Filament Width Sensor singleton (#15191)
This commit is contained in:
parent
fe6ba4fd70
commit
75927e17dd
9 changed files with 147 additions and 146 deletions
|
@ -26,11 +26,24 @@
|
||||||
|
|
||||||
#include "filwidth.h"
|
#include "filwidth.h"
|
||||||
|
|
||||||
bool filament_sensor; // = false; // M405/M406 turns filament sensor control ON/OFF.
|
FilamentWidthSensor filwidth;
|
||||||
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
|
|
||||||
filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
|
bool FilamentWidthSensor::enabled; // = false; // (M405-M406) Filament Width Sensor ON/OFF.
|
||||||
uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
|
uint32_t FilamentWidthSensor::accum; // = 0 // ADC accumulator
|
||||||
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
uint16_t FilamentWidthSensor::raw; // = 0 // Measured filament diameter - one extruder only
|
||||||
filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
|
float FilamentWidthSensor::nominal_mm = DEFAULT_NOMINAL_FILAMENT_DIA, // (M104) Nominal filament width
|
||||||
|
FilamentWidthSensor::measured_mm = DEFAULT_MEASURED_FILAMENT_DIA, // Measured filament diameter
|
||||||
|
FilamentWidthSensor::e_count = 0,
|
||||||
|
FilamentWidthSensor::delay_dist = 0;
|
||||||
|
uint8_t FilamentWidthSensor::meas_delay_cm = MEASUREMENT_DELAY_CM; // Distance delay setting
|
||||||
|
int8_t FilamentWidthSensor::ratios[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delay measurement. (Extruder factor minus 100)
|
||||||
|
FilamentWidthSensor::index_r, // Indexes into ring buffer
|
||||||
|
FilamentWidthSensor::index_w;
|
||||||
|
|
||||||
|
void FilamentWidthSensor::init() {
|
||||||
|
const int8_t ratio = sample_to_size_ratio();
|
||||||
|
for (uint8_t i = 0; i < COUNT(ratios); ++i) ratios[i] = ratio;
|
||||||
|
index_r = index_w = 0;
|
||||||
|
}
|
||||||
|
|
||||||
#endif // FILAMENT_WIDTH_SENSOR
|
#endif // FILAMENT_WIDTH_SENSOR
|
||||||
|
|
|
@ -22,10 +22,98 @@
|
||||||
#pragma once
|
#pragma once
|
||||||
|
|
||||||
#include "../inc/MarlinConfig.h"
|
#include "../inc/MarlinConfig.h"
|
||||||
|
#include "../module/planner.h"
|
||||||
|
|
||||||
extern bool filament_sensor; // M405/M406 turns filament sensor control ON/OFF.
|
class FilamentWidthSensor {
|
||||||
extern float filament_width_nominal, // Nominal filament width. Change with M404.
|
public:
|
||||||
filament_width_meas; // Measured filament diameter
|
static constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
|
||||||
extern uint8_t meas_delay_cm; // Distance delay setting
|
static bool enabled; // (M405-M406) Filament Width Sensor ON/OFF.
|
||||||
extern int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1], // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
|
static uint32_t accum; // ADC accumulator
|
||||||
filwidth_delay_index[2]; // Indexes into ring buffer
|
static uint16_t raw; // Measured filament diameter - one extruder only
|
||||||
|
static float nominal_mm, // (M104) Nominal filament width
|
||||||
|
measured_mm, // Measured filament diameter
|
||||||
|
e_count, delay_dist;
|
||||||
|
static uint8_t meas_delay_cm; // Distance delay setting
|
||||||
|
static int8_t ratios[MMD_CM], // Ring buffer to delay measurement. (Extruder factor minus 100)
|
||||||
|
index_r, index_w; // Indexes into ring buffer
|
||||||
|
|
||||||
|
FilamentWidthSensor() { init(); }
|
||||||
|
static void init();
|
||||||
|
|
||||||
|
static inline void enable(const bool ena) { enabled = ena; }
|
||||||
|
|
||||||
|
static inline void set_delay_cm(const uint8_t cm) {
|
||||||
|
meas_delay_cm = _MIN(cm, MAX_MEASUREMENT_DELAY);
|
||||||
|
}
|
||||||
|
|
||||||
|
/**
|
||||||
|
* Convert Filament Width (mm) to an extrusion ratio
|
||||||
|
* and reduce to an 8 bit value.
|
||||||
|
*
|
||||||
|
* A nominal width of 1.75 and measured width of 1.73
|
||||||
|
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
||||||
|
* a return value of 1.
|
||||||
|
*/
|
||||||
|
static int8_t sample_to_size_ratio() {
|
||||||
|
return ABS(nominal_mm - measured_mm) <= FILWIDTH_ERROR_MARGIN
|
||||||
|
? int(100.0f * nominal_mm / measured_mm) - 100 : 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Apply a single ADC reading to the raw value
|
||||||
|
static void accumulate(const uint16_t adc) {
|
||||||
|
if (adc > 102) // Ignore ADC under 0.5 volts
|
||||||
|
accum += (uint32_t(adc) << 7) - (accum >> 7);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Convert raw measurement to mm
|
||||||
|
static inline float raw_to_mm(const uint16_t v) { return v * 5.0f * (1.0f / 16383.0f); }
|
||||||
|
static inline float raw_to_mm() { return raw_to_mm(raw); }
|
||||||
|
|
||||||
|
// A scaled reading is ready
|
||||||
|
// Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
||||||
|
static inline void reading_ready() { raw = accum >> 10; }
|
||||||
|
|
||||||
|
// Update mm from the raw measurement
|
||||||
|
static inline void update_measured_mm() { measured_mm = raw_to_mm(); }
|
||||||
|
|
||||||
|
// Update ring buffer used to delay filament measurements
|
||||||
|
static inline void advance_e(const float &e_move) {
|
||||||
|
|
||||||
|
// Increment counters with the E distance
|
||||||
|
e_count += e_move;
|
||||||
|
delay_dist += e_move;
|
||||||
|
|
||||||
|
// Only get new measurements on forward E movement
|
||||||
|
if (!UNEAR_ZERO(e_count)) {
|
||||||
|
|
||||||
|
// Loop the delay distance counter (modulus by the mm length)
|
||||||
|
while (delay_dist >= MMD_MM) delay_dist -= MMD_MM;
|
||||||
|
|
||||||
|
// Convert into an index (cm) into the measurement array
|
||||||
|
index_r = int8_t(delay_dist * 0.1f);
|
||||||
|
|
||||||
|
// If the ring buffer is not full...
|
||||||
|
if (index_r != index_w) {
|
||||||
|
e_count = 0; // Reset the E movement counter
|
||||||
|
const int8_t meas_sample = sample_to_size_ratio();
|
||||||
|
do {
|
||||||
|
if (++index_w >= MMD_CM) index_w = 0; // The next unused slot
|
||||||
|
ratios[index_w] = meas_sample; // Store the measurement
|
||||||
|
} while (index_r != index_w); // More slots to fill?
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// Dynamically set the volumetric multiplier based on the delayed width measurement.
|
||||||
|
static inline void update_volumetric() {
|
||||||
|
if (enabled) {
|
||||||
|
int8_t read_index = index_r - meas_delay_cm;
|
||||||
|
if (read_index < 0) read_index += MMD_CM; // Loop around buffer if needed
|
||||||
|
LIMIT(read_index, 0, MAX_MEASUREMENT_DELAY);
|
||||||
|
planner.apply_filament_width_sensor(ratios[read_index]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
};
|
||||||
|
|
||||||
|
extern FilamentWidthSensor filwidth;
|
||||||
|
|
|
@ -34,12 +34,12 @@
|
||||||
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
|
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
|
||||||
*/
|
*/
|
||||||
void GcodeSuite::M404() {
|
void GcodeSuite::M404() {
|
||||||
if (parser.seen('W')) {
|
if (parser.seenval('W')) {
|
||||||
filament_width_nominal = parser.value_linear_units();
|
filwidth.nominal_mm = parser.value_linear_units();
|
||||||
planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
|
planner.volumetric_area_nominal = CIRCLE_AREA(filwidth.nominal_mm * 0.5);
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
SERIAL_ECHOLNPAIR("Filament dia (nominal mm):", filament_width_nominal);
|
SERIAL_ECHOLNPAIR("Filament dia (nominal mm):", filwidth.nominal_mm);
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -48,28 +48,17 @@ void GcodeSuite::M404() {
|
||||||
void GcodeSuite::M405() {
|
void GcodeSuite::M405() {
|
||||||
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
|
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
|
||||||
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
|
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
|
||||||
if (parser.seen('D')) {
|
if (parser.seenval('D'))
|
||||||
meas_delay_cm = parser.value_byte();
|
filwidth.set_delay_cm(parser.value_byte());
|
||||||
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
filwidth.enable(true);
|
||||||
const int8_t temp_ratio = thermalManager.widthFil_to_size_ratio();
|
|
||||||
|
|
||||||
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
|
||||||
measurement_delay[i] = temp_ratio;
|
|
||||||
|
|
||||||
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
filament_sensor = true;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/**
|
/**
|
||||||
* M406: Turn off filament sensor for control
|
* M406: Turn off filament sensor for control
|
||||||
*/
|
*/
|
||||||
void GcodeSuite::M406() {
|
void GcodeSuite::M406() {
|
||||||
filament_sensor = false;
|
filwidth.enable(false);
|
||||||
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -77,7 +66,7 @@ void GcodeSuite::M406() {
|
||||||
* M407: Get measured filament diameter on serial output
|
* M407: Get measured filament diameter on serial output
|
||||||
*/
|
*/
|
||||||
void GcodeSuite::M407() {
|
void GcodeSuite::M407() {
|
||||||
SERIAL_ECHOLNPAIR("Filament dia (measured mm):", filament_width_meas);
|
SERIAL_ECHOLNPAIR("Filament dia (measured mm):", filwidth.measured_mm);
|
||||||
}
|
}
|
||||||
|
|
||||||
#endif // FILAMENT_WIDTH_SENSOR
|
#endif // FILAMENT_WIDTH_SENSOR
|
||||||
|
|
|
@ -622,14 +622,9 @@ void MarlinUI::draw_status_message(const bool blink) {
|
||||||
// Alternate Status message and Filament display
|
// Alternate Status message and Filament display
|
||||||
if (ELAPSED(millis(), next_filament_display)) {
|
if (ELAPSED(millis(), next_filament_display)) {
|
||||||
lcd_put_u8str_P(PSTR("Dia "));
|
lcd_put_u8str_P(PSTR("Dia "));
|
||||||
lcd_put_u8str(ftostr12ns(filament_width_meas));
|
lcd_put_u8str(ftostr12ns(filwidth.measured_mm));
|
||||||
lcd_put_u8str_P(PSTR(" V"));
|
lcd_put_u8str_P(PSTR(" V"));
|
||||||
lcd_put_u8str(i16tostr3(100.0 * (
|
lcd_put_u8str(i16tostr3(planner.volumetric_percent(parser.volumetric_enabled)));
|
||||||
parser.volumetric_enabled
|
|
||||||
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
|
||||||
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
|
||||||
)
|
|
||||||
));
|
|
||||||
lcd_put_wchar('%');
|
lcd_put_wchar('%');
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
|
@ -349,13 +349,8 @@ void MarlinUI::draw_status_screen() {
|
||||||
strcpy(ystring, ftostr4sign(LOGICAL_Y_POSITION(current_position[Y_AXIS])));
|
strcpy(ystring, ftostr4sign(LOGICAL_Y_POSITION(current_position[Y_AXIS])));
|
||||||
strcpy(zstring, ftostr52sp( LOGICAL_Z_POSITION(current_position[Z_AXIS])));
|
strcpy(zstring, ftostr52sp( LOGICAL_Z_POSITION(current_position[Z_AXIS])));
|
||||||
#if ENABLED(FILAMENT_LCD_DISPLAY)
|
#if ENABLED(FILAMENT_LCD_DISPLAY)
|
||||||
strcpy(wstring, ftostr12ns(filament_width_meas));
|
strcpy(wstring, ftostr12ns(filwidth.measured_mm));
|
||||||
strcpy(mstring, i16tostr3(100.0 * (
|
strcpy(mstring, i16tostr3(planner.volumetric_percent(parser.volumetric_enabled)));
|
||||||
parser.volumetric_enabled
|
|
||||||
? planner.volumetric_area_nominal / planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
|
||||||
: planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
|
||||||
)
|
|
||||||
));
|
|
||||||
#endif
|
#endif
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
|
@ -1328,13 +1328,13 @@ void Planner::check_axes_activity() {
|
||||||
* into a volumetric multiplier. Conversion differs when using
|
* into a volumetric multiplier. Conversion differs when using
|
||||||
* linear extrusion vs volumetric extrusion.
|
* linear extrusion vs volumetric extrusion.
|
||||||
*/
|
*/
|
||||||
void Planner::calculate_volumetric_for_width_sensor(const int8_t encoded_ratio) {
|
void Planner::apply_filament_width_sensor(const int8_t encoded_ratio) {
|
||||||
// Reconstitute the nominal/measured ratio
|
// Reconstitute the nominal/measured ratio
|
||||||
const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
|
const float nom_meas_ratio = 1 + 0.01f * encoded_ratio,
|
||||||
ratio_2 = sq(nom_meas_ratio);
|
ratio_2 = sq(nom_meas_ratio);
|
||||||
|
|
||||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
|
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = parser.volumetric_enabled
|
||||||
? ratio_2 / CIRCLE_AREA(filament_width_nominal * 0.5f) // Volumetric uses a true volumetric multiplier
|
? ratio_2 / CIRCLE_AREA(filwidth.nominal_mm * 0.5f) // Volumetric uses a true volumetric multiplier
|
||||||
: ratio_2; // Linear squares the ratio, which scales the volume
|
: ratio_2; // Linear squares the ratio, which scales the volume
|
||||||
|
|
||||||
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
||||||
|
@ -2069,37 +2069,8 @@ bool Planner::_populate_block(block_t * const block, bool split_move,
|
||||||
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
block->nominal_rate = CEIL(block->step_event_count * inverse_secs); // (step/sec) Always > 0
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
static float filwidth_e_count = 0, filwidth_delay_dist = 0;
|
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM) // Only for extruder with filament sensor
|
||||||
|
filwidth.advance_e(delta_mm[E_AXIS]);
|
||||||
//FMM update ring buffer used for delay with filament measurements
|
|
||||||
if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && filwidth_delay_index[1] >= 0) { //only for extruder with filament sensor and if ring buffer is initialized
|
|
||||||
|
|
||||||
constexpr int MMD_CM = MAX_MEASUREMENT_DELAY + 1, MMD_MM = MMD_CM * 10;
|
|
||||||
|
|
||||||
// increment counters with next move in e axis
|
|
||||||
filwidth_e_count += delta_mm[E_AXIS];
|
|
||||||
filwidth_delay_dist += delta_mm[E_AXIS];
|
|
||||||
|
|
||||||
// Only get new measurements on forward E movement
|
|
||||||
if (!UNEAR_ZERO(filwidth_e_count)) {
|
|
||||||
|
|
||||||
// Loop the delay distance counter (modulus by the mm length)
|
|
||||||
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
|
|
||||||
|
|
||||||
// Convert into an index into the measurement array
|
|
||||||
filwidth_delay_index[0] = int8_t(filwidth_delay_dist * 0.1f);
|
|
||||||
|
|
||||||
// If the index has changed (must have gone forward)...
|
|
||||||
if (filwidth_delay_index[0] != filwidth_delay_index[1]) {
|
|
||||||
filwidth_e_count = 0; // Reset the E movement counter
|
|
||||||
const int8_t meas_sample = thermalManager.widthFil_to_size_ratio();
|
|
||||||
do {
|
|
||||||
filwidth_delay_index[1] = (filwidth_delay_index[1] + 1) % MMD_CM; // The next unused slot
|
|
||||||
measurement_delay[filwidth_delay_index[1]] = meas_sample; // Store the measurement
|
|
||||||
} while (filwidth_delay_index[0] != filwidth_delay_index[1]); // More slots to fill?
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// Calculate and limit speed in mm/sec for each axis
|
// Calculate and limit speed in mm/sec for each axis
|
||||||
|
|
|
@ -375,7 +375,14 @@ class Planner {
|
||||||
static void calculate_volumetric_multipliers();
|
static void calculate_volumetric_multipliers();
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
void calculate_volumetric_for_width_sensor(const int8_t encoded_ratio);
|
void apply_filament_width_sensor(const int8_t encoded_ratio);
|
||||||
|
|
||||||
|
static inline float volumetric_percent(const bool vol) {
|
||||||
|
return 100.0f * (vol
|
||||||
|
? volumetric_area_nominal / volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
||||||
|
: volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]
|
||||||
|
);
|
||||||
|
}
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if DISABLED(NO_VOLUMETRICS)
|
#if DISABLED(NO_VOLUMETRICS)
|
||||||
|
|
|
@ -301,10 +301,6 @@ volatile bool Temperature::temp_meas_ready = false;
|
||||||
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
|
millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
int8_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if HAS_AUTO_FAN
|
#if HAS_AUTO_FAN
|
||||||
millis_t Temperature::next_auto_fan_check_ms = 0;
|
millis_t Temperature::next_auto_fan_check_ms = 0;
|
||||||
#endif
|
#endif
|
||||||
|
@ -314,10 +310,6 @@ volatile bool Temperature::temp_meas_ready = false;
|
||||||
Temperature::soft_pwm_count_fan[FAN_COUNT];
|
Temperature::soft_pwm_count_fan[FAN_COUNT];
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
uint16_t Temperature::current_raw_filwidth = 0; // Measured filament diameter - one extruder only
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if ENABLED(PROBING_HEATERS_OFF)
|
#if ENABLED(PROBING_HEATERS_OFF)
|
||||||
bool Temperature::paused;
|
bool Temperature::paused;
|
||||||
#endif
|
#endif
|
||||||
|
@ -1082,16 +1074,11 @@ void Temperature::manage_heater() {
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
/**
|
/**
|
||||||
* Filament Width Sensor dynamically sets the volumetric multiplier
|
* Dynamically set the volumetric multiplier based
|
||||||
* based on a delayed measurement of the filament diameter.
|
* on the delayed Filament Width measurement.
|
||||||
*/
|
*/
|
||||||
if (filament_sensor) {
|
filwidth.update_volumetric();
|
||||||
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
#endif
|
||||||
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
||||||
LIMIT(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
|
||||||
planner.calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index]);
|
|
||||||
}
|
|
||||||
#endif // FILAMENT_WIDTH_SENSOR
|
|
||||||
|
|
||||||
#if HAS_HEATED_BED
|
#if HAS_HEATED_BED
|
||||||
|
|
||||||
|
@ -1526,7 +1513,7 @@ void Temperature::updateTemperaturesFromRawValues() {
|
||||||
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
|
redundant_temperature = analog_to_celsius_hotend(redundant_temperature_raw, 1);
|
||||||
#endif
|
#endif
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
filament_width_meas = analog_to_mm_fil_width();
|
filwidth.update_measured_mm();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(USE_WATCHDOG)
|
#if ENABLED(USE_WATCHDOG)
|
||||||
|
@ -1537,30 +1524,6 @@ void Temperature::updateTemperaturesFromRawValues() {
|
||||||
temp_meas_ready = false;
|
temp_meas_ready = false;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
|
|
||||||
// Convert raw Filament Width to millimeters
|
|
||||||
float Temperature::analog_to_mm_fil_width() {
|
|
||||||
return current_raw_filwidth * 5.0f * (1.0f / 16383.0f);
|
|
||||||
}
|
|
||||||
|
|
||||||
/**
|
|
||||||
* Convert Filament Width (mm) to a simple ratio
|
|
||||||
* and reduce to an 8 bit value.
|
|
||||||
*
|
|
||||||
* A nominal width of 1.75 and measured width of 1.73
|
|
||||||
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
|
||||||
* a return value of 1.
|
|
||||||
*/
|
|
||||||
int8_t Temperature::widthFil_to_size_ratio() {
|
|
||||||
if (ABS(filament_width_nominal - filament_width_meas) <= FILWIDTH_ERROR_MARGIN)
|
|
||||||
return int(100.0f * filament_width_nominal / filament_width_meas) - 100;
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if MAX6675_SEPARATE_SPI
|
#if MAX6675_SEPARATE_SPI
|
||||||
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
SPIclass<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
|
||||||
#endif
|
#endif
|
||||||
|
@ -2241,10 +2204,6 @@ void Temperature::set_current_temp_raw() {
|
||||||
temp_meas_ready = true;
|
temp_meas_ready = true;
|
||||||
}
|
}
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
uint32_t raw_filwidth_value; // = 0
|
|
||||||
#endif
|
|
||||||
|
|
||||||
void Temperature::readings_ready() {
|
void Temperature::readings_ready() {
|
||||||
|
|
||||||
// Update the raw values if they've been read. Else we could be updating them during reading.
|
// Update the raw values if they've been read. Else we could be updating them during reading.
|
||||||
|
@ -2252,7 +2211,7 @@ void Temperature::readings_ready() {
|
||||||
|
|
||||||
// Filament Sensor - can be read any time since IIR filtering is used
|
// Filament Sensor - can be read any time since IIR filtering is used
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||||
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
filwidth.reading_ready();
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if HOTENDS
|
#if HOTENDS
|
||||||
|
@ -2781,10 +2740,8 @@ void Temperature::isr() {
|
||||||
case Measure_FILWIDTH:
|
case Measure_FILWIDTH:
|
||||||
if (!HAL_ADC_READY())
|
if (!HAL_ADC_READY())
|
||||||
next_sensor_state = adc_sensor_state; // redo this state
|
next_sensor_state = adc_sensor_state; // redo this state
|
||||||
else if (HAL_READ_ADC() > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
|
else
|
||||||
raw_filwidth_value -= raw_filwidth_value >> 7; // Subtract 1/128th of the raw_filwidth_value
|
filwidth.accumulate(HAL_READ_ADC());
|
||||||
raw_filwidth_value += uint32_t(HAL_READ_ADC()) << 7; // Add new ADC reading, scaled by 128
|
|
||||||
}
|
|
||||||
break;
|
break;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
|
|
@ -392,18 +392,10 @@ class Temperature {
|
||||||
static millis_t preheat_end_time[HOTENDS];
|
static millis_t preheat_end_time[HOTENDS];
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
static int8_t meas_shift_index; // Index of a delayed sample in buffer
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if HAS_AUTO_FAN
|
#if HAS_AUTO_FAN
|
||||||
static millis_t next_auto_fan_check_ms;
|
static millis_t next_auto_fan_check_ms;
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if ENABLED(PROBING_HEATERS_OFF)
|
#if ENABLED(PROBING_HEATERS_OFF)
|
||||||
static bool paused;
|
static bool paused;
|
||||||
#endif
|
#endif
|
||||||
|
@ -570,12 +562,6 @@ class Temperature {
|
||||||
#define is_preheating(n) (false)
|
#define is_preheating(n) (false)
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
||||||
static float analog_to_mm_fil_width(); // Convert raw Filament Width to millimeters
|
|
||||||
static int8_t widthFil_to_size_ratio(); // Convert Filament Width (mm) to an extrusion ratio
|
|
||||||
#endif
|
|
||||||
|
|
||||||
|
|
||||||
//high level conversion routines, for use outside of temperature.cpp
|
//high level conversion routines, for use outside of temperature.cpp
|
||||||
//inline so that there is no performance decrease.
|
//inline so that there is no performance decrease.
|
||||||
//deg=degreeCelsius
|
//deg=degreeCelsius
|
||||||
|
|
Reference in a new issue