Filament Width Sensor singleton (#15191)

This commit is contained in:
Scott Lahteine 2019-09-10 18:48:58 -05:00 committed by GitHub
parent fe6ba4fd70
commit 75927e17dd
Signed by: GitHub
GPG key ID: 4AEE18F83AFDEB23
9 changed files with 147 additions and 146 deletions

View file

@ -26,11 +26,24 @@
#include "filwidth.h" #include "filwidth.h"
bool filament_sensor; // = false; // M405/M406 turns filament sensor control ON/OFF. FilamentWidthSensor filwidth;
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter bool FilamentWidthSensor::enabled; // = false; // (M405-M406) Filament Width Sensor ON/OFF.
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting uint32_t FilamentWidthSensor::accum; // = 0 // ADC accumulator
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100 uint16_t FilamentWidthSensor::raw; // = 0 // Measured filament diameter - one extruder only
filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer float FilamentWidthSensor::nominal_mm = DEFAULT_NOMINAL_FILAMENT_DIA, // (M104) Nominal filament width
FilamentWidthSensor::measured_mm = DEFAULT_MEASURED_FILAMENT_DIA, // Measured filament diameter
FilamentWidthSensor::e_count = 0,
FilamentWidthSensor::delay_dist = 0;
uint8_t FilamentWidthSensor::meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
int8_t FilamentWidthSensor::ratios[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement. (Extruder factor minus 100)
FilamentWidthSensor::index_r, // Indexes into ring buffer
FilamentWidthSensor::index_w;
void FilamentWidthSensor::init() {
const int8_t ratio = sample_to_size_ratio();
for (uint8_t i = 0; i < COUNT(ratios); ++i) ratios[i] = ratio;
index_r = index_w = 0;
}
#endif // FILAMENT_WIDTH_SENSOR #endif // FILAMENT_WIDTH_SENSOR

View file

@ -22,10 +22,98 @@
#pragma once #pragma once
#include "../inc/MarlinConfig.h" #include "../inc/MarlinConfig.h"
#include "../module/planner.h"
extern bool filament_sensor; // M405/M406 turns filament sensor control ON/OFF. class FilamentWidthSensor {
extern float filament_width_nominal, // Nominal filament width. Change with M404. public:
filament_width_meas; // Measured filament diameter static constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
extern uint8_t meas_delay_cm; // Distance delay setting static bool enabled; // (M405-M406) Filament Width Sensor ON/OFF.
extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100 static uint32_t accum; // ADC accumulator
filwidth_delay_index[2]; // Indexes into ring buffer static uint16_t raw; // Measured filament diameter - one extruder only
static float nominal_mm, // (M104) Nominal filament width
measured_mm, // Measured filament diameter
e_count, delay_dist;
static uint8_t meas_delay_cm; // Distance delay setting
static int8_t ratios[MMD_CM], // Ring buffer to delay measurement. (Extruder factor minus 100)
index_r, index_w; // Indexes into ring buffer
FilamentWidthSensor() { init(); }
static void init();
static inline void enable(const bool ena) { enabled = ena; }
static inline void set_delay_cm(const uint8_t cm) {
meas_delay_cm = _MIN(cm, MAX_MEASUREMENT_DELAY);
}
/**
* Convert Filament Width (mm) to an extrusion ratio
* and reduce to an 8 bit value.
*
* A nominal width of 1.75 and measured width of 1.73
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
* a return value of 1.
*/
static int8_t sample_to_size_ratio() {
return ABS(nominal_mm - measured_mm) <= FILWIDTH_ERROR_MARGIN
? int(100.0f * nominal_mm / measured_mm) - 100 : 0;
}
// Apply a single ADC reading to the raw value
static void accumulate(const uint16_t adc) {
if (adc > 102) // Ignore ADC under 0.5 volts
accum += (uint32_t(adc) << 7) - (accum >> 7);
}
// Convert raw measurement to mm
static inline float raw_to_mm(const uint16_t v) { return v * 5.0f * (1.0f / 16383.0f); }
static inline float raw_to_mm() { return raw_to_mm(raw); }
// A scaled reading is ready
// Divide to get to 0-16384 range since we used 1/128 IIR filter approach
static inline void reading_ready() { raw = accum >> 10; }
// Update mm from the raw measurement
static inline void update_measured_mm() { measured_mm = raw_to_mm(); }
// Update ring buffer used to delay filament measurements
static inline void advance_e(const float &e_move) {
// Increment counters with the E distance
e_count += e_move;
delay_dist += e_move;
// Only get new measurements on forward E movement
if (!UNEAR_ZERO(e_count)) {
// Loop the delay distance counter (modulus by the mm length)
while (delay_dist >= MMD_MM) delay_dist -= MMD_MM;
// Convert into an index (cm) into the measurement array
index_r = int8_t(delay_dist * 0.1f);
// If the ring buffer is not full...
if (index_r != index_w) {
e_count = 0; // Reset the E movement counter
const int8_t meas_sample = sample_to_size_ratio();
do {
if (++index_w >= MMD_CM) index_w = 0; // The next unused slot
ratios[index_w] = meas_sample; // Store the measurement
} while (index_r != index_w); // More slots to fill?
}
}
}
// Dynamically set the volumetric multiplier based on the delayed width measurement.
static inline void update_volumetric() {
if (enabled) {
int8_t read_index = index_r - meas_delay_cm;
if (read_index < 0) read_index += MMD_CM; // Loop around buffer if needed
LIMIT(read_index, 0, MAX_MEASUREMENT_DELAY);
planner.apply_filament_width_sensor(ratios[read_index]);
}
}
};
extern FilamentWidthSensor filwidth;

View file

@ -34,12 +34,12 @@
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0> * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
*/ */
void GcodeSuite::M404() { void GcodeSuite::M404() {
if (parser.seen('W')) { if (parser.seenval('W')) {
filament_width_nominal = parser.value_linear_units(); filwidth.nominal_mm = parser.value_linear_units();
planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5); planner.volumetric_area_nominal = CIRCLE_AREA(filwidth.nominal_mm * 0.5);
} }
else else
SERIAL_ECHOLNPAIR("Filament dia (nominal mm):", filament_width_nominal); SERIAL_ECHOLNPAIR("Filament dia (nominal mm):", filwidth.nominal_mm);
} }
/** /**
@ -48,28 +48,17 @@ void GcodeSuite::M404() {
void GcodeSuite::M405() { void GcodeSuite::M405() {
// This is technically a linear measurement, but since it's quantized to centimeters and is a different // This is technically a linear measurement, but since it's quantized to centimeters and is a different
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units(). // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
if (parser.seen('D')) { if (parser.seenval('D'))
meas_delay_cm = parser.value_byte(); filwidth.set_delay_cm(parser.value_byte());
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
}
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup filwidth.enable(true);
const int8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
measurement_delay[i] = temp_ratio;
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
}
filament_sensor = true;
} }
/** /**
* M406: Turn off filament sensor for control * M406: Turn off filament sensor for control
*/ */
void GcodeSuite::M406() { void GcodeSuite::M406() {
filament_sensor = false; filwidth.enable(false);
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
} }
@ -77,7 +66,7 @@ void GcodeSuite::M406() {
* M407: Get measured filament diameter on serial output * M407: Get measured filament diameter on serial output
*/ */
void GcodeSuite::M407() { void GcodeSuite::M407() {
SERIAL_ECHOLNPAIR("Filament dia (measured mm):", filament_width_meas); SERIAL_ECHOLNPAIR("Filament dia (measured mm):", filwidth.measured_mm);
} }
#endif // FILAMENT_WIDTH_SENSOR #endif // FILAMENT_WIDTH_SENSOR

View file

@ -622,14 +622,9 @@ void MarlinUI::draw_status_message(const bool blink) {
// Alternate Status message and Filament display // Alternate Status message and Filament display
if (ELAPSED(millis(), next_filament_display)) { if (ELAPSED(millis(), next_filament_display)) {
lcd_put_u8str_P(PSTR("Dia ")); lcd_put_u8str_P(PSTR("Dia "));
lcd_put_u8str(ftostr12ns(filament_width_meas)); lcd_put_u8str(ftostr12ns(filwidth.measured_mm));
lcd_put_u8str_P(PSTR(" V")); lcd_put_u8str_P(PSTR(" V"));
lcd_put_u8str(i16tostr3(100.0 * ( lcd_put_u8str(i16tostr3(planner.volumetric_percent(parser.volumetric_enabled)));
parser.volumetric_enabled
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
)
));
lcd_put_wchar('%'); lcd_put_wchar('%');
return; return;
} }

View file

@ -349,13 +349,8 @@ void MarlinUI::draw_status_screen() {
strcpy(ystring, ftostr4sign(LOGICAL_Y_POSITION(current_position[Y_AXIS]))); strcpy(ystring, ftostr4sign(LOGICAL_Y_POSITION(current_position[Y_AXIS])));
strcpy(zstring, ftostr52sp( LOGICAL_Z_POSITION(current_position[Z_AXIS]))); strcpy(zstring, ftostr52sp( LOGICAL_Z_POSITION(current_position[Z_AXIS])));
#if ENABLED(FILAMENT_LCD_DISPLAY) #if ENABLED(FILAMENT_LCD_DISPLAY)
strcpy(wstring, ftostr12ns(filament_width_meas)); strcpy(wstring, ftostr12ns(filwidth.measured_mm));
strcpy(mstring, i16tostr3(100.0 * ( strcpy(mstring, i16tostr3(planner.volumetric_percent(parser.volumetric_enabled)));
parser.volumetric_enabled
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
)
));
#endif #endif
} }

View file

@ -1328,13 +1328,13 @@ void Planner::check_axes_activity() {
* into a volumetric multiplier. Conversion differs when using * into a volumetric multiplier. Conversion differs when using
* linear extrusion vs volumetric extrusion. * linear extrusion vs volumetric extrusion.
*/ */
void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) { void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
// Reconstitute the nominal/measured ratio // Reconstitute the nominal/measured ratio
const float nom_meas_ratio = 1 + 0.01f * encoded_ratio, const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
ratio_2 = sq(nom_meas_ratio); ratio_2 = sq(nom_meas_ratio);
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5f) // Volumetric uses a true volumetric multiplier ? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
: ratio_2; // Linear squares the ratio, which scales the volume : ratio_2; // Linear squares the ratio, which scales the volume
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM); refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
@ -2069,37 +2069,8 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0 block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
static float filwidth_e_count = 0, filwidth_delay_dist = 0; if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor
filwidth.advance_e(delta_mm[E_AXIS]);
//FMM update ring buffer used for delay with filament measurements
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
// increment counters with next move in e axis
filwidth_e_count += delta_mm[E_AXIS];
filwidth_delay_dist += delta_mm[E_AXIS];
// Only get new measurements on forward E movement
if (!UNEAR_ZERO(filwidth_e_count)) {
// Loop the delay distance counter (modulus by the mm length)
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
// Convert into an index into the measurement array
filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1f);
// If the index has changed (must have gone forward)...
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
filwidth_e_count = 0; // Reset the E movement counter
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio();
do {
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
}
}
}
#endif #endif
// Calculate and limit speed in mm/sec for each axis // Calculate and limit speed in mm/sec for each axis

View file

@ -375,7 +375,14 @@ class Planner {
static void calculate_volumetric_multipliers(); static void calculate_volumetric_multipliers();
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio); void apply_filament_width_sensor(const int8_t encoded_ratio);
static inline float volumetric_percent(const bool vol) {
return 100.0f * (vol
? volumetric_area_nominal / volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
: volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
);
}
#endif #endif
#if DISABLED(NO_VOLUMETRICS) #if DISABLED(NO_VOLUMETRICS)

View file

@ -301,10 +301,6 @@ volatile bool Temperature::temp_meas_ready = false;
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 }; millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
millis_t Temperature::next_auto_fan_check_ms = 0; millis_t Temperature::next_auto_fan_check_ms = 0;
#endif #endif
@ -314,10 +310,6 @@ volatile bool Temperature::temp_meas_ready = false;
Temperature::soft_pwm_count_fan[FAN_COUNT]; Temperature::soft_pwm_count_fan[FAN_COUNT];
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
#endif
#if ENABLED(PROBING_HEATERS_OFF) #if ENABLED(PROBING_HEATERS_OFF)
bool Temperature::paused; bool Temperature::paused;
#endif #endif
@ -1082,16 +1074,11 @@ void Temperature::manage_heater() {
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
/** /**
* Filament Width Sensor dynamically sets the volumetric multiplier * Dynamically set the volumetric multiplier based
* based on a delayed measurement of the filament diameter. * on the delayed Filament Width measurement.
*/ */
if (filament_sensor) { filwidth.update_volumetric();
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm; #endif
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
LIMIT(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
}
#endif // FILAMENT_WIDTH_SENSOR
#if HAS_HEATED_BED #if HAS_HEATED_BED
@ -1526,7 +1513,7 @@ void Temperature::updateTemperaturesFromRawValues() {
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1); redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
filament_width_meas = analog_to_mm_fil_width(); filwidth.update_measured_mm();
#endif #endif
#if ENABLED(USE_WATCHDOG) #if ENABLED(USE_WATCHDOG)
@ -1537,30 +1524,6 @@ void Temperature::updateTemperaturesFromRawValues() {
temp_meas_ready = false; temp_meas_ready = false;
} }
#if ENABLED(FILAMENT_WIDTH_SENSOR)
// Convert raw Filament Width to millimeters
float Temperature::analog_to_mm_fil_width() {
return current_raw_filwidth * 5.0f * (1.0f / 16383.0f);
}
/**
* Convert Filament Width (mm) to a simple ratio
* and reduce to an 8 bit value.
*
* A nominal width of 1.75 and measured width of 1.73
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
* a return value of 1.
*/
int8_t Temperature::widthFil_to_size_ratio() {
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
return 0;
}
#endif
#if MAX6675_SEPARATE_SPI #if MAX6675_SEPARATE_SPI
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi; SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
#endif #endif
@ -2241,10 +2204,6 @@ void Temperature::set_current_temp_raw() {
temp_meas_ready = true; temp_meas_ready = true;
} }
#if ENABLED(FILAMENT_WIDTH_SENSOR)
uint32_t raw_filwidth_value; // = 0
#endif
void Temperature::readings_ready() { void Temperature::readings_ready() {
// Update the raw values if they've been read. Else we could be updating them during reading. // Update the raw values if they've been read. Else we could be updating them during reading.
@ -2252,7 +2211,7 @@ void Temperature::readings_ready() {
// Filament Sensor - can be read any time since IIR filtering is used // Filament Sensor - can be read any time since IIR filtering is used
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach filwidth.reading_ready();
#endif #endif
#if HOTENDS #if HOTENDS
@ -2781,10 +2740,8 @@ void Temperature::isr() {
case Measure_FILWIDTH: case Measure_FILWIDTH:
if (!HAL_ADC_READY()) if (!HAL_ADC_READY())
next_sensor_state = adc_sensor_state; // redo this state next_sensor_state = adc_sensor_state; // redo this state
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read. else
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value filwidth.accumulate(HAL_READ_ADC());
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
}
break; break;
#endif #endif

View file

@ -392,18 +392,10 @@ class Temperature {
static millis_t preheat_end_time[HOTENDS]; static millis_t preheat_end_time[HOTENDS];
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static int8_t meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
static millis_t next_auto_fan_check_ms; static millis_t next_auto_fan_check_ms;
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
#endif
#if ENABLED(PROBING_HEATERS_OFF) #if ENABLED(PROBING_HEATERS_OFF)
static bool paused; static bool paused;
#endif #endif
@ -570,12 +562,6 @@ class Temperature {
#define is_preheating(n) (false) #define is_preheating(n) (false)
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static float analog_to_mm_fil_width(); // Convert raw Filament Width to millimeters
static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
#endif
//high level conversion routines, for use outside of temperature.cpp //high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius