MAX_POINTS_Y) / 3; y++) // the center of the bed
ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
z_values[x][y] += code_seen('C') ? g29_constant : 9.99;
break;
}
}
if (code_seen('J')) {
if (grid_size) { // if not 0 it is a normal n x n grid being probed
ubl.save_ubl_active_state_and_disable();
ubl.tilt_mesh_based_on_probed_grid(code_seen('T'));
ubl.restore_ubl_active_state_and_leave();
if (g29_grid_size) { // if not 0 it is a normal n x n grid being probed
save_ubl_active_state_and_disable();
tilt_mesh_based_on_probed_grid(code_seen('T'));
restore_ubl_active_state_and_leave();
}
else { // grid_size == 0 : A 3-Point leveling has been requested
float z3, z2, z1 = probe_pt(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y), false, g29_verbose_level);
@ -413,29 +414,29 @@
// doesn't mean the Mesh is tilted! (Compensate each probe point by what the Mesh says
// its height is.)
ubl.save_ubl_active_state_and_disable();
z1 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
z2 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
z3 -= ubl.get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
save_ubl_active_state_and_disable();
z1 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_1_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_1_Y)) /* + zprobe_zoffset */ ;
z2 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_2_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_2_Y)) /* + zprobe_zoffset */ ;
z3 -= get_z_correction(LOGICAL_X_POSITION(UBL_PROBE_PT_3_X), LOGICAL_Y_POSITION(UBL_PROBE_PT_3_Y)) /* + zprobe_zoffset */ ;
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
ubl.tilt_mesh_based_on_3pts(z1, z2, z3);
ubl.restore_ubl_active_state_and_leave();
tilt_mesh_based_on_3pts(z1, z2, z3);
restore_ubl_active_state_and_leave();
}
}
if (code_seen('P')) {
if (WITHIN(phase_value, 0, 1) && ubl.state.storage_slot == -1) {
ubl.state.storage_slot = 0;
if (WITHIN(g29_phase_value, 0, 1) && state.storage_slot == -1) {
state.storage_slot = 0;
SERIAL_PROTOCOLLNPGM("Default storage slot 0 selected.");
}
switch (phase_value) {
switch (g29_phase_value) {
case 0:
//
// Zero Mesh Data
//
ubl.reset();
reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.");
break;
@ -444,16 +445,16 @@
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
if (!code_seen('C')) {
ubl.invalidate();
invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.");
}
if (g29_verbose_level > 1) {
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", x_pos);
SERIAL_PROTOCOLPAIR("Probing Mesh Points Closest to (", g29_x_pos);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL(y_pos);
SERIAL_PROTOCOL(g29_y_pos);
SERIAL_PROTOCOLLNPGM(").\n");
}
ubl.probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
probe_entire_mesh(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
code_seen('T'), code_seen('E'), code_seen('U'));
break;
@ -463,7 +464,7 @@
//
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!x_flag && !y_flag) {
if (!g29_x_flag && !g29_y_flag) {
/**
* Use a good default location for the path.
* The flipped > and < operators in these comparisons is intentional.
@ -472,25 +473,25 @@
* Until that is decided, this can be forced with the X and Y parameters.
*/
#if IS_KINEMATIC
x_pos = X_HOME_POS;
y_pos = Y_HOME_POS;
g29_x_pos = X_HOME_POS;
g29_y_pos = Y_HOME_POS;
#else // cartesian
x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
g29_x_pos = X_PROBE_OFFSET_FROM_EXTRUDER > 0 ? X_MAX_POS : X_MIN_POS;
g29_y_pos = Y_PROBE_OFFSET_FROM_EXTRUDER < 0 ? Y_MAX_POS : Y_MIN_POS;
#endif
}
if (code_seen('C')) {
x_pos = current_position[X_AXIS];
y_pos = current_position[Y_AXIS];
g29_x_pos = current_position[X_AXIS];
g29_y_pos = current_position[Y_AXIS];
}
float height = Z_CLEARANCE_BETWEEN_PROBES;
if (code_seen('B')) {
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
g29_card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height);
if (fabs(card_thickness) > 1.5) {
if (fabs(g29_card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurement.");
return;
}
@ -498,12 +499,12 @@
if (code_seen('H') && code_has_value()) height = code_value_float();
if (!position_is_reachable_xy(x_pos, y_pos)) {
if (!position_is_reachable_xy(g29_x_pos, g29_y_pos)) {
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
return;
}
manually_probe_remaining_mesh(x_pos, y_pos, height, card_thickness, code_seen('T'));
manually_probe_remaining_mesh(g29_x_pos, g29_y_pos, height, g29_card_thickness, code_seen('T'));
SERIAL_PROTOCOLLNPGM("G29 P2 finished.");
} break;
@ -514,24 +515,24 @@
* - Specify a constant with the 'C' parameter.
* - Allow 'G29 P3' to choose a 'reasonable' constant.
*/
if (c_flag) {
if (repetition_cnt >= GRID_MAX_POINTS) {
if (g29_c_flag) {
if (g29_repetition_cnt >= GRID_MAX_POINTS) {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++) {
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++) {
ubl.z_values[x][y] = ubl_constant;
z_values[x][y] = g29_constant;
}
}
}
else {
while (repetition_cnt--) { // this only populates reachable mesh points near
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
while (g29_repetition_cnt--) { // this only populates reachable mesh points near
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, g29_x_pos, g29_y_pos, USE_NOZZLE_AS_REFERENCE, NULL, false);
if (location.x_index < 0) break; // No more reachable invalid Mesh Points to populate
ubl.z_values[location.x_index][location.y_index] = ubl_constant;
z_values[location.x_index][location.y_index] = g29_constant;
}
}
} else {
const float cvf = code_value_float();
switch( (int)truncf( cvf * 10.0 ) - 30 ) { // 3.1 -> 1
switch((int)truncf(cvf * 10.0) - 30) { // 3.1 -> 1
#if ENABLED(UBL_G29_P31)
case 1: {
@ -541,9 +542,9 @@
// P3.12 100X distance weighting
// P3.13 1000X distance weighting, approaches simple average of nearest points
const float weight_power = (cvf - 3.10) * 100.0; // 3.12345 -> 2.345
const float weight_factor = weight_power ? pow( 10.0, weight_power ) : 0;
smart_fill_wlsf( weight_factor );
const float weight_power = (cvf - 3.10) * 100.0, // 3.12345 -> 2.345
weight_factor = weight_power ? pow(10.0, weight_power) : 0;
smart_fill_wlsf(weight_factor);
}
break;
#endif
@ -561,13 +562,13 @@
// Fine Tune (i.e., Edit) the Mesh
//
fine_tune_mesh(x_pos, y_pos, code_seen('T'));
fine_tune_mesh(g29_x_pos, g29_y_pos, code_seen('T'));
break;
case 5: ubl.find_mean_mesh_height(); break;
case 5: find_mean_mesh_height(); break;
case 6: ubl.shift_mesh_height(); break;
case 6: shift_mesh_height(); break;
}
}
@ -575,7 +576,7 @@
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items
//
if (code_seen('W')) ubl.g29_what_command();
if (code_seen('W')) g29_what_command();
//
// When we are fully debugged, this may go away. But there are some valid
@ -590,7 +591,7 @@
//
if (code_seen('L')) { // Load Current Mesh Data
storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
g29_storage_slot = code_has_value() ? code_value_int() : state.storage_slot;
int16_t a = settings.calc_num_meshes();
@ -599,14 +600,14 @@
return;
}
if (!WITHIN(storage_slot, 0, a - 1)) {
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
settings.load_mesh(storage_slot);
ubl.state.storage_slot = storage_slot;
settings.load_mesh(g29_storage_slot);
state.storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done.");
}
@ -616,19 +617,19 @@
//
if (code_seen('S')) { // Store (or Save) Current Mesh Data
storage_slot = code_has_value() ? code_value_int() : ubl.state.storage_slot;
g29_storage_slot = code_has_value() ? code_value_int() : state.storage_slot;
if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
if (g29_storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the
SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(ubl.z_values[x][y])) {
if (!isnan(z_values[x][y])) {
SERIAL_ECHOPAIR("M421 I ", x);
SERIAL_ECHOPAIR(" J ", y);
SERIAL_ECHOPGM(" Z ");
SERIAL_ECHO_F(ubl.z_values[x][y], 6);
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[x])));
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[y])));
SERIAL_ECHO_F(z_values[x][y], 6);
SERIAL_ECHOPAIR(" ; X ", LOGICAL_X_POSITION(mesh_index_to_xpos(x)));
SERIAL_ECHOPAIR(", Y ", LOGICAL_Y_POSITION(mesh_index_to_ypos(y)));
SERIAL_EOL;
}
return;
@ -641,32 +642,32 @@
goto LEAVE;
}
if (!WITHIN(storage_slot, 0, a - 1)) {
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
goto LEAVE;
}
settings.store_mesh(storage_slot);
ubl.state.storage_slot = storage_slot;
settings.store_mesh(g29_storage_slot);
state.storage_slot = g29_storage_slot;
SERIAL_PROTOCOLLNPGM("Done.");
}
if (code_seen('T'))
ubl.display_map(code_has_value() ? code_value_int() : 0);
display_map(code_has_value() ? code_value_int() : 0);
/*
* This code may not be needed... Prepare for its removal...
*
if (code_seen('Z')) {
if (code_has_value())
ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
else {
ubl.save_ubl_active_state_and_disable();
//float measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
save_ubl_active_state_and_disable();
//float measured_z = probe_pt(g29_x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, g29_y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
ubl.has_control_of_lcd_panel = true; // Grab the LCD Hardware
has_control_of_lcd_panel = true; // Grab the LCD Hardware
float measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
// The user is not going to be locking in a new Z-Offset very often so
@ -682,7 +683,7 @@
do_blocking_move_to_z(measured_z);
} while (!ubl_lcd_clicked());
ubl.has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
has_control_of_lcd_panel = true; // There is a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
// or here. So, until we are done looking for a long encoder press,
// we need to take control of the panel
@ -698,17 +699,17 @@
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
LCD_MESSAGEPGM("Z-Offset Stopped"); // TODO: Make translatable string
ubl.restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
goto LEAVE;
}
}
ubl.has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
safe_delay(20); // We don't want any switch noise.
ubl.state.z_offset = measured_z;
state.z_offset = measured_z;
lcd_implementation_clear();
ubl.restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
}
}
*/
@ -719,7 +720,7 @@
LCD_MESSAGEPGM("");
lcd_quick_feedback();
ubl.has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
}
void unified_bed_leveling::find_mean_mesh_height() {
@ -727,8 +728,8 @@
int n = 0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(ubl.z_values[x][y])) {
sum += ubl.z_values[x][y];
if (!isnan(z_values[x][y])) {
sum += z_values[x][y];
n++;
}
@ -740,8 +741,8 @@
float sum_of_diff_squared = 0.0;
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(ubl.z_values[x][y]))
sum_of_diff_squared += sq(ubl.z_values[x][y] - mean);
if (!isnan(z_values[x][y]))
sum_of_diff_squared += sq(z_values[x][y] - mean);
SERIAL_ECHOLNPAIR("# of samples: ", n);
SERIAL_ECHOPGM("Mean Mesh Height: ");
@ -753,18 +754,18 @@
SERIAL_ECHO_F(sigma, 6);
SERIAL_EOL;
if (c_flag)
if (g29_c_flag)
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(ubl.z_values[x][y]))
ubl.z_values[x][y] -= mean + ubl_constant;
if (!isnan(z_values[x][y]))
z_values[x][y] -= mean + g29_constant;
}
void unified_bed_leveling::shift_mesh_height() {
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
if (!isnan(ubl.z_values[x][y]))
ubl.z_values[x][y] += ubl_constant;
if (!isnan(z_values[x][y]))
z_values[x][y] += g29_constant;
}
/**
@ -774,8 +775,8 @@
void unified_bed_leveling::probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
mesh_index_pair location;
ubl.has_control_of_lcd_panel = true;
ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE();
uint16_t max_iterations = GRID_MAX_POINTS;
@ -786,8 +787,8 @@
lcd_quick_feedback();
STOW_PROBE();
while (ubl_lcd_clicked()) idle();
ubl.has_control_of_lcd_panel = false;
ubl.restore_ubl_active_state_and_leave();
has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel
return;
}
@ -795,19 +796,19 @@
location = find_closest_mesh_point_of_type(INVALID, lx, ly, USE_PROBE_AS_REFERENCE, NULL, close_or_far);
if (location.x_index >= 0) { // mesh point found and is reachable by probe
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); // TODO: Needs error handling
ubl.z_values[location.x_index][location.y_index] = measured_z;
z_values[location.x_index][location.y_index] = measured_z;
}
if (do_ubl_mesh_map) ubl.display_map(map_type);
if (do_ubl_mesh_map) display_map(g29_map_type);
} while (location.x_index >= 0 && --max_iterations);
STOW_PROBE();
ubl.restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
do_blocking_move_to_xy(
constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), UBL_MESH_MIN_X, UBL_MESH_MAX_X),
@ -886,9 +887,9 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
y_tmp = pgm_read_float(&ubl.mesh_index_to_ypos[j]),
z_tmp = ubl.z_values[i][j];
float x_tmp = mesh_index_to_xpos(i),
y_tmp = mesh_index_to_ypos(j),
z_tmp = z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("before rotation = [");
@ -914,12 +915,12 @@
safe_delay(55);
}
#endif
ubl.z_values[i][j] += z_tmp - d;
z_values[i][j] += z_tmp - d;
}
}
}
float use_encoder_wheel_to_measure_point() {
float unified_bed_leveling::measure_point_with_encoder() {
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
@ -927,22 +928,20 @@
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (ubl.encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
ubl.encoder_diff = 0;
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
encoder_diff = 0;
}
}
KEEPALIVE_STATE(IN_HANDLER);
return current_position[Z_AXIS];
}
static void echo_and_take_a_measurement() {
SERIAL_PROTOCOLLNPGM(" and take a measurement.");
}
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
float measure_business_card_thickness(float &in_height) {
ubl.has_control_of_lcd_panel = true;
ubl.save_ubl_active_state_and_disable(); // Disable bed level correction for probing
float unified_bed_leveling::measure_business_card_thickness(float &in_height) {
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
do_blocking_move_to_z(in_height);
do_blocking_move_to_xy(0.5 * (UBL_MESH_MAX_X - (UBL_MESH_MIN_X)), 0.5 * (UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)));
@ -954,7 +953,7 @@
lcd_goto_screen(lcd_status_screen);
echo_and_take_a_measurement();
const float z1 = use_encoder_wheel_to_measure_point();
const float z1 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
stepper.synchronize();
@ -962,7 +961,7 @@
LCD_MESSAGEPGM("Remove & measure bed"); // TODO: Make translatable string
echo_and_take_a_measurement();
const float z2 = use_encoder_wheel_to_measure_point();
const float z2 = measure_point_with_encoder();
do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES);
@ -976,17 +975,17 @@
in_height = current_position[Z_AXIS]; // do manual probing at lower height
ubl.has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
ubl.restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
return thickness;
}
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
void unified_bed_leveling::manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
ubl.has_control_of_lcd_panel = true;
ubl.save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
has_control_of_lcd_panel = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
@ -997,8 +996,8 @@
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]),
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index),
xProbe = LOGICAL_X_POSITION(rawx),
yProbe = LOGICAL_Y_POSITION(rawy);
@ -1012,9 +1011,9 @@
do_blocking_move_to_z(z_clearance);
KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl.has_control_of_lcd_panel = true;
has_control_of_lcd_panel = true;
if (do_ubl_mesh_map) ubl.display_map(map_type); // show user where we're probing
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
if (code_seen('B'))
LCD_MESSAGEPGM("Place shim & measure"); // TODO: Make translatable string
@ -1025,9 +1024,9 @@
delay(50); // debounce
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (ubl.encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
ubl.encoder_diff = 0;
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) / 100.0);
encoder_diff = 0;
}
}
@ -1042,48 +1041,47 @@
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_quick_feedback();
while (ubl_lcd_clicked()) idle();
ubl.has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
ubl.restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
return;
}
}
ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - thick;
if (g29_verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL;
}
} while (location.x_index >= 0 && location.y_index >= 0);
if (do_ubl_mesh_map) ubl.display_map(map_type);
if (do_ubl_mesh_map) display_map(g29_map_type);
ubl.restore_ubl_active_state_and_leave();
restore_ubl_active_state_and_leave();
KEEPALIVE_STATE(IN_HANDLER);
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(lx, ly);
}
bool g29_parameter_parsing() {
bool unified_bed_leveling::g29_parameter_parsing() {
bool err_flag = false;
LCD_MESSAGEPGM("Doing G29 UBL!"); // TODO: Make translatable string
lcd_quick_feedback();
ubl_constant = 0.0;
repetition_cnt = 0;
g29_constant = 0.0;
g29_repetition_cnt = 0;
x_flag = code_seen('X') && code_has_value();
x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
y_flag = code_seen('Y') && code_has_value();
y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
g29_x_flag = code_seen('X') && code_has_value();
g29_x_pos = g29_x_flag ? code_value_float() : current_position[X_AXIS];
g29_y_flag = code_seen('Y') && code_has_value();
g29_y_pos = g29_y_flag ? code_value_float() : current_position[Y_AXIS];
repeat_flag = code_seen('R');
if (repeat_flag) {
repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
NOMORE(repetition_cnt, GRID_MAX_POINTS);
if (repetition_cnt < 1) {
if (code_seen('R')) {
g29_repetition_cnt = code_has_value() ? code_value_int() : GRID_MAX_POINTS;
NOMORE(g29_repetition_cnt, GRID_MAX_POINTS);
if (g29_repetition_cnt < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epetition count invalid (1+).\n");
return UBL_ERR;
}
@ -1096,31 +1094,31 @@
}
if (code_seen('P')) {
phase_value = code_value_int();
if (!WITHIN(phase_value, 0, 6)) {
g29_phase_value = code_value_int();
if (!WITHIN(g29_phase_value, 0, 6)) {
SERIAL_PROTOCOLLNPGM("?(P)hase value invalid (0-6).\n");
err_flag = true;
}
}
if (code_seen('J')) {
grid_size = code_has_value() ? code_value_int() : 0;
if (grid_size!=0 && !WITHIN(grid_size, 2, 9)) {
g29_grid_size = code_has_value() ? code_value_int() : 0;
if (g29_grid_size && !WITHIN(g29_grid_size, 2, 9)) {
SERIAL_PROTOCOLLNPGM("?Invalid grid size (J) specified (2-9).\n");
err_flag = true;
}
}
if (x_flag != y_flag) {
if (g29_x_flag != g29_y_flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
err_flag = true;
}
if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
if (!WITHIN(RAW_X_POSITION(g29_x_pos), X_MIN_POS, X_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
err_flag = true;
}
if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
if (!WITHIN(RAW_Y_POSITION(g29_y_pos), Y_MIN_POS, Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
err_flag = true;
}
@ -1133,17 +1131,17 @@
SERIAL_PROTOCOLLNPGM("?Can't activate and deactivate at the same time.\n");
return UBL_ERR;
}
ubl.state.active = true;
ubl.report_state();
state.active = true;
report_state();
}
else if (code_seen('D')) {
ubl.state.active = false;
ubl.report_state();
state.active = false;
report_state();
}
// Set global 'C' flag and its value
if ((c_flag = code_seen('C')))
ubl_constant = code_value_float();
if ((g29_c_flag = code_seen('C')))
g29_constant = code_value_float();
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (code_seen('F') && code_has_value()) {
@ -1156,8 +1154,8 @@
}
#endif
map_type = code_seen('T') && code_has_value() ? code_value_int() : 0;
if (!WITHIN(map_type, 0, 1)) {
g29_map_type = code_seen('T') && code_has_value() ? code_value_int() : 0;
if (!WITHIN(g29_map_type, 0, 1)) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR;
}
@ -1175,8 +1173,8 @@
lcd_quick_feedback();
return;
}
ubl_state_at_invocation = ubl.state.active;
ubl.state.active = 0;
ubl_state_at_invocation = state.active;
state.active = 0;
}
void unified_bed_leveling::restore_ubl_active_state_and_leave() {
@ -1186,7 +1184,7 @@
lcd_quick_feedback();
return;
}
ubl.state.active = ubl_state_at_invocation;
state.active = ubl_state_at_invocation;
}
/**
@ -1234,7 +1232,7 @@
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(pgm_read_float(&mesh_index_to_xpos[i])), 3);
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(mesh_index_to_xpos(i)), 3);
SERIAL_PROTOCOLPGM(" ");
safe_delay(25);
}
@ -1242,7 +1240,7 @@
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < GRID_MAX_POINTS_Y; i++) {
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(pgm_read_float(&mesh_index_to_ypos[i])), 3);
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(mesh_index_to_ypos(i)), 3);
SERIAL_PROTOCOLPGM(" ");
safe_delay(25);
}
@ -1288,7 +1286,7 @@
* When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this.
*/
void g29_eeprom_dump() {
void unified_bed_leveling::g29_eeprom_dump() {
unsigned char cccc;
uint16_t kkkk;
@ -1313,7 +1311,7 @@
* When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it.
*/
void g29_compare_current_mesh_to_stored_mesh() {
void unified_bed_leveling::g29_compare_current_mesh_to_stored_mesh() {
int16_t a = settings.calc_num_meshes();
if (!a) {
@ -1327,26 +1325,26 @@
return;
}
storage_slot = code_value_int();
g29_storage_slot = code_value_int();
if (!WITHIN(storage_slot, 0, a - 1)) {
if (!WITHIN(g29_storage_slot, 0, a - 1)) {
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
return;
}
float tmp_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
settings.load_mesh(storage_slot, &tmp_z_values);
settings.load_mesh(g29_storage_slot, &tmp_z_values);
SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", storage_slot);
SERIAL_PROTOCOLPAIR("Subtracting mesh in slot ", g29_storage_slot);
SERIAL_PROTOCOLLNPGM(" from current mesh.");
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
ubl.z_values[x][y] -= tmp_z_values[x][y];
z_values[x][y] -= tmp_z_values[x][y];
}
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
mesh_index_pair unified_bed_leveling::find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], const bool far_flag) {
mesh_index_pair out_mesh;
out_mesh.x_index = out_mesh.y_index = -1;
@ -1359,15 +1357,15 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(ubl.z_values[i][j]))
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j]))
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
) {
// We only get here if we found a Mesh Point of the specified type
float raw_x = RAW_CURRENT_POSITION(X), raw_y = RAW_CURRENT_POSITION(Y);
const float mx = pgm_read_float(&ubl.mesh_index_to_xpos[i]),
my = pgm_read_float(&ubl.mesh_index_to_ypos[j]);
const float mx = mesh_index_to_xpos(i),
my = mesh_index_to_ypos(j);
// If using the probe as the reference there are some unreachable locations.
// Also for round beds, there are grid points outside the bed the nozzle can't reach.
@ -1391,9 +1389,9 @@
if (far_flag) {
for (uint8_t k = 0; k < GRID_MAX_POINTS_X; k++) {
for (uint8_t l = 0; l < GRID_MAX_POINTS_Y; l++) {
if (i != k && j != l && !isnan(ubl.z_values[k][l])) {
// distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
distance += HYPOT((MESH_X_DIST),(MESH_Y_DIST)) / log(HYPOT((i - k) * (MESH_X_DIST)+.001, (j - l) * (MESH_Y_DIST))+.001);
if (i != k && j != l && !isnan(z_values[k][l])) {
//distance += pow((float) abs(i - k) * (MESH_X_DIST), 2) + pow((float) abs(j - l) * (MESH_Y_DIST), 2); // working here
distance += HYPOT(MESH_X_DIST, MESH_Y_DIST) / log(HYPOT((i - k) * (MESH_X_DIST) + .001, (j - l) * (MESH_Y_DIST)) + .001);
}
}
}
@ -1417,20 +1415,19 @@
return out_mesh;
}
void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
void unified_bed_leveling::fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) {
if (!code_seen('R')) // fine_tune_mesh() is special. If no repetition count flag is specified
repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
g29_repetition_cnt = 1; // do exactly one mesh location. Otherwise use what the parser decided.
mesh_index_pair location;
uint16_t not_done[16];
int32_t round_off;
if (!position_is_reachable_xy(lx, ly)) {
SERIAL_PROTOCOLLNPGM("(X,Y) outside printable radius.");
return;
}
ubl.save_ubl_active_state_and_disable();
save_ubl_active_state_and_disable();
memset(not_done, 0xFF, sizeof(not_done));
@ -1446,13 +1443,13 @@
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop
const float rawx = pgm_read_float(&ubl.mesh_index_to_xpos[location.x_index]),
rawy = pgm_read_float(&ubl.mesh_index_to_ypos[location.y_index]);
const float rawx = mesh_index_to_xpos(location.x_index),
rawy = mesh_index_to_ypos(location.y_index);
if (!position_is_reachable_raw_xy(rawx, rawy)) // SHOULD NOT OCCUR because find_closest_mesh_point_of_type will only return reachable
break;
float new_z = ubl.z_values[location.x_index][location.y_index];
float new_z = z_values[location.x_index][location.y_index];
if (isnan(new_z)) // if the mesh point is invalid, set it to 0.0 so it can be edited
new_z = 0.0;
@ -1463,9 +1460,9 @@
new_z = floor(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl.has_control_of_lcd_panel = true;
has_control_of_lcd_panel = true;
if (do_ubl_mesh_map) ubl.display_map(map_type); // show the user which point is being adjusted
if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
lcd_implementation_clear();
@ -1474,7 +1471,7 @@
do {
new_z = lcd_mesh_edit();
#ifdef UBL_MESH_EDIT_MOVES_Z
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES+new_z); // Move the nozzle as the point is edited
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES + new_z); // Move the nozzle as the point is edited
#endif
idle();
} while (!ubl_lcd_clicked());
@ -1484,7 +1481,7 @@
// The technique used here generates a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
// Let's work on specifying a proper API for the LCD ASAP, OK?
ubl.has_control_of_lcd_panel = true;
has_control_of_lcd_panel = true;
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
@ -1506,19 +1503,19 @@
safe_delay(20); // We don't want any switch noise.
ubl.z_values[location.x_index][location.y_index] = new_z;
z_values[location.x_index][location.y_index] = new_z;
lcd_implementation_clear();
} while (location.x_index >= 0 && --repetition_cnt > 0);
} while (location.x_index >= 0 && --g29_repetition_cnt > 0);
FINE_TUNE_EXIT:
ubl.has_control_of_lcd_panel = false;
has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) ubl.display_map(map_type);
ubl.restore_ubl_active_state_and_leave();
if (do_ubl_mesh_map) display_map(g29_map_type);
restore_ubl_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
do_blocking_move_to_xy(lx, ly);
@ -1533,15 +1530,15 @@
* calculate a 'reasonable' value for the unprobed mesh point.
*/
bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
bool unified_bed_leveling::smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
const int8_t x1 = x + xdir, x2 = x1 + xdir,
y1 = y + ydir, y2 = y1 + ydir;
// A NAN next to a pair of real values?
if (isnan(ubl.z_values[x][y]) && !isnan(ubl.z_values[x1][y1]) && !isnan(ubl.z_values[x2][y2])) {
if (ubl.z_values[x1][y1] < ubl.z_values[x2][y2]) // Angled downward?
ubl.z_values[x][y] = ubl.z_values[x1][y1]; // Use nearest (maybe a little too high.)
if (isnan(z_values[x][y]) && !isnan(z_values[x1][y1]) && !isnan(z_values[x2][y2])) {
if (z_values[x1][y1] < z_values[x2][y2]) // Angled downward?
z_values[x][y] = z_values[x1][y1]; // Use nearest (maybe a little too high.)
else
ubl.z_values[x][y] = 2.0 * ubl.z_values[x1][y1] - ubl.z_values[x2][y2]; // Angled upward...
z_values[x][y] = 2.0 * z_values[x1][y1] - z_values[x2][y2]; // Angled upward...
return true;
}
return false;
@ -1549,7 +1546,7 @@
typedef struct { uint8_t sx, ex, sy, ey; bool yfirst; } smart_fill_info;
void smart_fill_mesh() {
void unified_bed_leveling::smart_fill_mesh() {
const smart_fill_info info[] = {
{ 0, GRID_MAX_POINTS_X, 0, GRID_MAX_POINTS_Y - 2, false }, // Bottom of the mesh looking up
{ 0, GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y - 1, 0, false }, // Top of the mesh looking down
@ -1579,17 +1576,17 @@
y_min = max(MIN_PROBE_Y, UBL_MESH_MIN_Y),
y_max = min(MAX_PROBE_Y, UBL_MESH_MAX_Y);
const float dx = float(x_max - x_min) / (grid_size - 1.0),
dy = float(y_max - y_min) / (grid_size - 1.0);
const float dx = float(x_max - x_min) / (g29_grid_size - 1.0),
dy = float(y_max - y_min) / (g29_grid_size - 1.0);
struct linear_fit_data lsf_results;
incremental_LSF_reset(&lsf_results);
bool zig_zag = false;
for (uint8_t ix = 0; ix < grid_size; ix++) {
for (uint8_t ix = 0; ix < g29_grid_size; ix++) {
const float x = float(x_min) + ix * dx;
for (int8_t iy = 0; iy < grid_size; iy++) {
const float y = float(y_min) + dy * (zig_zag ? grid_size - 1 - iy : iy);
for (int8_t iy = 0; iy < g29_grid_size; iy++) {
const float y = float(y_min) + dy * (zig_zag ? g29_grid_size - 1 - iy : iy);
float measured_z = probe_pt(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), code_seen('E'), g29_verbose_level); // TODO: Needs error handling
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
@ -1656,8 +1653,8 @@
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
float x_tmp = pgm_read_float(&mesh_index_to_xpos[i]),
y_tmp = pgm_read_float(&mesh_index_to_ypos[j]),
float x_tmp = mesh_index_to_xpos(i),
y_tmp = mesh_index_to_ypos(j),
z_tmp = z_values[i][j];
#if ENABLED(DEBUG_LEVELING_FEATURE)
@ -1717,47 +1714,40 @@
}
#if ENABLED(UBL_G29_P31)
// Note: using optimize("O2") for this routine results in smaller
// codegen than default optimize("Os") on A2560.
void _O2 smart_fill_wlsf( float weight_factor ) {
void unified_bed_leveling::smart_fill_wlsf(const float &weight_factor) {
// For each undefined mesh point, compute a distance-weighted least squares fit
// from all the originally populated mesh points, weighted toward the point
// being extrapolated so that nearby points will have greater influence on
// the point being extrapolated. Then extrapolate the mesh point from WLSF.
static_assert( GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big" );
uint16_t bitmap[GRID_MAX_POINTS_X] = {0};
static_assert(GRID_MAX_POINTS_Y <= 16, "GRID_MAX_POINTS_Y too big");
uint16_t bitmap[GRID_MAX_POINTS_X] = { 0 };
struct linear_fit_data lsf_results;
SERIAL_ECHOPGM("Extrapolating mesh...");
const float weight_scaled = weight_factor * max(MESH_X_DIST, MESH_Y_DIST);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
if ( !isnan( ubl.z_values[jx][jy] )) {
bitmap[jx] |= (uint16_t)1 << jy;
}
}
}
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++)
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++)
if (!isnan(z_values[jx][jy]))
SBI(bitmap[jx], jy);
for (uint8_t ix = 0; ix < GRID_MAX_POINTS_X; ix++) {
const float px = pgm_read_float(&(ubl.mesh_index_to_xpos[ix]));
const float px = mesh_index_to_xpos(ix);
for (uint8_t iy = 0; iy < GRID_MAX_POINTS_Y; iy++) {
const float py = pgm_read_float(&(ubl.mesh_index_to_ypos[iy]));
if ( isnan( ubl.z_values[ix][iy] )) {
const float py = mesh_index_to_ypos(iy);
if (isnan(z_values[ix][iy])) {
// undefined mesh point at (px,py), compute weighted LSF from original valid mesh points.
incremental_LSF_reset(&lsf_results);
for (uint8_t jx = 0; jx < GRID_MAX_POINTS_X; jx++) {
const float rx = pgm_read_float(&(ubl.mesh_index_to_xpos[jx]));
const float rx = mesh_index_to_xpos(jx);
for (uint8_t jy = 0; jy < GRID_MAX_POINTS_Y; jy++) {
if ( bitmap[jx] & (uint16_t)1 << jy ) {
const float ry = pgm_read_float(&(ubl.mesh_index_to_ypos[jy]));
const float rz = ubl.z_values[jx][jy];
const float w = 1.0 + weight_scaled / HYPOT((rx - px),(ry - py));
if (TEST(bitmap[jx], jy)) {
const float ry = mesh_index_to_ypos(jy),
rz = z_values[jx][jy],
w = 1.0 + weight_scaled / HYPOT((rx - px), (ry - py));
incremental_WLSF(&lsf_results, rx, ry, rz, w);
}
}
@ -1767,7 +1757,7 @@
return;
}
const float ez = -lsf_results.D - lsf_results.A * px - lsf_results.B * py;
ubl.z_values[ix][iy] = ez;
z_values[ix][iy] = ez;
idle(); // housekeeping
}
}
@ -1777,5 +1767,4 @@
}
#endif // UBL_G29_P31
#endif // AUTO_BED_LEVELING_UBL

View file

@ -85,7 +85,7 @@
}
void ubl_line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
/**
* Much of the nozzle movement will be within the same cell. So we will do as little computation
* as possible to determine if this is the case. If this move is within the same cell, we will
@ -104,19 +104,19 @@
destination[E_AXIS]
};
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
SERIAL_CHAR(')');
SERIAL_EOL;
debug_current_and_destination(PSTR("Start of ubl_line_to_destination()"));
debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
}
if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
@ -132,11 +132,11 @@
// Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be.
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder);
set_current_to_destination();
if (ubl.g26_debug_flag)
debug_current_and_destination(PSTR("out of bounds in ubl_line_to_destination()"));
if (g26_debug_flag)
debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
return;
}
@ -152,20 +152,20 @@
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - pgm_read_float(&ubl.mesh_index_to_xpos[cell_dest_xi])) * (1.0 / (MESH_X_DIST)),
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST)),
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - pgm_read_float(&ubl.mesh_index_to_ypos[cell_dest_yi])) * (1.0 / (MESH_Y_DIST));
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio;
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -176,10 +176,10 @@
*/
if (isnan(z0)) z0 = 0.0;
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder);
if (ubl.g26_debug_flag)
debug_current_and_destination(PSTR("FINAL_MOVE in ubl_line_to_destination()"));
if (g26_debug_flag)
debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
set_current_to_destination();
return;
@ -240,7 +240,7 @@
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi;
const float next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
/**
* if the slope of the line is infinite, we won't do the calculations
@ -249,9 +249,9 @@
*/
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -262,7 +262,7 @@
*/
if (isnan(z0)) z0 = 0.0;
const float y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi]));
const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -281,12 +281,12 @@
z_position = end[Z_AXIS];
}
planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (ubl.g26_debug_flag)
debug_current_and_destination(PSTR("vertical move done in ubl_line_to_destination()"));
if (g26_debug_flag)
debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
//
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
@ -311,12 +311,12 @@
// edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi;
const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi])),
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -327,7 +327,7 @@
*/
if (isnan(z0)) z0 = 0.0;
const float x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi]));
const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi));
/**
* Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -346,12 +346,12 @@
z_position = end[Z_AXIS];
}
planner._buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
} //else printf("FIRST MOVE PRUNED ");
}
if (ubl.g26_debug_flag)
debug_current_and_destination(PSTR("horizontal move done in ubl_line_to_destination()"));
if (g26_debug_flag)
debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
@ -377,8 +377,8 @@
while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = LOGICAL_X_POSITION(pgm_read_float(&ubl.mesh_index_to_xpos[current_xi + dxi])),
next_mesh_line_y = LOGICAL_Y_POSITION(pgm_read_float(&ubl.mesh_index_to_ypos[current_yi + dyi])),
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)),
next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero.
@ -387,9 +387,9 @@
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
// Yes! Crossing a Y Mesh Line next
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -409,15 +409,15 @@
e_position = end[E_AXIS];
z_position = end[Z_AXIS];
}
planner._buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi;
yi_cnt--;
}
else {
// Yes! Crossing a X Mesh Line next
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -438,7 +438,7 @@
z_position = end[Z_AXIS];
}
planner._buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
current_xi += dxi;
xi_cnt--;
}
@ -446,8 +446,8 @@
if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
}
if (ubl.g26_debug_flag)
debug_current_and_destination(PSTR("generic move done in ubl_line_to_destination()"));
if (g26_debug_flag)
debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
@ -502,7 +502,7 @@
* Returns true if the caller did NOT update current_position, otherwise false.
*/
static bool ubl_prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
static bool unified_bed_leveling::prepare_linear_move_to(const float ltarget[XYZE], const float &feedrate) {
if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
return true; // did not move, so current_position still accurate
@ -554,9 +554,9 @@
// Only compute leveling per segment if ubl active and target below z_fade_height.
if (!ubl.state.active || above_fade_height) { // no mesh leveling
if (!state.active || above_fade_height) { // no mesh leveling
const float z_offset = ubl.state.active ? ubl.state.z_offset : 0.0;
const float z_offset = state.active ? state.z_offset : 0.0;
float seg_dest[XYZE]; // per-segment destination,
COPY_XYZE(seg_dest, current_position); // starting from current position
@ -579,7 +579,7 @@
// Otherwise perform per-segment leveling
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = ubl.fade_scaling_factor_for_z(ltarget[Z_AXIS]);
const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
#endif
float seg_dest[XYZE]; // per-segment destination, initialize to first segment
@ -591,7 +591,7 @@
float rx = RAW_X_POSITION(seg_dest[X_AXIS]), // assume raw vs logical coordinates shifted but not scaled.
ry = RAW_Y_POSITION(seg_dest[Y_AXIS]);
do { // for each mesh cell encountered during the move
for(;;) { // for each mesh cell encountered during the move
// Compute mesh cell invariants that remain constant for all segments within cell.
// Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
@ -606,19 +606,19 @@
cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
const float x0 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add
y0 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add
x1 = pgm_read_float(&(ubl.mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add
y1 = pgm_read_float(&(ubl.mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
const float x0 = pgm_read_float(&(mesh_index_to_xpos[cell_xi ])), // 64 byte table lookup avoids mul+add
y0 = pgm_read_float(&(mesh_index_to_ypos[cell_yi ])), // 64 byte table lookup avoids mul+add
x1 = pgm_read_float(&(mesh_index_to_xpos[cell_xi+1])), // 64 byte table lookup avoids mul+add
y1 = pgm_read_float(&(mesh_index_to_ypos[cell_yi+1])); // 64 byte table lookup avoids mul+add
float cx = rx - x0, // cell-relative x
cy = ry - y0, // cell-relative y
z_x0y0 = ubl.z_values[cell_xi ][cell_yi ], // z at lower left corner
z_x1y0 = ubl.z_values[cell_xi+1][cell_yi ], // z at upper left corner
z_x0y1 = ubl.z_values[cell_xi ][cell_yi+1], // z at lower right corner
z_x1y1 = ubl.z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating ubl.state.active (G29 A)
if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A)
if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
@ -642,7 +642,7 @@
const float z_sxy0 = z_xmy0 * dx_seg, // per-segment adjustment to z_cxy0
z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * dx_seg; // per-segment adjustment to z_cxym
do { // for all segments within this mesh cell
for(;;) { // for all segments within this mesh cell
float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
@ -650,7 +650,7 @@
z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
#endif
z_cxcy += ubl.state.z_offset; // add fixed mesh offset from G29 Z
z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
if (--segments == 0) { // if this is last segment, use ltarget for exact
COPY_XYZE(seg_dest, ltarget);
@ -681,9 +681,9 @@
z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
} while (true); // per-segment loop exits by break after last segment within cell, or by return on final segment
} while (true); // per-cell loop
} // end of function
} // segment loop
} // cell loop
}
#endif // UBL_DELTA

View file

@ -1480,7 +1480,7 @@ void kill_screen(const char* lcd_msg) {
void _lcd_level_bed_get_z() {
ENCODER_DIRECTION_NORMAL();
// Encoder wheel adjusts the Z position
// Encoder knob or keypad buttons adjust the Z position
if (encoderPosition) {
refresh_cmd_timeout();
current_position[Z_AXIS] += float((int32_t)encoderPosition) * (MBL_Z_STEP);
@ -4202,9 +4202,9 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl.has_control_of_lcd_panel) {
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// wheel has not turned.
// knob has not turned.
}
#endif
lastEncoderBits = enc;