Merge pull request #1 from MarlinFirmware/Development

dev pull
This commit is contained in:
Wurstnase 2015-03-05 17:51:33 +01:00
commit 92ebb7f4c8
58 changed files with 6546 additions and 5638 deletions

View file

@ -33,7 +33,7 @@ rambo.build.variant=rambo
########################################
sanguino.name=Sanguino
sanguino.upload.tool=ardunio:avrdude
sanguino.upload.tool=arduino:avrdude
sanguino.upload.protocol=stk500
sanguino.upload.maximum_size=131072
sanguino.upload.speed=57600

View file

@ -5,16 +5,9 @@
#include "Marlin.h"
#ifdef BLINKM
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
#include "BlinkM.h"
void SendColors(byte red, byte grn, byte blu)
{
void SendColors(byte red, byte grn, byte blu) {
Wire.begin();
Wire.beginTransmission(0x09);
Wire.write('o'); //to disable ongoing script, only needs to be used once

View file

@ -2,7 +2,7 @@
BlinkM.h
Library header file for BlinkM library
*/
#if (ARDUINO >= 100)
#if ARDUINO >= 100
#include "Arduino.h"
#else
#include "WProgram.h"
@ -11,4 +11,3 @@
#include "Wire.h"
void SendColors(byte red, byte grn, byte blu);

View file

@ -118,10 +118,15 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -139,6 +144,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -147,6 +153,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -323,11 +330,6 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define DISABLE_MAX_ENDSTOPS
//#define DISABLE_MIN_ENDSTOPS
// Disable max endstops for compatibility with endstop checking routine
#if defined(COREXY) && !defined(DISABLE_MAX_ENDSTOPS)
#define DISABLE_MAX_ENDSTOPS
#endif
// For Inverting Stepper Enable Pins (Active Low) use 0, Non Inverting (Active High) use 1
#define X_ENABLE_ON 0
#define Y_ENABLE_ON 0
@ -347,6 +349,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -425,9 +428,9 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
// these are the offsets to the probe relative to the extruder tip (Hotend - Probe)
// X and Y offsets must be integers
#define X_PROBE_OFFSET_FROM_EXTRUDER -25
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35
#define X_PROBE_OFFSET_FROM_EXTRUDER -25 // -left +right
#define Y_PROBE_OFFSET_FROM_EXTRUDER -29 // -front +behind
#define Z_PROBE_OFFSET_FROM_EXTRUDER -12.35 // -below (always!)
#define Z_RAISE_BEFORE_HOMING 4 // (in mm) Raise Z before homing (G28) for Probe Clearance.
// Be sure you have this distance over your Z_MAX_POS in case
@ -582,10 +585,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -619,6 +632,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -1,5 +1,5 @@
#ifndef CONFIG_STORE_H
#define CONFIG_STORE_H
#ifndef CONFIGURATIONSTORE_H
#define CONFIGURATIONSTORE_H
#include "Configuration.h"
@ -19,4 +19,4 @@ void Config_ResetDefault();
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif
#endif // __CONFIG_STORE_H
#endif //CONFIGURATIONSTORE_H

View file

@ -284,6 +284,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again

View file

@ -14,10 +14,14 @@
// it is a Russian alphabet translation
// except 0401 --> 0xa2 = ╗, 0451 --> 0xb5
const PROGMEM uint8_t utf_recode[] =
{ 0x41,0xa0,0x42,0xa1,0xe0,0x45,0xa3,0xa4,0xa5,0xa6,0x4b,0xa7,0x4d,0x48,0x4f,
0xa8,0x50,0x43,0x54,0xa9,0xaa,0x58,0xe1,0xab,0xac,0xe2,0xad,0xae,0x62,0xaf,0xb0,0xb1,
0x61,0xb2,0xb3,0xb4,0xe3,0x65,0xb6,0xb7,0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0x6f,
0xbe,0x70,0x63,0xbf,0x79,0xe4,0x78,0xe5,0xc0,0xc1,0xe6,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7
{ 0x41,0xa0,0x42,0xa1,0xe0,0x45,0xa3,0xa4,
0xa5,0xa6,0x4b,0xa7,0x4d,0x48,0x4f,0xa8,
0x50,0x43,0x54,0xa9,0xaa,0x58,0xe1,0xab,
0xac,0xe2,0xad,0xae,0x62,0xaf,0xb0,0xb1,
0x61,0xb2,0xb3,0xb4,0xe3,0x65,0xb6,0xb7,
0xb8,0xb9,0xba,0xbb,0xbc,0xbd,0x6f,0xbe,
0x70,0x63,0xbf,0x79,0xe4,0x78,0xe5,0xc0,
0xc1,0xe6,0xc2,0xc3,0xc4,0xc5,0xc6,0xc7
};
// When the display powers up, it is configured as follows:

View file

@ -181,7 +181,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
void FlushSerialRequestResend();
void ClearToSend();
@ -201,8 +201,9 @@ void Stop();
bool IsStopped();
void enquecommand(const char *cmd); //put an ASCII command at the end of the current buffer.
void enquecommand_P(const char *cmd); //put an ASCII command at the end of the current buffer, read from flash
bool enquecommand(const char *cmd); //put a single ASCII command at the end of the current buffer or return false when it is full
void enquecommands_P(const char *cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
void prepare_arc_move(char isclockwise);
void clamp_to_software_endstops(float target[3]);

View file

@ -30,6 +30,9 @@
#include "Marlin.h"
#ifdef ENABLE_AUTO_BED_LEVELING
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop to enable Auto Bed Leveling feature. Z_MIN_PIN must point to a valid hardware pin."
#endif
#include "vector_3.h"
#ifdef AUTO_BED_LEVELING_GRID
#include "qr_solve.h"
@ -124,6 +127,8 @@
// M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port
// M120 - Enable endstop detection
// M121 - Disable endstop detection
// M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
// M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
// M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
@ -154,6 +159,8 @@
// M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
// M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
// M304 - Set bed PID parameters P I and D
// M380 - Activate solenoid on active extruder
// M381 - Disable all solenoids
// M400 - Finish all moves
// M401 - Lower z-probe if present
// M402 - Raise z-probe if present
@ -385,6 +392,8 @@ static int serial_count = 0;
static boolean comment_mode = false;
static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
// Inactivity shutdown
@ -448,13 +457,51 @@ void serial_echopair_P(const char *s_P, unsigned long v)
}
#endif //!SDSUPPORT
//adds an command to the main command buffer
//thats really done in a non-safe way.
//Injects the next command from the pending sequence of commands, when possible
//Return false if and only if no command was pending
static bool drain_queued_commands_P()
{
char cmd[30];
if(!queued_commands_P)
return false;
// Get the next 30 chars from the sequence of gcodes to run
strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
cmd[sizeof(cmd)-1]= 0;
// Look for the end of line, or the end of sequence
size_t i= 0;
char c;
while( (c= cmd[i]) && c!='\n' )
++i; // look for the end of this gcode command
cmd[i]= 0;
if(enquecommand(cmd)) // buffer was not full (else we will retry later)
{
if(c)
queued_commands_P+= i+1; // move to next command
else
queued_commands_P= NULL; // will have no more commands in the sequence
}
return true;
}
//Record one or many commands to run from program memory.
//Aborts the current queue, if any.
//Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
void enquecommands_P(const char* pgcode)
{
queued_commands_P= pgcode;
drain_queued_commands_P(); // first command exectuted asap (when possible)
}
//adds a single command to the main command buffer, from RAM
//that is really done in a non-safe way.
//needs overworking someday
void enquecommand(const char *cmd)
{
if(buflen < BUFSIZE)
//Returns false if it failed to do so
bool enquecommand(const char *cmd)
{
if(*cmd==';')
return false;
if(buflen >= BUFSIZE)
return false;
//this is dangerous if a mixing of serial and this happens
strcpy(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START;
@ -463,23 +510,10 @@ void enquecommand(const char *cmd)
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
return true;
}
void enquecommand_P(const char *cmd)
{
if(buflen < BUFSIZE)
{
//this is dangerous if a mixing of serial and this happens
strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_Enqueing);
SERIAL_ECHO(cmdbuffer[bufindw]);
SERIAL_ECHOLNPGM("\"");
bufindw= (bufindw + 1)%BUFSIZE;
buflen += 1;
}
}
void setup_killpin()
{
@ -502,23 +536,20 @@ void setup_homepin(void)
void setup_photpin()
{
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
SET_OUTPUT(PHOTOGRAPH_PIN);
WRITE(PHOTOGRAPH_PIN, LOW);
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
#if defined(PS_DEFAULT_OFF)
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
WRITE(PS_ON_PIN, PS_ON_AWAKE);
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
@ -526,8 +557,7 @@ void setup_powerhold()
void suicide()
{
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, LOW);
OUT_WRITE(SUICIDE_PIN, LOW);
#endif
}
@ -632,6 +662,15 @@ void setup()
digitalWrite(SERVO0_PIN, LOW); // turn it off
#endif // Z_PROBE_SLED
setup_homepin();
#ifdef STAT_LED_RED
pinMode(STAT_LED_RED, OUTPUT);
digitalWrite(STAT_LED_RED, LOW); // turn it off
#endif
#ifdef STAT_LED_BLUE
pinMode(STAT_LED_BLUE, OUTPUT);
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
#endif
}
@ -684,6 +723,9 @@ void loop()
void get_command()
{
if(drain_queued_commands_P()) // priority is given to non-serial commands
return;
while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
serial_char = MYSERIAL.read();
if(serial_char == '\n' ||
@ -702,7 +744,7 @@ void get_command()
if(strchr(cmdbuffer[bufindw], 'N') != NULL)
{
strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
@ -720,7 +762,7 @@ void get_command()
while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
strchr_pointer = strchr(cmdbuffer[bufindw], '*');
if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
if( (int)(strtod(strchr_pointer + 1, NULL)) != checksum) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
SERIAL_ERRORLN(gcode_LastN);
@ -756,7 +798,7 @@ void get_command()
}
if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
switch((int)((strtod(strchr_pointer + 1, NULL)))){
case 0:
case 1:
case 2:
@ -855,12 +897,12 @@ void get_command()
float code_value()
{
return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
return (strtod(strchr_pointer + 1, NULL));
}
long code_value_long()
{
return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
return (strtol(strchr_pointer + 1, NULL, 10));
}
bool code_seen(char code)
@ -1161,22 +1203,24 @@ static void retract_z_probe() {
#endif
}
enum ProbeAction { ProbeStay, ProbeEngage, ProbeRetract, ProbeEngageRetract };
/// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, int retract_action=0) {
static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageRetract) {
// move to right place
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
#ifndef Z_PROBE_SLED
if ((retract_action==0) || (retract_action==1))
engage_z_probe(); // Engage Z Servo endstop if available
#endif // Z_PROBE_SLED
if (retract_action & ProbeEngage) engage_z_probe();
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#ifndef Z_PROBE_SLED
if ((retract_action==0) || (retract_action==3))
retract_z_probe();
#endif // Z_PROBE_SLED
if (retract_action & ProbeRetract) retract_z_probe();
#endif
SERIAL_PROTOCOLPGM(MSG_BED);
SERIAL_PROTOCOLPGM(" x: ");
@ -1337,6 +1381,11 @@ void refresh_cmd_timeout(void)
#endif //FWRETRACT
#ifdef Z_PROBE_SLED
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
//
// Method to dock/undock a sled designed by Charles Bell.
//
@ -1372,29 +1421,27 @@ static void dock_sled(bool dock, int offset=0) {
}
#endif
void process_commands()
{
unsigned long codenum; //throw away variable
char *starpos = NULL;
#ifdef ENABLE_AUTO_BED_LEVELING
float x_tmp, y_tmp, z_tmp, real_z;
#endif
if(code_seen('G'))
{
switch((int)code_value())
{
case 0: // G0 -> G1
case 1: // G1
if(Stopped == false) {
/**
*
* G-Code Handler functions
*
*/
/**
* G0, G1: Coordinated movement of X Y Z E axes
*/
inline void gcode_G0_G1() {
if (!Stopped) {
get_coordinates(); // For X Y Z E F
#ifdef FWRETRACT
if (autoretract_enabled)
if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange = destination[E_AXIS] - current_position[E_AXIS];
if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
// Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
retract(!retracted);
retract(!retracted[active_extruder]);
return;
}
}
@ -1402,57 +1449,68 @@ void process_commands()
prepare_move();
//ClearToSend();
}
break;
#ifndef SCARA //disable arc support
case 2: // G2 - CW ARC
if(Stopped == false) {
get_arc_coordinates();
prepare_arc_move(true);
}
break;
case 3: // G3 - CCW ARC
if(Stopped == false) {
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*/
inline void gcode_G2_G3(bool clockwise) {
if (!Stopped) {
get_arc_coordinates();
prepare_arc_move(false);
prepare_arc_move(clockwise);
}
break;
#endif
case 4: // G4 dwell
}
/**
* G4: Dwell S<seconds> or P<milliseconds>
*/
inline void gcode_G4() {
unsigned long codenum;
LCD_MESSAGEPGM(MSG_DWELL);
codenum = 0;
if(code_seen('P')) codenum = code_value(); // milliseconds to wait
if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
st_synchronize();
codenum += millis(); // keep track of when we started waiting
previous_millis_cmd = millis();
codenum += previous_millis_cmd; // keep track of when we started waiting
while(millis() < codenum) {
manage_heater();
manage_inactivity();
lcd_update();
}
break;
}
#ifdef FWRETRACT
case 10: // G10 retract
/**
* G10 - Retract filament according to settings of M207
* G11 - Recover filament according to settings of M208
*/
inline void gcode_G10_G11(bool doRetract=false) {
#if EXTRUDERS > 1
if (doRetract) {
retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
retract(true,retracted_swap[active_extruder]);
#else
retract(true);
}
#endif
break;
case 11: // G11 retract_recover
retract(doRetract
#if EXTRUDERS > 1
retract(false,retracted_swap[active_extruder]);
#else
retract(false);
, retracted_swap[active_extruder]
#endif
break;
);
}
#endif //FWRETRACT
case 28: //G28 Home all Axis one at a time
/**
* G28: Home all axes, one at a time
*/
inline void gcode_G28() {
#ifdef ENABLE_AUTO_BED_LEVELING
plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
#endif //ENABLE_AUTO_BED_LEVELING
#endif
saved_feedrate = feedrate;
saved_feedmultiply = feedmultiply;
@ -1461,9 +1519,8 @@ void process_commands()
enable_endstops(true);
for(int8_t i=0; i < NUM_AXIS; i++) {
destination[i] = current_position[i];
}
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = current_position[i];
feedrate = 0.0;
#ifdef DELTA
@ -1471,22 +1528,17 @@ void process_commands()
// all axis have to home at the same time
// Move all carriages up together until the first endstop is hit.
current_position[X_AXIS] = 0;
current_position[Y_AXIS] = 0;
current_position[Z_AXIS] = 0;
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 3 * Z_MAX_LENGTH;
destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
st_synchronize();
endstops_hit_on_purpose();
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
current_position[Z_AXIS] = destination[Z_AXIS];
// Destination reached
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
// take care of back off and rehome now we are all at the top
HOMEAXIS(X);
@ -1498,18 +1550,17 @@ void process_commands()
#else // NOT DELTA
home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
home_all_axis = !(code_seen(axis_codes[X_AXIS]) || code_seen(axis_codes[Y_AXIS]) || code_seen(axis_codes[Z_AXIS]));
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
HOMEAXIS(Z);
}
#endif
#ifdef QUICK_HOME
if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
{
current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
if (home_all_axis || code_seen(axis_codes[X_AXIS] && code_seen(axis_codes[Y_AXIS]))) { //first diagonal move
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
#ifndef DUAL_X_CARRIAGE
int x_axis_home_dir = home_dir(X_AXIS);
@ -1519,10 +1570,10 @@ void process_commands()
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
feedrate = homing_feedrate[X_AXIS];
if(homing_feedrate[Y_AXIS]<feedrate)
feedrate = homing_feedrate[Y_AXIS];
if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
if (max_length(X_AXIS) > max_length(Y_AXIS)) {
feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
} else {
@ -1547,10 +1598,9 @@ void process_commands()
current_position[Z_AXIS] = destination[Z_AXIS];
#endif
}
#endif
#endif //QUICK_HOME
if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
{
if ((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) {
#ifdef DUAL_X_CARRIAGE
int tmp_extruder = active_extruder;
extruder_duplication_enabled = false;
@ -1568,47 +1618,46 @@ void process_commands()
#endif
}
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
HOMEAXIS(Y);
}
if (home_all_axis || code_seen(axis_codes[Y_AXIS])) HOMEAXIS(Y);
if(code_seen(axis_codes[X_AXIS]))
{
if (code_seen(axis_codes[X_AXIS])) {
if (code_value_long() != 0) {
#ifdef SCARA
current_position[X_AXIS]=code_value();
#else
current_position[X_AXIS]=code_value()+add_homing[X_AXIS];
current_position[X_AXIS] = code_value()
#ifndef SCARA
+ add_homing[X_AXIS]
#endif
;
}
}
if(code_seen(axis_codes[Y_AXIS])) {
if(code_value_long() != 0) {
#ifdef SCARA
current_position[Y_AXIS]=code_value();
#else
current_position[Y_AXIS]=code_value()+add_homing[Y_AXIS];
if (code_seen(axis_codes[Y_AXIS]) && code_value_long() != 0) {
current_position[Y_AXIS] = code_value()
#ifndef SCARA
+ add_homing[Y_AXIS]
#endif
}
;
}
#if Z_HOME_DIR < 0 // If homing towards BED do Z last
#ifndef Z_SAFE_HOMING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
#if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
if (home_all_axis || code_seen(axis_codes[Z_AXIS])) {
#if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
#endif
HOMEAXIS(Z);
}
#else // Z Safe mode activated.
#else // Z_SAFE_HOMING
if (home_all_axis) {
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED / 60;
current_position[Z_AXIS] = 0;
@ -1620,54 +1669,58 @@ void process_commands()
HOMEAXIS(Z);
}
// Let's see if X and Y are homed and probe is inside bed area.
if (code_seen(axis_codes[Z_AXIS])) {
if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
&& (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
&& (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
current_position[Z_AXIS] = 0;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = max_feedrate[Z_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
st_synchronize();
HOMEAXIS(Z);
} else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
} else {
}
else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
}
}
#endif
#endif
else {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
}
}
#endif // Z_SAFE_HOMING
#endif // Z_HOME_DIR < 0
if(code_seen(axis_codes[Z_AXIS])) {
if(code_value_long() != 0) {
if (code_seen(axis_codes[Z_AXIS]) && code_value_long() != 0)
current_position[Z_AXIS] = code_value() + add_homing[Z_AXIS];
}
}
#ifdef ENABLE_AUTO_BED_LEVELING
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
if (home_all_axis || code_seen(axis_codes[Z_AXIS]))
current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
}
#endif
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif // else DELTA
#ifdef SCARA
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
#endif // SCARA
#endif
#ifdef ENDSTOPS_ONLY_FOR_HOMING
enable_endstops(false);
@ -1677,28 +1730,140 @@ void process_commands()
feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis();
endstops_hit_on_purpose();
break;
}
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
#endif
/**
* G29: Detailed Z-Probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID:
*
* P Set the size of the grid that will be probed (P x P points).
* Example: "G29 P4"
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters:
*
* E/e By default G29 engages / disengages the probe for each point.
* Include "E" to engage and disengage the probe just once.
* There's no extra effect if you have a fixed probe.
* Usage: "G29 E" or "G29 e"
*
*/
// Use one of these defines to specify the origin
// for a topographical map to be printed for your bed.
enum { OriginBackLeft, OriginFrontLeft, OriginBackRight, OriginFrontRight };
#define TOPO_ORIGIN OriginFrontLeft
inline void gcode_G29() {
float x_tmp, y_tmp, z_tmp, real_z;
// Prevent user from running a G29 without first homing in X and Y
if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
{
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
break; // abort G29, since we don't know where we are
return;
}
bool enhanced_g29 = code_seen('E') || code_seen('e');
#ifdef AUTO_BED_LEVELING_GRID
// Example Syntax: G29 N4 V2 E T
int verbose_level = 1;
bool topo_flag = code_seen('T') || code_seen('t');
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
return;
}
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("G29 Enhanced Auto Bed Leveling Code V1.25:\n");
SERIAL_PROTOCOLPGM("Full support at: http://3dprintboard.com/forum.php\n");
if (verbose_level > 2) topo_flag = true;
}
}
int auto_bed_leveling_grid_points = code_seen('P') ? code_value_long() : AUTO_BED_LEVELING_GRID_POINTS;
if (auto_bed_leveling_grid_points < 2 || auto_bed_leveling_grid_points > AUTO_BED_LEVELING_GRID_POINTS) {
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
return;
}
// Define the possible boundaries for probing based on the set limits.
// Code above (in G28) might have these limits wrong, or I am wrong here.
#define MIN_PROBE_EDGE 10 // Edges of the probe square can be no less
const int min_probe_x = max(X_MIN_POS, X_MIN_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_x = min(X_MAX_POS, X_MAX_POS + X_PROBE_OFFSET_FROM_EXTRUDER),
min_probe_y = max(Y_MIN_POS, Y_MIN_POS + Y_PROBE_OFFSET_FROM_EXTRUDER),
max_probe_y = min(Y_MAX_POS, Y_MAX_POS + Y_PROBE_OFFSET_FROM_EXTRUDER);
int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
bool left_out_l = left_probe_bed_position < min_probe_x,
left_out_r = left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
left_out = left_out_l || left_out_r,
right_out_r = right_probe_bed_position > max_probe_x,
right_out_l =right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
right_out = right_out_l || right_out_r,
front_out_f = front_probe_bed_position < min_probe_y,
front_out_b = front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
front_out = front_out_f || front_out_b,
back_out_b = back_probe_bed_position > max_probe_y,
back_out_f = back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE,
back_out = back_out_f || back_out_b;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
left_probe_bed_position = left_out_l ? min_probe_x : right_probe_bed_position - MIN_PROBE_EDGE;
}
if (right_out) {
SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
right_probe_bed_position = right_out_r ? max_probe_x : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
front_probe_bed_position = front_out_f ? min_probe_y : back_probe_bed_position - MIN_PROBE_EDGE;
}
if (back_out) {
SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
back_probe_bed_position = back_out_b ? max_probe_y : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
#endif // AUTO_BED_LEVELING_GRID
#ifdef Z_PROBE_SLED
dock_sled(false);
#endif // Z_PROBE_SLED
dock_sled(false); // engage (un-dock) the probe
#endif
st_synchronize();
// make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
@ -1712,12 +1877,12 @@ void process_commands()
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
@ -1725,123 +1890,151 @@ void process_commands()
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
// "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
int probePointCounter = 0;
bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
{
for (int yProbe = front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing) {
int xProbe, xInc;
if (zig)
{
xProbe = LEFT_PROBE_BED_POSITION;
//xEnd = RIGHT_PROBE_BED_POSITION;
xInc = xGridSpacing;
zig = false;
} else // zag
{
xProbe = RIGHT_PROBE_BED_POSITION;
//xEnd = LEFT_PROBE_BED_POSITION;
xInc = -xGridSpacing;
zig = true;
}
xProbe = left_probe_bed_position, xInc = xGridSpacing;
else
xProbe = right_probe_bed_position, xInc = -xGridSpacing;
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
{
float z_before;
if (probePointCounter == 0)
{
// raise before probing
z_before = Z_RAISE_BEFORE_PROBING;
} else
{
// If topo_flag is set then don't zig-zag. Just scan in one direction.
// This gets the probe points in more readable order.
if (!topo_flag) zig = !zig;
for (int xCount = 0; xCount < auto_bed_leveling_grid_points; xCount++) {
// raise extruder
z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
}
float measured_z,
z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
float measured_z;
// Enhanced G29 - Do not retract servo between probes
if (code_seen('E') || code_seen('e') )
{
if ((yProbe==FRONT_PROBE_BED_POSITION) && (xCount==0))
{
measured_z = probe_pt(xProbe, yProbe, z_before,1);
} else if ((yProbe==FRONT_PROBE_BED_POSITION + (yGridSpacing * (AUTO_BED_LEVELING_GRID_POINTS-1))) && (xCount == AUTO_BED_LEVELING_GRID_POINTS-1))
{
measured_z = probe_pt(xProbe, yProbe, z_before,3);
} else {
measured_z = probe_pt(xProbe, yProbe, z_before,2);
}
} else {
measured_z = probe_pt(xProbe, yProbe, z_before);
ProbeAction act;
if (enhanced_g29) {
if (yProbe == front_probe_bed_position && xCount == 0)
act = ProbeEngage;
else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
act = ProbeRetract;
else
act = ProbeStay;
}
else
act = ProbeEngageRetract;
measured_z = probe_pt(xProbe, yProbe, z_before, act);
mean += measured_z;
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
probePointCounter++;
xProbe += xInc;
}
}
} //xProbe
} //yProbe
clean_up_after_endstop_move();
// solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL(plane_equation_coefficients[1]);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_PROTOCOLPGM(" \n");
}
}
if (topo_flag) {
int xx, yy;
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
#if TOPO_ORIGIN == OriginFrontLeft
for (yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--)
#else
for (yy = 0; yy < auto_bed_leveling_grid_points; yy++)
#endif
{
#if TOPO_ORIGIN == OriginBackRight
for (xx = auto_bed_leveling_grid_points - 1; xx >= 0; xx--)
#else
for (xx = 0; xx < auto_bed_leveling_grid_points; xx++)
#endif
{
int ind =
#if TOPO_ORIGIN == OriginBackRight || TOPO_ORIGIN == OriginFrontLeft
yy * auto_bed_leveling_grid_points + xx
#elif TOPO_ORIGIN == OriginBackLeft
xx * auto_bed_leveling_grid_points + yy
#elif TOPO_ORIGIN == OriginFrontRight
abl2 - xx * auto_bed_leveling_grid_points - yy - 1
#endif
;
float diff = eqnBVector[ind] - mean;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Watch column alignment in Pronterface
else
SERIAL_PROTOCOLPGM(" -");
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_PROTOCOLPGM("\n");
} // yy
SERIAL_PROTOCOLPGM("\n");
} //topo_flag
set_bed_level_equation_lsq(plane_equation_coefficients);
free(plane_equation_coefficients);
#else // AUTO_BED_LEVELING_GRID not defined
#else // !AUTO_BED_LEVELING_GRID
// Probe at 3 arbitrary points
// Enhanced G29
float z_at_pt_1, z_at_pt_2, z_at_pt_3;
if (code_seen('E') || code_seen('e') )
{
// probe 1
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING,1);
// probe 2
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,2);
// probe 3
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,3);
if (enhanced_g29) {
// Basic Enhanced G29
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, ProbeEngage);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeStay);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, ProbeRetract);
}
else
{
// probe 1
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
// probe 2
float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
// probe 3
float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
else {
z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
}
clean_up_after_endstop_move();
set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID
#endif // AUTO_BED_LEVELING_GRID
st_synchronize();
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
// The following code correct the Z height difference from z-probe position and hotend tip position.
// The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
// When the bed is uneven, this height must be corrected.
@ -1853,14 +2046,15 @@ void process_commands()
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#ifdef Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // correct for over travel.
#endif // Z_PROBE_SLED
dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
#endif
}
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
{
inline void gcode_G30() {
engage_z_probe(); // Engage Z Servo endstop if available
st_synchronize();
// TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
@ -1881,62 +2075,48 @@ void process_commands()
clean_up_after_endstop_move();
retract_z_probe(); // Retract Z Servo endstop if available
}
break;
#else
case 31: // dock the sled
dock_sled(true);
break;
case 32: // undock the sled
dock_sled(false);
break;
#endif // Z_PROBE_SLED
#endif //!Z_PROBE_SLED
#endif //ENABLE_AUTO_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
/**
* G92: Set current position to given X Y Z E
*/
inline void gcode_G92() {
if (!code_seen(axis_codes[E_AXIS]))
st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) {
for (int i=0;i<NUM_AXIS;i++) {
if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
current_position[i] = code_value();
plan_set_e_position(current_position[E_AXIS]);
}
else {
current_position[i] = code_value() +
#ifdef SCARA
if (i == X_AXIS || i == Y_AXIS) {
current_position[i] = code_value();
}
else {
current_position[i] = code_value()+add_homing[i];
}
((i != X_AXIS && i != Y_AXIS) ? add_homing[i] : 0)
#else
current_position[i] = code_value()+add_homing[i];
add_homing[i]
#endif
;
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
}
}
break;
}
}
else if(code_seen('M'))
{
switch( (int)code_value() )
{
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
{
/**
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
* M1: // M1 - Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
char *src = strchr_pointer + 2;
codenum = 0;
unsigned long codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value(); // milliseconds to wait
@ -1946,29 +2126,28 @@ void process_commands()
codenum = code_value() * 1000; // seconds to wait
hasS = codenum > 0;
}
starpos = strchr(src, '*');
char* starpos = strchr(src, '*');
if (starpos != NULL) *(starpos) = '\0';
while (*src == ' ') ++src;
if (!hasP && !hasS && *src != '\0') {
if (!hasP && !hasS && *src != '\0')
lcd_setstatus(src);
} else {
else
LCD_MESSAGEPGM(MSG_USERWAIT);
}
lcd_ignore_click();
st_synchronize();
previous_millis_cmd = millis();
if (codenum > 0) {
codenum += millis(); // keep track of when we started waiting
codenum += previous_millis_cmd; // keep track of when we started waiting
while(millis() < codenum && !lcd_clicked()) {
manage_heater();
manage_inactivity();
lcd_update();
}
lcd_ignore_click(false);
}else{
if (!lcd_detected())
break;
}
else {
if (!lcd_detected()) return;
while (!lcd_clicked()) {
manage_heater();
manage_inactivity();
@ -1980,9 +2159,13 @@ void process_commands()
else
LCD_MESSAGEPGM(WELCOME_MSG);
}
break;
#endif
case 17:
#endif // ULTIPANEL
/**
* M17: Enable power on all stepper motors
*/
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_x();
enable_y();
@ -1990,186 +2173,239 @@ void process_commands()
enable_e0();
enable_e1();
enable_e2();
break;
enable_e3();
}
#ifdef SDSUPPORT
case 20: // M20 - list SD card
/**
* M20: List SD card to serial output
*/
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
break;
case 21: // M21 - init SD card
}
/**
* M21: Init SD Card
*/
inline void gcode_M21() {
card.initsd();
}
break;
case 22: //M22 - release SD card
/**
* M22: Release SD Card
*/
inline void gcode_M22() {
card.release();
}
break;
case 23: //M23 - Select file
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos!=NULL)
*(starpos)='\0';
card.openFile(strchr_pointer + 4,true);
break;
case 24: //M24 - Start SD print
/**
* M23: Select a file
*/
inline void gcode_M23() {
char* codepos = strchr_pointer + 4;
char* starpos = strchr(codepos, '*');
if (starpos) *starpos = '\0';
card.openFile(codepos, true);
}
/**
* M24: Start SD Print
*/
inline void gcode_M24() {
card.startFileprint();
starttime = millis();
break;
case 25: //M25 - Pause SD print
}
/**
* M25: Pause SD Print
*/
inline void gcode_M25() {
card.pauseSDPrint();
break;
case 26: //M26 - Set SD index
if(card.cardOK && code_seen('S')) {
}
/**
* M26: Set SD Card file index
*/
inline void gcode_M26() {
if (card.cardOK && code_seen('S'))
card.setIndex(code_value_long());
}
break;
case 27: //M27 - Get SD status
/**
* M27: Get SD Card status
*/
inline void gcode_M27() {
card.getStatus();
break;
case 28: //M28 - Start SD write
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
}
/**
* M28: Start SD Write
*/
inline void gcode_M28() {
char* codepos = strchr_pointer + 4;
char* starpos = strchr(strchr_pointer + 4, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.openFile(strchr_pointer + 4, false);
break;
case 29: //M29 - Stop SD write
//processed in write to file routine above
//card,saving = false;
break;
case 30: //M30 <filename> Delete File
}
/**
* M29: Stop SD Write
* Processed in write to file routine above
*/
inline void gcode_M29() {
// card.saving = false;
}
/**
* M30 <filename>: Delete SD Card file
*/
inline void gcode_M30() {
if (card.cardOK) {
card.closefile();
starpos = (strchr(strchr_pointer + 4,'*'));
if(starpos != NULL){
char* starpos = strchr(strchr_pointer + 4, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.removeFile(strchr_pointer + 4);
}
break;
case 32: //M32 - Select file and start SD print
{
if(card.sdprinting) {
st_synchronize();
}
starpos = (strchr(strchr_pointer + 4,'*'));
char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
if(namestartpos==NULL)
{
namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
}
else
namestartpos++; //to skip the '!'
#endif
if(starpos!=NULL)
*(starpos)='\0';
bool call_procedure=(code_seen('P'));
if(strchr_pointer>namestartpos)
call_procedure=false; //false alert, 'P' found within filename
if( card.cardOK )
{
card.openFile(namestartpos,true,!call_procedure);
if(code_seen('S'))
if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
card.setIndex(code_value_long());
card.startFileprint();
if(!call_procedure)
starttime=millis(); //procedure calls count as normal print time.
}
} break;
case 928: //M928 - Start SD write
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos != NULL){
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos,' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer+5);
break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
{
/**
* M31: Get the time since the start of SD Print (or last M109)
*/
inline void gcode_M31() {
stoptime = millis();
char time[30];
unsigned long t = (stoptime - starttime) / 1000;
int sec,min;
min=t/60;
sec=t%60;
int min = t / 60, sec = t % 60;
char time[30];
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
autotempShutdown();
}
break;
case 42: //M42 -Change pin status via gcode
if (code_seen('S'))
{
int pin_status = code_value();
int pin_number = LED_PIN;
#ifdef SDSUPPORT
/**
* M32: Select file and start SD Print
*/
inline void gcode_M32() {
if (card.sdprinting)
st_synchronize();
char* codepos = strchr_pointer + 4;
char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
if (! namestartpos)
namestartpos = codepos; //default name position, 4 letters after the M
else
namestartpos++; //to skip the '!'
char* starpos = strchr(codepos, '*');
if (starpos) *(starpos) = '\0';
bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
if (card.cardOK) {
card.openFile(namestartpos, true, !call_procedure);
if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
card.setIndex(code_value_long());
card.startFileprint();
if (!call_procedure)
starttime = millis(); //procedure calls count as normal print time.
}
}
/**
* M928: Start SD Write
*/
inline void gcode_M928() {
char* starpos = strchr(strchr_pointer + 5, '*');
if (starpos) {
char* npos = strchr(cmdbuffer[bufindr], 'N');
strchr_pointer = strchr(npos, ' ') + 1;
*(starpos) = '\0';
}
card.openLogFile(strchr_pointer + 5);
}
#endif // SDSUPPORT
/**
* M42: Change pin status via GCode
*/
inline void gcode_M42() {
if (code_seen('S')) {
int pin_status = code_value(),
pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value();
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
#if defined(FAN_PIN) && FAN_PIN > -1
if (pin_number == FAN_PIN)
fanSpeed = pin_status;
if (pin_number == FAN_PIN) fanSpeed = pin_status;
#endif
if (pin_number > -1)
{
if (pin_number > -1) {
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
} // code_seen('S')
}
break;
// M48 Z-Probe repeatability measurement function.
//
// Usage: M48 <n #_samples> <X X_position_for_samples> <Y Y_position_for_samples> <V Verbose_Level> <Engage_probe_for_each_reading> <L legs_of_movement_prior_to_doing_probe>
//
// This function assumes the bed has been homed. Specificaly, that a G28 command
// as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
// Any information generated by a prior G29 Bed leveling command will be lost and need to be
// regenerated.
//
// The number of samples will default to 10 if not specified. You can use upper or lower case
// letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
// N for its communication protocol and will get horribly confused if you send it a capital N.
//
#ifdef ENABLE_AUTO_BED_LEVELING
#ifdef Z_PROBE_REPEATABILITY_TEST
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
case 48: // M48 Z-Probe repeatability
{
#if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
#endif
double sum=0.0;
double mean=0.0;
double sigma=0.0;
double sample_set[50];
/**
* M48: Z-Probe repeatability measurement function.
*
* Usage:
* M48 <n#> <X#> <Y#> <V#> <E> <L#>
* n = Number of samples (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage probe for each reading
* L = Number of legs of movement before probe
*
* This function assumes the bed has been homed. Specificaly, that a G28 command
* as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated.
*
* The number of samples will default to 10 if not specified. You can use upper or lower case
* letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
* N for its communication protocol and will get horribly confused if you send it a capital N.
*/
inline void gcode_M48() {
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
double X_current, Y_current, Z_current;
double X_probe_location, Y_probe_location, Z_start_location, ext_position;
@ -2177,8 +2413,8 @@ void process_commands()
if (code_seen('V') || code_seen('v')) {
verbose_level = code_value();
if (verbose_level < 0 || verbose_level > 4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausable.\n");
goto Sigma_Exit;
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
return;
}
}
@ -2190,8 +2426,8 @@ void process_commands()
if (code_seen('n')) {
n_samples = code_value();
if (n_samples < 4 || n_samples > 50) {
SERIAL_PROTOCOLPGM("?Specified sample size not plausable.\n");
goto Sigma_Exit;
SERIAL_PROTOCOLPGM("?Specified sample size not plausible (4-50).\n");
return;
}
}
@ -2208,7 +2444,7 @@ void process_commands()
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
SERIAL_PROTOCOLPGM("?Specified X position out of range.\n");
goto Sigma_Exit;
return;
}
}
@ -2216,17 +2452,16 @@ void process_commands()
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
SERIAL_PROTOCOLPGM("?Specified Y position out of range.\n");
goto Sigma_Exit;
return;
}
}
if (code_seen('L') || code_seen('l')) {
n_legs = code_value();
if ( n_legs==1 )
n_legs = 2;
if (n_legs == 1) n_legs = 2;
if (n_legs < 0 || n_legs > 15) {
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausable.\n");
goto Sigma_Exit;
SERIAL_PROTOCOLPGM("?Specified number of legs in movement not plausible (0-15).\n");
return;
}
}
@ -2281,8 +2516,7 @@ void process_commands()
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
if (engage_probe_for_each_reading)
retract_z_probe();
if (engage_probe_for_each_reading) retract_z_probe();
for (n=0; n < n_samples; n++) {
@ -2290,39 +2524,29 @@ void process_commands()
if (n_legs) {
double radius=0.0, theta=0.0, x_sweep, y_sweep;
int rotational_direction, l;
rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
int l;
int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
theta = (float) ((unsigned long) millis() % (long) 360) / (360./(2*3.1415926)); // turn into radians
theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",rotational_direction);
//SERIAL_PROTOCOLLNPGM("");
float dir = rotational_direction ? 1 : -1;
for (l = 0; l < n_legs - 1; l++) {
if (rotational_direction==1)
theta += (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
else
theta -= (float) ((unsigned long) millis() % (long) 20) / (360.0/(2*3.1415926)); // turn into radians
theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
radius += (float) ( ((long) ((unsigned long) millis() % (long) 10)) - 5);
if ( radius<0.0 )
radius = -radius;
radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
if (radius < 0.0) radius = -radius;
X_current = X_probe_location + cos(theta) * radius;
Y_current = Y_probe_location + sin(theta) * radius;
if ( X_current<X_MIN_POS) // Make sure our X & Y are sane
X_current = X_MIN_POS;
if ( X_current>X_MAX_POS)
X_current = X_MAX_POS;
if ( Y_current<Y_MIN_POS) // Make sure our X & Y are sane
Y_current = Y_MIN_POS;
if ( Y_current>Y_MAX_POS)
Y_current = Y_MAX_POS;
// Make sure our X & Y are sane
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("x: ", X_current);
@ -2349,19 +2573,15 @@ void process_commands()
// Get the current mean for the data points we have so far
//
sum = 0.0;
for( j=0; j<=n; j++) {
sum = sum + sample_set[j];
}
for (j=0; j<=n; j++) sum += sample_set[j];
mean = sum / (double (n+1));
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum = 0.0;
for( j=0; j<=n; j++) {
sum = sum + (sample_set[j]-mean) * (sample_set[j]-mean);
}
for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
sigma = sqrt( sum / (double (n+1)) );
if (verbose_level > 1) {
@ -2375,7 +2595,6 @@ void process_commands()
if (verbose_level > 2) {
SERIAL_PROTOCOL(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOL(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
@ -2409,34 +2628,30 @@ void process_commands()
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_PROTOCOLPGM("\n\n");
Sigma_Exit:
break;
}
#endif // Z_PROBE_REPEATABILITY_TEST
#endif // ENABLE_AUTO_BED_LEVELING
case 104: // M104
if(setTargetedHotend(104)){
break;
}
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
/**
* M104: Set hot end temperature
*/
inline void gcode_M104() {
if (setTargetedHotend(104)) return;
if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
setWatch();
break;
case 112: // M112 -Emergency Stop
kill();
break;
case 140: // M140 set bed temp
if (code_seen('S')) setTargetBed(code_value());
break;
case 105 : // M105
if(setTargetedHotend(105)){
break;
}
/**
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (setTargetedHotend(105)) return;
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
@ -2495,44 +2710,49 @@ Sigma_Exit:
#endif
SERIAL_PROTOCOLLN("");
return;
break;
case 109:
{// M109 - Wait for extruder heater to reach target.
if(setTargetedHotend(109)){
break;
}
#if defined(FAN_PIN) && FAN_PIN > -1
/**
* M106: Set Fan Speed
*/
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M107: Fan Off
*/
inline void gcode_M107() { fanSpeed = 0; }
#endif //FAN_PIN
/**
* M109: Wait for extruder(s) to reach temperature
*/
inline void gcode_M109() {
if (setTargetedHotend(109)) return;
LCD_MESSAGEPGM(MSG_HEATING);
#ifdef AUTOTEMP
autotemp_enabled=false;
#endif
if (code_seen('S')) {
CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetHotend(code_value(), tmp_extruder);
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
#endif
CooldownNoWait = false;
}
#ifdef AUTOTEMP
autotemp_enabled = code_seen('F');
if (autotemp_enabled) autotemp_factor = code_value();
if (code_seen('S')) autotemp_min = code_value();
if (code_seen('B')) autotemp_max = code_value();
if (code_seen('F'))
{
autotemp_factor=code_value();
autotemp_enabled=true;
}
#endif
setWatch();
codenum = millis();
unsigned long timetemp = millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
@ -2540,43 +2760,41 @@ Sigma_Exit:
cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME
long residencyStart;
residencyStart = -1;
long residencyStart = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residencyStart == -1) ||
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
(residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
#else
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
#endif //TEMP_RESIDENCY_TIME
if( (millis() - codenum) > 1000UL )
{ //Print Temp Reading and remaining time every 1 second while heating up/cooling down
{ // while loop
if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)tmp_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if(residencyStart > -1)
{
codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN( codenum );
if (residencyStart > -1) {
timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
SERIAL_PROTOCOLLN( timetemp );
}
else
{
else {
SERIAL_PROTOCOLLN( "?" );
}
#else
SERIAL_PROTOCOLLN("");
#endif
codenum = millis();
timetemp = millis();
}
manage_heater();
manage_inactivity();
lcd_update();
#ifdef TEMP_RESIDENCY_TIME
/* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
or when current temp falls outside the hysteresis after target temp was reached */
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
// or when current temp falls outside the hysteresis after target temp was reached
if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
(residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
(residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
@ -2585,30 +2803,32 @@ Sigma_Exit:
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
starttime=millis();
previous_millis_cmd = millis();
starttime = previous_millis_cmd = millis();
}
break;
case 190: // M190 - Wait for bed heater to reach target.
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
/**
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
*/
inline void gcode_M190() {
LCD_MESSAGEPGM(MSG_BED_HEATING);
if (code_seen('S')) {
CooldownNoWait = code_seen('S');
if (CooldownNoWait || code_seen('R'))
setTargetBed(code_value());
CooldownNoWait = true;
} else if (code_seen('R')) {
setTargetBed(code_value());
CooldownNoWait = false;
}
codenum = millis();
unsigned long timetemp = millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
{
if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
{
while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
unsigned long ms = millis();
if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
timetemp = ms;
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
@ -2617,7 +2837,6 @@ Sigma_Exit:
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLLN("");
codenum = millis();
}
manage_heater();
manage_inactivity();
@ -2625,65 +2844,63 @@ Sigma_Exit:
}
LCD_MESSAGEPGM(MSG_BED_DONE);
previous_millis_cmd = millis();
#endif
break;
}
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
if (code_seen('S')){
fanSpeed=constrain(code_value(),0,255);
#endif // TEMP_BED_PIN > -1
/**
* M112: Emergency Stop
*/
inline void gcode_M112() {
kill();
}
else {
fanSpeed=255;
}
break;
case 107: //M107 Fan Off
fanSpeed = 0;
break;
#endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
case 126: //M126 valve open
if (code_seen('S')){
ValvePressure=constrain(code_value(),0,255);
}
else {
ValvePressure=255;
}
break;
case 127: //M127 valve closed
ValvePressure = 0;
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
case 128: //M128 valve open
if (code_seen('S')){
EtoPPressure=constrain(code_value(),0,255);
}
else {
EtoPPressure=255;
}
break;
case 129: //M129 valve closed
EtoPPressure = 0;
break;
#endif //HEATER_2_PIN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
/**
* M126: Heater 1 valve open
*/
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M127: Heater 1 valve close
*/
inline void gcode_M127() { ValvePressure = 0; }
#endif
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
/**
* M128: Heater 2 valve open
*/
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M129: Heater 2 valve close
*/
inline void gcode_M129() { EtoPPressure = 0; }
#endif
#endif //BARICUDA
/**
* M140: Set bed temperature
*/
inline void gcode_M140() {
if (code_seen('S')) setTargetBed(code_value());
}
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
SET_OUTPUT(PS_ON_PIN); //GND
WRITE(PS_ON_PIN, PS_ON_AWAKE);
/**
* M80: Turn on Power Supply
*/
inline void gcode_M80() {
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if defined SUICIDE_PIN && SUICIDE_PIN > -1
SET_OUTPUT(SUICIDE_PIN);
WRITE(SUICIDE_PIN, HIGH);
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#ifdef ULTIPANEL
@ -2691,56 +2908,64 @@ Sigma_Exit:
LCD_MESSAGEPGM(WELCOME_MSG);
lcd_update();
#endif
break;
#endif
}
case 81: // M81 - Turn off Power Supply
#endif // PS_ON_PIN
/**
* M81: Turn off Power Supply
*/
inline void gcode_M81() {
disable_heater();
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
finishAndDisableSteppers();
fanSpeed = 0;
delay(1000); // Wait a little before to switch off
delay(1000); // Wait 1 second before switching off
#if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
st_synchronize();
suicide();
#elif defined(PS_ON_PIN) && PS_ON_PIN > -1
SET_OUTPUT(PS_ON_PIN);
WRITE(PS_ON_PIN, PS_ON_ASLEEP);
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#ifdef ULTIPANEL
powersupply = false;
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
lcd_update();
#endif
break;
}
case 82:
axis_relative_modes[3] = false;
break;
case 83:
axis_relative_modes[3] = true;
break;
case 18: //compatibility
case 84: // M84
/**
* M82: Set E codes absolute (default)
*/
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
/**
* M82: Set E codes relative while in Absolute Coordinates (G90) mode
*/
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
* M18, M84: Disable all stepper motors
*/
inline void gcode_M18_M84() {
if (code_seen('S')) {
stepper_inactive_time = code_value() * 1000;
}
else
{
else {
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if(all_axis)
{
if (all_axis) {
st_synchronize();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
finishAndDisableSteppers();
}
else
{
else {
st_synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
@ -2750,22 +2975,27 @@ Sigma_Exit:
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
#endif
}
}
break;
case 85: // M85
if(code_seen('S')) {
max_inactive_time = code_value() * 1000;
}
break;
case 92: // M92
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
if(i == 3) { // E
/**
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M85() {
if (code_seen('S')) max_inactive_time = code_value() * 1000;
}
/**
* M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M92() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
float value = code_value();
if (value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
@ -2780,17 +3010,12 @@ Sigma_Exit:
}
}
}
break;
case 115: // M115
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
break;
case 117: // M117 display message
starpos = (strchr(strchr_pointer + 5,'*'));
if(starpos!=NULL)
*(starpos)='\0';
lcd_setstatus(strchr_pointer + 5);
break;
case 114: // M114
}
/**
* M114: Output current position to serial port
*/
inline void gcode_M114() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
@ -2808,6 +3033,7 @@ Sigma_Exit:
SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
SERIAL_PROTOCOLLN("");
#ifdef SCARA
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
@ -2828,14 +3054,29 @@ Sigma_Exit:
SERIAL_PROTOCOLLN("");
SERIAL_PROTOCOLLN("");
#endif
break;
case 120: // M120
enable_endstops(false) ;
break;
case 121: // M121
enable_endstops(true) ;
break;
case 119: // M119
}
/**
* M115: Capabilities string
*/
inline void gcode_M115() {
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
}
/**
* M117: Set LCD Status Message
*/
inline void gcode_M117() {
char* codepos = strchr_pointer + 5;
char* starpos = strchr(codepos, '*');
if (starpos) *starpos = '\0';
lcd_setstatus(codepos);
}
/**
* M119: Output endstop states to serial output
*/
inline void gcode_M119() {
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
SERIAL_PROTOCOLPGM(MSG_X_MIN);
@ -2861,33 +3102,46 @@ Sigma_Exit:
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
{
byte red;
byte grn;
byte blu;
if(code_seen('R')) red = code_value();
if(code_seen('U')) grn = code_value();
if(code_seen('B')) blu = code_value();
SendColors(red,grn,blu);
}
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
{
/**
* M120: Enable endstops
*/
inline void gcode_M120() { enable_endstops(false); }
/**
* M121: Disable endstops
*/
inline void gcode_M121() { enable_endstops(true); }
#ifdef BLINKM
/**
* M150: Set Status LED Color - Use R-U-B for R-G-B
*/
inline void gcode_M150() {
SendColors(
code_seen('R') ? (byte)code_value() : 0,
code_seen('U') ? (byte)code_value() : 0,
code_seen('B') ? (byte)code_value() : 0
);
}
#endif // BLINKM
/**
* M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
* T<extruder>
* D<millimeters>
*/
inline void gcode_M200() {
tmp_extruder = active_extruder;
if (code_seen('T')) {
tmp_extruder = code_value();
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
break;
return;
}
}
@ -2904,44 +3158,71 @@ Sigma_Exit:
for (int i=0; i<EXTRUDERS; i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
} else {
}
else {
//reserved for setting filament diameter via UFID or filament measuring device
break;
return;
}
calculate_volumetric_multipliers();
}
break;
case 201: // M201
for(int8_t i=0; i < NUM_AXIS; i++)
{
if(code_seen(axis_codes[i]))
{
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*/
inline void gcode_M201() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
break;
}
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
inline void gcode_M202() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
break;
#endif
case 203: // M203 max feedrate mm/sec
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
}
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
{
#endif
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
*/
inline void gcode_M203() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_feedrate[i] = code_value();
}
}
}
/**
* M204: Set Default Acceleration and/or Default Filament Acceleration in mm/sec^2 (M204 S3000 T7000)
*
* S = normal moves
* T = filament only moves
*
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
*/
inline void gcode_M204() {
if (code_seen('S')) acceleration = code_value();
if (code_seen('T')) retract_acceleration = code_value();
}
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
{
/**
* M205: Set Advanced Settings
*
* S = Min Feed Rate (mm/s)
* T = Min Travel Feed Rate (mm/s)
* B = Min Segment Time (µs)
* X = Max XY Jerk (mm/s/s)
* Z = Max Z Jerk (mm/s/s)
* E = Max E Jerk (mm/s/s)
*/
inline void gcode_M205() {
if (code_seen('S')) minimumfeedrate = code_value();
if (code_seen('T')) mintravelfeedrate = code_value();
if (code_seen('B')) minsegmenttime = code_value();
@ -2949,118 +3230,112 @@ Sigma_Exit:
if (code_seen('Z')) max_z_jerk = code_value();
if (code_seen('E')) max_e_jerk = code_value();
}
break;
case 206: // M206 additional homing offset
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) add_homing[i] = code_value();
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/
inline void gcode_M206() {
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
add_homing[i] = code_value();
}
}
#ifdef SCARA
if(code_seen('T')) // Theta
{
add_homing[X_AXIS] = code_value() ;
}
if(code_seen('P')) // Psi
{
add_homing[Y_AXIS] = code_value() ;
}
if (code_seen('T')) add_homing[X_AXIS] = code_value(); // Theta
if (code_seen('P')) add_homing[Y_AXIS] = code_value(); // Psi
#endif
break;
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
if(code_seen('L')) {
delta_diagonal_rod= code_value();
}
if(code_seen('R')) {
delta_radius= code_value();
}
if(code_seen('S')) {
delta_segments_per_second= code_value();
}
#ifdef DELTA
/**
* M665: Set delta configurations
*
* L = diagonal rod
* R = delta radius
* S = segments per second
*/
inline void gcode_M665() {
if (code_seen('L')) delta_diagonal_rod = code_value();
if (code_seen('R')) delta_radius = code_value();
if (code_seen('S')) delta_segments_per_second = code_value();
recalc_delta_settings(delta_radius, delta_diagonal_rod);
break;
case 666: // M666 set delta endstop adjustemnt
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
}
break;
#endif
/**
* M666: Set delta endstop adjustment
*/
inline void gcode_M666() {
for (int8_t i = 0; i < 3; i++) {
if (code_seen(axis_codes[i])) {
endstop_adj[i] = code_value();
}
}
}
#endif // DELTA
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
{
if(code_seen('S'))
{
retract_length = code_value() ;
/**
* M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
*/
inline void gcode_M207() {
if (code_seen('S')) retract_length = code_value();
if (code_seen('F')) retract_feedrate = code_value() / 60;
if (code_seen('Z')) retract_zlift = code_value();
}
if(code_seen('F'))
{
retract_feedrate = code_value()/60 ;
/**
* M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
*/
inline void gcode_M208() {
if (code_seen('S')) retract_recover_length = code_value();
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
}
if(code_seen('Z'))
{
retract_zlift = code_value() ;
}
}break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
{
if(code_seen('S'))
{
retract_recover_length = code_value() ;
}
if(code_seen('F'))
{
retract_recover_feedrate = code_value()/60 ;
}
}break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
{
if(code_seen('S'))
{
/**
* M209: Enable automatic retract (M209 S1)
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
*/
inline void gcode_M209() {
if (code_seen('S')) {
int t = code_value();
switch(t)
{
switch(t) {
case 0:
autoretract_enabled = false;
break;
case 1:
{
autoretract_enabled = (t == 1);
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
}break;
autoretract_enabled = true;
break;
default:
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
SERIAL_ECHOLNPGM("\"");
return;
}
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
}
}
}break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
{
if(setTargetedHotend(218)){
break;
}
if(code_seen('X'))
{
extruder_offset[X_AXIS][tmp_extruder] = code_value();
}
if(code_seen('Y'))
{
extruder_offset[Y_AXIS][tmp_extruder] = code_value();
}
/**
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
*/
inline void gcode_M218() {
if (setTargetedHotend(218)) return;
if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
#ifdef DUAL_X_CARRIAGE
if(code_seen('Z'))
{
extruder_offset[Z_AXIS][tmp_extruder] = code_value();
}
if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
{
for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
SERIAL_ECHO(" ");
SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
SERIAL_ECHO(",");
@ -3070,58 +3345,53 @@ Sigma_Exit:
SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
#endif
}
SERIAL_ECHOLN("");
}break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
{
if(code_seen('S'))
{
feedmultiply = code_value() ;
SERIAL_EOL;
}
}
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
{
if(code_seen('S'))
{
int tmp_code = code_value();
if (code_seen('T'))
{
if(setTargetedHotend(221)){
break;
}
extruder_multiply[tmp_extruder] = tmp_code;
}
else
{
extrudemultiply = tmp_code ;
}
}
}
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
{
#endif // EXTRUDERS > 1
/**
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
if (code_seen('S')) feedmultiply = code_value();
}
/**
* M221: Set extrusion percentage (M221 T0 S95)
*/
inline void gcode_M221() {
if (code_seen('S')) {
int sval = code_value();
if (code_seen('T')) {
if (setTargetedHotend(221)) return;
extruder_multiply[tmp_extruder] = sval;
}
else {
extrudemultiply = sval;
}
}
}
/**
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
*/
inline void gcode_M226() {
if (code_seen('P')) {
int pin_number = code_value(); // pin number
int pin_state = -1; // required pin state - default is inverted
int pin_number = code_value();
if(code_seen('S')) pin_state = code_value(); // required pin state
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
if (pin_state >= -1 && pin_state <= 1) {
for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
{
if (sensitive_pins[i] == pin_number)
{
for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
if (pin_number > -1)
{
if (pin_number > -1) {
int target = LOW;
st_synchronize();
@ -3147,23 +3417,24 @@ Sigma_Exit:
manage_inactivity();
lcd_update();
}
} // pin_number > -1
} // pin_state -1 0 1
} // code_seen('P')
}
}
}
}
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
{
int servo_index = -1;
/**
* M280: Set servo position absolute. P: servo index, S: angle or microseconds
*/
inline void gcode_M280() {
int servo_index = code_seen('P') ? code_value() : -1;
int servo_position = 0;
if (code_seen('P'))
servo_index = code_value();
if (code_seen('S')) {
servo_position = code_value();
if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
#if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
#if defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
servos[servo_index].attach(0);
#endif
servos[servo_index].write(servo_position);
@ -3188,16 +3459,18 @@ Sigma_Exit:
SERIAL_PROTOCOLLN("");
}
}
break;
#endif // NUM_SERVOS > 0
#if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
case 300: // M300
{
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
/**
* M300: Play beep sound S<frequency Hz> P<duration ms>
*/
inline void gcode_M300() {
int beepS = code_seen('S') ? code_value() : 110;
int beepP = code_seen('P') ? code_value() : 1000;
if (beepS > 0)
{
if (beepS > 0) {
#if BEEPER > 0
tone(BEEPER, beepS);
delay(beepP);
@ -3208,28 +3481,25 @@ Sigma_Exit:
lcd_buzz(beepP, beepS);
#endif
}
else
{
else {
delay(beepP);
}
}
break;
#endif // M300
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
#ifdef PIDTEMP
case 301: // M301
{
/**
* M301: Set PID parameters P I D (and optionally C)
*/
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
int e = 0; // extruder being updated
if (code_seen('E'))
{
e = (int)code_value();
}
if (e < EXTRUDERS) // catch bad input value
{
int e = code_seen('E') ? code_value() : 0; // extruder being updated
if (e < EXTRUDERS) { // catch bad input value
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
@ -3255,20 +3525,18 @@ Sigma_Exit:
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
#endif
SERIAL_PROTOCOLLN("");
}
else
{
else {
SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
}
break;
#endif // PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
{
inline void gcode_M304() {
if (code_seen('P')) bedKp = code_value();
if (code_seen('I')) bedKi = scalePID_i(code_value());
if (code_seen('D')) bedKd = scalePID_d(code_value());
@ -3283,20 +3551,24 @@ Sigma_Exit:
SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_PROTOCOLLN("");
}
break;
#endif //PIDTEMP
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
{
#endif // PIDTEMPBED
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
/**
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240() {
#ifdef CHDK
SET_OUTPUT(CHDK);
WRITE(CHDK, HIGH);
OUT_WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#else
#elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
#if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
const uint8_t NUM_PULSES = 16;
const float PULSE_LENGTH = 0.01524;
for (int i = 0; i < NUM_PULSES; i++) {
@ -3312,193 +3584,269 @@ Sigma_Exit:
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif
#endif //chdk end if
#endif // !CHDK && PHOTOGRAPH_PIN > -1
}
break;
#endif // CHDK || PHOTOGRAPH_PIN
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
{
if (code_seen('C')) {
lcd_setcontrast( ((int)code_value())&63 );
}
/**
* M250: Read and optionally set the LCD contrast
*/
inline void gcode_M250() {
if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_PROTOCOLLN("");
}
break;
#endif
#endif // DOGLCD
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
{
float temp = .0;
if (code_seen('S')) temp=code_value();
set_extrude_min_temp(temp);
/**
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
*/
inline void gcode_M302() {
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
}
break;
#endif
case 303: // M303 PID autotune
{
float temp = 150.0;
int e=0;
int c=5;
if (code_seen('E')) e=code_value();
if (e<0)
temp=70;
if (code_seen('S')) temp=code_value();
if (code_seen('C')) c=code_value();
#endif // PREVENT_DANGEROUS_EXTRUDE
/**
* M303: PID relay autotune
* S<temperature> sets the target temperature. (default target temperature = 150C)
* E<extruder> (-1 for the bed)
* C<cycles>
*/
inline void gcode_M303() {
int e = code_seen('E') ? code_value_long() : 0;
int c = code_seen('C') ? code_value_long() : 5;
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
PID_autotune(temp, e, c);
}
break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLN(" Cal: Theta 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 0;
delta[Y_AXIS] = 120;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
return true;
}
return false;
}
break;
case 361: // SCARA Theta pos2
/**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/
inline bool gcode_M361() {
SERIAL_ECHOLN(" Cal: Theta 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 90;
delta[Y_AXIS] = 130;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
return true;
}
break;
case 362: // SCARA Psi pos1
return false;
}
/**
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
*/
inline bool gcode_M362() {
SERIAL_ECHOLN(" Cal: Psi 0 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 60;
delta[Y_AXIS] = 180;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
return true;
}
break;
case 363: // SCARA Psi pos2
return false;
}
/**
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
*/
inline bool gcode_M363() {
SERIAL_ECHOLN(" Cal: Psi 90 ");
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 50;
delta[Y_AXIS] = 90;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
return true;
}
break;
case 364: // SCARA Psi pos3 (90 deg to Theta)
return false;
}
/**
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
*/
inline bool gcode_M364() {
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
// SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if(Stopped == false) {
if (! Stopped) {
//get_coordinates(); // For X Y Z E F
delta[X_AXIS] = 45;
delta[Y_AXIS] = 135;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
prepare_move();
//ClearToSend();
return;
return true;
}
return false;
}
break;
case 365: // M364 Set SCARA scaling for X Y Z
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i]))
{
/**
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
*/
inline void gcode_M365() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
axis_scaling[i] = code_value();
}
}
}
}
}
#endif // SCARA
#ifdef EXT_SOLENOID
void enable_solenoid(uint8_t num) {
switch(num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if defined(SOL1_PIN) && SOL1_PIN > -1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
case 400: // M400 finish all moves
{
st_synchronize();
}
#if defined(SOL2_PIN) && SOL2_PIN > -1
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
case 401:
{
engage_z_probe(); // Engage Z Servo endstop if available
}
#endif
#if defined(SOL3_PIN) && SOL3_PIN > -1
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
case 402:
{
retract_z_probe(); // Retract Z Servo endstop if enabled
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
break;
/**
* M380: Enable solenoid on the active extruder
*/
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
/**
* M381: Disable all solenoids
*/
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
* M400: Finish all moves
*/
inline void gcode_M400() { st_synchronize(); }
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
/**
* M401: Engage Z Servo endstop if available
*/
inline void gcode_M401() { engage_z_probe(); }
/**
* M402: Retract Z Servo endstop if enabled
*/
inline void gcode_M402() { retract_z_probe(); }
#endif
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
{
#if (FILWIDTH_PIN > -1)
if(code_seen('N')) filament_width_nominal=code_value();
/**
* M404: Display or set the nominal filament width (3mm, 1.75mm ) N<3.0>
*/
inline void gcode_M404() {
#if FILWIDTH_PIN > -1
if (code_seen('N')) {
filament_width_nominal = code_value();
}
else {
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
#endif
}
break;
case 405: //M405 Turn on filament sensor for control
{
/**
* M405: Turn on filament sensor for control
*/
inline void gcode_M405() {
if (code_seen('D')) meas_delay_cm = code_value();
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
meas_delay_cm = MAX_MEASUREMENT_DELAY;
if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
{
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
int temp_ratio = widthFil_to_size_ratio();
for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
}
delay_index1=0;
delay_index2=0;
delay_index1 = delay_index2 = 0;
}
filament_sensor = true;
@ -3508,73 +3856,74 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extrudemultiply);
}
break;
case 406: //M406 Turn off filament sensor for control
{
filament_sensor = false ;
}
break;
case 407: //M407 Display measured filament diameter
{
/**
* M406: Turn off filament sensor for control
*/
inline void gcode_M406() { filament_sensor = false; }
/**
* M407: Get measured filament diameter on serial output
*/
inline void gcode_M407() {
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
break;
#endif
#endif // FILAMENT_SENSOR
case 500: // M500 Store settings in EEPROM
{
/**
* M500: Store settings in EEPROM
*/
inline void gcode_M500() {
Config_StoreSettings();
}
break;
case 501: // M501 Read settings from EEPROM
{
/**
* M501: Read settings from EEPROM
*/
inline void gcode_M501() {
Config_RetrieveSettings();
}
break;
case 502: // M502 Revert to default settings
{
/**
* M502: Revert to default settings
*/
inline void gcode_M502() {
Config_ResetDefault();
}
break;
case 503: // M503 print settings currently in memory
{
/**
* M503: print settings currently in memory
*/
inline void gcode_M503() {
Config_PrintSettings(code_seen('S') && code_value == 0);
}
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
{
if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
inline void gcode_M540() {
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
}
break;
#endif
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
{
inline void gcode_SET_Z_PROBE_OFFSET() {
float value;
if (code_seen('Z'))
{
if (code_seen('Z')) {
value = code_value();
if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
{
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
SERIAL_PROTOCOLLN("");
}
else
{
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_ECHOPGM(MSG_Z_MIN);
@ -3584,20 +3933,22 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
SERIAL_PROTOCOLLN("");
}
}
else
{
else {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
SERIAL_ECHO(-zprobe_zoffset);
SERIAL_PROTOCOLLN("");
}
break;
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
{
/**
* M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
*/
inline void gcode_M600() {
float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
for (int i=0; i<NUM_AXIS; i++)
target[i] = lastpos[i] = current_position[i];
@ -3610,65 +3961,38 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
#endif
//retract by E
if(code_seen('E'))
{
target[E_AXIS]+= code_value();
}
else
{
if (code_seen('E')) target[E_AXIS] += code_value();
#ifdef FILAMENTCHANGE_FIRSTRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
#endif
}
RUNPLAN;
//lift Z
if(code_seen('Z'))
{
target[Z_AXIS]+= code_value();
}
else
{
if (code_seen('Z')) target[Z_AXIS] += code_value();
#ifdef FILAMENTCHANGE_ZADD
target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
#endif
}
RUNPLAN;
//move xy
if(code_seen('X'))
{
target[X_AXIS]= code_value();
}
else
{
if (code_seen('X')) target[X_AXIS] = code_value();
#ifdef FILAMENTCHANGE_XPOS
target[X_AXIS]= FILAMENTCHANGE_XPOS ;
else target[X_AXIS] = FILAMENTCHANGE_XPOS;
#endif
}
if(code_seen('Y'))
{
target[Y_AXIS]= code_value();
}
else
{
if (code_seen('Y')) target[Y_AXIS] = code_value();
#ifdef FILAMENTCHANGE_YPOS
target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
#endif
}
RUNPLAN;
if(code_seen('L'))
{
target[E_AXIS]+= code_value();
}
else
{
if (code_seen('L')) target[E_AXIS] += code_value();
#ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
#endif
}
RUNPLAN;
@ -3678,6 +4002,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
disable_e0();
disable_e1();
disable_e2();
disable_e3();
delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
uint8_t cnt = 0;
@ -3686,12 +4011,9 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
manage_heater();
manage_inactivity(true);
lcd_update();
if(cnt==0)
{
if (cnt == 0) {
#if BEEPER > 0
SET_OUTPUT(BEEPER);
WRITE(BEEPER,HIGH);
OUT_WRITE(BEEPER,HIGH);
delay(3);
WRITE(BEEPER,LOW);
delay(3);
@ -3703,24 +4025,21 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
#endif
#endif
}
}
} // while(!lcd_clicked)
//return to normal
if(code_seen('L'))
{
target[E_AXIS]+= -code_value();
}
else
{
if (code_seen('L')) target[E_AXIS] -= code_value();
#ifdef FILAMENTCHANGE_FINALRETRACT
target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
#endif
}
current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
plan_set_e_position(current_position[E_AXIS]);
RUNPLAN; //should do nothing
lcd_reset_alert_level();
#ifdef DELTA
calculate_delta(lastpos);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
@ -3731,32 +4050,30 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
#endif
}
break;
#endif // FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605: // Set dual x-carriage movement mode:
// M605 S0: Full control mode. The slicer has full control over x-carriage movement
// M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
// M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
// millimeters x-offset and an optional differential hotend temperature of
// mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
// the first with a spacing of 100mm in the x direction and 2 degrees hotter.
//
// Note: the X axis should be homed after changing dual x-carriage mode.
{
/**
* M605: Set dual x-carriage movement mode
*
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
* millimeters x-offset and an optional differential hotend temperature of
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
*
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
st_synchronize();
if (code_seen('S'))
dual_x_carriage_mode = code_value();
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
if (code_seen('X'))
duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
if (code_seen('R'))
duplicate_extruder_temp_offset = code_value();
if (code_seen('S')) dual_x_carriage_mode = code_value();
switch(dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE:
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_ECHO(" ");
@ -3767,23 +4084,28 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_ECHO(",");
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
}
else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
{
break;
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
break;
#endif // DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
{
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
inline void gcode_M907() {
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
for (int i=0;i<NUM_AXIS;i++)
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
if (code_seen('B')) digipot_current(4, code_value());
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
#endif
@ -3803,19 +4125,23 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
#endif
}
break;
case 908: // M908 Control digital trimpot directly.
{
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
uint8_t channel,current;
if(code_seen('P')) channel=code_value();
if(code_seen('S')) current=code_value();
digitalPotWrite(channel, current);
#endif
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
inline void gcode_M908() {
digitalPotWrite(
code_seen('P') ? code_value() : 0,
code_seen('S') ? code_value() : 0
);
}
break;
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
{
#endif // DIGIPOTSS_PIN
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() {
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
@ -3823,12 +4149,14 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
microstep_readings();
#endif
}
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
{
/**
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
*/
inline void gcode_M351() {
#if defined(X_MS1_PIN) && X_MS1_PIN > -1
if(code_seen('S')) switch((int)code_value())
{
if (code_seen('S')) switch((int)code_value()) {
case 1:
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
if (code_seen('B')) microstep_ms(4, code_value(), -1);
@ -3841,18 +4169,18 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
microstep_readings();
#endif
}
break;
case 999: // M999: Restart after being stopped
/**
* M999: Restart after being stopped
*/
inline void gcode_M999() {
Stopped = false;
lcd_reset_alert_level();
gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
break;
}
}
else if(code_seen('T'))
{
inline void gcode_T() {
tmp_extruder = code_value();
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
@ -3865,9 +4193,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
if (code_seen('F')) {
make_move = true;
next_feedrate = code_value();
if(next_feedrate > 0.0) {
feedrate = next_feedrate;
}
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
@ -3875,8 +4201,7 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
memcpy(destination, current_position, sizeof(destination));
#ifdef DUAL_X_CARRIAGE
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
{
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
// Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
@ -3900,13 +4225,11 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
// This function resets the max/min values - the current position may be overwritten below.
axis_is_at_home(X_AXIS);
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
{
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
{
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
@ -3915,49 +4238,518 @@ case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or disp
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
}
else
{
else {
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
}
#else
#else // !DUAL_X_CARRIAGE
// Offset extruder (only by XY)
int i;
for(i = 0; i < 2; i++) {
current_position[i] = current_position[i] -
extruder_offset[i][active_extruder] +
extruder_offset[i][tmp_extruder];
}
for (int i=X_AXIS; i<=Y_AXIS; i++)
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
// Set the new active extruder and position
active_extruder = tmp_extruder;
#endif //else DUAL_X_CARRIAGE
#endif // !DUAL_X_CARRIAGE
#ifdef DELTA
calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
//sent position to plan_set_position();
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
#else
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
#endif
// Move to the old position if 'F' was in the parameters
if(make_move && Stopped == false) {
prepare_move();
if (make_move && !Stopped) prepare_move();
}
}
#endif
#ifdef EXT_SOLENOID
st_synchronize();
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
#endif // EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
}
}
else
{
/**
* Process Commands and dispatch them to handlers
*/
void process_commands() {
if (code_seen('G')) {
int gCode = code_value_long();
switch(gCode) {
// G0, G1
case 0:
case 1:
gcode_G0_G1();
break;
// G2, G3
#ifndef SCARA
case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC
gcode_G2_G3(gCode == 2);
break;
#endif
// G4 Dwell
case 4:
gcode_G4();
break;
#ifdef FWRETRACT
case 10: // G10: retract
case 11: // G11: retract_recover
gcode_G10_G11(gCode == 10);
break;
#endif //FWRETRACT
case 28: // G28: Home all axes, one at a time
gcode_G28();
break;
#ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
gcode_G29();
break;
#ifndef Z_PROBE_SLED
case 30: // G30 Single Z Probe
gcode_G30();
break;
#else // Z_PROBE_SLED
case 31: // G31: dock the sled
case 32: // G32: undock the sled
dock_sled(gCode == 31);
break;
#endif // Z_PROBE_SLED
#endif // ENABLE_AUTO_BED_LEVELING
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
gcode_G92();
break;
}
}
else if (code_seen('M')) {
switch( (int)code_value() ) {
#ifdef ULTIPANEL
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
gcode_M0_M1();
break;
#endif // ULTIPANEL
case 17:
gcode_M17();
break;
#ifdef SDSUPPORT
case 20: // M20 - list SD card
gcode_M20(); break;
case 21: // M21 - init SD card
gcode_M21(); break;
case 22: //M22 - release SD card
gcode_M22(); break;
case 23: //M23 - Select file
gcode_M23(); break;
case 24: //M24 - Start SD print
gcode_M24(); break;
case 25: //M25 - Pause SD print
gcode_M25(); break;
case 26: //M26 - Set SD index
gcode_M26(); break;
case 27: //M27 - Get SD status
gcode_M27(); break;
case 28: //M28 - Start SD write
gcode_M28(); break;
case 29: //M29 - Stop SD write
gcode_M29(); break;
case 30: //M30 <filename> Delete File
gcode_M30(); break;
case 32: //M32 - Select file and start SD print
gcode_M32(); break;
case 928: //M928 - Start SD write
gcode_M928(); break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
gcode_M31();
break;
case 42: //M42 -Change pin status via gcode
gcode_M42();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
case 48: // M48 Z-Probe repeatability
gcode_M48();
break;
#endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
case 104: // M104
gcode_M104();
break;
case 112: // M112 Emergency Stop
gcode_M112();
break;
case 140: // M140 Set bed temp
gcode_M140();
break;
case 105: // M105 Read current temperature
gcode_M105();
return;
break;
case 109: // M109 Wait for temperature
gcode_M109();
break;
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
case 190: // M190 - Wait for bed heater to reach target.
gcode_M190();
break;
#endif //TEMP_BED_PIN
#if defined(FAN_PIN) && FAN_PIN > -1
case 106: //M106 Fan On
gcode_M106();
break;
case 107: //M107 Fan Off
gcode_M107();
break;
#endif //FAN_PIN
#ifdef BARICUDA
// PWM for HEATER_1_PIN
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
case 126: // M126 valve open
gcode_M126();
break;
case 127: // M127 valve closed
gcode_M127();
break;
#endif //HEATER_1_PIN
// PWM for HEATER_2_PIN
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
case 128: // M128 valve open
gcode_M128();
break;
case 129: // M129 valve closed
gcode_M129();
break;
#endif //HEATER_2_PIN
#endif //BARICUDA
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
case 80: // M80 - Turn on Power Supply
gcode_M80();
break;
#endif // PS_ON_PIN
case 81: // M81 - Turn off Power Supply
gcode_M81();
break;
case 82:
gcode_M82();
break;
case 83:
gcode_M83();
break;
case 18: //compatibility
case 84: // M84
gcode_M18_M84();
break;
case 85: // M85
gcode_M85();
break;
case 92: // M92
gcode_M92();
break;
case 115: // M115
gcode_M115();
break;
case 117: // M117 display message
gcode_M117();
break;
case 114: // M114
gcode_M114();
break;
case 120: // M120
gcode_M120();
break;
case 121: // M121
gcode_M121();
break;
case 119: // M119
gcode_M119();
break;
//TODO: update for all axis, use for loop
#ifdef BLINKM
case 150: // M150
gcode_M150();
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
gcode_M200();
break;
case 201: // M201
gcode_M201();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
gcode_M202();
break;
#endif
case 203: // M203 max feedrate mm/sec
gcode_M203();
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
gcode_M204();
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
gcode_M205();
break;
case 206: // M206 additional homing offset
gcode_M206();
break;
#ifdef DELTA
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665();
break;
case 666: // M666 set delta endstop adjustment
gcode_M666();
break;
#endif // DELTA
#ifdef FWRETRACT
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
gcode_M207();
break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
gcode_M208();
break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
gcode_M209();
break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
gcode_M218();
break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
gcode_M220();
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
gcode_M221();
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
gcode_M226();
break;
#if NUM_SERVOS > 0
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
gcode_M280();
break;
#endif // NUM_SERVOS > 0
#if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
case 300: // M300 - Play beep tone
gcode_M300();
break;
#endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
#ifdef PIDTEMP
case 301: // M301
gcode_M301();
break;
#endif // PIDTEMP
#ifdef PIDTEMPBED
case 304: // M304
gcode_M304();
break;
#endif // PIDTEMPBED
#if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240();
break;
#endif // CHDK || PHOTOGRAPH_PIN
#ifdef DOGLCD
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
gcode_M250();
break;
#endif // DOGLCD
#ifdef PREVENT_DANGEROUS_EXTRUDE
case 302: // allow cold extrudes, or set the minimum extrude temperature
gcode_M302();
break;
#endif // PREVENT_DANGEROUS_EXTRUDE
case 303: // M303 PID autotune
gcode_M303();
break;
#ifdef SCARA
case 360: // M360 SCARA Theta pos1
if (gcode_M360()) return;
break;
case 361: // M361 SCARA Theta pos2
if (gcode_M361()) return;
break;
case 362: // M362 SCARA Psi pos1
if (gcode_M362()) return;
break;
case 363: // M363 SCARA Psi pos2
if (gcode_M363()) return;
break;
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
if (gcode_M364()) return;
break;
case 365: // M365 Set SCARA scaling for X Y Z
gcode_M365();
break;
#endif // SCARA
case 400: // M400 finish all moves
gcode_M400();
break;
#if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS) && not defined(Z_PROBE_SLED)
case 401:
gcode_M401();
break;
case 402:
gcode_M402();
break;
#endif
#ifdef FILAMENT_SENSOR
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404();
break;
case 405: //M405 Turn on filament sensor for control
gcode_M405();
break;
case 406: //M406 Turn off filament sensor for control
gcode_M406();
break;
case 407: //M407 Display measured filament diameter
gcode_M407();
break;
#endif // FILAMENT_SENSOR
case 500: // M500 Store settings in EEPROM
gcode_M500();
break;
case 501: // M501 Read settings from EEPROM
gcode_M501();
break;
case 502: // M502 Revert to default settings
gcode_M502();
break;
case 503: // M503 print settings currently in memory
gcode_M503();
break;
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
case 540:
gcode_M540();
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
gcode_SET_Z_PROBE_OFFSET();
break;
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#ifdef FILAMENTCHANGEENABLE
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
gcode_M600();
break;
#endif // FILAMENTCHANGEENABLE
#ifdef DUAL_X_CARRIAGE
case 605:
gcode_M605();
break;
#endif // DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
gcode_M907();
break;
#if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
case 908: // M908 Control digital trimpot directly.
gcode_M908();
break;
#endif // DIGIPOTSS_PIN
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350();
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351();
break;
case 999: // M999: Restart after being Stopped
gcode_M999();
break;
}
}
else if (code_seen('T')) {
gcode_T();
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(cmdbuffer[bufindr]);
@ -4418,6 +5210,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
}
}
@ -4459,7 +5252,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument s
{
if (homeDebounceCount == 0)
{
enquecommand_P((PSTR("G28")));
enquecommands_P((PSTR("G28")));
homeDebounceCount++;
LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
}
@ -4523,6 +5316,7 @@ void kill()
disable_e0();
disable_e1();
disable_e2();
disable_e3();
#if defined(PS_ON_PIN) && PS_ON_PIN > -1
pinMode(PS_ON_PIN,INPUT);
@ -4656,20 +5450,10 @@ bool setTargetedHotend(int code){
return false;
}
float calculate_volumetric_multiplier(float diameter) {
float area = .0;
float radius = .0;
radius = diameter * .5;
if (! volumetric_enabled || radius == 0) {
area = 1;
}
else {
area = M_PI * pow(radius, 2);
}
return 1.0 / area;
if (!volumetric_enabled || diameter == 0) return 1.0;
float d2 = diameter * 0.5;
return 1.0 / (M_PI * d2 * d2);
}
void calculate_volumetric_multipliers() {

View file

@ -50,10 +50,11 @@
#define BOARD_LEAPFROG 999 // Leapfrog
#define BOARD_WITBOX 41 // bq WITBOX
#define BOARD_HEPHESTOS 42 // bq Prusa i3 Hephestos
#define BOARD_BAM_DICE 401 // 2PrintBeta BAM&DICE with STK drivers
#define BOARD_BAM_DICE_DUE 402 // 2PrintBeta BAM&DICE Due with STK drivers
#define BOARD_99 99 // This is in pins.h but...?
#define MB(board) (MOTHERBOARD==BOARD_##board)
#define IS_RAMPS (MB(RAMPS_OLD) || MB(RAMPS_13_EFB) || MB(RAMPS_13_EEB) || MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF))
#endif //__BOARDS_H

View file

@ -7,17 +7,13 @@
#ifdef SDSUPPORT
CardReader::CardReader()
{
CardReader::CardReader() {
filesize = 0;
sdpos = 0;
sdprinting = false;
cardOK = false;
saving = false;
logging = false;
autostart_atmillis=0;
workDirDepth = 0;
file_subcall_ctr = 0;
memset(workDirParents, 0, sizeof(workDirParents));
@ -26,49 +22,35 @@ CardReader::CardReader()
autostart_index = 0;
//power to SD reader
#if SDPOWER > -1
SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH);
OUT_WRITE(SDPOWER, HIGH);
#endif //SDPOWER
autostart_atmillis = millis() + 5000;
}
char *createFilename(char *buffer,const dir_t &p) //buffer>12characters
{
char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
char *pos = buffer;
for (uint8_t i = 0; i < 11; i++)
{
for (uint8_t i = 0; i < 11; i++) {
if (p.name[i] == ' ') continue;
if (i == 8)
{
*pos++='.';
}
if (i == 8) *pos++ = '.';
*pos++ = p.name[i];
}
*pos++ = 0;
return buffer;
}
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/)
{
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
dir_t p;
uint8_t cnt = 0;
while (parent.readDir(p, longFilename) > 0)
{
if( DIR_IS_SUBDIR(&p) && lsAction!=LS_Count && lsAction!=LS_GetFilename) // hence LS_SerialPrint
{
while (parent.readDir(p, longFilename) > 0) {
if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) { // hence LS_SerialPrint
char path[FILENAME_LENGTH*2];
char lfilename[FILENAME_LENGTH];
createFilename(lfilename, p);
path[0] = 0;
if(strlen(prepend)==0) //avoid leading / if already in prepend
{
strcat(path,"/");
}
if (prepend[0] == 0) strcat(path, "/"); //avoid leading / if already in prepend
strcat(path, prepend);
strcat(path, lfilename);
strcat(path, "/");
@ -76,10 +58,8 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
//Serial.print(path);
SdFile dir;
if(!dir.open(parent,lfilename, O_READ))
{
if(lsAction==LS_SerialPrint)
{
if (!dir.open(parent, lfilename, O_READ)) {
if (lsAction == LS_SerialPrint) {
SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR);
SERIAL_ECHOLN(lfilename);
@ -87,96 +67,74 @@ void CardReader::lsDive(const char *prepend, SdFile parent, const char * const m
}
lsDive(path, dir);
//close done automatically by destructor of SdFile
}
else
{
else {
char pn0 = p.name[0];
if (pn0 == DIR_NAME_FREE) break;
if (pn0 == DIR_NAME_DELETED || pn0 == '.' || pn0 == '_') continue;
if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue;
char lf0 = longFilename[0];
if (lf0 == '.' || lf0 == '_') continue;
if (lf0 == '.') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
filenameIsDir = DIR_IS_SUBDIR(&p);
if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue;
if(!filenameIsDir)
{
if(p.name[8]!='G') continue;
if(p.name[9]=='~') continue;
}
//if (cnt++ != nr) continue;
createFilename(filename, p);
if(lsAction==LS_SerialPrint)
{
if (lsAction == LS_SerialPrint) {
SERIAL_PROTOCOL(prepend);
SERIAL_PROTOCOLLN(filename);
}
else if(lsAction==LS_Count)
{
else if (lsAction == LS_Count) {
nrFiles++;
}
else if(lsAction==LS_GetFilename)
{
else if (lsAction == LS_GetFilename) {
if (match != NULL) {
if (strcasecmp(match, filename) == 0) return;
}
else if (cnt == nrFiles) return;
cnt++;
}
}
}
}
void CardReader::ls()
{
void CardReader::ls() {
lsAction = LS_SerialPrint;
if(lsAction==LS_Count)
nrFiles=0;
root.rewind();
lsDive("", root);
}
void CardReader::initsd()
{
void CardReader::initsd() {
cardOK = false;
if(root.isOpen())
root.close();
if (root.isOpen()) root.close();
#ifdef SDSLOW
if (!card.init(SPI_HALF_SPEED,SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_HALF_SPEED,LCD_SDSS)
#endif
)
#define SPI_SPEED SPI_HALF_SPEED
#else
if (!card.init(SPI_FULL_SPEED,SDSS)
#define SPI_SPEED SPI_FULL_SPEED
#endif
if (!card.init(SPI_SPEED,SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_FULL_SPEED,LCD_SDSS)
&& !card.init(SPI_SPEED, LCD_SDSS)
#endif
)
#endif
{
) {
//if (!card.init(SPI_HALF_SPEED,SDSS))
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL);
}
else if (!volume.init(&card))
{
else if (!volume.init(&card)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL);
}
else if (!root.openRoot(&volume))
{
else if (!root.openRoot(&volume)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL);
}
else
{
else {
cardOK = true;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_CARD_OK);
@ -184,62 +142,46 @@ void CardReader::initsd()
workDir = root;
curDir = &root;
/*
if(!workDir.openRoot(&volume))
{
if (!workDir.openRoot(&volume)) {
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}
*/
}
void CardReader::setroot()
{
/*if(!workDir.openRoot(&volume))
{
void CardReader::setroot() {
/*if (!workDir.openRoot(&volume)) {
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}*/
workDir = root;
curDir = &workDir;
}
void CardReader::release()
{
void CardReader::release() {
sdprinting = false;
cardOK = false;
}
void CardReader::startFileprint()
{
if(cardOK)
{
void CardReader::startFileprint() {
if (cardOK) {
sdprinting = true;
}
}
void CardReader::pauseSDPrint()
{
if(sdprinting)
{
sdprinting = false;
}
void CardReader::pauseSDPrint() {
if (sdprinting) sdprinting = false;
}
void CardReader::openLogFile(char* name)
{
void CardReader::openLogFile(char* name) {
logging = true;
openFile(name, false);
}
void CardReader::getAbsFilename(char *t)
{
void CardReader::getAbsFilename(char *t) {
uint8_t cnt = 0;
*t = '/'; t++; cnt++;
for(uint8_t i=0;i<workDirDepth;i++)
{
for (uint8_t i = 0; i < workDirDepth; i++) {
workDirParents[i].getFilename(t); //SDBaseFile.getfilename!
while(*t!=0 && cnt< MAXPATHNAMELENGTH)
{t++;cnt++;} //crawl counter forward.
while(*t && cnt < MAXPATHNAMELENGTH) { t++; cnt++; } //crawl counter forward.
}
if (cnt < MAXPATHNAMELENGTH - FILENAME_LENGTH)
file.getFilename(t);
@ -247,16 +189,11 @@ void CardReader::getAbsFilename(char *t)
t[0] = 0;
}
void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
{
if(!cardOK)
return;
if(file.isOpen()) //replacing current file by new file, or subfile call
{
if(!replace_current)
{
if((int)file_subcall_ctr>(int)SD_PROCEDURE_DEPTH-1)
{
void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) {
if (!cardOK) return;
if (file.isOpen()) { //replacing current file by new file, or subfile call
if (!replace_current) {
if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) {
SERIAL_ERROR_START;
SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:");
SERIAL_ERRORLN(SD_PROCEDURE_DEPTH);
@ -278,16 +215,14 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
filespos[file_subcall_ctr] = sdpos;
file_subcall_ctr++;
}
else
{
else {
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now doing file: ");
SERIAL_ECHOLN(name);
}
file.close();
}
else //opening fresh file
{
else { //opening fresh file
file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure
SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now fresh file: ");
@ -295,59 +230,49 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
}
sdprinting = false;
SdFile myDir;
curDir = &root;
char *fname = name;
char *dirname_start, *dirname_end;
if(name[0]=='/')
{
dirname_start=strchr(name,'/')+1;
while(dirname_start>0)
{
if (name[0] == '/') {
dirname_start = &name[1];
while(dirname_start > 0) {
dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
if(dirname_end>0 && dirname_end>dirname_start)
{
if (dirname_end > 0 && dirname_end > dirname_start) {
char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ))
{
if (!myDir.open(curDir, subdirname, O_READ)) {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM(".");
return;
}
else
{
else {
//SERIAL_ECHOLN("dive ok");
}
curDir = &myDir;
dirname_start = dirname_end + 1;
}
else // the reminder after all /fsa/fdsa/ is the filename
{
else { // the remainder after all /fsa/fdsa/ is the filename
fname = dirname_start;
//SERIAL_ECHOLN("remaider");
//SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN(fname);
break;
}
}
}
else //relative path
{
else { //relative path
curDir = &workDir;
}
if(read)
{
if (file.open(curDir, fname, O_READ))
{
if (read) {
if (file.open(curDir, fname, O_READ)) {
filesize = file.fileSize();
SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED);
SERIAL_PROTOCOL(fname);
@ -359,105 +284,87 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
getfilename(0, fname);
lcd_setstatus(longFilename[0] ? longFilename : fname);
}
else
{
else {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
}
else
{ //write
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
else { //write
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
else
{
else {
saving = true;
SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE);
SERIAL_PROTOCOLLN(name);
lcd_setstatus(fname);
}
}
}
void CardReader::removeFile(char* name)
{
if(!cardOK)
return;
void CardReader::removeFile(char* name) {
if (!cardOK) return;
file.close();
sdprinting = false;
SdFile myDir;
curDir = &root;
char *fname = name;
char *dirname_start, *dirname_end;
if(name[0]=='/')
{
if (name[0] == '/') {
dirname_start = strchr(name, '/') + 1;
while(dirname_start>0)
{
while (dirname_start > 0) {
dirname_end = strchr(dirname_start, '/');
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
if(dirname_end>0 && dirname_end>dirname_start)
{
if (dirname_end > 0 && dirname_end > dirname_start) {
char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ))
{
if (!myDir.open(curDir, subdirname, O_READ)) {
SERIAL_PROTOCOLPGM("open failed, File: ");
SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM(".");
return;
}
else
{
else {
//SERIAL_ECHOLN("dive ok");
}
curDir = &myDir;
dirname_start = dirname_end + 1;
}
else // the reminder after all /fsa/fdsa/ is the filename
{
else { // the remainder after all /fsa/fdsa/ is the filename
fname = dirname_start;
//SERIAL_ECHOLN("remaider");
//SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN(fname);
break;
}
}
}
else //relative path
{
else { // relative path
curDir = &workDir;
}
if (file.remove(curDir, fname))
{
if (file.remove(curDir, fname)) {
SERIAL_PROTOCOLPGM("File deleted:");
SERIAL_PROTOCOLLN(fname);
sdpos = 0;
}
else
{
else {
SERIAL_PROTOCOLPGM("Deletion failed, File: ");
SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM(".");
}
}
void CardReader::getStatus()
{
void CardReader::getStatus() {
if (cardOK) {
SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE);
SERIAL_PROTOCOL(sdpos);
@ -468,15 +375,14 @@ void CardReader::getStatus()
SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING);
}
}
void CardReader::write_command(char *buf)
{
void CardReader::write_command(char *buf) {
char* begin = buf;
char* npos = 0;
char* end = buf + strlen(buf) - 1;
file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL)
{
if ((npos = strchr(buf, 'N')) != NULL) {
begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1;
}
@ -484,55 +390,39 @@ void CardReader::write_command(char *buf)
end[2] = '\n';
end[3] = '\0';
file.write(begin);
if (file.writeError)
{
if (file.writeError) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE);
}
}
void CardReader::checkautostart(bool force) {
if (!force && (!autostart_stilltocheck || autostart_atmillis < millis()))
return;
void CardReader::checkautostart(bool force)
{
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return;
}
autostart_stilltocheck = false;
if(!cardOK)
{
if (!cardOK) {
initsd();
if(!cardOK) //fail
return;
if (!cardOK) return; // fail
}
char autoname[30];
sprintf_P(autoname, PSTR("auto%i.g"), autostart_index);
for(int8_t i=0;i<(int8_t)strlen(autoname);i++)
autoname[i]=tolower(autoname[i]);
for (int8_t i = 0; i < (int8_t)strlen(autoname); i++) autoname[i] = tolower(autoname[i]);
dir_t p;
root.rewind();
bool found = false;
while (root.readDir(p, NULL) > 0)
{
for(int8_t i=0;i<(int8_t)strlen((char*)p.name);i++)
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
while (root.readDir(p, NULL) > 0) {
for (int8_t i = 0; i < (int8_t)strlen((char*)p.name); i++) p.name[i] = tolower(p.name[i]);
if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) {
char cmd[30];
sprintf_P(cmd, PSTR("M23 %s"), autoname);
enquecommand(cmd);
enquecommand_P(PSTR("M24"));
enquecommands_P(PSTR("M24"));
found = true;
}
}
@ -542,35 +432,29 @@ void CardReader::checkautostart(bool force)
autostart_index++;
}
void CardReader::closefile(bool store_location)
{
void CardReader::closefile(bool store_location) {
file.sync();
file.close();
saving = false;
logging = false;
saving = logging = false;
if(store_location)
{
if (store_location) {
//future: store printer state, filename and position for continuing a stopped print
// so one can unplug the printer and continue printing the next day.
}
}
}
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/)
{
/**
* Get the name of a file in the current directory by index
*/
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) {
curDir = &workDir;
lsAction = LS_GetFilename;
nrFiles = nr;
curDir->rewind();
lsDive("", *curDir, match);
}
uint16_t CardReader::getnrfilenames()
{
uint16_t CardReader::getnrfilenames() {
curDir = &workDir;
lsAction = LS_Count;
nrFiles = 0;
@ -580,66 +464,55 @@ uint16_t CardReader::getnrfilenames()
return nrFiles;
}
void CardReader::chdir(const char * relpath)
{
void CardReader::chdir(const char * relpath) {
SdFile newfile;
SdFile *parent = &root;
if(workDir.isOpen())
parent=&workDir;
if (workDir.isOpen()) parent = &workDir;
if(!newfile.open(*parent,relpath, O_READ))
{
if (!newfile.open(*parent, relpath, O_READ)) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR);
SERIAL_ECHOLN(relpath);
}
else
{
else {
if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;)
workDirParents[d+1] = workDirParents[d];
++workDirDepth;
for (int d = workDirDepth; d--;) workDirParents[d + 1] = workDirParents[d];
workDirParents[0] = *parent;
}
workDir = newfile;
}
}
void CardReader::updir()
{
if(workDirDepth > 0)
{
void CardReader::updir() {
if (workDirDepth > 0) {
--workDirDepth;
workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1];
}
}
void CardReader::printingHasFinished()
{
void CardReader::printingHasFinished() {
st_synchronize();
if(file_subcall_ctr>0) //heading up to a parent file that called current as a procedure.
{
if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
file.close();
file_subcall_ctr--;
openFile(filenames[file_subcall_ctr], true, true);
setIndex(filespos[file_subcall_ctr]);
startFileprint();
}
else
{
else {
quickStop();
file.close();
sdprinting = false;
if(SD_FINISHED_STEPPERRELEASE)
{
if (SD_FINISHED_STEPPERRELEASE) {
//finishAndDisableSteppers();
enquecommand_P(PSTR(SD_FINISHED_RELEASECOMMAND));
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
}
autotempShutdown();
}
}
#endif //SDSUPPORT

View file

@ -3,12 +3,12 @@
#ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10
#define MAX_DIR_DEPTH 10 // Maximum folder depth
#include "SdFile.h"
enum LsAction { LS_SerialPrint, LS_Count, LS_GetFilename };
class CardReader
{
class CardReader {
public:
CardReader();
@ -33,7 +33,6 @@ public:
void getAbsFilename(char *t);
void ls();
void chdir(const char * relpath);
void updir();
@ -41,20 +40,15 @@ public:
FORCE_INLINE bool isFileOpen() { return file.isOpen(); }
FORCE_INLINE bool eof() { return sdpos>=filesize ;};
FORCE_INLINE int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();};
FORCE_INLINE void setIndex(long index) {sdpos = index;file.seekSet(index);};
FORCE_INLINE uint8_t percentDone(){if(!isFileOpen()) return 0; if(filesize) return sdpos/((filesize+99)/100); else return 0;};
FORCE_INLINE char* getWorkDirName(){workDir.getFilename(filename);return filename;};
FORCE_INLINE bool eof() { return sdpos >= filesize; }
FORCE_INLINE int16_t get() { sdpos = file.curPosition(); return (int16_t)file.read(); }
FORCE_INLINE void setIndex(long index) { sdpos = index; file.seekSet(index); }
FORCE_INLINE uint8_t percentDone() { return (isFileOpen() && filesize) ? sdpos / ((filesize + 99) / 100) : 0; }
FORCE_INLINE char* getWorkDirName() { workDir.getFilename(filename); return filename; }
public:
bool saving;
bool logging;
bool sdprinting;
bool cardOK;
char filename[FILENAME_LENGTH];
char longFilename[LONG_FILENAME_LENGTH];
bool filenameIsDir;
bool saving, logging, sdprinting, cardOK, filenameIsDir;
char filename[FILENAME_LENGTH], longFilename[LONG_FILENAME_LENGTH];
int autostart_index;
private:
SdFile root, *curDir, workDir, workDirParents[MAX_DIR_DEPTH];
@ -68,18 +62,19 @@ private:
uint32_t filespos[SD_PROCEDURE_DEPTH];
char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH];
uint32_t filesize;
//int16_t n;
unsigned long autostart_atmillis;
uint32_t sdpos;
bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
LsAction lsAction; //stored for recursion.
int16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
uint16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
char* diveDirName;
void lsDive(const char *prepend, SdFile parent, const char * const match=NULL);
};
extern CardReader card;
#define IS_SD_PRINTING (card.sdprinting)
#if (SDCARDDETECT > -1)
@ -87,9 +82,9 @@ extern CardReader card;
#define IS_SD_INSERTED (READ(SDCARDDETECT) != 0)
#else
#define IS_SD_INSERTED (READ(SDCARDDETECT) == 0)
# endif //SDCARDTETECTINVERTED
#endif
#else
//If we don't have a card detect line, aways asume the card is inserted
//No card detect line? Assume the card is inserted.
#define IS_SD_INSERTED true
#endif
@ -98,4 +93,5 @@ extern CardReader card;
#define IS_SD_PRINTING (false)
#endif //SDSUPPORT
#endif
#endif //__CARDREADER_H

View file

@ -1,6 +1,7 @@
#include "Configuration.h"
#ifdef DIGIPOT_I2C
#include "Stream.h"
#include "utility/twi.h"
#include "Wire.h"
@ -18,8 +19,7 @@ static byte current_to_wiper( float current ){
return byte(ceil(float((DIGIPOT_I2C_FACTOR*current))));
}
static void i2c_send(byte addr, byte a, byte b)
{
static void i2c_send(byte addr, byte a, byte b) {
Wire.beginTransmission(addr);
Wire.write(a);
Wire.write(b);
@ -27,8 +27,7 @@ static void i2c_send(byte addr, byte a, byte b)
}
// This is for the MCP4451 I2C based digipot
void digipot_i2c_set_current( int channel, float current )
{
void digipot_i2c_set_current(int channel, float current) {
current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT);
// these addresses are specific to Azteeg X3 Pro, can be set to others,
// In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1
@ -47,8 +46,7 @@ void digipot_i2c_set_current( int channel, float current )
i2c_send(addr, addresses[channel], current_to_wiper(current));
}
void digipot_i2c_init()
{
void digipot_i2c_init() {
const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS;
Wire.begin();
// setup initial currents as defined in Configuration_adv.h
@ -56,4 +54,5 @@ void digipot_i2c_init()
digipot_i2c_set_current(i, digipot_motor_current[i]);
}
}
#endif
#endif //DIGIPOT_I2C

View file

@ -27,10 +27,6 @@
#define EN_A (1<<BLEN_A)
#define EN_B (1<<BLEN_B)
#define EN_C (1<<BLEN_C)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#define LCD_CLICKED (buttons&EN_C)
#endif
@ -92,6 +88,9 @@ U8GLIB_ST7920_128X64_RRD u8g(0);
#elif defined(MAKRPANEL)
// The MaKrPanel display, ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
#elif defined(VIKI2) || defined(miniVIKI)
// Mini Viki and Viki 2.0 LCD, ST7565 controller as well
U8GLIB_NHD_C12864 u8g(DOGLCD_CS, DOGLCD_A0);
#else
// for regular DOGM128 display with HW-SPI
U8GLIB_DOGM128 u8g(DOGLCD_CS, DOGLCD_A0); // HW-SPI Com: CS, A0
@ -312,7 +311,7 @@ static void lcd_implementation_drawmenu_generic(uint8_t row, const char* pstr, c
static void _drawmenu_setting_edit_generic(uint8_t row, const char* pstr, char pre_char, const char* data, bool pgm) {
char c;
uint8_t n = LCD_WIDTH - 2 - (pgm ? strlen_P(data) : (strlen(data)));
uint8_t n = LCD_WIDTH - 2 - (pgm ? lcd_strlen_P(data) : (lcd_strlen((char*)data)));
lcd_implementation_mark_as_selected(row, pre_char);
@ -374,18 +373,18 @@ void lcd_implementation_drawedit(const char* pstr, char* value) {
uint8_t char_width = DOG_CHAR_WIDTH;
#ifdef USE_BIG_EDIT_FONT
if (strlen_P(pstr) <= LCD_WIDTH_EDIT - 1) {
if (lcd_strlen_P(pstr) <= LCD_WIDTH_EDIT - 1) {
u8g.setFont(FONT_MENU_EDIT);
lcd_width = LCD_WIDTH_EDIT + 1;
char_width = DOG_CHAR_WIDTH_EDIT;
if (strlen_P(pstr) >= LCD_WIDTH_EDIT - strlen(value)) rows = 2;
if (lcd_strlen_P(pstr) >= LCD_WIDTH_EDIT - lcd_strlen(value)) rows = 2;
}
else {
u8g.setFont(FONT_MENU);
}
#endif
if (strlen_P(pstr) > LCD_WIDTH - 2 - strlen(value)) rows = 2;
if (lcd_strlen_P(pstr) > LCD_WIDTH - 2 - lcd_strlen(value)) rows = 2;
const float kHalfChar = DOG_CHAR_HEIGHT_EDIT / 2;
float rowHeight = u8g.getHeight() / (rows + 1); // 1/(rows+1) = 1/2 or 1/3
@ -393,7 +392,7 @@ void lcd_implementation_drawedit(const char* pstr, char* value) {
u8g.setPrintPos(0, rowHeight + kHalfChar);
lcd_printPGM(pstr);
u8g.print(':');
u8g.setPrintPos((lcd_width-1-strlen(value)) * char_width, rows * rowHeight + kHalfChar);
u8g.setPrintPos((lcd_width-1-lcd_strlen(value)) * char_width, rows * rowHeight + kHalfChar);
u8g.print(value);
}

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -122,6 +122,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -139,6 +140,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -147,6 +149,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 260
#define HEATER_1_MAXTEMP 260
#define HEATER_2_MAXTEMP 260
#define HEATER_3_MAXTEMP 260
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -353,6 +356,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -583,10 +587,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -620,6 +634,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -284,6 +284,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -124,6 +124,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 5
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -141,6 +142,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -149,6 +151,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -361,6 +364,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -593,10 +597,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -630,6 +644,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -284,6 +284,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -142,6 +142,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 1
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -159,6 +160,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -167,6 +169,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -382,6 +385,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstop s when homing; 1=MAX, -1=MIN
@ -586,10 +590,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -623,6 +637,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -78,6 +78,7 @@
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
@ -286,6 +287,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
@ -478,6 +484,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_3 > 0
#define THERMISTORHEATER_3 TEMP_SENSOR_3
#define HEATER_3_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
@ -491,6 +501,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#endif
#if TEMP_SENSOR_3 == -1
#define HEATER_3_USES_AD595
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#endif
@ -509,6 +522,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#endif
#if TEMP_SENSOR_3 == 0
#undef HEATER_3_MINTEMP
#undef HEATER_3_MAXTEMP
#endif
#if TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -125,6 +125,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -142,6 +143,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -150,6 +152,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 260
#define HEATER_1_MAXTEMP 260
#define HEATER_2_MAXTEMP 260
#define HEATER_3_MAXTEMP 260
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -357,6 +360,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -587,10 +591,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -624,6 +638,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -284,6 +284,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -147,6 +147,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 0
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -164,6 +165,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -172,6 +174,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -370,6 +373,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -491,10 +495,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -535,6 +549,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -78,6 +78,7 @@
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
@ -278,6 +279,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
@ -472,6 +478,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_3 > 0
#define THERMISTORHEATER_3 TEMP_SENSOR_3
#define HEATER_3_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
@ -485,6 +495,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#endif
#if TEMP_SENSOR_3 == -1
#define HEATER_3_USES_AD595
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#endif
@ -503,6 +516,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#endif
#if TEMP_SENSOR_3 == 0
#undef HEATER_3_MINTEMP
#undef HEATER_3_MAXTEMP
#endif
#if TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -127,6 +127,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 12
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -144,6 +145,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -152,6 +154,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
// If your bed has low resistance e.g. .6 ohm and throws the fuse you can duty cycle it to reduce the
@ -355,6 +358,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR true // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -561,10 +565,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -598,6 +612,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -78,6 +78,7 @@
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
@ -282,6 +283,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
@ -469,6 +475,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_3 > 0
#define THERMISTORHEATER_3 TEMP_SENSOR_3
#define HEATER_3_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
@ -482,6 +492,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#endif
#if TEMP_SENSOR_3 == -1
#define HEATER_3_USES_AD595
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#endif
@ -500,6 +513,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#endif
#if TEMP_SENSOR_3 == 0
#undef HEATER_3_MINTEMP
#undef HEATER_3_MAXTEMP
#endif
#if TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP

View file

@ -1,4 +1,4 @@
#ifndef CONFIGURATION_H
#ifndef CONFIGURATION_H
#define CONFIGURATION_H
#include "boards.h"
@ -126,6 +126,7 @@ Here are some standard links for getting your machine calibrated:
#define TEMP_SENSOR_0 5
#define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0
#define TEMP_SENSOR_BED 5
// This makes temp sensor 1 a redundant sensor for sensor 0. If the temperatures difference between these sensors is to high the print will be aborted.
@ -143,6 +144,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MINTEMP 5
#define HEATER_1_MINTEMP 5
#define HEATER_2_MINTEMP 5
#define HEATER_3_MINTEMP 5
#define BED_MINTEMP 5
// When temperature exceeds max temp, your heater will be switched off.
@ -151,6 +153,7 @@ Here are some standard links for getting your machine calibrated:
#define HEATER_0_MAXTEMP 275
#define HEATER_1_MAXTEMP 275
#define HEATER_2_MAXTEMP 275
#define HEATER_3_MAXTEMP 275
#define BED_MAXTEMP 150
#define CONFIG_STEPPERS_TOSHIBA 1
@ -358,6 +361,7 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E2_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E3_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
// ENDSTOP SETTINGS:
// Sets direction of endstops when homing; 1=MAX, -1=MIN
@ -574,10 +578,20 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL
// The Panucatt Devices Viki 2.0 and mini Viki with Graphic LCD
// http://panucatt.com
// ==> REMEMBER TO INSTALL U8glib to your ARDUINO library folder: http://code.google.com/p/u8glib/wiki/u8glib
//#define VIKI2
//#define miniVIKI
// The RepRapDiscount Smart Controller (white PCB)
// http://reprap.org/wiki/RepRapDiscount_Smart_Controller
//#define REPRAP_DISCOUNT_SMART_CONTROLLER
@ -611,6 +625,26 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define DEFAULT_LCD_CONTRAST 17
#endif
#if defined(miniVIKI) || defined(VIKI2)
#define ULTRA_LCD //general LCD support, also 16x2
#define DOGLCD // Support for SPI LCD 128x64 (Controller ST7565R graphic Display Family)
#define ULTIMAKERCONTROLLER //as available from the Ultimaker online store.
#ifdef miniVIKI
#define DEFAULT_LCD_CONTRAST 95
#else
#define DEFAULT_LCD_CONTRAST 40
#endif
#define ENCODER_PULSES_PER_STEP 4
#define ENCODER_STEPS_PER_MENU_ITEM 1
#endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD
#define U8GLIB_ST7920

View file

@ -78,6 +78,7 @@
#define EXTRUDER_0_AUTO_FAN_PIN -1
#define EXTRUDER_1_AUTO_FAN_PIN -1
#define EXTRUDER_2_AUTO_FAN_PIN -1
#define EXTRUDER_3_AUTO_FAN_PIN -1
#define EXTRUDER_AUTO_FAN_TEMPERATURE 50
#define EXTRUDER_AUTO_FAN_SPEED 255 // == full speed
@ -283,6 +284,11 @@
//=============================Additional Features===========================
//===========================================================================
#define ENCODER_RATE_MULTIPLIER // If defined, certain menu edit operations automatically multiply the steps when the encoder is moved quickly
#define ENCODER_10X_STEPS_PER_SEC 75 // If the encoder steps per sec exceed this value, multiple the steps moved by ten to quickly advance the value
#define ENCODER_100X_STEPS_PER_SEC 160 // If the encoder steps per sec exceed this value, multiple the steps moved by 100 to really quickly advance the value
//#define ENCODER_RATE_MULTIPLIER_DEBUG // If defined, output the encoder steps per second value
//#define CHDK 4 //Pin for triggering CHDK to take a picture see how to use it here http://captain-slow.dk/2014/03/09/3d-printing-timelapses/
#define CHDK_DELAY 50 //How long in ms the pin should stay HIGH before going LOW again
@ -472,6 +478,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#define THERMISTORHEATER_2 TEMP_SENSOR_2
#define HEATER_2_USES_THERMISTOR
#endif
#if TEMP_SENSOR_3 > 0
#define THERMISTORHEATER_3 TEMP_SENSOR_3
#define HEATER_3_USES_THERMISTOR
#endif
#if TEMP_SENSOR_BED > 0
#define THERMISTORBED TEMP_SENSOR_BED
#define BED_USES_THERMISTOR
@ -485,6 +495,9 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#if TEMP_SENSOR_2 == -1
#define HEATER_2_USES_AD595
#endif
#if TEMP_SENSOR_3 == -1
#define HEATER_3_USES_AD595
#endif
#if TEMP_SENSOR_BED == -1
#define BED_USES_AD595
#endif
@ -503,6 +516,10 @@ const unsigned int dropsegments=5; //everything with less than this number of st
#undef HEATER_2_MINTEMP
#undef HEATER_2_MAXTEMP
#endif
#if TEMP_SENSOR_3 == 0
#undef HEATER_3_MINTEMP
#undef HEATER_3_MAXTEMP
#endif
#if TEMP_SENSOR_BED == 0
#undef BED_MINTEMP
#undef BED_MAXTEMP

View file

@ -83,6 +83,9 @@
/// check if pin is an timer wrapper
#define GET_TIMER(IO) _GET_TIMER(IO)
// Shorthand
#define OUT_WRITE(IO, v) { SET_OUTPUT(IO); WRITE(IO, v); }
/*
ports and functions

View file

@ -121,6 +121,7 @@
#define MSG_UNKNOWN_COMMAND "Unknown command: \""
#define MSG_ACTIVE_EXTRUDER "Active Extruder: "
#define MSG_INVALID_EXTRUDER "Invalid extruder"
#define MSG_INVALID_SOLENOID "Invalid solenoid"
#define MSG_X_MIN "x_min: "
#define MSG_X_MAX "x_max: "
#define MSG_Y_MIN "y_min: "
@ -159,6 +160,43 @@
#define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!"
// temperature.cpp strings
#define MSG_PID_AUTOTUNE "PID Autotune"
#define MSG_PID_AUTOTUNE_START MSG_PID_AUTOTUNE " start"
#define MSG_PID_AUTOTUNE_FAILED MSG_PID_AUTOTUNE " failed!"
#define MSG_PID_BAD_EXTRUDER_NUM MSG_PID_AUTOTUNE_FAILED " Bad extruder number"
#define MSG_PID_TEMP_TOO_HIGH MSG_PID_AUTOTUNE_FAILED " Temperature too high"
#define MSG_PID_TIMEOUT MSG_PID_AUTOTUNE_FAILED " timeout"
#define MSG_BIAS " bias: "
#define MSG_D " d: "
#define MSG_MIN " min: "
#define MSG_MAX " max: "
#define MSG_KU " Ku: "
#define MSG_TU " Tu: "
#define MSG_CLASSIC_PID " Classic PID "
#define MSG_KP " Kp: "
#define MSG_KI " Ki: "
#define MSG_KD " Kd: "
#define MSG_OK_B "ok B:"
#define MSG_OK_T "ok T:"
#define MSG_AT " @:"
#define MSG_PID_AUTOTUNE_FINISHED MSG_PID_AUTOTUNE " finished! Put the last Kp, Ki and Kd constants from above into Configuration.h"
#define MSG_PID_DEBUG " PID_DEBUG "
#define MSG_PID_DEBUG_INPUT ": Input "
#define MSG_PID_DEBUG_OUTPUT " Output "
#define MSG_PID_DEBUG_PTERM " pTerm "
#define MSG_PID_DEBUG_ITERM " iTerm "
#define MSG_PID_DEBUG_DTERM " dTerm "
#define MSG_HEATING_FAILED "Heating failed"
#define MSG_EXTRUDER_SWITCHED_OFF "Extruder switched off. Temperature difference between temp sensors is too high !"
#define MSG_INVALID_EXTRUDER_NUM " - Invalid extruder number !"
#define MSG_THERMAL_RUNAWAY_STOP "Thermal Runaway, system stopped! Heater_ID: "
#define MSG_SWITCHED_OFF_MAX " switched off. MAXTEMP triggered !!"
#define MSG_MINTEMP_EXTRUDER_OFF ": Extruder switched off. MINTEMP triggered !"
#define MSG_MAXTEMP_EXTRUDER_OFF ": Extruder" MSG_SWITCHED_OFF_MAX
#define MSG_MAXTEMP_BED_OFF "Heated bed" MSG_SWITCHED_OFF_MAX
// LCD Menu Messages
// Add your own character. Reference: https://github.com/MarlinFirmware/Marlin/pull/1434 photos
@ -223,5 +261,6 @@
*/
#include LANGUAGE_INCLUDE
#include "language_en.h"
#endif //__LANGUAGE_H

View file

@ -8,124 +8,416 @@
#ifndef LANGUAGE_EN_H
#define LANGUAGE_EN_H
#ifndef WELCOME_MSG
#define WELCOME_MSG MACHINE_NAME " ready."
#endif
#ifndef MSG_SD_INSERTED
#define MSG_SD_INSERTED "Card inserted"
#endif
#ifndef MSG_SD_REMOVED
#define MSG_SD_REMOVED "Card removed"
#endif
#ifndef MSG_MAIN
#define MSG_MAIN "Main"
#endif
#ifndef MSG_AUTOSTART
#define MSG_AUTOSTART "Autostart"
#endif
#ifndef MSG_DISABLE_STEPPERS
#define MSG_DISABLE_STEPPERS "Disable steppers"
#endif
#ifndef MSG_AUTO_HOME
#define MSG_AUTO_HOME "Auto home"
#endif
#ifndef MSG_SET_HOME_OFFSETS
#define MSG_SET_HOME_OFFSETS "Set home offsets"
#endif
#ifndef MSG_SET_ORIGIN
#define MSG_SET_ORIGIN "Set origin"
#endif
#ifndef MSG_PREHEAT_PLA
#define MSG_PREHEAT_PLA "Preheat PLA"
#endif
#ifndef MSG_PREHEAT_PLA_N
#define MSG_PREHEAT_PLA_N MSG_PREHEAT_PLA " "
#endif
#ifndef MSG_PREHEAT_PLA_ALL
#define MSG_PREHEAT_PLA_ALL MSG_PREHEAT_PLA " All"
#endif
#ifndef MSG_PREHEAT_PLA_BEDONLY
#define MSG_PREHEAT_PLA_BEDONLY MSG_PREHEAT_PLA " Bed"
#endif
#ifndef MSG_PREHEAT_PLA_SETTINGS
#define MSG_PREHEAT_PLA_SETTINGS MSG_PREHEAT_PLA " conf"
#endif
#ifndef MSG_PREHEAT_ABS
#define MSG_PREHEAT_ABS "Preheat ABS"
#endif
#ifndef MSG_PREHEAT_ABS_N
#define MSG_PREHEAT_ABS_N MSG_PREHEAT_ABS " "
#endif
#ifndef MSG_PREHEAT_ABS_ALL
#define MSG_PREHEAT_ABS_ALL MSG_PREHEAT_ABS " All"
#endif
#ifndef MSG_PREHEAT_ABS_BEDONLY
#define MSG_PREHEAT_ABS_BEDONLY MSG_PREHEAT_ABS " Bed"
#endif
#ifndef MSG_PREHEAT_ABS_SETTINGS
#define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " conf"
#endif
#ifndef MSG_H1
#define MSG_H1 "1"
#endif
#ifndef MSG_H2
#define MSG_H2 "2"
#endif
#ifndef MSG_H3
#define MSG_H3 "3"
#endif
#ifndef MSG_H4
#define MSG_H4 "4"
#endif
#ifndef MSG_COOLDOWN
#define MSG_COOLDOWN "Cooldown"
#endif
#ifndef MSG_SWITCH_PS_ON
#define MSG_SWITCH_PS_ON "Switch power on"
#endif
#ifndef MSG_SWITCH_PS_OFF
#define MSG_SWITCH_PS_OFF "Switch power off"
#endif
#ifndef MSG_EXTRUDE
#define MSG_EXTRUDE "Extrude"
#endif
#ifndef MSG_RETRACT
#define MSG_RETRACT "Retract"
#endif
#ifndef MSG_MOVE_AXIS
#define MSG_MOVE_AXIS "Move axis"
#endif
#ifndef MSG_MOVE_X
#define MSG_MOVE_X "Move X"
#endif
#ifndef MSG_MOVE_Y
#define MSG_MOVE_Y "Move Y"
#endif
#ifndef MSG_MOVE_Z
#define MSG_MOVE_Z "Move Z"
#endif
#ifndef MSG_MOVE_E
#define MSG_MOVE_E "Extruder"
#endif
#ifndef MSG_MOVE_01MM
#define MSG_MOVE_01MM "Move 0.1mm"
#endif
#ifndef MSG_MOVE_1MM
#define MSG_MOVE_1MM "Move 1mm"
#endif
#ifndef MSG_MOVE_10MM
#define MSG_MOVE_10MM "Move 10mm"
#endif
#ifndef MSG_SPEED
#define MSG_SPEED "Speed"
#endif
#ifndef MSG_NOZZLE
#define MSG_NOZZLE "Nozzle"
#endif
#ifndef MSG_N2
#define MSG_N2 " 2"
#endif
#ifndef MSG_N3
#define MSG_N3 " 3"
#endif
#ifndef MSG_N4
#define MSG_N4 " 4"
#endif
#ifndef MSG_BED
#define MSG_BED "Bed"
#endif
#ifndef MSG_FAN_SPEED
#define MSG_FAN_SPEED "Fan speed"
#endif
#ifndef MSG_FLOW
#define MSG_FLOW "Flow"
#endif
#ifndef MSG_F0
#define MSG_F0 " 0"
#endif
#ifndef MSG_F1
#define MSG_F1 " 1"
#endif
#ifndef MSG_F2
#define MSG_F2 " 2"
#endif
#ifndef MSG_F3
#define MSG_F3 " 3"
#endif
#ifndef MSG_CONTROL
#define MSG_CONTROL "Control"
#endif
#ifndef MSG_MIN
#define MSG_MIN " " STR_THERMOMETER " Min"
#endif
#ifndef MSG_MAX
#define MSG_MAX " " STR_THERMOMETER " Max"
#endif
#ifndef MSG_FACTOR
#define MSG_FACTOR " " STR_THERMOMETER " Fact"
#endif
#ifndef MSG_AUTOTEMP
#define MSG_AUTOTEMP "Autotemp"
#endif
#ifndef MSG_ON
#define MSG_ON "On "
#endif
#ifndef MSG_OFF
#define MSG_OFF "Off"
#endif
#ifndef MSG_PID_P
#define MSG_PID_P "PID-P"
#endif
#ifndef MSG_PID_I
#define MSG_PID_I "PID-I"
#endif
#ifndef MSG_PID_D
#define MSG_PID_D "PID-D"
#endif
#ifndef MSG_PID_C
#define MSG_PID_C "PID-C"
#endif
#ifndef MSG_E2
#define MSG_E2 " E2"
#endif
#ifndef MSG_E3
#define MSG_E3 " E3"
#endif
#ifndef MSG_E4
#define MSG_E4 " E4"
#endif
#ifndef MSG_ACC
#define MSG_ACC "Accel"
#endif
#ifndef MSG_VXY_JERK
#define MSG_VXY_JERK "Vxy-jerk"
#endif
#ifndef MSG_VZ_JERK
#define MSG_VZ_JERK "Vz-jerk"
#endif
#ifndef MSG_VE_JERK
#define MSG_VE_JERK "Ve-jerk"
#endif
#ifndef MSG_VMAX
#define MSG_VMAX "Vmax "
#endif
#ifndef MSG_X
#define MSG_X "x"
#endif
#ifndef MSG_Y
#define MSG_Y "y"
#endif
#ifndef MSG_Z
#define MSG_Z "z"
#endif
#ifndef MSG_E
#define MSG_E "e"
#endif
#ifndef MSG_VMIN
#define MSG_VMIN "Vmin"
#endif
#ifndef MSG_VTRAV_MIN
#define MSG_VTRAV_MIN "VTrav min"
#endif
#ifndef MSG_AMAX
#define MSG_AMAX "Amax "
#endif
#ifndef MSG_A_RETRACT
#define MSG_A_RETRACT "A-retract"
#endif
#ifndef MSG_XSTEPS
#define MSG_XSTEPS "Xsteps/mm"
#endif
#ifndef MSG_YSTEPS
#define MSG_YSTEPS "Ysteps/mm"
#endif
#ifndef MSG_ZSTEPS
#define MSG_ZSTEPS "Zsteps/mm"
#endif
#ifndef MSG_ESTEPS
#define MSG_ESTEPS "Esteps/mm"
#endif
#ifndef MSG_TEMPERATURE
#define MSG_TEMPERATURE "Temperature"
#endif
#ifndef MSG_MOTION
#define MSG_MOTION "Motion"
#endif
#ifndef MSG_VOLUMETRIC
#define MSG_VOLUMETRIC "Filament"
#endif
#ifndef MSG_VOLUMETRIC_ENABLED
#define MSG_VOLUMETRIC_ENABLED "E in mm" STR_h3
#endif
#ifndef MSG_FILAMENT_SIZE_EXTRUDER_0
#define MSG_FILAMENT_SIZE_EXTRUDER_0 "Fil. Dia. 1"
#endif
#ifndef MSG_FILAMENT_SIZE_EXTRUDER_1
#define MSG_FILAMENT_SIZE_EXTRUDER_1 "Fil. Dia. 2"
#endif
#ifndef MSG_FILAMENT_SIZE_EXTRUDER_2
#define MSG_FILAMENT_SIZE_EXTRUDER_2 "Fil. Dia. 3"
#endif
#ifndef MSG_FILAMENT_SIZE_EXTRUDER_3
#define MSG_FILAMENT_SIZE_EXTRUDER_3 "Fil. Dia. 4"
#endif
#ifndef MSG_CONTRAST
#define MSG_CONTRAST "LCD contrast"
#endif
#ifndef MSG_STORE_EPROM
#define MSG_STORE_EPROM "Store memory"
#endif
#ifndef MSG_LOAD_EPROM
#define MSG_LOAD_EPROM "Load memory"
#endif
#ifndef MSG_RESTORE_FAILSAFE
#define MSG_RESTORE_FAILSAFE "Restore failsafe"
#endif
#ifndef MSG_REFRESH
#define MSG_REFRESH "Refresh"
#endif
#ifndef MSG_WATCH
#define MSG_WATCH "Info screen"
#endif
#ifndef MSG_PREPARE
#define MSG_PREPARE "Prepare"
#endif
#ifndef MSG_TUNE
#define MSG_TUNE "Tune"
#endif
#ifndef MSG_PAUSE_PRINT
#define MSG_PAUSE_PRINT "Pause print"
#endif
#ifndef MSG_RESUME_PRINT
#define MSG_RESUME_PRINT "Resume print"
#endif
#ifndef MSG_STOP_PRINT
#define MSG_STOP_PRINT "Stop print"
#endif
#ifndef MSG_CARD_MENU
#define MSG_CARD_MENU "Print from SD"
#endif
#ifndef MSG_NO_CARD
#define MSG_NO_CARD "No SD card"
#endif
#ifndef MSG_DWELL
#define MSG_DWELL "Sleep..."
#endif
#ifndef MSG_USERWAIT
#define MSG_USERWAIT "Wait for user..."
#endif
#ifndef MSG_RESUMING
#define MSG_RESUMING "Resuming print"
#endif
#ifndef MSG_PRINT_ABORTED
#define MSG_PRINT_ABORTED "Print aborted"
#endif
#ifndef MSG_NO_MOVE
#define MSG_NO_MOVE "No move."
#endif
#ifndef MSG_KILLED
#define MSG_KILLED "KILLED. "
#endif
#ifndef MSG_STOPPED
#define MSG_STOPPED "STOPPED. "
#endif
#ifndef MSG_CONTROL_RETRACT
#define MSG_CONTROL_RETRACT "Retract mm"
#endif
#ifndef MSG_CONTROL_RETRACT_SWAP
#define MSG_CONTROL_RETRACT_SWAP "Swap Re.mm"
#endif
#ifndef MSG_CONTROL_RETRACTF
#define MSG_CONTROL_RETRACTF "Retract V"
#endif
#ifndef MSG_CONTROL_RETRACT_ZLIFT
#define MSG_CONTROL_RETRACT_ZLIFT "Hop mm"
#endif
#ifndef MSG_CONTROL_RETRACT_RECOVER
#define MSG_CONTROL_RETRACT_RECOVER "UnRet +mm"
#endif
#ifndef MSG_CONTROL_RETRACT_RECOVER_SWAP
#define MSG_CONTROL_RETRACT_RECOVER_SWAP "S UnRet+mm"
#endif
#ifndef MSG_CONTROL_RETRACT_RECOVERF
#define MSG_CONTROL_RETRACT_RECOVERF "UnRet V"
#endif
#ifndef MSG_AUTORETRACT
#define MSG_AUTORETRACT "AutoRetr."
#endif
#ifndef MSG_FILAMENTCHANGE
#define MSG_FILAMENTCHANGE "Change filament"
#endif
#ifndef MSG_INIT_SDCARD
#define MSG_INIT_SDCARD "Init. SD card"
#endif
#ifndef MSG_CNG_SDCARD
#define MSG_CNG_SDCARD "Change SD card"
#endif
#ifndef MSG_ZPROBE_OUT
#define MSG_ZPROBE_OUT "Z probe out. bed"
#endif
#ifndef MSG_POSITION_UNKNOWN
#define MSG_POSITION_UNKNOWN "Home X/Y before Z"
#endif
#ifndef MSG_ZPROBE_ZOFFSET
#define MSG_ZPROBE_ZOFFSET "Z Offset"
#endif
#ifndef MSG_BABYSTEP_X
#define MSG_BABYSTEP_X "Babystep X"
#endif
#ifndef MSG_BABYSTEP_Y
#define MSG_BABYSTEP_Y "Babystep Y"
#endif
#ifndef MSG_BABYSTEP_Z
#define MSG_BABYSTEP_Z "Babystep Z"
#endif
#ifndef MSG_ENDSTOP_ABORT
#define MSG_ENDSTOP_ABORT "Endstop abort"
#endif
#ifndef MSG_HEATING_FAILED_LCD
#define MSG_HEATING_FAILED_LCD "Heating failed"
#endif
#ifndef MSG_ERR_REDUNDANT_TEMP
#define MSG_ERR_REDUNDANT_TEMP "Err: REDUNDANT TEMP ERROR"
#endif
#ifndef MSG_THERMAL_RUNAWAY
#define MSG_THERMAL_RUNAWAY "THERMAL RUNAWAY"
#endif
#ifndef MSG_ERR_MAXTEMP
#define MSG_ERR_MAXTEMP "Err: MAXTEMP"
#endif
#ifndef MSG_ERR_MINTEMP
#define MSG_ERR_MINTEMP "Err: MINTEMP"
#endif
#ifndef MSG_ERR_MAXTEMP_BED
#define MSG_ERR_MAXTEMP_BED "Err: MAXTEMP BED"
#endif
#ifdef DELTA_CALIBRATION_MENU
#ifndef MSG_DELTA_CALIBRATE
#define MSG_DELTA_CALIBRATE "Delta Calibration"
#endif
#ifndef MSG_DELTA_CALIBRATE_X
#define MSG_DELTA_CALIBRATE_X "Calibrate X"
#endif
#ifndef MSG_DELTA_CALIBRATE_Y
#define MSG_DELTA_CALIBRATE_Y "Calibrate Y"
#endif
#ifndef MSG_DELTA_CALIBRATE_Z
#define MSG_DELTA_CALIBRATE_Z "Calibrate Z"
#endif
#ifndef MSG_DELTA_CALIBRATE_CENTER
#define MSG_DELTA_CALIBRATE_CENTER "Calibrate Center"
#endif
#endif // DELTA_CALIBRATION_MENU
#endif // LANGUAGE_EN_H

View file

@ -17,38 +17,38 @@
#define MSG_AUTO_HOME "Aja referenssiin"
#define MSG_SET_HOME_OFFSETS "Set home offsets"
#define MSG_SET_ORIGIN "Aseta origo"
#define MSG_PREHEAT_PLA "Esilammita PLA"
#define MSG_PREHEAT_PLA_N "Esilammita PLA "
#define MSG_PREHEAT_PLA_ALL "Esila. PLA Kaikki"
#define MSG_PREHEAT_PLA_BEDONLY "Esila. PLA Alusta"
#define MSG_PREHEAT_PLA_SETTINGS "Esilamm. PLA konf"
#define MSG_PREHEAT_ABS "Esilammita ABS"
#define MSG_PREHEAT_ABS_N "Esilammita ABS "
#define MSG_PREHEAT_ABS_ALL "Esila. ABS Kaikki"
#define MSG_PREHEAT_ABS_BEDONLY "Esila. ABS Alusta"
#define MSG_PREHEAT_ABS_SETTINGS "Esilamm. ABS konf"
#define MSG_COOLDOWN "Jaahdyta"
#define MSG_SWITCH_PS_ON "Virta paalle"
#define MSG_PREHEAT_PLA "Esil" STR_ae "mmit" STR_ae " PLA"
#define MSG_PREHEAT_PLA_N "Esil" STR_ae "mmit" STR_ae " PLA "
#define MSG_PREHEAT_PLA_ALL "Esil" STR_ae ". PLA Kaikki"
#define MSG_PREHEAT_PLA_BEDONLY "Esil" STR_ae ". PLA Alusta"
#define MSG_PREHEAT_PLA_SETTINGS "Esil" STR_ae "mm. PLA konf"
#define MSG_PREHEAT_ABS "Esil" STR_ae "mmit" STR_ae " ABS"
#define MSG_PREHEAT_ABS_N "Esil" STR_ae "mmit" STR_ae " ABS "
#define MSG_PREHEAT_ABS_ALL "Esil" STR_ae ". ABS Kaikki"
#define MSG_PREHEAT_ABS_BEDONLY "Esil" STR_ae ". ABS Alusta"
#define MSG_PREHEAT_ABS_SETTINGS "Esil" STR_ae "mm. ABS konf"
#define MSG_COOLDOWN "J" STR_ae "" STR_ae "hdyt" STR_ae ""
#define MSG_SWITCH_PS_ON "Virta p" STR_ae "" STR_ae "lle"
#define MSG_SWITCH_PS_OFF "Virta pois"
#define MSG_EXTRUDE "Pursota"
#define MSG_RETRACT "Veda takaisin"
#define MSG_RETRACT "Ved" STR_ae " takaisin"
#define MSG_MOVE_AXIS "Liikuta akseleita"
#define MSG_MOVE_X "Move X"
#define MSG_MOVE_Y "Move Y"
#define MSG_MOVE_Z "Move Z"
#define MSG_MOVE_X "Liikuta X"
#define MSG_MOVE_Y "Liikuta Y"
#define MSG_MOVE_Z "Liikuta Z"
#define MSG_MOVE_E "Extruder"
#define MSG_MOVE_01MM "Move 0.1mm"
#define MSG_MOVE_1MM "Move 1mm"
#define MSG_MOVE_10MM "Move 10mm"
#define MSG_MOVE_01MM "Liikuta 0.1mm"
#define MSG_MOVE_1MM "Liikuta 1mm"
#define MSG_MOVE_10MM "Liikuta 10mm"
#define MSG_SPEED "Nopeus"
#define MSG_NOZZLE "Suutin"
#define MSG_BED "Alusta"
#define MSG_FAN_SPEED "Tuul. nopeus"
#define MSG_FLOW "Virtaus"
#define MSG_CONTROL "Kontrolli"
#define MSG_MIN " \002 Min"
#define MSG_MAX " \002 Max"
#define MSG_FACTOR " \002 Kerr"
#define MSG_MIN STR_THERMOMETER " Min"
#define MSG_MAX STR_THERMOMETER " Max"
#define MSG_FACTOR STR_THERMOMETER " Kerr"
#define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "On "
#define MSG_OFF "Off"
@ -73,24 +73,24 @@
#define MSG_YSTEPS "Ysteps/mm"
#define MSG_ZSTEPS "Zsteps/mm"
#define MSG_ESTEPS "Esteps/mm"
#define MSG_TEMPERATURE "Lampotila"
#define MSG_TEMPERATURE "L" STR_ae "mp" STR_oe "tila"
#define MSG_MOTION "Liike"
#define MSG_VOLUMETRIC "Filament"
#define MSG_VOLUMETRIC_ENABLED "E in mm3"
#define MSG_FILAMENT_SIZE_EXTRUDER_0 "Fil. Dia. 1"
#define MSG_FILAMENT_SIZE_EXTRUDER_1 "Fil. Dia. 2"
#define MSG_FILAMENT_SIZE_EXTRUDER_2 "Fil. Dia. 3"
#define MSG_CONTRAST "LCD contrast"
#define MSG_CONTRAST "LCD kontrasti"
#define MSG_STORE_EPROM "Tallenna muistiin"
#define MSG_LOAD_EPROM "Lataa muistista"
#define MSG_RESTORE_FAILSAFE "Palauta oletus"
#define MSG_REFRESH "Paivita"
#define MSG_REFRESH "P" STR_ae "ivit" STR_ae ""
#define MSG_WATCH "Seuraa"
#define MSG_PREPARE "Valmistele"
#define MSG_TUNE "Saada"
#define MSG_PAUSE_PRINT "Keskeyta tulostus"
#define MSG_TUNE "S" STR_ae "" STR_ae "d" STR_ae ""
#define MSG_PAUSE_PRINT "Keskeyt" STR_ae " tulostus"
#define MSG_RESUME_PRINT "Jatka tulostusta"
#define MSG_STOP_PRINT "Pysayta tulostus"
#define MSG_STOP_PRINT "Pys" STR_ae "yt" STR_ae " tulostus"
#define MSG_CARD_MENU "Korttivalikko"
#define MSG_NO_CARD "Ei korttia"
#define MSG_DWELL "Nukkumassa..."
@ -100,9 +100,9 @@
#define MSG_NO_MOVE "Ei liiketta."
#define MSG_KILLED "KILLED. "
#define MSG_STOPPED "STOPPED. "
#define MSG_CONTROL_RETRACT "Veda mm"
#define MSG_CONTROL_RETRACT_SWAP "Va. Veda mm"
#define MSG_CONTROL_RETRACTF "Veda V"
#define MSG_CONTROL_RETRACT "Ved" STR_ae " mm"
#define MSG_CONTROL_RETRACT_SWAP "Va. Ved" STR_ae " mm"
#define MSG_CONTROL_RETRACTF "Ved" STR_ae " V"
#define MSG_CONTROL_RETRACT_ZLIFT "Z mm"
#define MSG_CONTROL_RETRACT_RECOVER "UnRet +mm"
#define MSG_CONTROL_RETRACT_RECOVER_SWAP "Va. UnRet +mm"
@ -120,11 +120,11 @@
#define MSG_ENDSTOP_ABORT "Endstop abort"
#ifdef DELTA_CALIBRATION_MENU
#define MSG_DELTA_CALIBRATE "Delta Calibration"
#define MSG_DELTA_CALIBRATE_X "Calibrate X"
#define MSG_DELTA_CALIBRATE_Y "Calibrate Y"
#define MSG_DELTA_CALIBRATE_Z "Calibrate Z"
#define MSG_DELTA_CALIBRATE_CENTER "Calibrate Center"
#define MSG_DELTA_CALIBRATE "Delta Kalibrointi"
#define MSG_DELTA_CALIBRATE_X "Kalibroi X"
#define MSG_DELTA_CALIBRATE_Y "Kalibroi Y"
#define MSG_DELTA_CALIBRATE_Z "Kalibroi Z"
#define MSG_DELTA_CALIBRATE_CENTER "Kalibroi Center"
#endif // DELTA_CALIBRATION_MENU
#endif // LANGUAGE_FI_H

View file

@ -13,7 +13,7 @@
#define WELCOME_MSG MACHINE_NAME " Готов."
#define MSG_SD_INSERTED "Карта вставлена"
#define MSG_SD_REMOVED "Карта извлечена"
#define MSG_MAIN "Меню \003"
#define MSG_MAIN "Меню"
#define MSG_AUTOSTART "Автостарт"
#define MSG_DISABLE_STEPPERS "Выкл. двигатели"
#define MSG_AUTO_HOME "Парковка"
@ -43,14 +43,14 @@
#define MSG_MOVE_1MM "Move 1mm"
#define MSG_MOVE_10MM "Move 10mm"
#define MSG_SPEED "Скорость"
#define MSG_NOZZLE "\002 Фильера"
#define MSG_BED "\002 Кровать"
#define MSG_NOZZLE LCD_STR_THERMOMETER " Фильера"
#define MSG_BED LCD_STR_THERMOMETER " Кровать"
#define MSG_FAN_SPEED "Куллер"
#define MSG_FLOW "Поток"
#define MSG_CONTROL "Настройки \003"
#define MSG_MIN "\002 Минимум"
#define MSG_MAX "\002 Максимум"
#define MSG_FACTOR "\002 Фактор"
#define MSG_CONTROL "Настройки"
#define MSG_MIN LCD_STR_THERMOMETER " Минимум"
#define MSG_MAX LCD_STR_THERMOMETER " Максимум"
#define MSG_FACTOR LCD_STR_THERMOMETER " Фактор"
#define MSG_AUTOTEMP "Autotemp"
#define MSG_ON "Вкл. "
#define MSG_OFF "Выкл. "
@ -75,8 +75,8 @@
#define MSG_YSTEPS "Y шаг/mm"
#define MSG_ZSTEPS "Z шаг/mm"
#define MSG_ESTEPS "E шаг/mm"
#define MSG_TEMPERATURE "Температура \x7E"
#define MSG_MOTION "Скорости \x7E"
#define MSG_TEMPERATURE "Температура"
#define MSG_MOTION "Скорости"
#define MSG_VOLUMETRIC "Filament"
#define MSG_VOLUMETRIC_ENABLED "E in mm3"
#define MSG_FILAMENT_SIZE_EXTRUDER_0 "Fil. Dia. 1"
@ -86,14 +86,14 @@
#define MSG_STORE_EPROM "Сохранить в EPROM"
#define MSG_LOAD_EPROM "Загруз. из EPROM"
#define MSG_RESTORE_FAILSAFE "Сброс настроек"
#define MSG_REFRESH "\004Обновить"
#define MSG_WATCH "Обзор \003"
#define MSG_PREPARE "Действия \x7E"
#define MSG_TUNE "Настройки \x7E"
#define MSG_REFRESH LCD_STR_REFRESH "Обновить"
#define MSG_WATCH "Обзор"
#define MSG_PREPARE "Действия"
#define MSG_TUNE "Настройки"
#define MSG_PAUSE_PRINT "Продолжить печать"
#define MSG_RESUME_PRINT "возобн. печать"
#define MSG_STOP_PRINT "Остановить печать"
#define MSG_CARD_MENU "Меню карты \x7E"
#define MSG_CARD_MENU "Меню карты"
#define MSG_NO_CARD "Нет карты"
#define MSG_DWELL "Сон..."
#define MSG_USERWAIT "Ожиданиие"

View file

@ -36,7 +36,7 @@
#include "pins_SETHI.h"
#elif MB(RAMPS_OLD)
#include "pins_RAMPS_OLD.h"
#elif IS_RAMPS
#elif MB(RAMPS_13_EFB) || MB(RAMPS_13_EEB) || MB(RAMPS_13_EFF) || MB(RAMPS_13_EEF)
#include "pins_RAMPS_13.h"
#elif MB(DUEMILANOVE_328P)
#include "pins_DUEMILANOVE_328P.h"
@ -110,6 +110,10 @@
#include "pins_WITBOX.h"
#elif MB(HEPHESTOS)
#include "pins_HEPHESTOS.h"
#elif MB(BAM_DICE)
#include "pins_RAMPS_13.h"
#elif MB(BAM_DICE_DUE)
#include "pins_BAM_DICE_DUE.h"
#elif MB(99)
#include "pins_99.h"
#else

View file

@ -4,6 +4,8 @@
#include "pins_RAMPS_13.h"
#define Z_ENABLE_PIN 63
#define X_MAX_PIN 2
#define Y_MAX_PIN 15
#define Z_MAX_PIN -1

View file

@ -3,3 +3,11 @@
*/
#include "pins_RAMPS_13.h"
#define FAN_PIN 9 // (Sprinter config)
#define HEATER_1_PIN -1
#ifdef TEMP_STAT_LEDS
#define STAT_LED_RED 6
#define STAT_LED_BLUE 11
#endif

View file

@ -4,6 +4,9 @@
#include "pins_RAMPS_13.h"
#define FAN_PIN 9 // (Sprinter config)
#define BEEPER 33
#define E2_STEP_PIN 23
#define E2_DIR_PIN 25
#define E2_ENABLE_PIN 40
@ -16,6 +19,7 @@
#define E4_DIR_PIN 37
#define E4_ENABLE_PIN 42
#define HEATER_1_PIN -1
#define HEATER_2_PIN 16
#define HEATER_3_PIN 17
#define HEATER_4_PIN 4

View file

@ -0,0 +1,11 @@
/**
* BAM&DICE Due (Arduino Mega) pin assignments
*/
#include "pins_RAMPS_13.h"
#define FAN_PIN 9 // (Sprinter config)
#define HEATER_1_PIN -1
#define TEMP_0_PIN 9 // ANALOG NUMBERING
#define TEMP_1_PIN 11 // ANALOG NUMBERING

View file

@ -87,9 +87,3 @@
// Cheaptronic v1.0 does not use this port
#define SDCARDDETECT -1
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

View file

@ -74,12 +74,6 @@
#define BLEN_B 1
#define BLEN_A 0
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif // RA_CONTROL_PANEL
#ifdef RA_DISCO

View file

@ -3,3 +3,6 @@
*/
#include "pins_RAMPS_13.h"
#define FAN_PIN 9 // (Sprinter config)
#define HEATER_1_PIN -1

View file

@ -83,10 +83,4 @@
#define SDCARDDETECT -1 // Ramps does not use this port
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif // ULTRA_LCD && NEWPANEL

View file

@ -80,9 +80,3 @@
#define BLEN_A 0
#define SDCARDDETECT -1 // Megatronics does not use this port
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

View file

@ -95,9 +95,3 @@
#define BLEN_A 0
#define SDCARDDETECT -1 // Megatronics does not use this port
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

View file

@ -8,6 +8,20 @@
#define LARGE_FLASH true
// Servo support
#ifdef NUM_SERVOS
#define SERVO0_PIN 46 //AUX3-6
#if NUM_SERVOS > 1
#define SERVO1_PIN 47 //AUX3-5
#if NUM_SERVOS > 2
#define SERVO2_PIN 48 //AUX3-4
#if NUM_SERVOS > 3
#define SERVO2_PIN 49 //AUX3-3
#endif
#endif
#endif
#endif
#define X_STEP_PIN 58
#define X_DIR_PIN 57
#define X_ENABLE_PIN 59
@ -81,9 +95,3 @@
#define BLEN_A 0
#define SDCARDDETECT -1 // Megatronics does not use this port
// Encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1

View file

@ -116,11 +116,6 @@
#define SDCARDDETECT 81 // Ramps does not use this port
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#else //!NEWPANEL - old style panel with shift register
//arduino pin witch triggers an piezzo beeper
#define BEEPER 33 No Beeper added
@ -138,12 +133,6 @@
#define LCD_PINS_D6 27
#define LCD_PINS_D7 29
//encoder rotation values
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
//bits in the shift register that carry the buttons for:
// left up center down right red
#define BL_LE 7

View file

@ -7,10 +7,8 @@
* RAMPS_13_EEB (Extruder, Extruder, Bed)
* RAMPS_13_EFF (Extruder, Fan, Fan)
* RAMPS_13_EEF (Extruder, Extruder, Fan)
* 3DRAG
* K8200
* AZTEEG_X3
* AZTEEG_X3_PRO
*
* Other pins_MYBOARD.h files may override these defaults
*/
#if !defined(__AVR_ATmega1280__) && !defined(__AVR_ATmega2560__)
@ -63,7 +61,7 @@
#define FILWIDTH_PIN 5
#endif
#if MB(RAMPS_13_EFB) || MB(RAMPS_13_EFF) || MB(AZTEEG_X3) || MB(AZTEEG_X3_PRO) || MB(WITBOX) || MB(HEPHESTOS)
#if MB(RAMPS_13_EFB) || MB(RAMPS_13_EFF)
#define FAN_PIN 9 // (Sprinter config)
#if MB(RAMPS_13_EFF)
#define CONTROLLERFAN_PIN -1 // Pin used for the fan to cool controller
@ -88,7 +86,7 @@
#define HEATER_0_PIN 10 // EXTRUDER 1
#endif
#if MB(RAMPS_13_EFB) || MB(AZTEEG_X3) || MB(WITBOX) || MB(HEPHESTOS)
#if MB(RAMPS_13_EFB)
#define HEATER_1_PIN -1
#else
#define HEATER_1_PIN 9 // EXTRUDER 2 (FAN On Sprinter)
@ -110,40 +108,36 @@
#ifdef NUM_SERVOS
#define SERVO0_PIN 11
#if NUM_SERVOS > 1
#define SERVO1_PIN 6
#endif
#if NUM_SERVOS > 2
#define SERVO2_PIN 5
#endif
#if NUM_SERVOS > 3
#define SERVO3_PIN 4
#endif
#endif
#if MB(AZTEEG_X3_PRO)
#define BEEPER 33
#endif
#ifdef TEMP_STAT_LEDS
#if MB(AZTEEG_X3)
#define STAT_LED_RED 6
#define STAT_LED_BLUE 11
#endif
#endif
#ifdef ULTRA_LCD
#ifdef NEWPANEL
#ifdef PANEL_ONE
#define LCD_PINS_RS 40
#define LCD_PINS_ENABLE 42
#define LCD_PINS_D4 65
#define LCD_PINS_D5 66
#define LCD_PINS_D6 44
#define LCD_PINS_D7 64
#else
#define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 23
#define LCD_PINS_D5 25
#define LCD_PINS_D6 27
#define LCD_PINS_D7 29
#endif
#ifdef REPRAP_DISCOUNT_SMART_CONTROLLER
#define BEEPER 37
@ -178,6 +172,10 @@
#define SHIFT_OUT 40 // shift register
#define SHIFT_CLK 44 // shift register
#define SHIFT_LD 42 // shift register
#elif defined(PANEL_ONE)
#define BTN_EN1 59 // AUX2 PIN 3
#define BTN_EN2 63 // AUX2 PIN 4
#define BTN_ENC 49 // AUX3 PIN 7
#else
#define BTN_EN1 37
#define BTN_EN2 35

View file

@ -6,6 +6,10 @@
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif
#if EXTRUDERS > 3
#error RUMBA supports up to 3 extruders. Comment this line to keep going.
#endif
#define X_STEP_PIN 17
#define X_DIR_PIN 16
#define X_ENABLE_PIN 48

View file

@ -3,3 +3,6 @@
*/
#include "pins_RAMPS_13.h"
#define FAN_PIN 9 // (Sprinter config)
#define HEATER_1_PIN -1

View file

@ -629,13 +629,21 @@ block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-positi
block->direction_bits |= (1<<Y_AXIS);
}
#else
if (target[X_AXIS] < position[X_AXIS])
{
block->direction_bits |= (1<<X_HEAD); //AlexBorro: Save the real Extruder (head) direction in X Axis
}
if (target[Y_AXIS] < position[Y_AXIS])
{
block->direction_bits |= (1<<Y_HEAD); //AlexBorro: Save the real Extruder (head) direction in Y Axis
}
if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<X_AXIS);
block->direction_bits |= (1<<X_AXIS); //AlexBorro: Motor A direction (Incorrectly implemented as X_AXIS)
}
if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
{
block->direction_bits |= (1<<Y_AXIS);
block->direction_bits |= (1<<Y_AXIS); //AlexBorro: Motor B direction (Incorrectly implemented as Y_AXIS)
}
#endif
if (target[Z_AXIS] < position[Z_AXIS])

View file

@ -43,7 +43,7 @@ block_t *current_block; // A pointer to the block currently being traced
//===========================================================================
//=============================private variables ============================
//===========================================================================
//static makes it inpossible to be called from outside of this file by extern.!
//static makes it impossible to be called from outside of this file by extern.!
// Variables used by The Stepper Driver Interrupt
static unsigned char out_bits; // The next stepping-bits to be output
@ -187,7 +187,7 @@ void checkHitEndstops()
SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
}
SERIAL_ECHOLN("");
SERIAL_EOL;
endstop_x_hit=false;
endstop_y_hit=false;
endstop_z_hit=false;
@ -399,23 +399,24 @@ ISR(TIMER1_COMPA_vect)
count_direction[Y_AXIS]=1;
}
// Set direction en check limit switches
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) != 0)) { //-X occurs for -A and -B
#endif
CHECK_ENDSTOPS
if(check_endstops) // check X and Y Endstops
{
#ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
#else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
#endif
{ // -direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif
{
#if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
@ -424,19 +425,17 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
}
else { // +direction
CHECK_ENDSTOPS
{
else
{ // +direction
#ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif
{
#if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true;
step_events_completed = current_block->step_event_count;
@ -445,18 +444,18 @@ ISR(TIMER1_COMPA_vect)
#endif
}
}
}
#ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else
if ((((out_bits & (1<<X_AXIS)) != 0)&&(out_bits & (1<<Y_AXIS)) == 0)) { // -Y occurs for -A and +B
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
#endif
CHECK_ENDSTOPS
{
{ // -direction
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
@ -464,19 +463,19 @@ ISR(TIMER1_COMPA_vect)
old_y_min_endstop = y_min_endstop;
#endif
}
}
else { // +direction
CHECK_ENDSTOPS
{
else
{ // +direction
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true;
step_events_completed = current_block->step_event_count;
}
old_y_max_endstop = y_max_endstop;
#endif
}
}
@ -960,51 +959,41 @@ void st_init()
//Initialize Step Pins
#if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
SET_OUTPUT(X_STEP_PIN);
WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
OUT_WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
SET_OUTPUT(X2_STEP_PIN);
WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
OUT_WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
disable_x();
#endif
#if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
SET_OUTPUT(Y_STEP_PIN);
WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
OUT_WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
#if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
SET_OUTPUT(Y2_STEP_PIN);
WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
OUT_WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
#endif
disable_y();
#endif
#if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
SET_OUTPUT(Z_STEP_PIN);
WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
OUT_WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
#if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
SET_OUTPUT(Z2_STEP_PIN);
WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
OUT_WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
#endif
disable_z();
#endif
#if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
SET_OUTPUT(E0_STEP_PIN);
WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
OUT_WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
disable_e0();
#endif
#if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
SET_OUTPUT(E1_STEP_PIN);
WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
OUT_WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
disable_e1();
#endif
#if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
SET_OUTPUT(E2_STEP_PIN);
WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
OUT_WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
disable_e2();
#endif
#if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
SET_OUTPUT(E3_STEP_PIN);
WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
OUT_WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
disable_e3();
#endif

View file

@ -33,9 +33,43 @@
#include "ultralcd.h"
#include "temperature.h"
#include "watchdog.h"
#include "language.h"
#include "Sd2PinMap.h"
//===========================================================================
//================================== macros =================================
//===========================================================================
#if EXTRUDERS > 4
#error Unsupported number of extruders
#elif EXTRUDERS > 3
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif EXTRUDERS > 2
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
#elif EXTRUDERS > 1
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
#else
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
#endif
#define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN >= 0)
#define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN >= 0)
#define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN >= 0)
#define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN >= 0)
#define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN >= 0)
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN >= 0)
#define HAS_HEATER_0 (defined(HEATER_0_PIN) && HEATER_0_PIN >= 0)
#define HAS_HEATER_1 (defined(HEATER_1_PIN) && HEATER_1_PIN >= 0)
#define HAS_HEATER_2 (defined(HEATER_2_PIN) && HEATER_2_PIN >= 0)
#define HAS_HEATER_3 (defined(HEATER_3_PIN) && HEATER_3_PIN >= 0)
#define HAS_HEATER_BED (defined(HEATER_BED_PIN) && HEATER_BED_PIN >= 0)
#define HAS_AUTO_FAN_0 (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN_1 (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN_2 (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN_3 (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN >= 0)
#define HAS_AUTO_FAN HAS_AUTO_FAN_0 || HAS_AUTO_FAN_1 || HAS_AUTO_FAN_2 || HAS_AUTO_FAN_3
#define HAS_FAN (defined(FAN_PIN) && FAN_PIN >= 0)
//===========================================================================
//============================= public variables ============================
@ -71,7 +105,7 @@ float current_temperature_bed = 0.0;
unsigned char soft_pwm_bed;
#ifdef BABYSTEPPING
volatile int babystepsTodo[3]={0,0,0};
volatile int babystepsTodo[3] = { 0 };
#endif
#ifdef FILAMENT_SENSOR
@ -116,31 +150,17 @@ static volatile bool temp_meas_ready = false;
#ifdef FAN_SOFT_PWM
static unsigned char soft_pwm_fan;
#endif
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
#if HAS_AUTO_FAN
static unsigned long extruder_autofan_last_check;
#endif
#if EXTRUDERS > 4
# error Unsupported number of extruders
#elif EXTRUDERS > 3
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
#elif EXTRUDERS > 2
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
#elif EXTRUDERS > 1
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
#else
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
#endif
#ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
#ifdef PID_ADD_EXTRUSION_RATE
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
#endif // PID_ADD_EXTRUSION_RATE
#else //PID_PARAMS_PER_EXTRUDER
float Kp = DEFAULT_Kp;
@ -201,53 +221,41 @@ void PID_autotune(float temp, int extruder, int ncycles)
int cycles = 0;
bool heating = true;
unsigned long temp_millis = millis();
unsigned long t1=temp_millis;
unsigned long t2=temp_millis;
long t_high = 0;
long t_low = 0;
unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
long t_high = 0, t_low = 0;
long bias, d;
float Ku, Tu;
float Kp, Ki, Kd;
float max = 0, min = 10000;
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
unsigned long extruder_autofan_last_check = millis();
#if HAS_AUTO_FAN
unsigned long extruder_autofan_last_check = temp_millis;
#endif
if ((extruder >= EXTRUDERS)
#if (TEMP_BED_PIN <= -1)
||(extruder < 0)
if (extruder >= EXTRUDERS
#if !HAS_TEMP_BED
|| extruder < 0
#endif
) {
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
return;
}
SERIAL_ECHOLN("PID Autotune start");
SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
disable_heater(); // switch off all heaters.
if (extruder < 0)
{
soft_pwm_bed = (MAX_BED_POWER)/2;
bias = d = (MAX_BED_POWER)/2;
}
soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
else
{
soft_pwm[extruder] = (PID_MAX)/2;
bias = d = (PID_MAX)/2;
}
soft_pwm[extruder] = bias = d = PID_MAX / 2;
// PID Tuning loop
for(;;) {
unsigned long ms = millis();
if (temp_meas_ready == true) { // temp sample ready
updateTemperaturesFromRawValues();
@ -256,55 +264,52 @@ void PID_autotune(float temp, int extruder, int ncycles)
max = max(max, input);
min = min(min, input);
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
if(millis() - extruder_autofan_last_check > 2500) {
#if HAS_AUTO_FAN
if (ms > extruder_autofan_last_check + 2500) {
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
extruder_autofan_last_check = ms;
}
#endif
if (heating == true && input > temp) {
if(millis() - t2 > 5000) {
if (ms - t2 > 5000) {
heating = false;
if (extruder < 0)
soft_pwm_bed = (bias - d) >> 1;
else
soft_pwm[extruder] = (bias - d) >> 1;
t1=millis();
t1 = ms;
t_high = t1 - t2;
max = temp;
}
}
if (heating == false && input < temp) {
if(millis() - t1 > 5000) {
if (ms - t1 > 5000) {
heating = true;
t2=millis();
t2 = ms;
t_low = t2 - t1;
if (cycles > 0) {
long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
bias += (d*(t_high - t_low))/(t_low + t_high);
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
else d = bias;
bias = constrain(bias, 20, max_pow - 20);
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
SERIAL_PROTOCOLPGM(MSG_MIN); SERIAL_PROTOCOL(min);
SERIAL_PROTOCOLPGM(MSG_MAX); SERIAL_PROTOCOLLN(max);
if (cycles > 2) {
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
Tu = ((float)(t_low + t_high) / 1000.0);
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
Kp = 0.6 * Ku;
Ki = 2 * Kp / Tu;
Kd = Kp * Tu / 8;
SERIAL_PROTOCOLLNPGM(" Classic PID ");
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
/*
Kp = 0.33*Ku;
Ki = Kp/Tu;
@ -332,40 +337,42 @@ void PID_autotune(float temp, int extruder, int ncycles)
}
}
}
if(input > (temp + 20)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
if (input > temp + 20) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
return;
}
if(millis() - temp_millis > 2000) {
// Every 2 seconds...
if (ms > temp_millis + 2000) {
int p;
if (extruder < 0) {
p = soft_pwm_bed;
SERIAL_PROTOCOLPGM("ok B:");
}else{
SERIAL_PROTOCOLPGM(MSG_OK_B);
}
else {
p = soft_pwm[extruder];
SERIAL_PROTOCOLPGM("ok T:");
SERIAL_PROTOCOLPGM(MSG_OK_T);
}
SERIAL_PROTOCOL(input);
SERIAL_PROTOCOLPGM(" @:");
SERIAL_PROTOCOLPGM(MSG_AT);
SERIAL_PROTOCOLLN(p);
temp_millis = millis();
}
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
temp_millis = ms;
} // every 2 seconds
// Over 2 minutes?
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
return;
}
if (cycles > ncycles) {
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
return;
}
lcd_update();
}
}
void updatePID()
{
void updatePID() {
#ifdef PIDTEMP
for (int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
@ -377,16 +384,12 @@ void updatePID()
}
int getHeaterPower(int heater) {
if (heater<0)
return soft_pwm_bed;
return soft_pwm[heater];
return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
}
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
#if HAS_AUTO_FAN
#if defined(FAN_PIN) && FAN_PIN > -1
#if HAS_FAN
#if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
#endif
@ -396,6 +399,9 @@ int getHeaterPower(int heater) {
#if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#if EXTRUDER_3_AUTO_FAN_PIN == FAN_PIN
#error "You cannot set EXTRUDER_3_AUTO_FAN_PIN equal to FAN_PIN"
#endif
#endif
void setExtruderAutoFanState(int pin, bool state)
@ -412,11 +418,11 @@ void checkExtruderAutoFans()
uint8_t fanState = 0;
// which fan pins need to be turned on?
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_0
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1;
#endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
@ -425,7 +431,7 @@ void checkExtruderAutoFans()
fanState |= 2;
}
#endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_2
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
@ -436,7 +442,7 @@ void checkExtruderAutoFans()
fanState |= 4;
}
#endif
#if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_3
if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
{
if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
@ -451,49 +457,83 @@ void checkExtruderAutoFans()
#endif
// update extruder auto fan states
#if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
#if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_1
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
#if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_2
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif
#if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1
#if HAS_AUTO_FAN_3
if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
#endif
}
#endif // any extruder auto fan pins set
void manage_heater()
{
float pid_input;
float pid_output;
//
// Error checking and Write Routines
//
#if !HAS_HEATER_0
#error HEATER_0_PIN not defined for this board
#endif
#define WRITE_HEATER_0P(v) WRITE(HEATER_0_PIN, v)
#if EXTRUDERS > 1 || defined(HEATERS_PARALLEL)
#if !HAS_HEATER_1
#error HEATER_1_PIN not defined for this board
#endif
#define WRITE_HEATER_1(v) WRITE(HEATER_1_PIN, v)
#if EXTRUDERS > 2
#if !HAS_HEATER_2
#error HEATER_2_PIN not defined for this board
#endif
#define WRITE_HEATER_2(v) WRITE(HEATER_2_PIN, v)
#if EXTRUDERS > 3
#if !HAS_HEATER_3
#error HEATER_3_PIN not defined for this board
#endif
#define WRITE_HEATER_3(v) WRITE(HEATER_3_PIN, v)
#endif
#endif
#endif
#ifdef HEATERS_PARALLEL
#define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); }
#else
#define WRITE_HEATER_0(v) WRITE_HEATER_0P(v)
#endif
#if HAS_HEATER_BED
#define WRITE_HEATER_BED(v) WRITE(HEATER_BED_PIN, v)
#endif
#if HAS_FAN
#define WRITE_FAN(v) WRITE(FAN_PIN, v)
#endif
if(temp_meas_ready != true) //better readability
return;
void manage_heater() {
if (!temp_meas_ready) return;
float pid_input, pid_output;
updateTemperaturesFromRawValues();
#ifdef HEATER_0_USES_MAX6675
if (current_temperature[0] > 1023 || current_temperature[0] > HEATER_0_MAXTEMP) {
max_temp_error(0);
}
if (current_temperature[0] == 0 || current_temperature[0] < HEATER_0_MINTEMP) {
min_temp_error(0);
}
float ct = current_temperature[0];
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
#endif //HEATER_0_USES_MAX6675
for(int e = 0; e < EXTRUDERS; e++)
{
unsigned long ms = millis();
// Loop through all extruders
for (int e = 0; e < EXTRUDERS; e++) {
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
@ -529,7 +569,8 @@ void manage_heater()
if (pid_output > PID_MAX) {
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = PID_MAX;
} else if (pid_output < 0){
}
else if (pid_output < 0) {
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
pid_output = 0;
}
@ -538,81 +579,74 @@ void manage_heater()
#else
pid_output = constrain(target_temperature[e], 0, PID_MAX);
#endif //PID_OPENLOOP
#ifdef PID_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO(" PID_DEBUG ");
SERIAL_ECHO(MSG_PID_DEBUG);
SERIAL_ECHO(e);
SERIAL_ECHO(": Input ");
SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
SERIAL_ECHO(pid_input);
SERIAL_ECHO(" Output ");
SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
SERIAL_ECHO(pid_output);
SERIAL_ECHO(" pTerm ");
SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
SERIAL_ECHO(pTerm[e]);
SERIAL_ECHO(" iTerm ");
SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
SERIAL_ECHO(iTerm[e]);
SERIAL_ECHO(" dTerm ");
SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
SERIAL_ECHOLN(dTerm[e]);
#endif //PID_DEBUG
#else /* PID off */
pid_output = 0;
if(current_temperature[e] < target_temperature[e]) {
pid_output = PID_MAX;
}
if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX;
#endif
// Check if temperature is within the correct range
if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
{
soft_pwm[e] = (int)pid_output >> 1;
}
else {
soft_pwm[e] = 0;
}
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
#ifdef WATCH_TEMP_PERIOD
if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
{
if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
{
if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
setTargetHotend(0, e);
LCD_MESSAGEPGM("Heating failed");
LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
SERIAL_ECHO_START;
SERIAL_ECHOLN("Heating failed");
}else{
SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
}
else {
watchmillis[e] = 0;
}
}
#endif
#endif //WATCH_TEMP_PERIOD
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
disable_heater();
if (IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
SERIAL_ERRORLNPGM(MSG_EXTRUDER_SWITCHED_OFF);
LCD_ALERTMESSAGEPGM(MSG_ERR_REDUNDANT_TEMP); // translatable
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
#endif
}
#endif
} // End extruder for loop
#endif //TEMP_SENSOR_1_AS_REDUNDANT
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
{
} // Extruders Loop
#if HAS_AUTO_FAN
if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
checkExtruderAutoFans();
extruder_autofan_last_check = millis();
extruder_autofan_last_check = ms;
}
#endif
#ifndef PIDTEMPBED
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
return;
previous_millis_bed_heater = millis();
#endif
if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
previous_millis_bed_heater = ms;
#endif //PIDTEMPBED
#if TEMP_SENSOR_BED != 0
@ -639,7 +673,8 @@ void manage_heater()
if (pid_output > MAX_BED_POWER) {
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = MAX_BED_POWER;
} else if (pid_output < 0){
}
else if (pid_output < 0) {
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
pid_output = 0;
}
@ -648,74 +683,46 @@ void manage_heater()
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
#endif //PID_OPENLOOP
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
{
soft_pwm_bed = (int)pid_output >> 1;
}
else {
soft_pwm_bed = 0;
}
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
#elif !defined(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct range
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
{
if(current_temperature_bed >= target_temperature_bed)
{
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {
soft_pwm_bed = 0;
}
else
{
soft_pwm_bed = MAX_BED_POWER>>1;
}
}
else
{
soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW);
WRITE_HEATER_BED(LOW);
}
#else //#ifdef BED_LIMIT_SWITCHING
// Check if temperature is within the correct band
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
{
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
{
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
}
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
{
soft_pwm_bed = MAX_BED_POWER >> 1;
}
}
else
{
else {
soft_pwm_bed = 0;
WRITE(HEATER_BED_PIN,LOW);
WRITE_HEATER_BED(LOW);
}
#endif
#endif
#endif //TEMP_SENSOR_BED != 0
//code for controlling the extruder rate based on the width sensor
// Control the extruder rate based on the width sensor
#ifdef FILAMENT_SENSOR
if(filament_sensor)
{
if (filament_sensor) {
meas_shift_index = delay_index1 - meas_delay_cm;
if(meas_shift_index<0)
meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
//get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
//then square it to get an area
if(meas_shift_index<0)
meas_shift_index=0;
else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
meas_shift_index=MAX_MEASUREMENT_DELAY;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
// Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
if (vm < 0.01) vm = 0.01;
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
}
#endif
#endif //FILAMENT_SENSOR
}
#define PGM_RD_W(x) (short)pgm_read_word(&x)
@ -730,7 +737,7 @@ static float analog2temp(int raw, uint8_t e) {
{
SERIAL_ERROR_START;
SERIAL_ERROR((int)e);
SERIAL_ERRORLNPGM(" - Invalid extruder number !");
SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
kill();
return 0.0;
}
@ -799,20 +806,18 @@ static float analog2tempBed(int raw) {
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
static void updateTemperaturesFromRawValues()
{
static void updateTemperaturesFromRawValues() {
#ifdef HEATER_0_USES_MAX6675
current_temperature_raw[0] = read_max6675();
#endif
for(uint8_t e=0;e<EXTRUDERS;e++)
{
for(uint8_t e = 0; e < EXTRUDERS; e++) {
current_temperature[e] = analog2temp(current_temperature_raw[e], e);
}
current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
#endif
#if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
#if HAS_FILAMENT_SENSOR
filament_width_meas = analog2widthFil();
#endif
//Reset the watchdog after we know we have a temperature measurement.
@ -824,29 +829,22 @@ static void updateTemperaturesFromRawValues()
}
// For converting raw Filament Width to milimeters
#ifdef FILAMENT_SENSOR
// Convert raw Filament Width to millimeters
float analog2widthFil() {
return current_raw_filwidth / 16383.0 * 5.0;
//return current_raw_filwidth;
}
// For converting raw Filament Width to a ratio
// Convert raw Filament Width to a ratio
int widthFil_to_size_ratio() {
float temp;
temp=filament_width_meas;
if(filament_width_meas<MEASURED_LOWER_LIMIT)
temp=filament_width_nominal; //assume sensor cut out
else if (filament_width_meas>MEASURED_UPPER_LIMIT)
temp= MEASURED_UPPER_LIMIT;
return(filament_width_nominal/temp*100);
float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
return filament_width_nominal / temp * 100;
}
#endif
@ -875,22 +873,22 @@ void tp_init()
#endif //PIDTEMPBED
}
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
#if HAS_HEATER_0
SET_OUTPUT(HEATER_0_PIN);
#endif
#if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
#if HAS_HEATER_1
SET_OUTPUT(HEATER_1_PIN);
#endif
#if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
#if HAS_HEATER_2
SET_OUTPUT(HEATER_2_PIN);
#endif
#if defined(HEATER_3_PIN) && (HEATER_3_PIN > -1)
#if HAS_HEATER_3
SET_OUTPUT(HEATER_3_PIN);
#endif
#if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
#if HAS_HEATER_BED
SET_OUTPUT(HEATER_BED_PIN);
#endif
#if defined(FAN_PIN) && (FAN_PIN > -1)
#if HAS_FAN
SET_OUTPUT(FAN_PIN);
#ifdef FAST_PWM_FAN
setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
@ -903,75 +901,47 @@ void tp_init()
#ifdef HEATER_0_USES_MAX6675
#ifndef SDSUPPORT
SET_OUTPUT(SCK_PIN);
WRITE(SCK_PIN,0);
SET_OUTPUT(MOSI_PIN);
WRITE(MOSI_PIN,1);
SET_INPUT(MISO_PIN);
WRITE(MISO_PIN,1);
OUT_WRITE(SCK_PIN, LOW);
OUT_WRITE(MOSI_PIN, HIGH);
OUT_WRITE(MISO_PIN, HIGH);
#else
pinMode(SS_PIN, OUTPUT);
digitalWrite(SS_PIN, HIGH);
#endif
SET_OUTPUT(MAX6675_SS);
WRITE(MAX6675_SS,1);
OUT_WRITE(MAX6675_SS,HIGH);
#endif //HEATER_0_USES_MAX6675
#ifdef DIDR2
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
#else
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
#endif
// Set analog inputs
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
DIDR0 = 0;
#ifdef DIDR2
DIDR2 = 0;
#endif
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
#if TEMP_0_PIN < 8
DIDR0 |= 1 << TEMP_0_PIN;
#else
DIDR2 |= 1<<(TEMP_0_PIN - 8);
#if HAS_TEMP_0
ANALOG_SELECT(TEMP_0_PIN);
#endif
#if HAS_TEMP_1
ANALOG_SELECT(TEMP_1_PIN);
#endif
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
#if TEMP_1_PIN < 8
DIDR0 |= 1<<TEMP_1_PIN;
#else
DIDR2 |= 1<<(TEMP_1_PIN - 8);
#if HAS_TEMP_2
ANALOG_SELECT(TEMP_2_PIN);
#endif
#if HAS_TEMP_3
ANALOG_SELECT(TEMP_3_PIN);
#endif
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
#if TEMP_2_PIN < 8
DIDR0 |= 1 << TEMP_2_PIN;
#else
DIDR2 |= 1<<(TEMP_2_PIN - 8);
#endif
#endif
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
#if TEMP_3_PIN < 8
DIDR0 |= 1 << TEMP_3_PIN;
#else
DIDR2 |= 1<<(TEMP_3_PIN - 8);
#endif
#endif
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
#if TEMP_BED_PIN < 8
DIDR0 |= 1<<TEMP_BED_PIN;
#else
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
#endif
#endif
//Added for Filament Sensor
#ifdef FILAMENT_SENSOR
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1)
#if FILWIDTH_PIN < 8
DIDR0 |= 1<<FILWIDTH_PIN;
#else
DIDR2 |= 1<<(FILWIDTH_PIN - 8);
#endif
#if HAS_TEMP_BED
ANALOG_SELECT(TEMP_BED_PIN);
#endif
#if HAS_FILAMENT_SENSOR
ANALOG_SELECT(FILWIDTH_PIN);
#endif
// Use timer0 for temperature measurement
@ -982,90 +952,53 @@ void tp_init()
// Wait for temperature measurement to settle
delay(250);
#define TEMP_MIN_ROUTINE(NR) \
minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
minttemp_raw[NR] += OVERSAMPLENR; \
else \
minttemp_raw[NR] -= OVERSAMPLENR; \
}
#define TEMP_MAX_ROUTINE(NR) \
maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
maxttemp_raw[NR] -= OVERSAMPLENR; \
else \
maxttemp_raw[NR] += OVERSAMPLENR; \
}
#ifdef HEATER_0_MINTEMP
minttemp[0] = HEATER_0_MINTEMP;
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
minttemp_raw[0] += OVERSAMPLENR;
#else
minttemp_raw[0] -= OVERSAMPLENR;
TEMP_MIN_ROUTINE(0);
#endif
}
#endif //MINTEMP
#ifdef HEATER_0_MAXTEMP
maxttemp[0] = HEATER_0_MAXTEMP;
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
maxttemp_raw[0] -= OVERSAMPLENR;
#else
maxttemp_raw[0] += OVERSAMPLENR;
TEMP_MAX_ROUTINE(0);
#endif
}
#endif //MAXTEMP
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
minttemp[1] = HEATER_1_MINTEMP;
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
minttemp_raw[1] += OVERSAMPLENR;
#else
minttemp_raw[1] -= OVERSAMPLENR;
#if EXTRUDERS > 1
#ifdef HEATER_1_MINTEMP
TEMP_MIN_ROUTINE(1);
#endif
}
#endif // MINTEMP 1
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
maxttemp[1] = HEATER_1_MAXTEMP;
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
maxttemp_raw[1] -= OVERSAMPLENR;
#else
maxttemp_raw[1] += OVERSAMPLENR;
#ifdef HEATER_1_MAXTEMP
TEMP_MAX_ROUTINE(1);
#endif
}
#endif //MAXTEMP 1
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
minttemp[2] = HEATER_2_MINTEMP;
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
minttemp_raw[2] += OVERSAMPLENR;
#else
minttemp_raw[2] -= OVERSAMPLENR;
#if EXTRUDERS > 2
#ifdef HEATER_2_MINTEMP
TEMP_MIN_ROUTINE(2);
#endif
}
#endif //MINTEMP 2
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
maxttemp[2] = HEATER_2_MAXTEMP;
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
maxttemp_raw[2] -= OVERSAMPLENR;
#else
maxttemp_raw[2] += OVERSAMPLENR;
#ifdef HEATER_2_MAXTEMP
TEMP_MAX_ROUTINE(2);
#endif
}
#endif //MAXTEMP 2
#if (EXTRUDERS > 3) && defined(HEATER_3_MINTEMP)
minttemp[3] = HEATER_3_MINTEMP;
while(analog2temp(minttemp_raw[3], 3) < HEATER_3_MINTEMP) {
#if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
minttemp_raw[3] += OVERSAMPLENR;
#else
minttemp_raw[3] -= OVERSAMPLENR;
#if EXTRUDERS > 3
#ifdef HEATER_3_MINTEMP
TEMP_MIN_ROUTINE(3);
#endif
}
#endif //MINTEMP 3
#if (EXTRUDERS > 3) && defined(HEATER_3_MAXTEMP)
maxttemp[3] = HEATER_3_MAXTEMP;
while(analog2temp(maxttemp_raw[3], 3) > HEATER_3_MAXTEMP) {
#if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
maxttemp_raw[3] -= OVERSAMPLENR;
#else
maxttemp_raw[3] += OVERSAMPLENR;
#ifdef HEATER_3_MAXTEMP
TEMP_MAX_ROUTINE(3);
#endif
}
#endif // MAXTEMP 3
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
#ifdef BED_MINTEMP
/* No bed MINTEMP error implemented?!? */ /*
@ -1089,15 +1022,13 @@ void tp_init()
#endif //BED_MAXTEMP
}
void setWatch()
{
void setWatch() {
#ifdef WATCH_TEMP_PERIOD
for (int e = 0; e < EXTRUDERS; e++)
{
if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
{
unsigned long ms = millis();
for (int e = 0; e < EXTRUDERS; e++) {
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
watch_start_temp[e] = degHotend(e);
watchmillis[e] = millis();
watchmillis[e] = ms;
}
}
#endif
@ -1135,16 +1066,18 @@ void thermal_runaway_protection(int *state, unsigned long *timer, float temperat
if (temperature >= target_temperature) *state = 2;
break;
case 2: // "Temperature Stable" state
{
unsigned long ms = millis();
if (temperature >= (target_temperature - hysteresis_degc))
{
*timer = millis();
*timer = ms;
}
else if ( (millis() - *timer) > ((unsigned long) period_seconds) * 1000)
else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
{
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: ");
SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
SERIAL_ERRORLN((int)heater_id);
LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
thermal_runaway = true;
while(1)
{
@ -1160,54 +1093,45 @@ void thermal_runaway_protection(int *state, unsigned long *timer, float temperat
lcd_update();
}
}
break;
} break;
}
}
#endif
#endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
void disable_heater()
{
for(int i=0;i<EXTRUDERS;i++)
setTargetHotend(0,i);
void disable_heater() {
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
setTargetBed(0);
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
#if HAS_TEMP_0
target_temperature[0] = 0;
soft_pwm[0] = 0;
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
WRITE(HEATER_0_PIN,LOW);
#endif
WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
#endif
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
#if EXTRUDERS > 1 && HAS_TEMP_1
target_temperature[1] = 0;
soft_pwm[1] = 0;
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
WRITE(HEATER_1_PIN,LOW);
#endif
WRITE_HEATER_1(LOW);
#endif
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
#if EXTRUDERS > 2 && HAS_TEMP_2
target_temperature[2] = 0;
soft_pwm[2] = 0;
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
WRITE(HEATER_2_PIN,LOW);
#endif
WRITE_HEATER_2(LOW);
#endif
#if defined(TEMP_3_PIN) && TEMP_3_PIN > -1 && EXTRUDERS > 3
#if EXTRUDERS > 3 && HAS_TEMP_3
target_temperature[3] = 0;
soft_pwm[3] = 0;
#if defined(HEATER_3_PIN) && HEATER_3_PIN > -1
WRITE(HEATER_3_PIN,LOW);
#endif
WRITE_HEATER_3(LOW);
#endif
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
#if HAS_TEMP_BED
target_temperature_bed = 0;
soft_pwm_bed = 0;
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
WRITE(HEATER_BED_PIN,LOW);
#if HAS_HEATER_BED
WRITE_HEATER_BED(LOW);
#endif
#endif
}
@ -1217,8 +1141,8 @@ void max_temp_error(uint8_t e) {
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
SERIAL_ERRORLNPGM(MSG_MAXTEMP_EXTRUDER_OFF);
LCD_ALERTMESSAGEPGM(MSG_ERR_MAXTEMP); // translatable
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
@ -1230,8 +1154,8 @@ void min_temp_error(uint8_t e) {
if(IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLN((int)e);
SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
LCD_ALERTMESSAGEPGM("Err: MINTEMP");
SERIAL_ERRORLNPGM(MSG_MINTEMP_EXTRUDER_OFF);
LCD_ALERTMESSAGEPGM(MSG_ERR_MINTEMP); // translatable
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
@ -1239,13 +1163,13 @@ void min_temp_error(uint8_t e) {
}
void bed_max_temp_error(void) {
#if HEATER_BED_PIN > -1
WRITE(HEATER_BED_PIN, 0);
#if HAS_HEATER_BED
WRITE_HEATER_BED(0);
#endif
if (IsStopped() == false) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
SERIAL_ERRORLNPGM(MSG_MAXTEMP_BED_OFF);
LCD_ALERTMESSAGEPGM(MSG_ERR_MAXTEMP_BED); // translatable
}
#ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
Stop();
@ -1257,12 +1181,13 @@ void bed_max_temp_error(void) {
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
int max6675_temp = 2000;
static int read_max6675()
{
if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
static int read_max6675() {
unsigned long ms = millis();
if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
return max6675_temp;
max6675_previous_millis = millis();
max6675_previous_millis = ms;
max6675_temp = 0;
#ifdef PRR
@ -1294,13 +1219,11 @@ static int read_max6675()
// disable TT_MAX6675
WRITE(MAX6675_SS, 1);
if (max6675_temp & 4)
{
if (max6675_temp & 4) {
// thermocouple open
max6675_temp = 4000;
}
else
{
else {
max6675_temp = max6675_temp >> 3;
}
@ -1309,10 +1232,29 @@ static int read_max6675()
#endif //HEATER_0_USES_MAX6675
/**
* Stages in the ISR loop
*/
enum TempState {
PrepareTemp_0,
MeasureTemp_0,
PrepareTemp_BED,
MeasureTemp_BED,
PrepareTemp_1,
MeasureTemp_1,
PrepareTemp_2,
MeasureTemp_2,
PrepareTemp_3,
MeasureTemp_3,
Prepare_FILWIDTH,
Measure_FILWIDTH,
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
};
//
// Timer 0 is shared with millies
ISR(TIMER0_COMPB_vect)
{
//
ISR(TIMER0_COMPB_vect) {
//these variables are only accesible from the ISR, but static, so they don't lose their value
static unsigned char temp_count = 0;
static unsigned long raw_temp_0_value = 0;
@ -1320,113 +1262,96 @@ ISR(TIMER0_COMPB_vect)
static unsigned long raw_temp_2_value = 0;
static unsigned long raw_temp_3_value = 0;
static unsigned long raw_temp_bed_value = 0;
static unsigned char temp_state = 12;
static TempState temp_state = StartupDelay;
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
static unsigned char soft_pwm_0;
// Static members for each heater
#ifdef SLOW_PWM_HEATERS
static unsigned char slow_pwm_count = 0;
static unsigned char state_heater_0 = 0;
static unsigned char state_timer_heater_0 = 0;
#define ISR_STATICS(n) \
static unsigned char soft_pwm_ ## n; \
static unsigned char state_heater_ ## n = 0; \
static unsigned char state_timer_heater_ ## n = 0
#else
#define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
#endif
// Statics per heater
ISR_STATICS(0);
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
static unsigned char soft_pwm_1;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_1 = 0;
static unsigned char state_timer_heater_1 = 0;
#endif
#endif
ISR_STATICS(1);
#if EXTRUDERS > 2
static unsigned char soft_pwm_2;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_2 = 0;
static unsigned char state_timer_heater_2 = 0;
#endif
#endif
ISR_STATICS(2);
#if EXTRUDERS > 3
static unsigned char soft_pwm_3;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_3 = 0;
static unsigned char state_timer_heater_3 = 0;
ISR_STATICS(3);
#endif
#endif
#endif
#if HAS_HEATER_BED
ISR_STATICS(BED);
#endif
#if HEATER_BED_PIN > -1
static unsigned char soft_pwm_b;
#ifdef SLOW_PWM_HEATERS
static unsigned char state_heater_b = 0;
static unsigned char state_timer_heater_b = 0;
#endif
#endif
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
#if HAS_FILAMENT_SENSOR
static unsigned long raw_filwidth_value = 0;
#endif
#ifndef SLOW_PWM_HEATERS
/*
/**
* standard PWM modulation
*/
if (pwm_count == 0) {
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
WRITE(HEATER_0_PIN,1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,1);
#endif
} else WRITE(HEATER_0_PIN,0);
WRITE_HEATER_0(1);
}
else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
#if EXTRUDERS > 1
soft_pwm_1 = soft_pwm[1];
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
#endif
WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
#if EXTRUDERS > 2
soft_pwm_2 = soft_pwm[2];
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
#endif
WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
#if EXTRUDERS > 3
soft_pwm_3 = soft_pwm[3];
if(soft_pwm_3 > 0) WRITE(HEATER_3_PIN,1); else WRITE(HEATER_3_PIN,0);
WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
#endif
#endif
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
soft_pwm_b = soft_pwm_bed;
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
#if HAS_HEATER_BED
soft_pwm_BED = soft_pwm_bed;
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
#endif
#ifdef FAN_SOFT_PWM
soft_pwm_fan = fanSpeedSoftPwm / 2;
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
#endif
}
if(soft_pwm_0 < pwm_count) {
WRITE(HEATER_0_PIN,0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN,0);
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
#endif
}
if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
#if EXTRUDERS > 1
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
#endif
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
#if EXTRUDERS > 2
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
#endif
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
#if EXTRUDERS > 3
if(soft_pwm_3 < pwm_count) WRITE(HEATER_3_PIN,0);
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
#endif
#endif
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
#if HAS_HEATER_BED
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
#endif
#ifdef FAN_SOFT_PWM
if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
#else //ifndef SLOW_PWM_HEATERS
#else // SLOW_PWM_HEATERS
/*
* SLOW PWM HEATERS
*
@ -1435,225 +1360,74 @@ ISR(TIMER0_COMPB_vect)
#ifndef MIN_STATE_TIME
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
#endif
// Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
#define _SLOW_PWM_ROUTINE(NR, src) \
soft_pwm_ ## NR = src; \
if (soft_pwm_ ## NR > 0) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 1; \
WRITE_HEATER_ ## NR(1); \
} \
} \
else { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR(0); \
} \
}
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
#define PWM_OFF_ROUTINE(NR) \
if (soft_pwm_ ## NR < slow_pwm_count) { \
if (state_timer_heater_ ## NR == 0) { \
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
state_heater_ ## NR = 0; \
WRITE_HEATER_ ## NR (0); \
} \
}
if (slow_pwm_count == 0) {
// EXTRUDER 0
soft_pwm_0 = soft_pwm[0];
if (soft_pwm_0 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 0) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 1;
WRITE(HEATER_0_PIN, 1);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 1);
#endif
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
// EXTRUDER 1
soft_pwm_1 = soft_pwm[1];
if (soft_pwm_1 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 0) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 1;
WRITE(HEATER_1_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
// EXTRUDER 2
soft_pwm_2 = soft_pwm[2];
if (soft_pwm_2 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 0) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 1;
WRITE(HEATER_2_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
// EXTRUDER 3
soft_pwm_3 = soft_pwm[3];
if (soft_pwm_3 > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_3 == 0) {
// if change state set timer
if (state_heater_3 == 0) {
state_timer_heater_3 = MIN_STATE_TIME;
}
state_heater_3 = 1;
WRITE(HEATER_3_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_3 == 0) {
// if change state set timer
if (state_heater_3 == 1) {
state_timer_heater_3 = MIN_STATE_TIME;
}
state_heater_3 = 0;
WRITE(HEATER_3_PIN, 0);
}
}
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
#endif
#endif
#endif
#if HAS_HEATER_BED
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
soft_pwm_b = soft_pwm_bed;
if (soft_pwm_b > 0) {
// turn ON heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 0) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 1;
WRITE(HEATER_BED_PIN, 1);
}
} else {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
} // if (slow_pwm_count == 0)
// EXTRUDER 0
if (soft_pwm_0 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_0 == 0) {
// if change state set timer
if (state_heater_0 == 1) {
state_timer_heater_0 = MIN_STATE_TIME;
}
state_heater_0 = 0;
WRITE(HEATER_0_PIN, 0);
#ifdef HEATERS_PARALLEL
WRITE(HEATER_1_PIN, 0);
#endif
}
}
} // slow_pwm_count == 0
PWM_OFF_ROUTINE(0); // EXTRUDER 0
#if EXTRUDERS > 1
// EXTRUDER 1
if (soft_pwm_1 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_1 == 0) {
// if change state set timer
if (state_heater_1 == 1) {
state_timer_heater_1 = MIN_STATE_TIME;
}
state_heater_1 = 0;
WRITE(HEATER_1_PIN, 0);
}
}
#endif
PWM_OFF_ROUTINE(1); // EXTRUDER 1
#if EXTRUDERS > 2
// EXTRUDER 2
if (soft_pwm_2 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_2 == 0) {
// if change state set timer
if (state_heater_2 == 1) {
state_timer_heater_2 = MIN_STATE_TIME;
}
state_heater_2 = 0;
WRITE(HEATER_2_PIN, 0);
}
}
#endif
PWM_OFF_ROUTINE(2); // EXTRUDER 2
#if EXTRUDERS > 3
// EXTRUDER 3
if (soft_pwm_3 < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_3 == 0) {
// if change state set timer
if (state_heater_3 == 1) {
state_timer_heater_3 = MIN_STATE_TIME;
}
state_heater_3 = 0;
WRITE(HEATER_3_PIN, 0);
}
}
PWM_OFF_ROUTINE(3); // EXTRUDER 3
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// BED
if (soft_pwm_b < slow_pwm_count) {
// turn OFF heather only if the minimum time is up
if (state_timer_heater_b == 0) {
// if change state set timer
if (state_heater_b == 1) {
state_timer_heater_b = MIN_STATE_TIME;
}
state_heater_b = 0;
WRITE(HEATER_BED_PIN, 0);
}
}
#endif
#endif
#if HAS_HEATER_BED
PWM_OFF_ROUTINE(BED); // BED
#endif
#ifdef FAN_SOFT_PWM
if (pwm_count == 0) {
soft_pwm_fan = fanSpeedSoftPwm / 2;
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
}
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
#endif
if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
#endif //FAN_SOFT_PWM
pwm_count += (1 << SOFT_PWM_SCALE);
pwm_count &= 0x7f;
@ -1663,200 +1437,150 @@ ISR(TIMER0_COMPB_vect)
slow_pwm_count++;
slow_pwm_count &= 0x7f;
// Extruder 0
if (state_timer_heater_0 > 0) {
state_timer_heater_0--;
}
#if EXTRUDERS > 1
// Extruder 1
if (state_timer_heater_1 > 0)
state_timer_heater_1--;
// EXTRUDER 0
if (state_timer_heater_0 > 0) state_timer_heater_0--;
#if EXTRUDERS > 1 // EXTRUDER 1
if (state_timer_heater_1 > 0) state_timer_heater_1--;
#if EXTRUDERS > 2 // EXTRUDER 2
if (state_timer_heater_2 > 0) state_timer_heater_2--;
#if EXTRUDERS > 3 // EXTRUDER 3
if (state_timer_heater_3 > 0) state_timer_heater_3--;
#endif
#if EXTRUDERS > 2
// Extruder 2
if (state_timer_heater_2 > 0)
state_timer_heater_2--;
#endif
#if EXTRUDERS > 3
// Extruder 3
if (state_timer_heater_3 > 0)
state_timer_heater_3--;
#endif
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
// Bed
if (state_timer_heater_b > 0)
state_timer_heater_b--;
#if HAS_HEATER_BED
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
#endif
} //if ((pwm_count % 64) == 0) {
} // (pwm_count % 64) == 0
#endif //ifndef SLOW_PWM_HEATERS
#endif // SLOW_PWM_HEATERS
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
#ifdef MUX5
#define START_ADC(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#else
#define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
#endif
switch(temp_state) {
case 0: // Prepare TEMP_0
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
#if TEMP_0_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
case PrepareTemp_0:
#if HAS_TEMP_0
START_ADC(TEMP_0_PIN);
#endif
lcd_buttons_update();
temp_state = 1;
temp_state = MeasureTemp_0;
break;
case 1: // Measure TEMP_0
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
case MeasureTemp_0:
#if HAS_TEMP_0
raw_temp_0_value += ADC;
#endif
temp_state = 2;
temp_state = PrepareTemp_BED;
break;
case 2: // Prepare TEMP_BED
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
#if TEMP_BED_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
case PrepareTemp_BED:
#if HAS_TEMP_BED
START_ADC(TEMP_BED_PIN);
#endif
lcd_buttons_update();
temp_state = 3;
temp_state = MeasureTemp_BED;
break;
case 3: // Measure TEMP_BED
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
case MeasureTemp_BED:
#if HAS_TEMP_BED
raw_temp_bed_value += ADC;
#endif
temp_state = 4;
temp_state = PrepareTemp_1;
break;
case 4: // Prepare TEMP_1
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
#if TEMP_1_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
case PrepareTemp_1:
#if HAS_TEMP_1
START_ADC(TEMP_1_PIN);
#endif
lcd_buttons_update();
temp_state = 5;
temp_state = MeasureTemp_1;
break;
case 5: // Measure TEMP_1
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
case MeasureTemp_1:
#if HAS_TEMP_1
raw_temp_1_value += ADC;
#endif
temp_state = 6;
temp_state = PrepareTemp_2;
break;
case 6: // Prepare TEMP_2
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
#if TEMP_2_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
case PrepareTemp_2:
#if HAS_TEMP_2
START_ADC(TEMP_2_PIN);
#endif
lcd_buttons_update();
temp_state = 7;
temp_state = MeasureTemp_2;
break;
case 7: // Measure TEMP_2
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
case MeasureTemp_2:
#if HAS_TEMP_2
raw_temp_2_value += ADC;
#endif
temp_state = 8;
temp_state = PrepareTemp_3;
break;
case 8: // Prepare TEMP_3
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
#if TEMP_3_PIN > 7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (TEMP_3_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
case PrepareTemp_3:
#if HAS_TEMP_3
START_ADC(TEMP_3_PIN);
#endif
lcd_buttons_update();
temp_state = 9;
temp_state = MeasureTemp_3;
break;
case 9: // Measure TEMP_3
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
case MeasureTemp_3:
#if HAS_TEMP_3
raw_temp_3_value += ADC;
#endif
temp_state = 10; //change so that Filament Width is also measured
temp_state = Prepare_FILWIDTH;
break;
case 10: //Prepare FILWIDTH
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1)
#if FILWIDTH_PIN>7
ADCSRB = 1<<MUX5;
#else
ADCSRB = 0;
#endif
ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07));
ADCSRA |= 1<<ADSC; // Start conversion
case Prepare_FILWIDTH:
#if HAS_FILAMENT_SENSOR
START_ADC(FILWIDTH_PIN);
#endif
lcd_buttons_update();
temp_state = 11;
temp_state = Measure_FILWIDTH;
break;
case 11: //Measure FILWIDTH
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
case Measure_FILWIDTH:
#if HAS_FILAMENT_SENSOR
// raw_filwidth_value += ADC; //remove to use an IIR filter approach
if(ADC>102) //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
{
raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7); //multipliy raw_filwidth_value by 127/128
raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7); //add new ADC reading
if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
}
#endif
temp_state = 0;
temp_state = PrepareTemp_0;
temp_count++;
break;
case 12: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
temp_state = 0;
case StartupDelay:
temp_state = PrepareTemp_0;
break;
// default:
// SERIAL_ERROR_START;
// SERIAL_ERRORLNPGM("Temp measurement error!");
// break;
}
} // switch(temp_state)
if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256) = 164ms.
{
if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
{
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
#ifndef HEATER_0_USES_MAX6675
current_temperature_raw[0] = raw_temp_0_value;
#endif
#if EXTRUDERS > 1
current_temperature_raw[1] = raw_temp_1_value;
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#if EXTRUDERS > 3
current_temperature_raw[3] = raw_temp_3_value;
#endif
#endif
#endif
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
redundant_temperature_raw = raw_temp_1_value;
#endif
#if EXTRUDERS > 2
current_temperature_raw[2] = raw_temp_2_value;
#endif
#if EXTRUDERS > 3
current_temperature_raw[3] = raw_temp_3_value;
#endif
current_temperature_bed_raw = raw_temp_bed_value;
}
} //!temp_meas_ready
//Add similar code for Filament Sensor - can be read any time since IIR filtering is used
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
current_raw_filwidth = raw_filwidth_value>>10; //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach
// Filament Sensor - can be read any time since IIR filtering is used
#if HAS_FILAMENT_SENSOR
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
#endif
temp_meas_ready = true;
temp_count = 0;
raw_temp_0_value = 0;
@ -1866,101 +1590,35 @@ ISR(TIMER0_COMPB_vect)
raw_temp_bed_value = 0;
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if(current_temperature_raw[0] <= maxttemp_raw[0]) {
#define MAXTEST <=
#define MINTEST >=
#else
if(current_temperature_raw[0] >= maxttemp_raw[0]) {
#endif
#ifndef HEATER_0_USES_MAX6675
max_temp_error(0);
#endif
}
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
if(current_temperature_raw[0] >= minttemp_raw[0]) {
#else
if(current_temperature_raw[0] <= minttemp_raw[0]) {
#endif
#ifndef HEATER_0_USES_MAX6675
min_temp_error(0);
#endif
}
#if EXTRUDERS > 1
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
if(current_temperature_raw[1] <= maxttemp_raw[1]) {
#else
if(current_temperature_raw[1] >= maxttemp_raw[1]) {
#endif
max_temp_error(1);
}
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
if(current_temperature_raw[1] >= minttemp_raw[1]) {
#else
if(current_temperature_raw[1] <= minttemp_raw[1]) {
#endif
min_temp_error(1);
}
#endif
#if EXTRUDERS > 2
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
if(current_temperature_raw[2] <= maxttemp_raw[2]) {
#else
if(current_temperature_raw[2] >= maxttemp_raw[2]) {
#endif
max_temp_error(2);
}
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
if(current_temperature_raw[2] >= minttemp_raw[2]) {
#else
if(current_temperature_raw[2] <= minttemp_raw[2]) {
#endif
min_temp_error(2);
}
#endif
#if EXTRUDERS > 3
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
if(current_temperature_raw[3] <= maxttemp_raw[3]) {
#else
if(current_temperature_raw[3] >= maxttemp_raw[3]) {
#endif
max_temp_error(3);
}
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
if(current_temperature_raw[3] >= minttemp_raw[3]) {
#else
if(current_temperature_raw[3] <= minttemp_raw[3]) {
#endif
min_temp_error(3);
}
#define MAXTEST >=
#define MINTEST <=
#endif
for (int i=0; i<EXTRUDERS; i++) {
if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i);
else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i);
}
/* No bed MINTEMP error? */
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
# if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
if(current_temperature_bed_raw <= bed_maxttemp_raw) {
#else
if(current_temperature_bed_raw >= bed_maxttemp_raw) {
#endif
if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) {
target_temperature_bed = 0;
bed_max_temp_error();
}
#endif
}
} // temp_count >= OVERSAMPLENR
#ifdef BABYSTEPPING
for(uint8_t axis=0;axis<3;axis++)
{
for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
if(curTodo>0)
{
if (curTodo > 0) {
babystep(axis,/*fwd*/true);
babystepsTodo[axis]--; //less to do next time
}
else
if(curTodo<0)
{
else if(curTodo < 0) {
babystep(axis,/*fwd*/false);
babystepsTodo[axis]++; //less to do next time
}
@ -1970,26 +1628,8 @@ ISR(TIMER0_COMPB_vect)
#ifdef PIDTEMP
// Apply the scale factors to the PID values
float scalePID_i(float i)
{
return i*PID_dT;
}
float unscalePID_i(float i)
{
return i/PID_dT;
}
float scalePID_d(float d)
{
return d/PID_dT;
}
float unscalePID_d(float d)
{
return d*PID_dT;
}
float scalePID_i(float i) { return i * PID_dT; }
float unscalePID_i(float i) { return i / PID_dT; }
float scalePID_d(float d) { return d / PID_dT; }
float unscalePID_d(float d) { return d * PID_dT; }
#endif //PIDTEMP

View file

@ -85,55 +85,25 @@ extern float current_temperature_bed;
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) {
return current_temperature[extruder];
};
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
FORCE_INLINE float degBed() { return current_temperature_bed; }
#ifdef SHOW_TEMP_ADC_VALUES
FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
return current_temperature_raw[extruder];
};
FORCE_INLINE float rawBedTemp() {
return current_temperature_bed_raw;
};
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif
FORCE_INLINE float degBed() {
return current_temperature_bed;
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return target_temperature[extruder];
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }
FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
FORCE_INLINE float degTargetBed() {
return target_temperature_bed;
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_temperature_bed = celsius;
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
return target_temperature[extruder] > current_temperature[extruder];
};
FORCE_INLINE bool isHeatingBed() {
return target_temperature_bed > current_temperature_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
return target_temperature[extruder] < current_temperature[extruder];
};
FORCE_INLINE bool isCoolingBed() {
return target_temperature_bed < current_temperature_bed;
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
#define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0)
@ -171,8 +141,6 @@ FORCE_INLINE bool isCoolingBed() {
#error Invalid number of extruders
#endif
int getHeaterPower(int heater);
void disable_heater();
void setWatch();
@ -191,8 +159,7 @@ static bool thermal_runaway = false;
FORCE_INLINE void autotempShutdown() {
#ifdef AUTOTEMP
if(autotemp_enabled)
{
if (autotemp_enabled) {
autotemp_enabled = false;
if (degTargetHotend(active_extruder) > autotemp_min)
setTargetHotend(0, active_extruder);

View file

@ -1095,6 +1095,29 @@ const short temptable_1047[][2] PROGMEM = {
};
#endif
#if (THERMISTORHEATER_0 == 999) || (THERMISTORHEATER_1 == 999) || (THERMISTORHEATER_2 == 999) || (THERMISTORHEATER_3 == 999) || (THERMISTORBED == 999) //User defined table
// Dummy Thermistor table.. It will ALWAYS read a fixed value.
#ifndef DUMMY_THERMISTOR_999_VALUE
#define DUMMY_THERMISTOR_999_VALUE 25
#endif
const short temptable_999[][2] PROGMEM = {
{1*OVERSAMPLENR, DUMMY_THERMISTOR_999_VALUE},
{1023*OVERSAMPLENR, DUMMY_THERMISTOR_999_VALUE}
};
#endif
#if (THERMISTORHEATER_0 == 998) || (THERMISTORHEATER_1 == 998) || (THERMISTORHEATER_2 == 998) || (THERMISTORHEATER_3 == 998) || (THERMISTORBED == 998) //User defined table
// Dummy Thermistor table.. It will ALWAYS read a fixed value.
#ifndef DUMMY_THERMISTOR_998_VALUE
#define DUMMY_THERMISTOR_998_VALUE 25
#endif
const short temptable_998[][2] PROGMEM = {
{1*OVERSAMPLENR, DUMMY_THERMISTOR_998_VALUE},
{1023*OVERSAMPLENR, DUMMY_THERMISTOR_998_VALUE}
};
#endif
#define _TT_NAME(_N) temptable_ ## _N
#define TT_NAME(_N) _TT_NAME(_N)

View file

@ -10,6 +10,9 @@
int8_t encoderDiff; /* encoderDiff is updated from interrupt context and added to encoderPosition every LCD update */
bool encoderRateMultiplierEnabled;
int32_t lastEncoderMovementMillis;
/* Configuration settings */
int plaPreheatHotendTemp;
int plaPreheatHPBTemp;
@ -41,11 +44,6 @@ char lcd_status_message[LCD_WIDTH+1] = WELCOME_MSG;
#include "ultralcd_implementation_hitachi_HD44780.h"
#endif
/** forward declarations **/
void copy_and_scalePID_i();
void copy_and_scalePID_d();
/* Different menus */
static void lcd_status_screen();
#ifdef ULTIPANEL
@ -119,6 +117,7 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
/* Helper macros for menus */
#define START_MENU() do { \
encoderRateMultiplierEnabled = false; \
if (encoderPosition > 0x8000) encoderPosition = 0; \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM < currentMenuViewOffset) currentMenuViewOffset = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM;\
uint8_t _lineNr = currentMenuViewOffset, _menuItemNr; \
@ -143,9 +142,39 @@ static void menu_action_setting_edit_callback_long5(const char* pstr, unsigned l
}\
_menuItemNr++;\
} while(0)
#ifdef ENCODER_RATE_MULTIPLIER
#define MENU_MULTIPLIER_ITEM(type, label, args...) do { \
if (_menuItemNr == _lineNr) { \
if (lcdDrawUpdate) { \
const char* _label_pstr = PSTR(label); \
if ((encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \
lcd_implementation_drawmenu_ ## type ## _selected (_drawLineNr, _label_pstr , ## args ); \
} \
else { \
lcd_implementation_drawmenu_ ## type (_drawLineNr, _label_pstr , ## args ); \
} \
} \
if (wasClicked && (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) == _menuItemNr) { \
lcd_quick_feedback(); \
encoderRateMultiplierEnabled = true; \
lastEncoderMovementMillis = 0; \
menu_action_ ## type ( args ); \
return; \
} \
} \
_menuItemNr++; \
} while(0)
#endif //ENCODER_RATE_MULTIPLIER
#define MENU_ITEM_DUMMY() do { _menuItemNr++; } while(0)
#define MENU_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label) , ## args )
#define MENU_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label) , ## args )
#ifdef ENCODER_RATE_MULTIPLIER
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_ ## type, label, PSTR(label) , ## args )
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_MULTIPLIER_ITEM(setting_edit_callback_ ## type, label, PSTR(label) , ## args )
#else //!ENCODER_RATE_MULTIPLIER
#define MENU_MULTIPLIER_ITEM_EDIT(type, label, args...) MENU_ITEM(setting_edit_ ## type, label, PSTR(label) , ## args )
#define MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(type, label, args...) MENU_ITEM(setting_edit_callback_ ## type, label, PSTR(label) , ## args )
#endif //!ENCODER_RATE_MULTIPLIER
#define END_MENU() \
if (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM >= _menuItemNr) encoderPosition = _menuItemNr * ENCODER_STEPS_PER_MENU_ITEM - 1; \
if ((uint8_t)(encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) >= currentMenuViewOffset + LCD_HEIGHT) { currentMenuViewOffset = (encoderPosition / ENCODER_STEPS_PER_MENU_ITEM) - LCD_HEIGHT + 1; lcdDrawUpdate = 1; _lineNr = currentMenuViewOffset - 1; _drawLineNr = -1; } \
@ -185,9 +214,8 @@ void* editValue;
int32_t minEditValue, maxEditValue;
menuFunc_t callbackFunc;
// place-holders for Ki and Kd edits, and the extruder # being edited
// place-holders for Ki and Kd edits
float raw_Ki, raw_Kd;
int pid_current_extruder;
static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder=0, const bool feedback=true) {
if (currentMenu != menu) {
@ -205,6 +233,7 @@ static void lcd_goto_menu(menuFunc_t menu, const uint32_t encoder=0, const bool
/* Main status screen. It's up to the implementation specific part to show what is needed. As this is very display dependent */
static void lcd_status_screen()
{
encoderRateMultiplierEnabled = false;
#if defined(LCD_PROGRESS_BAR) && defined(SDSUPPORT) && !defined(DOGLCD)
uint16_t mil = millis();
#ifndef PROGRESS_MSG_ONCE
@ -317,14 +346,12 @@ static void lcd_sdcard_pause() { card.pauseSDPrint(); }
static void lcd_sdcard_resume() { card.startFileprint(); }
static void lcd_sdcard_stop()
{
static void lcd_sdcard_stop() {
card.sdprinting = false;
card.closefile();
quickStop();
if(SD_FINISHED_STEPPERRELEASE)
{
enquecommand_P(PSTR(SD_FINISHED_RELEASECOMMAND));
if (SD_FINISHED_STEPPERRELEASE) {
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
}
autotempShutdown();
@ -334,57 +361,56 @@ static void lcd_sdcard_stop()
}
/* Menu implementation */
static void lcd_main_menu()
{
static void lcd_main_menu() {
START_MENU();
MENU_ITEM(back, MSG_WATCH, lcd_status_screen);
if (movesplanned() || IS_SD_PRINTING)
{
if (movesplanned() || IS_SD_PRINTING) {
MENU_ITEM(submenu, MSG_TUNE, lcd_tune_menu);
}else{
}
else {
MENU_ITEM(submenu, MSG_PREPARE, lcd_prepare_menu);
#ifdef DELTA_CALIBRATION_MENU
MENU_ITEM(submenu, MSG_DELTA_CALIBRATE, lcd_delta_calibrate_menu);
#endif // DELTA_CALIBRATION_MENU
#endif
}
MENU_ITEM(submenu, MSG_CONTROL, lcd_control_menu);
#ifdef SDSUPPORT
if (card.cardOK)
{
if (card.isFileOpen())
{
if (card.cardOK) {
if (card.isFileOpen()) {
if (card.sdprinting)
MENU_ITEM(function, MSG_PAUSE_PRINT, lcd_sdcard_pause);
else
MENU_ITEM(function, MSG_RESUME_PRINT, lcd_sdcard_resume);
MENU_ITEM(function, MSG_STOP_PRINT, lcd_sdcard_stop);
}else{
}
else {
MENU_ITEM(submenu, MSG_CARD_MENU, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_CNG_SDCARD, PSTR("M21")); // SD-card changed by user
#endif
}
}else{
}
else {
MENU_ITEM(submenu, MSG_NO_CARD, lcd_sdcard_menu);
#if SDCARDDETECT < 1
MENU_ITEM(gcode, MSG_INIT_SDCARD, PSTR("M21")); // Manually initialize the SD-card via user interface
#endif
}
#endif
#endif //SDSUPPORT
END_MENU();
}
#ifdef SDSUPPORT
static void lcd_autostart_sd()
{
static void lcd_autostart_sd() {
card.autostart_index = 0;
card.setroot();
card.checkautostart(true);
}
#endif
void lcd_set_home_offsets()
{
void lcd_set_home_offsets() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if (i != E_AXIS) {
add_homing[i] -= current_position[i];
@ -394,8 +420,7 @@ void lcd_set_home_offsets()
plan_set_position(0.0, 0.0, 0.0, current_position[E_AXIS]);
// Audio feedback
enquecommand_P(PSTR("M300 S659 P200"));
enquecommand_P(PSTR("M300 S698 P200"));
enquecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
lcd_return_to_status();
}
@ -417,42 +442,38 @@ void lcd_set_home_offsets()
#endif //BABYSTEPPING
static void lcd_tune_menu()
{
static void lcd_tune_menu() {
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM_EDIT(int3, MSG_SPEED, &feedmultiply, 10, 999);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_1 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_2 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_3 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
MENU_ITEM_EDIT(int3, MSG_FLOW, &extrudemultiply, 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW " 0", &extruder_multiply[0], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F0, &extruder_multiply[0], 10, 999);
#if TEMP_SENSOR_1 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW " 1", &extruder_multiply[1], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F1, &extruder_multiply[1], 10, 999);
#endif
#if TEMP_SENSOR_2 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW " 2", &extruder_multiply[2], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F2, &extruder_multiply[2], 10, 999);
#endif
#if TEMP_SENSOR_3 != 0
MENU_ITEM_EDIT(int3, MSG_FLOW " 3", &extruder_multiply[3], 10, 999);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_F3, &extruder_multiply[3], 10, 999);
#endif
#ifdef BABYSTEPPING
#ifdef BABYSTEP_XY
MENU_ITEM(submenu, MSG_BABYSTEP_X, lcd_babystep_x);
@ -466,140 +487,61 @@ static void lcd_tune_menu()
END_MENU();
}
void lcd_preheat_pla0()
{
setTargetHotend0(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs0()
{
setTargetHotend0(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) {
if (temph > 0) setTargetHotend(temph, endnum);
setTargetBed(tempb);
fanSpeed = fan;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pla0() { _lcd_preheat(0, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs0() { _lcd_preheat(0, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#if TEMP_SENSOR_1 != 0 //2nd extruder preheat
void lcd_preheat_pla1()
{
setTargetHotend1(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs1()
{
setTargetHotend1(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pla1() { _lcd_preheat(1, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs1() { _lcd_preheat(1, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif //2nd extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat
void lcd_preheat_pla2()
{
setTargetHotend2(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs2()
{
setTargetHotend2(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pla2() { _lcd_preheat(2, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs2() { _lcd_preheat(2, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat
void lcd_preheat_pla3()
{
setTargetHotend3(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_abs3()
{
setTargetHotend3(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pla3() { _lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs3() { _lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); }
#endif //4 extruder preheat
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //more than one extruder present
void lcd_preheat_pla0123()
{
void lcd_preheat_pla0123() {
setTargetHotend0(plaPreheatHotendTemp);
setTargetHotend1(plaPreheatHotendTemp);
setTargetHotend2(plaPreheatHotendTemp);
setTargetHotend3(plaPreheatHotendTemp);
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
_lcd_preheat(3, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed);
}
void lcd_preheat_abs0123()
{
void lcd_preheat_abs0123() {
setTargetHotend0(absPreheatHotendTemp);
setTargetHotend1(absPreheatHotendTemp);
setTargetHotend2(absPreheatHotendTemp);
setTargetHotend3(absPreheatHotendTemp);
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
_lcd_preheat(3, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed);
}
#endif //more than one extruder present
void lcd_preheat_pla_bedonly()
{
setTargetBed(plaPreheatHPBTemp);
fanSpeed = plaPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
void lcd_preheat_pla_bedonly() { _lcd_preheat(0, 0, plaPreheatHPBTemp, plaPreheatFanSpeed); }
void lcd_preheat_abs_bedonly() { _lcd_preheat(0, 0, absPreheatHPBTemp, absPreheatFanSpeed); }
void lcd_preheat_abs_bedonly()
{
setTargetBed(absPreheatHPBTemp);
fanSpeed = absPreheatFanSpeed;
lcd_return_to_status();
setWatch(); // heater sanity check timer
}
static void lcd_preheat_pla_menu()
{
static void lcd_preheat_pla_menu() {
START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_PLA_N "1", lcd_preheat_pla0);
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H1, lcd_preheat_pla0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_N "2", lcd_preheat_pla1);
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H2, lcd_preheat_pla1);
#endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_N "3", lcd_preheat_pla2);
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H3, lcd_preheat_pla2);
#endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_N "4", lcd_preheat_pla3);
MENU_ITEM(function, MSG_PREHEAT_PLA_N MSG_H4, lcd_preheat_pla3);
#endif //4 extruder preheat
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_PLA_ALL, lcd_preheat_pla0123);
@ -610,32 +552,29 @@ static void lcd_preheat_pla_menu()
END_MENU();
}
static void lcd_preheat_abs_menu()
{
static void lcd_preheat_abs_menu() {
START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(function, MSG_PREHEAT_ABS_N "1", lcd_preheat_abs0);
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H1, lcd_preheat_abs0);
#if TEMP_SENSOR_1 != 0 //2 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_N "2", lcd_preheat_abs1);
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H2, lcd_preheat_abs1);
#endif //2 extruder preheat
#if TEMP_SENSOR_2 != 0 //3 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_N "3", lcd_preheat_abs2);
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H3, lcd_preheat_abs2);
#endif //3 extruder preheat
#if TEMP_SENSOR_3 != 0 //4 extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_N "4", lcd_preheat_abs3);
MENU_ITEM(function, MSG_PREHEAT_ABS_N MSG_H4, lcd_preheat_abs3);
#endif //4 extruder preheat
#if TEMP_SENSOR_1 != 0 || TEMP_SENSOR_2 != 0 || TEMP_SENSOR_3 != 0 //all extruder preheat
MENU_ITEM(function, MSG_PREHEAT_ABS_ALL, lcd_preheat_abs0123);
#endif //all extruder preheat
#if TEMP_SENSOR_BED != 0
MENU_ITEM(function, MSG_PREHEAT_ABS_BEDONLY, lcd_preheat_abs_bedonly);
#endif
END_MENU();
}
void lcd_cooldown()
{
void lcd_cooldown() {
setTargetHotend0(0);
setTargetHotend1(0);
setTargetHotend2(0);
@ -645,8 +584,7 @@ void lcd_cooldown()
lcd_return_to_status();
}
static void lcd_prepare_menu()
{
static void lcd_prepare_menu() {
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
#ifdef SDSUPPORT
@ -668,15 +606,16 @@ static void lcd_prepare_menu()
#endif
#endif
MENU_ITEM(function, MSG_COOLDOWN, lcd_cooldown);
#if PS_ON_PIN > -1
if (powersupply)
{
#if defined(POWER_SUPPLY) && POWER_SUPPLY > 0 && defined(PS_ON_PIN) && PS_ON_PIN > -1
if (powersupply) {
MENU_ITEM(gcode, MSG_SWITCH_PS_OFF, PSTR("M81"));
}else{
}
else {
MENU_ITEM(gcode, MSG_SWITCH_PS_ON, PSTR("M80"));
}
#endif
MENU_ITEM(submenu, MSG_MOVE_AXIS, lcd_move_menu);
END_MENU();
}
@ -719,10 +658,8 @@ static void lcd_move_x() { _lcd_move(PSTR("X"), X_AXIS, X_MIN_POS, X_MAX_POS); }
static void lcd_move_y() { _lcd_move(PSTR("Y"), Y_AXIS, Y_MIN_POS, Y_MAX_POS); }
static void lcd_move_z() { _lcd_move(PSTR("Z"), Z_AXIS, Z_MIN_POS, Z_MAX_POS); }
static void lcd_move_e()
{
if (encoderPosition != 0)
{
static void lcd_move_e() {
if (encoderPosition != 0) {
current_position[E_AXIS] += float((int)encoderPosition) * move_menu_scale;
encoderPosition = 0;
#ifdef DELTA
@ -733,45 +670,36 @@ static void lcd_move_e()
#endif
lcdDrawUpdate = 1;
}
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
}
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR("Extruder"), ftostr31(current_position[E_AXIS]));
if (LCD_CLICKED) lcd_goto_menu(lcd_move_menu_axis);
}
static void lcd_move_menu_axis()
{
static void lcd_move_menu_axis() {
START_MENU();
MENU_ITEM(back, MSG_MOVE_AXIS, lcd_move_menu);
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
if (move_menu_scale < 10.0)
{
if (move_menu_scale < 10.0) {
MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
}
END_MENU();
}
static void lcd_move_menu_10mm()
{
static void lcd_move_menu_10mm() {
move_menu_scale = 10.0;
lcd_move_menu_axis();
}
static void lcd_move_menu_1mm()
{
static void lcd_move_menu_1mm() {
move_menu_scale = 1.0;
lcd_move_menu_axis();
}
static void lcd_move_menu_01mm()
{
static void lcd_move_menu_01mm() {
move_menu_scale = 0.1;
lcd_move_menu_axis();
}
static void lcd_move_menu()
{
static void lcd_move_menu() {
START_MENU();
MENU_ITEM(back, MSG_PREPARE, lcd_prepare_menu);
MENU_ITEM(submenu, MSG_MOVE_10MM, lcd_move_menu_10mm);
@ -781,8 +709,7 @@ static void lcd_move_menu()
END_MENU();
}
static void lcd_control_menu()
{
static void lcd_control_menu() {
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
MENU_ITEM(submenu, MSG_TEMPERATURE, lcd_control_temperature_menu);
@ -804,27 +731,63 @@ static void lcd_control_menu()
END_MENU();
}
static void lcd_control_temperature_menu()
{
#ifdef PIDTEMP
// Helpers for editing PID Ki & Kd values
// grab the PID value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i(int e) {
PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
updatePID();
}
void copy_and_scalePID_d(int e) {
PID_PARAM(Kd, e) = scalePID_d(raw_Kd);
updatePID();
}
void copy_and_scalePID_i_E1() { copy_and_scalePID_i(0); }
void copy_and_scalePID_d_E1() { copy_and_scalePID_d(0); }
#ifdef PID_PARAMS_PER_EXTRUDER
#if EXTRUDERS > 1
void copy_and_scalePID_i_E2() { copy_and_scalePID_i(1); }
void copy_and_scalePID_d_E2() { copy_and_scalePID_d(1); }
#if EXTRUDERS > 2
void copy_and_scalePID_i_E3() { copy_and_scalePID_i(2); }
void copy_and_scalePID_d_E3() { copy_and_scalePID_d(2); }
#if EXTRUDERS > 3
void copy_and_scalePID_i_E4() { copy_and_scalePID_i(3); }
void copy_and_scalePID_d_E4() { copy_and_scalePID_d(3); }
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
#endif //PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP
static void lcd_control_temperature_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
#if TEMP_SENSOR_0 != 0
MENU_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_1 != 0 && EXTRUDERS > 1
MENU_ITEM_EDIT(int3, MSG_NOZZLE " 2", &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#if EXTRUDERS > 1
#if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_2 != 0 && EXTRUDERS > 2
MENU_ITEM_EDIT(int3, MSG_NOZZLE " 3", &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15);
#endif
#if TEMP_SENSOR_3 != 0 && EXTRUDERS > 3
MENU_ITEM_EDIT(int3, MSG_NOZZLE " 4", &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15);
#endif
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
#if TEMP_SENSOR_BED != 0
MENU_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
#if defined AUTOTEMP && (TEMP_SENSOR_0 != 0)
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_FAN_SPEED, &fanSpeed, 0, 255);
#if defined(AUTOTEMP) && (TEMP_SENSOR_0 != 0)
MENU_ITEM_EDIT(bool, MSG_AUTOTEMP, &autotemp_enabled);
MENU_ITEM_EDIT(float3, MSG_MIN, &autotemp_min, 0, HEATER_0_MAXTEMP - 15);
MENU_ITEM_EDIT(float3, MSG_MAX, &autotemp_max, 0, HEATER_0_MAXTEMP - 15);
@ -832,43 +795,54 @@ static void lcd_control_temperature_menu()
#endif
#ifdef PIDTEMP
// set up temp variables - undo the default scaling
pid_current_extruder = 0;
raw_Ki = unscalePID_i(PID_PARAM(Ki,0));
raw_Kd = unscalePID_d(PID_PARAM(Kd,0));
MENU_ITEM_EDIT(float52, MSG_PID_P, &PID_PARAM(Kp,0), 1, 9990);
// i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E1);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D, &raw_Kd, 1, 9990, copy_and_scalePID_d_E1);
#ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C, &PID_PARAM(Kc,0), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE
#ifdef PID_PARAMS_PER_EXTRUDER
#if EXTRUDERS > 1
// set up temp variables - undo the default scaling
pid_current_extruder = 0;
raw_Ki = unscalePID_i(PID_PARAM(Ki,1));
raw_Kd = unscalePID_d(PID_PARAM(Kd,1));
MENU_ITEM_EDIT(float52, MSG_PID_P " E2", &PID_PARAM(Kp,1), 1, 9990);
MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E2, &PID_PARAM(Kp,1), 1, 9990);
// i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E2", &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E2", &raw_Kd, 1, 9990, copy_and_scalePID_d);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E2, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E2);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E2, &raw_Kd, 1, 9990, copy_and_scalePID_d_E2);
#ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C " E2", &PID_PARAM(Kc,1), 1, 9990);
MENU_ITEM_EDIT(float3, MSG_PID_C MSG_E2, &PID_PARAM(Kc,1), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE
#endif//EXTRUDERS > 1
#if EXTRUDERS > 2
// set up temp variables - undo the default scaling
pid_current_extruder = 0;
raw_Ki = unscalePID_i(PID_PARAM(Ki,2));
raw_Kd = unscalePID_d(PID_PARAM(Kd,2));
MENU_ITEM_EDIT(float52, MSG_PID_P " E3", &PID_PARAM(Kp,2), 1, 9990);
MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E3, &PID_PARAM(Kp,2), 1, 9990);
// i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I " E3", &raw_Ki, 0.01, 9990, copy_and_scalePID_i);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D " E3", &raw_Kd, 1, 9990, copy_and_scalePID_d);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E3, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E3);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E3, &raw_Kd, 1, 9990, copy_and_scalePID_d_E3);
#ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C " E3", &PID_PARAM(Kc,2), 1, 9990);
MENU_ITEM_EDIT(float3, MSG_PID_C MSG_E3, &PID_PARAM(Kc,2), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE
#if EXTRUDERS > 3
// set up temp variables - undo the default scaling
raw_Ki = unscalePID_i(PID_PARAM(Ki,3));
raw_Kd = unscalePID_d(PID_PARAM(Kd,3));
MENU_ITEM_EDIT(float52, MSG_PID_P MSG_E4, &PID_PARAM(Kp,3), 1, 9990);
// i is typically a small value so allows values below 1
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_I MSG_E4, &raw_Ki, 0.01, 9990, copy_and_scalePID_i_E4);
MENU_ITEM_EDIT_CALLBACK(float52, MSG_PID_D MSG_E4, &raw_Kd, 1, 9990, copy_and_scalePID_d_E4);
#ifdef PID_ADD_EXTRUSION_RATE
MENU_ITEM_EDIT(float3, MSG_PID_C MSG_E4, &PID_PARAM(Kc,3), 1, 9990);
#endif//PID_ADD_EXTRUSION_RATE
#endif//EXTRUDERS > 3
#endif//EXTRUDERS > 2
#endif//EXTRUDERS > 1
#endif //PID_PARAMS_PER_EXTRUDER
#endif//PIDTEMP
MENU_ITEM(submenu, MSG_PREHEAT_PLA_SETTINGS, lcd_control_temperature_preheat_pla_settings_menu);
@ -876,8 +850,7 @@ static void lcd_control_temperature_menu()
END_MENU();
}
static void lcd_control_temperature_preheat_pla_settings_menu()
{
static void lcd_control_temperature_preheat_pla_settings_menu() {
START_MENU();
MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &plaPreheatFanSpeed, 0, 255);
@ -893,8 +866,7 @@ static void lcd_control_temperature_preheat_pla_settings_menu()
END_MENU();
}
static void lcd_control_temperature_preheat_abs_settings_menu()
{
static void lcd_control_temperature_preheat_abs_settings_menu() {
START_MENU();
MENU_ITEM(back, MSG_TEMPERATURE, lcd_control_temperature_menu);
MENU_ITEM_EDIT(int3, MSG_FAN_SPEED, &absPreheatFanSpeed, 0, 255);
@ -910,8 +882,7 @@ static void lcd_control_temperature_preheat_abs_settings_menu()
END_MENU();
}
static void lcd_control_motion_menu()
{
static void lcd_control_motion_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
#ifdef ENABLE_AUTO_BED_LEVELING
@ -946,21 +917,20 @@ static void lcd_control_motion_menu()
END_MENU();
}
static void lcd_control_volumetric_menu()
{
static void lcd_control_volumetric_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM_EDIT_CALLBACK(bool, MSG_VOLUMETRIC_ENABLED, &volumetric_enabled, calculate_volumetric_multipliers);
if (volumetric_enabled) {
MENU_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_0, &filament_size[0], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_0, &filament_size[0], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 1
MENU_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_1, &filament_size[1], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_1, &filament_size[1], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 2
MENU_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_2, &filament_size[2], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_2, &filament_size[2], 1.5, 3.25, calculate_volumetric_multipliers);
#if EXTRUDERS > 3
MENU_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_3, &filament_size[3], DEFAULT_NOMINAL_FILAMENT_DIA - .5, DEFAULT_NOMINAL_FILAMENT_DIA + .5, calculate_volumetric_multipliers);
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(float43, MSG_FILAMENT_SIZE_EXTRUDER_3, &filament_size[3], 1.5, 3.25, calculate_volumetric_multipliers);
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif //EXTRUDERS > 1
@ -968,11 +938,11 @@ static void lcd_control_volumetric_menu()
END_MENU();
}
#ifdef DOGLCD
static void lcd_set_contrast()
{
if (encoderPosition != 0)
{
static void lcd_set_contrast() {
if (encoderPosition != 0) {
lcd_contrast -= encoderPosition;
if (lcd_contrast < 0) lcd_contrast = 0;
else if (lcd_contrast > 63) lcd_contrast = 63;
@ -980,17 +950,15 @@ static void lcd_set_contrast()
lcdDrawUpdate = 1;
u8g.setContrast(lcd_contrast);
}
if (lcdDrawUpdate)
{
lcd_implementation_drawedit(PSTR(MSG_CONTRAST), itostr2(lcd_contrast));
}
if (lcdDrawUpdate) lcd_implementation_drawedit(PSTR(MSG_CONTRAST), itostr2(lcd_contrast));
if (LCD_CLICKED) lcd_goto_menu(lcd_control_menu);
}
#endif
#endif //DOGLCD
#ifdef FWRETRACT
static void lcd_control_retract_menu()
{
static void lcd_control_retract_menu() {
START_MENU();
MENU_ITEM(back, MSG_CONTROL, lcd_control_menu);
MENU_ITEM_EDIT(bool, MSG_AUTORETRACT, &autoretract_enabled);
@ -1007,54 +975,49 @@ static void lcd_control_retract_menu()
MENU_ITEM_EDIT(float3, MSG_CONTROL_RETRACT_RECOVERF, &retract_recover_feedrate, 1, 999);
END_MENU();
}
#endif //FWRETRACT
#if SDCARDDETECT == -1
static void lcd_sd_refresh()
{
static void lcd_sd_refresh() {
card.initsd();
currentMenuViewOffset = 0;
}
#endif
static void lcd_sd_updir()
{
static void lcd_sd_updir() {
card.updir();
currentMenuViewOffset = 0;
}
void lcd_sdcard_menu()
{
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0)
return; // nothing to do (so don't thrash the SD card)
void lcd_sdcard_menu() {
if (lcdDrawUpdate == 0 && LCD_CLICKED == 0) return; // nothing to do (so don't thrash the SD card)
uint16_t fileCnt = card.getnrfilenames();
START_MENU();
MENU_ITEM(back, MSG_MAIN, lcd_main_menu);
card.getWorkDirName();
if(card.filename[0]=='/')
{
if (card.filename[0] == '/') {
#if SDCARDDETECT == -1
MENU_ITEM(function, LCD_STR_REFRESH MSG_REFRESH, lcd_sd_refresh);
#endif
}else{
}
else {
MENU_ITEM(function, LCD_STR_FOLDER "..", lcd_sd_updir);
}
for(uint16_t i=0;i<fileCnt;i++)
{
if (_menuItemNr == _lineNr)
{
for(uint16_t i = 0; i < fileCnt; i++) {
if (_menuItemNr == _lineNr) {
#ifndef SDCARD_RATHERRECENTFIRST
card.getfilename(i);
#else
card.getfilename(fileCnt-1-i);
#endif
if (card.filenameIsDir)
{
MENU_ITEM(sddirectory, MSG_CARD_MENU, card.filename, card.longFilename);
}else{
else
MENU_ITEM(sdfile, MSG_CARD_MENU, card.filename, card.longFilename);
}
}else{
else {
MENU_ITEM_DUMMY();
}
}
@ -1062,24 +1025,21 @@ void lcd_sdcard_menu()
}
#define menu_edit_type(_type, _name, _strFunc, scale) \
void menu_edit_ ## _name () \
{ \
bool _menu_edit_ ## _name () { \
bool isClicked = LCD_CLICKED; \
if ((int32_t)encoderPosition < 0) encoderPosition = 0; \
if ((int32_t)encoderPosition > maxEditValue) encoderPosition = maxEditValue; \
if (lcdDrawUpdate) \
lcd_implementation_drawedit(editLabel, _strFunc(((_type)((int32_t)encoderPosition + minEditValue)) / scale)); \
if (LCD_CLICKED) \
{ \
if (isClicked) { \
*((_type*)editValue) = ((_type)((int32_t)encoderPosition + minEditValue)) / scale; \
lcd_goto_menu(prevMenu, prevEncoderPosition); \
} \
return isClicked; \
} \
void menu_edit_callback_ ## _name () { \
menu_edit_ ## _name (); \
if (LCD_CLICKED) (*callbackFunc)(); \
} \
static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) \
{ \
void menu_edit_ ## _name () { _menu_edit_ ## _name(); } \
void menu_edit_callback_ ## _name () { if (_menu_edit_ ## _name ()) (*callbackFunc)(); } \
static void _menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \
prevMenu = currentMenu; \
prevEncoderPosition = encoderPosition; \
\
@ -1092,19 +1052,13 @@ void lcd_sdcard_menu()
maxEditValue = maxValue * scale - minEditValue; \
encoderPosition = (*ptr) * scale - minEditValue; \
} \
static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) \
{ \
prevMenu = currentMenu; \
prevEncoderPosition = encoderPosition; \
\
lcdDrawUpdate = 2; \
static void menu_action_setting_edit_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
currentMenu = menu_edit_ ## _name; \
}\
static void menu_action_setting_edit_callback_ ## _name (const char* pstr, _type* ptr, _type minValue, _type maxValue, menuFunc_t callback) { \
_menu_action_setting_edit_ ## _name(pstr, ptr, minValue, maxValue); \
currentMenu = menu_edit_callback_ ## _name; \
\
editLabel = pstr; \
editValue = ptr; \
minEditValue = minValue * scale; \
maxEditValue = maxValue * scale - minEditValue; \
encoderPosition = (*ptr) * scale - minEditValue; \
callbackFunc = callback; \
}
menu_edit_type(int, int3, itostr3, 1)
@ -1148,14 +1102,13 @@ menu_edit_type(unsigned long, long5, ftostr5, 0.01)
lcd_move_y();
}
static void reprapworld_keypad_move_home() {
enquecommand_P((PSTR("G28"))); // move all axis home
enquecommands_P((PSTR("G28"))); // move all axis home
}
#endif
#endif //REPRAPWORLD_KEYPAD
/** End of menus **/
static void lcd_quick_feedback()
{
static void lcd_quick_feedback() {
lcdDrawUpdate = 2;
blocking_enc = millis() + 500;
lcd_implementation_quick_feedback();
@ -1164,41 +1117,35 @@ static void lcd_quick_feedback()
/** Menu action functions **/
static void menu_action_back(menuFunc_t data) { lcd_goto_menu(data); }
static void menu_action_submenu(menuFunc_t data) { lcd_goto_menu(data); }
static void menu_action_gcode(const char* pgcode) { enquecommand_P(pgcode); }
static void menu_action_gcode(const char* pgcode) { enquecommands_P(pgcode); }
static void menu_action_function(menuFunc_t data) { (*data)(); }
static void menu_action_sdfile(const char* filename, char* longFilename)
{
static void menu_action_sdfile(const char* filename, char* longFilename) {
char cmd[30];
char* c;
sprintf_P(cmd, PSTR("M23 %s"), filename);
for(c = &cmd[4]; *c; c++)
*c = tolower(*c);
for(c = &cmd[4]; *c; c++) *c = tolower(*c);
enquecommand(cmd);
enquecommand_P(PSTR("M24"));
enquecommands_P(PSTR("M24"));
lcd_return_to_status();
}
static void menu_action_sddirectory(const char* filename, char* longFilename)
{
static void menu_action_sddirectory(const char* filename, char* longFilename) {
card.chdir(filename);
encoderPosition = 0;
}
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr)
{
*ptr = !(*ptr);
}
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback)
{
static void menu_action_setting_edit_bool(const char* pstr, bool* ptr) { *ptr = !(*ptr); }
static void menu_action_setting_edit_callback_bool(const char* pstr, bool* ptr, menuFunc_t callback) {
menu_action_setting_edit_bool(pstr, ptr);
(*callback)();
}
#endif //ULTIPANEL
/** LCD API **/
void lcd_init()
{
void lcd_init() {
lcd_implementation_init();
#ifdef NEWPANEL
SET_INPUT(BTN_EN1);
SET_INPUT(BTN_EN2);
WRITE(BTN_EN1,HIGH);
@ -1238,17 +1185,37 @@ void lcd_init()
WRITE(SDCARDDETECT, HIGH);
lcd_oldcardstatus = IS_SD_INSERTED;
#endif //(SDCARDDETECT > 0)
#ifdef LCD_HAS_SLOW_BUTTONS
slow_buttons = 0;
#endif
lcd_buttons_update();
#ifdef ULTIPANEL
encoderDiff = 0;
#endif
}
void lcd_update()
{
int lcd_strlen(char *s) {
int i = 0, j = 0;
while (s[i]) {
if ((s[i] & 0xc0) != 0x80) j++;
i++;
}
return j;
}
int lcd_strlen_P(const char *s) {
int j = 0;
while (pgm_read_byte(s)) {
if ((pgm_read_byte(s) & 0xc0) != 0x80) j++;
s++;
}
return j;
}
void lcd_update() {
static unsigned long timeoutToStatus = 0;
#ifdef LCD_HAS_SLOW_BUTTONS
@ -1258,8 +1225,7 @@ void lcd_update()
lcd_buttons_update();
#if (SDCARDDETECT > 0)
if((IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()))
{
if (IS_SD_INSERTED != lcd_oldcardstatus && lcd_detected()) {
lcdDrawUpdate = 2;
lcd_oldcardstatus = IS_SD_INSERTED;
lcd_implementation_init( // to maybe revive the LCD if static electricity killed it.
@ -1268,61 +1234,80 @@ void lcd_update()
#endif
);
if(lcd_oldcardstatus)
{
if (lcd_oldcardstatus) {
card.initsd();
LCD_MESSAGEPGM(MSG_SD_INSERTED);
}
else
{
else {
card.release();
LCD_MESSAGEPGM(MSG_SD_REMOVED);
}
}
#endif//CARDINSERTED
if (lcd_next_update_millis < millis())
{
long ms = millis();
if (ms > lcd_next_update_millis) {
#ifdef ULTIPANEL
#ifdef REPRAPWORLD_KEYPAD
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) {
reprapworld_keypad_move_z_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) {
reprapworld_keypad_move_z_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) {
reprapworld_keypad_move_x_left();
}
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) {
reprapworld_keypad_move_x_right();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) {
reprapworld_keypad_move_y_down();
}
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) {
reprapworld_keypad_move_y_up();
}
if (REPRAPWORLD_KEYPAD_MOVE_HOME) {
reprapworld_keypad_move_home();
}
if (REPRAPWORLD_KEYPAD_MOVE_Z_UP) reprapworld_keypad_move_z_up();
if (REPRAPWORLD_KEYPAD_MOVE_Z_DOWN) reprapworld_keypad_move_z_down();
if (REPRAPWORLD_KEYPAD_MOVE_X_LEFT) reprapworld_keypad_move_x_left();
if (REPRAPWORLD_KEYPAD_MOVE_X_RIGHT) reprapworld_keypad_move_x_right();
if (REPRAPWORLD_KEYPAD_MOVE_Y_DOWN) reprapworld_keypad_move_y_down();
if (REPRAPWORLD_KEYPAD_MOVE_Y_UP) reprapworld_keypad_move_y_up();
if (REPRAPWORLD_KEYPAD_MOVE_HOME) reprapworld_keypad_move_home();
#endif
if (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP)
{
lcdDrawUpdate = 1;
encoderPosition += encoderDiff / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
bool encoderPastThreshold = (abs(encoderDiff) >= ENCODER_PULSES_PER_STEP);
if (encoderPastThreshold || LCD_CLICKED) {
if (encoderPastThreshold) {
int32_t encoderMultiplier = 1;
#ifdef ENCODER_RATE_MULTIPLIER
if (encoderRateMultiplierEnabled) {
int32_t encoderMovementSteps = abs(encoderDiff) / ENCODER_PULSES_PER_STEP;
if (lastEncoderMovementMillis != 0) {
// Note that the rate is always calculated between to passes through the
// loop and that the abs of the encoderDiff value is tracked.
float encoderStepRate = (float)(encoderMovementSteps) / ((float)(ms - lastEncoderMovementMillis)) * 1000.0;
if (encoderStepRate >= ENCODER_100X_STEPS_PER_SEC) encoderMultiplier = 100;
else if (encoderStepRate >= ENCODER_10X_STEPS_PER_SEC) encoderMultiplier = 10;
#ifdef ENCODER_RATE_MULTIPLIER_DEBUG
SERIAL_ECHO_START;
SERIAL_ECHO("Enc Step Rate: ");
SERIAL_ECHO(encoderStepRate);
SERIAL_ECHO(" Multiplier: ");
SERIAL_ECHO(encoderMultiplier);
SERIAL_ECHO(" ENCODER_10X_STEPS_PER_SEC: ");
SERIAL_ECHO(ENCODER_10X_STEPS_PER_SEC);
SERIAL_ECHO(" ENCODER_100X_STEPS_PER_SEC: ");
SERIAL_ECHOLN(ENCODER_100X_STEPS_PER_SEC);
#endif //ENCODER_RATE_MULTIPLIER_DEBUG
}
if (LCD_CLICKED)
timeoutToStatus = millis() + LCD_TIMEOUT_TO_STATUS;
lastEncoderMovementMillis = ms;
}
#endif //ENCODER_RATE_MULTIPLIER
lcdDrawUpdate = 1;
encoderPosition += (encoderDiff * encoderMultiplier) / ENCODER_PULSES_PER_STEP;
encoderDiff = 0;
}
timeoutToStatus = ms + LCD_TIMEOUT_TO_STATUS;
}
#endif //ULTIPANEL
#ifdef DOGLCD // Changes due to different driver architecture of the DOGM display
blink++; // Variable for fan animation and alive dot
u8g.firstPage();
do
{
do {
u8g.setFont(FONT_MENU);
u8g.setPrintPos(125, 0);
if (blink % 2) u8g.setColorIndex(1); else u8g.setColorIndex(0); // Set color for the alive dot
@ -1340,26 +1325,25 @@ void lcd_update()
#endif
#ifdef ULTIPANEL
if(timeoutToStatus < millis() && currentMenu != lcd_status_screen)
{
if (currentMenu != lcd_status_screen && millis() > timeoutToStatus) {
lcd_return_to_status();
lcdDrawUpdate = 2;
}
#endif //ULTIPANEL
if (lcdDrawUpdate == 2) lcd_implementation_clear();
if (lcdDrawUpdate) lcdDrawUpdate--;
lcd_next_update_millis = millis() + LCD_UPDATE_INTERVAL;
}
}
void lcd_ignore_click(bool b)
{
void lcd_ignore_click(bool b) {
ignore_click = b;
wait_for_unclick = false;
}
void lcd_finishstatus() {
int len = strlen(lcd_status_message);
int len = lcd_strlen(lcd_status_message);
if (len > 0) {
while (len < LCD_WIDTH) {
lcd_status_message[len++] = ' ';
@ -1378,52 +1362,57 @@ void lcd_finishstatus() {
message_millis = millis(); //get status message to show up for a while
#endif
}
void lcd_setstatus(const char* message)
{
if (lcd_status_message_level > 0)
return;
void lcd_setstatus(const char* message) {
if (lcd_status_message_level > 0) return;
strncpy(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setstatuspgm(const char* message)
{
if (lcd_status_message_level > 0)
return;
void lcd_setstatuspgm(const char* message) {
if (lcd_status_message_level > 0) return;
strncpy_P(lcd_status_message, message, LCD_WIDTH);
lcd_finishstatus();
}
void lcd_setalertstatuspgm(const char* message)
{
void lcd_setalertstatuspgm(const char* message) {
lcd_setstatuspgm(message);
lcd_status_message_level = 1;
#ifdef ULTIPANEL
lcd_return_to_status();
#endif//ULTIPANEL
}
void lcd_reset_alert_level()
{
lcd_status_message_level = 0;
#endif
}
void lcd_reset_alert_level() { lcd_status_message_level = 0; }
#ifdef DOGLCD
void lcd_setcontrast(uint8_t value)
{
void lcd_setcontrast(uint8_t value) {
lcd_contrast = value & 63;
u8g.setContrast(lcd_contrast);
}
#endif
#ifdef ULTIPANEL
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
// These values are independent of which pins are used for EN_A and EN_B indications
// The rotary encoder part is also independent to the chipset used for the LCD
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
/* Warning: This function is called from interrupt context */
void lcd_buttons_update()
{
void lcd_buttons_update() {
#ifdef NEWPANEL
uint8_t newbutton = 0;
if (READ(BTN_EN1) == 0) newbutton |= EN_A;
if (READ(BTN_EN2) == 0) newbutton |= EN_B;
#if BTN_ENC > 0
if((blocking_enc<millis()) && (READ(BTN_ENC)==0))
newbutton |= EN_C;
if (millis() > blocking_enc && READ(BTN_ENC) == 0) newbutton |= EN_C;
#endif
buttons = newbutton;
#ifdef LCD_HAS_SLOW_BUTTONS
@ -1435,9 +1424,8 @@ void lcd_buttons_update()
WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD, HIGH);
for(int8_t i = 0; i < 8; i++) {
newbutton_reprapworld_keypad = newbutton_reprapworld_keypad>>1;
if(READ(SHIFT_OUT))
newbutton_reprapworld_keypad|=(1<<7);
newbutton_reprapworld_keypad >>= 1;
if (READ(SHIFT_OUT)) newbutton_reprapworld_keypad |= (1 << 7);
WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW);
}
@ -1448,11 +1436,9 @@ void lcd_buttons_update()
WRITE(SHIFT_LD, LOW);
WRITE(SHIFT_LD, HIGH);
unsigned char tmp_buttons = 0;
for(int8_t i=0;i<8;i++)
{
newbutton = newbutton>>1;
if(READ(SHIFT_OUT))
newbutton|=(1<<7);
for(int8_t i=0; i<8; i++) {
newbutton >>= 1;
if (READ(SHIFT_OUT)) newbutton |= (1 << 7);
WRITE(SHIFT_CLK, HIGH);
WRITE(SHIFT_CLK, LOW);
}
@ -1463,41 +1449,30 @@ void lcd_buttons_update()
uint8_t enc=0;
if (buttons & EN_A) enc |= B01;
if (buttons & EN_B) enc |= B10;
if(enc != lastEncoderBits)
{
switch(enc)
{
if (enc != lastEncoderBits) {
switch(enc) {
case encrot0:
if(lastEncoderBits==encrot3)
encoderDiff++;
else if(lastEncoderBits==encrot1)
encoderDiff--;
if (lastEncoderBits==encrot3) encoderDiff++;
else if (lastEncoderBits==encrot1) encoderDiff--;
break;
case encrot1:
if(lastEncoderBits==encrot0)
encoderDiff++;
else if(lastEncoderBits==encrot2)
encoderDiff--;
if (lastEncoderBits==encrot0) encoderDiff++;
else if (lastEncoderBits==encrot2) encoderDiff--;
break;
case encrot2:
if(lastEncoderBits==encrot1)
encoderDiff++;
else if(lastEncoderBits==encrot3)
encoderDiff--;
if (lastEncoderBits==encrot1) encoderDiff++;
else if (lastEncoderBits==encrot3) encoderDiff--;
break;
case encrot3:
if(lastEncoderBits==encrot2)
encoderDiff++;
else if(lastEncoderBits==encrot0)
encoderDiff--;
if (lastEncoderBits==encrot2) encoderDiff++;
else if (lastEncoderBits==encrot0) encoderDiff--;
break;
}
}
lastEncoderBits = enc;
}
bool lcd_detected(void)
{
bool lcd_detected(void) {
#if (defined(LCD_I2C_TYPE_MCP23017) || defined(LCD_I2C_TYPE_MCP23008)) && defined(DETECT_DEVICE)
return lcd.LcdDetected() == 1;
#else
@ -1505,17 +1480,14 @@ bool lcd_detected(void)
#endif
}
void lcd_buzz(long duration, uint16_t freq)
{
void lcd_buzz(long duration, uint16_t freq) {
#ifdef LCD_USE_I2C_BUZZER
lcd.buzz(duration,freq);
#endif
}
bool lcd_clicked()
{
return LCD_CLICKED;
}
bool lcd_clicked() { return LCD_CLICKED; }
#endif //ULTIPANEL
/********************************/
@ -1772,24 +1744,4 @@ char *ftostr52(const float &x)
return conv;
}
// Callback for after editing PID i value
// grab the PID i value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_i()
{
#ifdef PIDTEMP
PID_PARAM(Ki, pid_current_extruder) = scalePID_i(raw_Ki);
updatePID();
#endif
}
// Callback for after editing PID d value
// grab the PID d value out of the temp variable; scale it; then update the PID driver
void copy_and_scalePID_d()
{
#ifdef PIDTEMP
PID_PARAM(Kd, pid_current_extruder) = scalePID_d(raw_Kd);
updatePID();
#endif
}
#endif //ULTRA_LCD

View file

@ -4,7 +4,8 @@
#include "Marlin.h"
#ifdef ULTRA_LCD
int lcd_strlen(char *s);
int lcd_strlen_P(const char *s);
void lcd_update();
void lcd_init();
void lcd_setstatus(const char* message);

View file

@ -123,17 +123,6 @@
#define LCD_CLICKED (buttons&(B_MI|B_ST))
#endif
////////////////////////
// Setup Rotary Encoder Bit Values (for two pin encoders to indicate movement)
// These values are independent of which pins are used for EN_A and EN_B indications
// The rotary encoder part is also independent to the chipset used for the LCD
#if defined(EN_A) && defined(EN_B)
#define encrot0 0
#define encrot1 2
#define encrot2 3
#define encrot3 1
#endif
#endif //ULTIPANEL
////////////////////////////////////
@ -636,7 +625,7 @@ static void lcd_implementation_drawmenu_generic(uint8_t row, const char* pstr, c
{
lcd.print(c);
pstr++;
n--;
if ((pgm_read_byte(pstr) & 0xc0) != 0x80) n--;
}
while(n--)
lcd.print(' ');
@ -648,9 +637,9 @@ static void lcd_implementation_drawmenu_setting_edit_generic(uint8_t row, const
char c;
//Use all characters in narrow LCDs
#if LCD_WIDTH < 20
uint8_t n = LCD_WIDTH - 1 - 1 - strlen(data);
uint8_t n = LCD_WIDTH - 1 - 1 - lcd_strlen(data);
#else
uint8_t n = LCD_WIDTH - 1 - 2 - strlen(data);
uint8_t n = LCD_WIDTH - 1 - 2 - lcd_strlen(data);
#endif
lcd.setCursor(0, row);
lcd.print(pre_char);
@ -658,7 +647,7 @@ static void lcd_implementation_drawmenu_setting_edit_generic(uint8_t row, const
{
lcd.print(c);
pstr++;
n--;
if ((pgm_read_byte(pstr) & 0xc0) != 0x80) n--;
}
lcd.print(':');
while(n--)
@ -670,9 +659,9 @@ static void lcd_implementation_drawmenu_setting_edit_generic_P(uint8_t row, cons
char c;
//Use all characters in narrow LCDs
#if LCD_WIDTH < 20
uint8_t n = LCD_WIDTH - 1 - 1 - strlen_P(data);
uint8_t n = LCD_WIDTH - 1 - 1 - lcd_strlen_P(data);
#else
uint8_t n = LCD_WIDTH - 1 - 2 - strlen_P(data);
uint8_t n = LCD_WIDTH - 1 - 2 - lcd_strlen_P(data);
#endif
lcd.setCursor(0, row);
lcd.print(pre_char);
@ -680,7 +669,7 @@ static void lcd_implementation_drawmenu_setting_edit_generic_P(uint8_t row, cons
{
lcd.print(c);
pstr++;
n--;
if ((pgm_read_byte(pstr) & 0xc0) != 0x80) n--;
}
lcd.print(':');
while(n--)
@ -733,9 +722,9 @@ void lcd_implementation_drawedit(const char* pstr, char* value)
lcd_printPGM(pstr);
lcd.print(':');
#if LCD_WIDTH < 20
lcd.setCursor(LCD_WIDTH - strlen(value), 1);
lcd.setCursor(LCD_WIDTH - lcd_strlen(value), 1);
#else
lcd.setCursor(LCD_WIDTH -1 - strlen(value), 1);
lcd.setCursor(LCD_WIDTH -1 - lcd_strlen(value), 1);
#endif
lcd.print(value);
}
@ -833,30 +822,26 @@ static void lcd_implementation_drawmenu_sddirectory(uint8_t row, const char* pst
static void lcd_implementation_quick_feedback()
{
#ifdef LCD_USE_I2C_BUZZER
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
lcd_buzz(1000/6,100);
#else
#if defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS) && defined(LCD_FEEDBACK_FREQUENCY_HZ)
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
#else
lcd_buzz(1000/6, 100);
#endif
#elif defined(BEEPER) && BEEPER > -1
SET_OUTPUT(BEEPER);
#if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
for(int8_t i=0;i<10;i++)
{
WRITE(BEEPER,HIGH);
delayMicroseconds(100);
WRITE(BEEPER,LOW);
delayMicroseconds(100);
}
const unsigned int delay = 100;
uint8_t i = 10;
#else
for(int8_t i=0;i<(LCD_FEEDBACK_FREQUENCY_DURATION_MS / (1000 / LCD_FEEDBACK_FREQUENCY_HZ));i++)
{
WRITE(BEEPER,HIGH);
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2);
WRITE(BEEPER,LOW);
delayMicroseconds(1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2);
}
const unsigned int delay = 1000000 / LCD_FEEDBACK_FREQUENCY_HZ / 2;
int8_t i = LCD_FEEDBACK_FREQUENCY_DURATION_MS * LCD_FEEDBACK_FREQUENCY_HZ / 1000;
#endif
while (i--) {
WRITE(BEEPER,HIGH);
delayMicroseconds(delay);
WRITE(BEEPER,LOW);
delayMicroseconds(delay);
}
#endif
}

View file

@ -47,12 +47,9 @@ uint8_t u8g_dev_rrd_st7920_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
{
case U8G_DEV_MSG_INIT:
{
SET_OUTPUT(ST7920_CS_PIN);
WRITE(ST7920_CS_PIN,0);
SET_OUTPUT(ST7920_DAT_PIN);
WRITE(ST7920_DAT_PIN,0);
SET_OUTPUT(ST7920_CLK_PIN);
WRITE(ST7920_CLK_PIN,1);
OUT_WRITE(ST7920_CS_PIN,LOW);
OUT_WRITE(ST7920_DAT_PIN,LOW);
OUT_WRITE(ST7920_CLK_PIN,HIGH);
ST7920_CS();
u8g_Delay(120); //initial delay for boot up