Cleanup of temperature code
- Reduce calls to millis() - General cleanup of manage_heaters - General cleanup of pid autotune - Formatting here & there - Macros to clean up and shrink ISR code (reduced by ~364 lines)
This commit is contained in:
parent
e6af82ba2f
commit
9c9726d469
3 changed files with 875 additions and 1268 deletions
|
@ -6,6 +6,10 @@
|
|||
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS > 3
|
||||
#error RUMBA supports up to 3 extruders. Comment this line to keep going.
|
||||
#endif
|
||||
|
||||
#define X_STEP_PIN 17
|
||||
#define X_DIR_PIN 16
|
||||
#define X_ENABLE_PIN 48
|
||||
|
|
|
@ -71,7 +71,7 @@ float current_temperature_bed = 0.0;
|
|||
unsigned char soft_pwm_bed;
|
||||
|
||||
#ifdef BABYSTEPPING
|
||||
volatile int babystepsTodo[3]={0,0,0};
|
||||
volatile int babystepsTodo[3] = { 0 };
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
|
@ -123,33 +123,33 @@ static volatile bool temp_meas_ready = false;
|
|||
#endif
|
||||
|
||||
#if EXTRUDERS > 4
|
||||
# error Unsupported number of extruders
|
||||
#error Unsupported number of extruders
|
||||
#elif EXTRUDERS > 3
|
||||
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
|
||||
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
|
||||
#elif EXTRUDERS > 2
|
||||
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
|
||||
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
|
||||
#elif EXTRUDERS > 1
|
||||
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
|
||||
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
|
||||
#else
|
||||
# define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
|
||||
#define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
|
||||
#endif
|
||||
|
||||
#ifdef PIDTEMP
|
||||
#ifdef PID_PARAMS_PER_EXTRUDER
|
||||
#ifdef PID_PARAMS_PER_EXTRUDER
|
||||
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
|
||||
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
|
||||
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
|
||||
#endif // PID_ADD_EXTRUSION_RATE
|
||||
#else //PID_PARAMS_PER_EXTRUDER
|
||||
#else //PID_PARAMS_PER_EXTRUDER
|
||||
float Kp = DEFAULT_Kp;
|
||||
float Ki = DEFAULT_Ki * PID_dT;
|
||||
float Kd = DEFAULT_Kd / PID_dT;
|
||||
#ifdef PID_ADD_EXTRUSION_RATE
|
||||
float Kc = DEFAULT_Kc;
|
||||
#endif // PID_ADD_EXTRUSION_RATE
|
||||
#endif // PID_PARAMS_PER_EXTRUDER
|
||||
#endif // PID_PARAMS_PER_EXTRUDER
|
||||
#endif //PIDTEMP
|
||||
|
||||
// Init min and max temp with extreme values to prevent false errors during startup
|
||||
|
@ -159,7 +159,7 @@ static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
|
|||
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
|
||||
//static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
|
||||
#ifdef BED_MAXTEMP
|
||||
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
||||
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
|
||||
#endif
|
||||
|
||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
|
@ -175,12 +175,12 @@ static float analog2tempBed(int raw);
|
|||
static void updateTemperaturesFromRawValues();
|
||||
|
||||
#ifdef WATCH_TEMP_PERIOD
|
||||
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
|
||||
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
|
||||
int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
|
||||
unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
|
||||
#endif //WATCH_TEMP_PERIOD
|
||||
|
||||
#ifndef SOFT_PWM_SCALE
|
||||
#define SOFT_PWM_SCALE 0
|
||||
#define SOFT_PWM_SCALE 0
|
||||
#endif
|
||||
|
||||
#ifdef FILAMENT_SENSOR
|
||||
|
@ -191,6 +191,13 @@ unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
|
|||
static int read_max6675();
|
||||
#endif
|
||||
|
||||
#define HAS_TEMP_0 (defined(TEMP_0_PIN) && TEMP_0_PIN > -1)
|
||||
#define HAS_TEMP_1 (defined(TEMP_1_PIN) && TEMP_1_PIN > -1)
|
||||
#define HAS_TEMP_2 (defined(TEMP_2_PIN) && TEMP_2_PIN > -1)
|
||||
#define HAS_TEMP_3 (defined(TEMP_3_PIN) && TEMP_3_PIN > -1)
|
||||
#define HAS_TEMP_BED (defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1)
|
||||
#define HAS_FILAMENT_SENSOR (defined(FILAMENT_SENSOR) && defined(FILWIDTH_PIN) && FILWIDTH_PIN > -1)
|
||||
|
||||
//===========================================================================
|
||||
//============================= functions ============================
|
||||
//===========================================================================
|
||||
|
@ -198,32 +205,29 @@ unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
|
|||
void PID_autotune(float temp, int extruder, int ncycles)
|
||||
{
|
||||
float input = 0.0;
|
||||
int cycles=0;
|
||||
int cycles = 0;
|
||||
bool heating = true;
|
||||
|
||||
unsigned long temp_millis = millis();
|
||||
unsigned long t1=temp_millis;
|
||||
unsigned long t2=temp_millis;
|
||||
long t_high = 0;
|
||||
long t_low = 0;
|
||||
unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
|
||||
long t_high = 0, t_low = 0;
|
||||
|
||||
long bias, d;
|
||||
float Ku, Tu;
|
||||
float Kp, Ki, Kd;
|
||||
float max = 0, min = 10000;
|
||||
|
||||
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||||
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
|
||||
unsigned long extruder_autofan_last_check = millis();
|
||||
#endif
|
||||
|
||||
if ((extruder >= EXTRUDERS)
|
||||
#if (TEMP_BED_PIN <= -1)
|
||||
||(extruder < 0)
|
||||
unsigned long extruder_autofan_last_check = temp_millis;
|
||||
#endif
|
||||
){
|
||||
|
||||
if (extruder >= EXTRUDERS
|
||||
#if !HAS_TEMP_BED
|
||||
|| extruder < 0
|
||||
#endif
|
||||
) {
|
||||
SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
|
||||
return;
|
||||
}
|
||||
|
@ -232,75 +236,69 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
|||
|
||||
disable_heater(); // switch off all heaters.
|
||||
|
||||
if (extruder<0)
|
||||
{
|
||||
soft_pwm_bed = (MAX_BED_POWER)/2;
|
||||
bias = d = (MAX_BED_POWER)/2;
|
||||
}
|
||||
if (extruder < 0)
|
||||
soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
|
||||
else
|
||||
{
|
||||
soft_pwm[extruder] = (PID_MAX)/2;
|
||||
bias = d = (PID_MAX)/2;
|
||||
}
|
||||
|
||||
|
||||
|
||||
soft_pwm[extruder] = bias = d = PID_MAX / 2;
|
||||
|
||||
// PID Tuning loop
|
||||
for(;;) {
|
||||
|
||||
if(temp_meas_ready == true) { // temp sample ready
|
||||
unsigned long ms = millis();
|
||||
|
||||
if (temp_meas_ready == true) { // temp sample ready
|
||||
updateTemperaturesFromRawValues();
|
||||
|
||||
input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
|
||||
|
||||
max=max(max,input);
|
||||
min=min(min,input);
|
||||
max = max(max, input);
|
||||
min = min(min, input);
|
||||
|
||||
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
|
||||
if(millis() - extruder_autofan_last_check > 2500) {
|
||||
if (ms > extruder_autofan_last_check + 2500) {
|
||||
checkExtruderAutoFans();
|
||||
extruder_autofan_last_check = millis();
|
||||
extruder_autofan_last_check = ms;
|
||||
}
|
||||
#endif
|
||||
|
||||
if(heating == true && input > temp) {
|
||||
if(millis() - t2 > 5000) {
|
||||
heating=false;
|
||||
if (extruder<0)
|
||||
if (heating == true && input > temp) {
|
||||
if (ms - t2 > 5000) {
|
||||
heating = false;
|
||||
if (extruder < 0)
|
||||
soft_pwm_bed = (bias - d) >> 1;
|
||||
else
|
||||
soft_pwm[extruder] = (bias - d) >> 1;
|
||||
t1=millis();
|
||||
t_high=t1 - t2;
|
||||
max=temp;
|
||||
t1 = ms;
|
||||
t_high = t1 - t2;
|
||||
max = temp;
|
||||
}
|
||||
}
|
||||
if(heating == false && input < temp) {
|
||||
if(millis() - t1 > 5000) {
|
||||
heating=true;
|
||||
t2=millis();
|
||||
t_low=t2 - t1;
|
||||
if(cycles > 0) {
|
||||
if (heating == false && input < temp) {
|
||||
if (ms - t1 > 5000) {
|
||||
heating = true;
|
||||
t2 = ms;
|
||||
t_low = t2 - t1;
|
||||
if (cycles > 0) {
|
||||
long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
|
||||
bias += (d*(t_high - t_low))/(t_low + t_high);
|
||||
bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
|
||||
if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
|
||||
else d = bias;
|
||||
bias = constrain(bias, 20, max_pow - 20);
|
||||
d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
|
||||
|
||||
SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
|
||||
SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
|
||||
SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
|
||||
SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
|
||||
if(cycles > 2) {
|
||||
Ku = (4.0*d)/(3.14159*(max-min)/2.0);
|
||||
Tu = ((float)(t_low + t_high)/1000.0);
|
||||
if (cycles > 2) {
|
||||
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
|
||||
Tu = ((float)(t_low + t_high) / 1000.0);
|
||||
SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
|
||||
SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
|
||||
Kp = 0.6*Ku;
|
||||
Ki = 2*Kp/Tu;
|
||||
Kd = Kp*Tu/8;
|
||||
Kp = 0.6 * Ku;
|
||||
Ki = 2 * Kp / Tu;
|
||||
Kd = Kp * Tu / 8;
|
||||
SERIAL_PROTOCOLLNPGM(" Classic PID ");
|
||||
SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
|
||||
SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
|
||||
|
@ -323,26 +321,28 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
|||
*/
|
||||
}
|
||||
}
|
||||
if (extruder<0)
|
||||
if (extruder < 0)
|
||||
soft_pwm_bed = (bias + d) >> 1;
|
||||
else
|
||||
soft_pwm[extruder] = (bias + d) >> 1;
|
||||
cycles++;
|
||||
min=temp;
|
||||
min = temp;
|
||||
}
|
||||
}
|
||||
}
|
||||
if(input > (temp + 20)) {
|
||||
if (input > temp + 20) {
|
||||
SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
|
||||
return;
|
||||
}
|
||||
if(millis() - temp_millis > 2000) {
|
||||
// Every 2 seconds...
|
||||
if (ms - temp_millis > 2000) {
|
||||
int p;
|
||||
if (extruder<0){
|
||||
p=soft_pwm_bed;
|
||||
if (extruder < 0) {
|
||||
p = soft_pwm_bed;
|
||||
SERIAL_PROTOCOLPGM("ok B:");
|
||||
}else{
|
||||
p=soft_pwm[extruder];
|
||||
}
|
||||
else {
|
||||
p = soft_pwm[extruder];
|
||||
SERIAL_PROTOCOLPGM("ok T:");
|
||||
}
|
||||
|
||||
|
@ -350,13 +350,14 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
|||
SERIAL_PROTOCOLPGM(" @:");
|
||||
SERIAL_PROTOCOLLN(p);
|
||||
|
||||
temp_millis = millis();
|
||||
}
|
||||
if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
|
||||
temp_millis = ms;
|
||||
} // every 2 seconds
|
||||
// Over 2 minutes?
|
||||
if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
|
||||
SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
|
||||
return;
|
||||
}
|
||||
if(cycles > ncycles) {
|
||||
if (cycles > ncycles) {
|
||||
SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
|
||||
return;
|
||||
}
|
||||
|
@ -364,22 +365,19 @@ void PID_autotune(float temp, int extruder, int ncycles)
|
|||
}
|
||||
}
|
||||
|
||||
void updatePID()
|
||||
{
|
||||
#ifdef PIDTEMP
|
||||
for(int e = 0; e < EXTRUDERS; e++) {
|
||||
void updatePID() {
|
||||
#ifdef PIDTEMP
|
||||
for (int e = 0; e < EXTRUDERS; e++) {
|
||||
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
|
||||
}
|
||||
#endif
|
||||
#ifdef PIDTEMPBED
|
||||
#endif
|
||||
#ifdef PIDTEMPBED
|
||||
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
int getHeaterPower(int heater) {
|
||||
if (heater<0)
|
||||
return soft_pwm_bed;
|
||||
return soft_pwm[heater];
|
||||
return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
|
||||
}
|
||||
|
||||
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||||
|
@ -473,29 +471,60 @@ void checkExtruderAutoFans()
|
|||
|
||||
#endif // any extruder auto fan pins set
|
||||
|
||||
void manage_heater()
|
||||
{
|
||||
float pid_input;
|
||||
float pid_output;
|
||||
//
|
||||
// Error checking and Write Routines
|
||||
//
|
||||
#if !defined(HEATER_0_PIN) || HEATER_0_PIN < 0
|
||||
#error HEATER_0_PIN not defined for this board
|
||||
#endif
|
||||
#define WRITE_HEATER_0P(v) WRITE(HEATER_0_PIN, v)
|
||||
#if EXTRUDERS > 1 || defined(HEATERS_PARALLEL)
|
||||
#if !defined(HEATER_1_PIN) || HEATER_1_PIN < 0
|
||||
#error HEATER_1_PIN not defined for this board
|
||||
#endif
|
||||
#define WRITE_HEATER_1(v) WRITE(HEATER_1_PIN, v)
|
||||
#if EXTRUDERS > 2
|
||||
#if !defined(HEATER_2_PIN) || HEATER_2_PIN < 0
|
||||
#error HEATER_2_PIN not defined for this board
|
||||
#endif
|
||||
#define WRITE_HEATER_2(v) WRITE(HEATER_2_PIN, v)
|
||||
#if EXTRUDERS > 3
|
||||
#if !defined(HEATER_3_PIN) || HEATER_3_PIN < 0
|
||||
#error HEATER_3_PIN not defined for this board
|
||||
#endif
|
||||
#define WRITE_HEATER_3(v) WRITE(HEATER_3_PIN, v)
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#ifdef HEATERS_PARALLEL
|
||||
#define WRITE_HEATER_0(v) { WRITE_HEATER_0P(v); WRITE_HEATER_1(v); }
|
||||
#else
|
||||
#define WRITE_HEATER_0(v) WRITE_HEATER_0P(v)
|
||||
#endif
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
#define WRITE_HEATER_BED(v) WRITE(HEATER_BED_PIN, v)
|
||||
#endif
|
||||
|
||||
if(temp_meas_ready != true) //better readability
|
||||
return;
|
||||
void manage_heater() {
|
||||
|
||||
if (!temp_meas_ready) return;
|
||||
|
||||
float pid_input, pid_output;
|
||||
|
||||
updateTemperaturesFromRawValues();
|
||||
|
||||
#ifdef HEATER_0_USES_MAX6675
|
||||
if (current_temperature[0] > 1023 || current_temperature[0] > HEATER_0_MAXTEMP) {
|
||||
max_temp_error(0);
|
||||
}
|
||||
if (current_temperature[0] == 0 || current_temperature[0] < HEATER_0_MINTEMP) {
|
||||
min_temp_error(0);
|
||||
}
|
||||
float ct = current_temperature[0];
|
||||
if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
|
||||
if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
|
||||
#endif //HEATER_0_USES_MAX6675
|
||||
|
||||
for(int e = 0; e < EXTRUDERS; e++)
|
||||
{
|
||||
unsigned long ms = millis();
|
||||
|
||||
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
||||
// Loop through all extruders
|
||||
for (int e = 0; e < EXTRUDERS; e++) {
|
||||
|
||||
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
||||
thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
|
||||
#endif
|
||||
|
||||
|
@ -504,16 +533,16 @@ void manage_heater()
|
|||
|
||||
#ifndef PID_OPENLOOP
|
||||
pid_error[e] = target_temperature[e] - pid_input;
|
||||
if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
||||
if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
|
||||
pid_output = BANG_MAX;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
||||
else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
|
||||
pid_output = 0;
|
||||
pid_reset[e] = true;
|
||||
}
|
||||
else {
|
||||
if(pid_reset[e] == true) {
|
||||
if (pid_reset[e] == true) {
|
||||
temp_iState[e] = 0.0;
|
||||
pid_reset[e] = false;
|
||||
}
|
||||
|
@ -524,20 +553,22 @@ void manage_heater()
|
|||
|
||||
//K1 defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
|
||||
dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e])) * K2 + (K1 * dTerm[e]);
|
||||
pid_output = pTerm[e] + iTerm[e] - dTerm[e];
|
||||
if (pid_output > PID_MAX) {
|
||||
if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output=PID_MAX;
|
||||
} else if (pid_output < 0){
|
||||
if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output=0;
|
||||
if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = PID_MAX;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
}
|
||||
temp_dState[e] = pid_input;
|
||||
#else
|
||||
pid_output = constrain(target_temperature[e], 0, PID_MAX);
|
||||
#endif //PID_OPENLOOP
|
||||
|
||||
#ifdef PID_DEBUG
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHO(" PID_DEBUG ");
|
||||
|
@ -553,40 +584,35 @@ void manage_heater()
|
|||
SERIAL_ECHO(" dTerm ");
|
||||
SERIAL_ECHOLN(dTerm[e]);
|
||||
#endif //PID_DEBUG
|
||||
|
||||
#else /* PID off */
|
||||
|
||||
pid_output = 0;
|
||||
if(current_temperature[e] < target_temperature[e]) {
|
||||
pid_output = PID_MAX;
|
||||
}
|
||||
if (current_temperature[e] < target_temperature[e]) pid_output = PID_MAX;
|
||||
|
||||
#endif
|
||||
|
||||
// Check if temperature is within the correct range
|
||||
if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
|
||||
{
|
||||
soft_pwm[e] = (int)pid_output >> 1;
|
||||
}
|
||||
else {
|
||||
soft_pwm[e] = 0;
|
||||
}
|
||||
soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
|
||||
|
||||
#ifdef WATCH_TEMP_PERIOD
|
||||
if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
|
||||
{
|
||||
if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
|
||||
{
|
||||
if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
|
||||
if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
|
||||
setTargetHotend(0, e);
|
||||
LCD_MESSAGEPGM("Heating failed");
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLN("Heating failed");
|
||||
}else{
|
||||
SERIAL_ECHOLNPGM("Heating failed");
|
||||
}
|
||||
else {
|
||||
watchmillis[e] = 0;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif //WATCH_TEMP_PERIOD
|
||||
|
||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
|
||||
if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
|
||||
disable_heater();
|
||||
if(IsStopped() == false) {
|
||||
if (IsStopped() == false) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
|
||||
LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
|
||||
|
@ -595,24 +621,23 @@ void manage_heater()
|
|||
Stop();
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
} // End extruder for loop
|
||||
#endif //TEMP_SENSOR_1_AS_REDUNDANT
|
||||
|
||||
} // Extruders Loop
|
||||
|
||||
#if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
|
||||
(defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
|
||||
if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
|
||||
{
|
||||
if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
|
||||
checkExtruderAutoFans();
|
||||
extruder_autofan_last_check = millis();
|
||||
extruder_autofan_last_check = ms;
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifndef PIDTEMPBED
|
||||
if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
|
||||
return;
|
||||
previous_millis_bed_heater = millis();
|
||||
#endif
|
||||
if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
|
||||
previous_millis_bed_heater = ms;
|
||||
#endif //PIDTEMPBED
|
||||
|
||||
#if TEMP_SENSOR_BED != 0
|
||||
|
||||
|
@ -632,90 +657,63 @@ void manage_heater()
|
|||
|
||||
//K1 defined in Configuration.h in the PID settings
|
||||
#define K2 (1.0-K1)
|
||||
dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
|
||||
dTerm_bed = (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
|
||||
temp_dState_bed = pid_input;
|
||||
|
||||
pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
|
||||
if (pid_output > MAX_BED_POWER) {
|
||||
if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output=MAX_BED_POWER;
|
||||
} else if (pid_output < 0){
|
||||
if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output=0;
|
||||
if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = MAX_BED_POWER;
|
||||
}
|
||||
else if (pid_output < 0) {
|
||||
if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
|
||||
pid_output = 0;
|
||||
}
|
||||
|
||||
#else
|
||||
pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
|
||||
#endif //PID_OPENLOOP
|
||||
|
||||
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
||||
{
|
||||
soft_pwm_bed = (int)pid_output >> 1;
|
||||
}
|
||||
else {
|
||||
soft_pwm_bed = 0;
|
||||
}
|
||||
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
|
||||
|
||||
#elif !defined(BED_LIMIT_SWITCHING)
|
||||
// Check if temperature is within the correct range
|
||||
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
||||
{
|
||||
if(current_temperature_bed >= target_temperature_bed)
|
||||
{
|
||||
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
|
||||
soft_pwm_bed = current_temperature_bed >= target_temperature_bed ? 0 : MAX_BED_POWER >> 1;
|
||||
}
|
||||
else {
|
||||
soft_pwm_bed = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
soft_pwm_bed = MAX_BED_POWER>>1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
soft_pwm_bed = 0;
|
||||
WRITE(HEATER_BED_PIN,LOW);
|
||||
WRITE_HEATER_BED(LOW);
|
||||
}
|
||||
#else //#ifdef BED_LIMIT_SWITCHING
|
||||
// Check if temperature is within the correct band
|
||||
if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
|
||||
{
|
||||
if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
|
||||
{
|
||||
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
|
||||
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
|
||||
soft_pwm_bed = 0;
|
||||
else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
||||
soft_pwm_bed = MAX_BED_POWER >> 1;
|
||||
}
|
||||
else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
|
||||
{
|
||||
soft_pwm_bed = MAX_BED_POWER>>1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
soft_pwm_bed = 0;
|
||||
WRITE(HEATER_BED_PIN,LOW);
|
||||
WRITE_HEATER_BED(LOW);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
#endif //TEMP_SENSOR_BED != 0
|
||||
|
||||
//code for controlling the extruder rate based on the width sensor
|
||||
#ifdef FILAMENT_SENSOR
|
||||
if(filament_sensor)
|
||||
{
|
||||
meas_shift_index=delay_index1-meas_delay_cm;
|
||||
if(meas_shift_index<0)
|
||||
meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
|
||||
// Control the extruder rate based on the width sensor
|
||||
#ifdef FILAMENT_SENSOR
|
||||
if (filament_sensor) {
|
||||
meas_shift_index = delay_index1 - meas_delay_cm;
|
||||
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
||||
|
||||
//get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
|
||||
//then square it to get an area
|
||||
|
||||
if(meas_shift_index<0)
|
||||
meas_shift_index=0;
|
||||
else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
|
||||
meas_shift_index=MAX_MEASUREMENT_DELAY;
|
||||
|
||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
|
||||
if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
|
||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
|
||||
// Get the delayed info and add 100 to reconstitute to a percent of
|
||||
// the nominal filament diameter then square it to get an area
|
||||
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
||||
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
|
||||
if (vm < 0.01) vm = 0.01;
|
||||
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
|
||||
}
|
||||
#endif
|
||||
#endif //FILAMENT_SENSOR
|
||||
}
|
||||
|
||||
#define PGM_RD_W(x) (short)pgm_read_word(&x)
|
||||
|
@ -812,7 +810,7 @@ static void updateTemperaturesFromRawValues()
|
|||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
redundant_temperature = analog2temp(redundant_temperature_raw, 1);
|
||||
#endif
|
||||
#if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
|
||||
#if HAS_FILAMENT_SENSOR
|
||||
filament_width_meas = analog2widthFil();
|
||||
#endif
|
||||
//Reset the watchdog after we know we have a temperature measurement.
|
||||
|
@ -824,29 +822,22 @@ static void updateTemperaturesFromRawValues()
|
|||
}
|
||||
|
||||
|
||||
// For converting raw Filament Width to milimeters
|
||||
#ifdef FILAMENT_SENSOR
|
||||
float analog2widthFil() {
|
||||
return current_raw_filwidth/16383.0*5.0;
|
||||
//return current_raw_filwidth;
|
||||
}
|
||||
|
||||
// For converting raw Filament Width to a ratio
|
||||
int widthFil_to_size_ratio() {
|
||||
// Convert raw Filament Width to millimeters
|
||||
float analog2widthFil() {
|
||||
return current_raw_filwidth / 16383.0 * 5.0;
|
||||
//return current_raw_filwidth;
|
||||
}
|
||||
|
||||
float temp;
|
||||
// Convert raw Filament Width to a ratio
|
||||
int widthFil_to_size_ratio() {
|
||||
float temp = filament_width_meas;
|
||||
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
|
||||
else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
|
||||
return filament_width_nominal / temp * 100;
|
||||
}
|
||||
|
||||
temp=filament_width_meas;
|
||||
if(filament_width_meas<MEASURED_LOWER_LIMIT)
|
||||
temp=filament_width_nominal; //assume sensor cut out
|
||||
else if (filament_width_meas>MEASURED_UPPER_LIMIT)
|
||||
temp= MEASURED_UPPER_LIMIT;
|
||||
|
||||
|
||||
return(filament_width_nominal/temp*100);
|
||||
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -855,24 +846,24 @@ return(filament_width_nominal/temp*100);
|
|||
|
||||
void tp_init()
|
||||
{
|
||||
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||||
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
|
||||
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
|
||||
MCUCR=(1<<JTD);
|
||||
MCUCR=(1<<JTD);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Finish init of mult extruder arrays
|
||||
for(int e = 0; e < EXTRUDERS; e++) {
|
||||
for (int e = 0; e < EXTRUDERS; e++) {
|
||||
// populate with the first value
|
||||
maxttemp[e] = maxttemp[0];
|
||||
#ifdef PIDTEMP
|
||||
#ifdef PIDTEMP
|
||||
temp_iState_min[e] = 0.0;
|
||||
temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
|
||||
#endif //PIDTEMP
|
||||
#ifdef PIDTEMPBED
|
||||
#endif //PIDTEMP
|
||||
#ifdef PIDTEMPBED
|
||||
temp_iState_min_bed = 0.0;
|
||||
temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
|
||||
#endif //PIDTEMPBED
|
||||
#endif //PIDTEMPBED
|
||||
}
|
||||
|
||||
#if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
|
||||
|
@ -921,57 +912,35 @@ void tp_init()
|
|||
|
||||
#endif //HEATER_0_USES_MAX6675
|
||||
|
||||
#ifdef DIDR2
|
||||
#define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= 1 << pin; else DIDR2 |= 1 << (pin - 8); }while(0)
|
||||
#else
|
||||
#define ANALOG_SELECT(pin) do{ DIDR0 |= 1 << pin; }while(0)
|
||||
#endif
|
||||
|
||||
// Set analog inputs
|
||||
ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
|
||||
DIDR0 = 0;
|
||||
#ifdef DIDR2
|
||||
DIDR2 = 0;
|
||||
#endif
|
||||
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
||||
#if TEMP_0_PIN < 8
|
||||
DIDR0 |= 1 << TEMP_0_PIN;
|
||||
#else
|
||||
DIDR2 |= 1<<(TEMP_0_PIN - 8);
|
||||
#if HAS_TEMP_0
|
||||
ANALOG_SELECT(TEMP_0_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_1
|
||||
ANALOG_SELECT(TEMP_1_PIN);
|
||||
#endif
|
||||
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
||||
#if TEMP_1_PIN < 8
|
||||
DIDR0 |= 1<<TEMP_1_PIN;
|
||||
#else
|
||||
DIDR2 |= 1<<(TEMP_1_PIN - 8);
|
||||
#if HAS_TEMP_2
|
||||
ANALOG_SELECT(TEMP_2_PIN);
|
||||
#endif
|
||||
#if HAS_TEMP_3
|
||||
ANALOG_SELECT(TEMP_3_PIN);
|
||||
#endif
|
||||
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
||||
#if TEMP_2_PIN < 8
|
||||
DIDR0 |= 1 << TEMP_2_PIN;
|
||||
#else
|
||||
DIDR2 |= 1<<(TEMP_2_PIN - 8);
|
||||
#endif
|
||||
#endif
|
||||
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
|
||||
#if TEMP_3_PIN < 8
|
||||
DIDR0 |= 1 << TEMP_3_PIN;
|
||||
#else
|
||||
DIDR2 |= 1<<(TEMP_3_PIN - 8);
|
||||
#endif
|
||||
#endif
|
||||
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
||||
#if TEMP_BED_PIN < 8
|
||||
DIDR0 |= 1<<TEMP_BED_PIN;
|
||||
#else
|
||||
DIDR2 |= 1<<(TEMP_BED_PIN - 8);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
//Added for Filament Sensor
|
||||
#ifdef FILAMENT_SENSOR
|
||||
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1)
|
||||
#if FILWIDTH_PIN < 8
|
||||
DIDR0 |= 1<<FILWIDTH_PIN;
|
||||
#else
|
||||
DIDR2 |= 1<<(FILWIDTH_PIN - 8);
|
||||
#endif
|
||||
#if HAS_TEMP_BED
|
||||
ANALOG_SELECT(TEMP_BED_PIN);
|
||||
#endif
|
||||
#if HAS_FILAMENT_SENSOR
|
||||
ANALOG_SELECT(FILWIDTH_PIN);
|
||||
#endif
|
||||
|
||||
// Use timer0 for temperature measurement
|
||||
|
@ -982,128 +951,89 @@ void tp_init()
|
|||
// Wait for temperature measurement to settle
|
||||
delay(250);
|
||||
|
||||
#ifdef HEATER_0_MINTEMP
|
||||
minttemp[0] = HEATER_0_MINTEMP;
|
||||
while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
|
||||
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
||||
minttemp_raw[0] += OVERSAMPLENR;
|
||||
#else
|
||||
minttemp_raw[0] -= OVERSAMPLENR;
|
||||
#endif
|
||||
#define TEMP_MIN_ROUTINE(NR) \
|
||||
minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
|
||||
while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
|
||||
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
|
||||
minttemp_raw[NR] += OVERSAMPLENR; \
|
||||
else \
|
||||
minttemp_raw[NR] -= OVERSAMPLENR; \
|
||||
}
|
||||
#endif //MINTEMP
|
||||
#ifdef HEATER_0_MAXTEMP
|
||||
maxttemp[0] = HEATER_0_MAXTEMP;
|
||||
while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
|
||||
#if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
|
||||
maxttemp_raw[0] -= OVERSAMPLENR;
|
||||
#else
|
||||
maxttemp_raw[0] += OVERSAMPLENR;
|
||||
#endif
|
||||
#define TEMP_MAX_ROUTINE(NR) \
|
||||
maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
|
||||
while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
|
||||
if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
|
||||
maxttemp_raw[NR] -= OVERSAMPLENR; \
|
||||
else \
|
||||
maxttemp_raw[NR] += OVERSAMPLENR; \
|
||||
}
|
||||
#endif //MAXTEMP
|
||||
|
||||
#if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
|
||||
minttemp[1] = HEATER_1_MINTEMP;
|
||||
while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
|
||||
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
||||
minttemp_raw[1] += OVERSAMPLENR;
|
||||
#else
|
||||
minttemp_raw[1] -= OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif // MINTEMP 1
|
||||
#if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
|
||||
maxttemp[1] = HEATER_1_MAXTEMP;
|
||||
while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
|
||||
#if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
|
||||
maxttemp_raw[1] -= OVERSAMPLENR;
|
||||
#else
|
||||
maxttemp_raw[1] += OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif //MAXTEMP 1
|
||||
#ifdef HEATER_0_MINTEMP
|
||||
TEMP_MIN_ROUTINE(0);
|
||||
#endif
|
||||
#ifdef HEATER_0_MAXTEMP
|
||||
TEMP_MAX_ROUTINE(0);
|
||||
#endif
|
||||
#if EXTRUDERS > 1
|
||||
#ifdef HEATER_1_MINTEMP
|
||||
TEMP_MIN_ROUTINE(1);
|
||||
#endif
|
||||
#ifdef HEATER_1_MAXTEMP
|
||||
TEMP_MAX_ROUTINE(1);
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
#ifdef HEATER_2_MINTEMP
|
||||
TEMP_MIN_ROUTINE(2);
|
||||
#endif
|
||||
#ifdef HEATER_2_MAXTEMP
|
||||
TEMP_MAX_ROUTINE(2);
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
#ifdef HEATER_3_MINTEMP
|
||||
TEMP_MIN_ROUTINE(3);
|
||||
#endif
|
||||
#ifdef HEATER_3_MAXTEMP
|
||||
TEMP_MAX_ROUTINE(3);
|
||||
#endif
|
||||
#endif // EXTRUDERS > 3
|
||||
#endif // EXTRUDERS > 2
|
||||
#endif // EXTRUDERS > 1
|
||||
|
||||
#if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
|
||||
minttemp[2] = HEATER_2_MINTEMP;
|
||||
while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
|
||||
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
||||
minttemp_raw[2] += OVERSAMPLENR;
|
||||
#else
|
||||
minttemp_raw[2] -= OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif //MINTEMP 2
|
||||
#if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
|
||||
maxttemp[2] = HEATER_2_MAXTEMP;
|
||||
while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
|
||||
#if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
|
||||
maxttemp_raw[2] -= OVERSAMPLENR;
|
||||
#else
|
||||
maxttemp_raw[2] += OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif //MAXTEMP 2
|
||||
|
||||
#if (EXTRUDERS > 3) && defined(HEATER_3_MINTEMP)
|
||||
minttemp[3] = HEATER_3_MINTEMP;
|
||||
while(analog2temp(minttemp_raw[3], 3) < HEATER_3_MINTEMP) {
|
||||
#if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
|
||||
minttemp_raw[3] += OVERSAMPLENR;
|
||||
#else
|
||||
minttemp_raw[3] -= OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif //MINTEMP 3
|
||||
#if (EXTRUDERS > 3) && defined(HEATER_3_MAXTEMP)
|
||||
maxttemp[3] = HEATER_3_MAXTEMP;
|
||||
while(analog2temp(maxttemp_raw[3], 3) > HEATER_3_MAXTEMP) {
|
||||
#if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
|
||||
maxttemp_raw[3] -= OVERSAMPLENR;
|
||||
#else
|
||||
maxttemp_raw[3] += OVERSAMPLENR;
|
||||
#endif
|
||||
}
|
||||
#endif // MAXTEMP 3
|
||||
|
||||
|
||||
#ifdef BED_MINTEMP
|
||||
#ifdef BED_MINTEMP
|
||||
/* No bed MINTEMP error implemented?!? */ /*
|
||||
while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
bed_minttemp_raw += OVERSAMPLENR;
|
||||
#else
|
||||
#else
|
||||
bed_minttemp_raw -= OVERSAMPLENR;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
*/
|
||||
#endif //BED_MINTEMP
|
||||
#ifdef BED_MAXTEMP
|
||||
#endif //BED_MINTEMP
|
||||
#ifdef BED_MAXTEMP
|
||||
while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
#if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
|
||||
bed_maxttemp_raw -= OVERSAMPLENR;
|
||||
#else
|
||||
#else
|
||||
bed_maxttemp_raw += OVERSAMPLENR;
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
#endif //BED_MAXTEMP
|
||||
#endif //BED_MAXTEMP
|
||||
}
|
||||
|
||||
void setWatch()
|
||||
{
|
||||
#ifdef WATCH_TEMP_PERIOD
|
||||
for (int e = 0; e < EXTRUDERS; e++)
|
||||
{
|
||||
if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
|
||||
{
|
||||
void setWatch() {
|
||||
#ifdef WATCH_TEMP_PERIOD
|
||||
unsigned long ms = millis();
|
||||
for (int e = 0; e < EXTRUDERS; e++) {
|
||||
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
|
||||
watch_start_temp[e] = degHotend(e);
|
||||
watchmillis[e] = millis();
|
||||
watchmillis[e] = ms;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
#if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
||||
#if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
|
||||
void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
|
||||
{
|
||||
/*
|
||||
|
@ -1135,11 +1065,13 @@ void thermal_runaway_protection(int *state, unsigned long *timer, float temperat
|
|||
if (temperature >= target_temperature) *state = 2;
|
||||
break;
|
||||
case 2: // "Temperature Stable" state
|
||||
{
|
||||
unsigned long ms = millis();
|
||||
if (temperature >= (target_temperature - hysteresis_degc))
|
||||
{
|
||||
*timer = millis();
|
||||
*timer = ms;
|
||||
}
|
||||
else if ( (millis() - *timer) > ((unsigned long) period_seconds) * 1000)
|
||||
else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
|
||||
{
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: ");
|
||||
|
@ -1160,54 +1092,45 @@ void thermal_runaway_protection(int *state, unsigned long *timer, float temperat
|
|||
lcd_update();
|
||||
}
|
||||
}
|
||||
break;
|
||||
} break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
#endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
|
||||
|
||||
void disable_heater()
|
||||
{
|
||||
for(int i=0;i<EXTRUDERS;i++)
|
||||
setTargetHotend(0,i);
|
||||
|
||||
void disable_heater() {
|
||||
for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
|
||||
setTargetBed(0);
|
||||
#if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
|
||||
target_temperature[0]=0;
|
||||
soft_pwm[0]=0;
|
||||
#if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
|
||||
WRITE(HEATER_0_PIN,LOW);
|
||||
#endif
|
||||
|
||||
#if HAS_TEMP_0
|
||||
target_temperature[0] = 0;
|
||||
soft_pwm[0] = 0;
|
||||
WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
|
||||
#endif
|
||||
|
||||
#if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
|
||||
target_temperature[1]=0;
|
||||
soft_pwm[1]=0;
|
||||
#if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
|
||||
WRITE(HEATER_1_PIN,LOW);
|
||||
#endif
|
||||
#if EXTRUDERS > 1 && HAS_TEMP_1
|
||||
target_temperature[1] = 0;
|
||||
soft_pwm[1] = 0;
|
||||
WRITE_HEATER_1(LOW);
|
||||
#endif
|
||||
|
||||
#if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
|
||||
target_temperature[2]=0;
|
||||
soft_pwm[2]=0;
|
||||
#if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
|
||||
WRITE(HEATER_2_PIN,LOW);
|
||||
#endif
|
||||
#if EXTRUDERS > 2 && HAS_TEMP_2
|
||||
target_temperature[2] = 0;
|
||||
soft_pwm[2] = 0;
|
||||
WRITE_HEATER_2(LOW);
|
||||
#endif
|
||||
|
||||
#if defined(TEMP_3_PIN) && TEMP_3_PIN > -1 && EXTRUDERS > 3
|
||||
target_temperature[3]=0;
|
||||
soft_pwm[3]=0;
|
||||
#if defined(HEATER_3_PIN) && HEATER_3_PIN > -1
|
||||
WRITE(HEATER_3_PIN,LOW);
|
||||
#endif
|
||||
#if EXTRUDERS > 3 && HAS_TEMP_3
|
||||
target_temperature[3] = 0;
|
||||
soft_pwm[3] = 0;
|
||||
WRITE_HEATER_3(LOW);
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
|
||||
target_temperature_bed=0;
|
||||
soft_pwm_bed=0;
|
||||
#if HAS_TEMP_BED
|
||||
target_temperature_bed = 0;
|
||||
soft_pwm_bed = 0;
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
WRITE(HEATER_BED_PIN,LOW);
|
||||
WRITE_HEATER_BED(LOW);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
@ -1239,10 +1162,10 @@ void min_temp_error(uint8_t e) {
|
|||
}
|
||||
|
||||
void bed_max_temp_error(void) {
|
||||
#if HEATER_BED_PIN > -1
|
||||
WRITE(HEATER_BED_PIN, 0);
|
||||
#endif
|
||||
if(IsStopped() == false) {
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
WRITE_HEATER_BED(0);
|
||||
#endif
|
||||
if (IsStopped() == false) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
|
||||
LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
|
||||
|
@ -1253,16 +1176,17 @@ void bed_max_temp_error(void) {
|
|||
}
|
||||
|
||||
#ifdef HEATER_0_USES_MAX6675
|
||||
#define MAX6675_HEAT_INTERVAL 250
|
||||
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
|
||||
int max6675_temp = 2000;
|
||||
#define MAX6675_HEAT_INTERVAL 250
|
||||
long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
|
||||
int max6675_temp = 2000;
|
||||
|
||||
static int read_max6675()
|
||||
{
|
||||
if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
|
||||
static int read_max6675() {
|
||||
|
||||
unsigned long ms = millis();
|
||||
if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
|
||||
return max6675_temp;
|
||||
|
||||
max6675_previous_millis = millis();
|
||||
max6675_previous_millis = ms;
|
||||
max6675_temp = 0;
|
||||
|
||||
#ifdef PRR
|
||||
|
@ -1294,25 +1218,39 @@ static int read_max6675()
|
|||
// disable TT_MAX6675
|
||||
WRITE(MAX6675_SS, 1);
|
||||
|
||||
if (max6675_temp & 4)
|
||||
{
|
||||
if (max6675_temp & 4) {
|
||||
// thermocouple open
|
||||
max6675_temp = 4000;
|
||||
}
|
||||
else
|
||||
{
|
||||
else {
|
||||
max6675_temp = max6675_temp >> 3;
|
||||
}
|
||||
|
||||
return max6675_temp;
|
||||
}
|
||||
}
|
||||
|
||||
#endif //HEATER_0_USES_MAX6675
|
||||
|
||||
enum TempState {
|
||||
PrepareTemp_0,
|
||||
MeasureTemp_0,
|
||||
PrepareTemp_BED,
|
||||
MeasureTemp_BED,
|
||||
PrepareTemp_1,
|
||||
MeasureTemp_1,
|
||||
PrepareTemp_2,
|
||||
MeasureTemp_2,
|
||||
PrepareTemp_3,
|
||||
MeasureTemp_3,
|
||||
Prepare_FILWIDTH,
|
||||
Measure_FILWIDTH,
|
||||
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
|
||||
};
|
||||
|
||||
//
|
||||
// Timer 0 is shared with millies
|
||||
ISR(TIMER0_COMPB_vect)
|
||||
{
|
||||
//
|
||||
ISR(TIMER0_COMPB_vect) {
|
||||
//these variables are only accesible from the ISR, but static, so they don't lose their value
|
||||
static unsigned char temp_count = 0;
|
||||
static unsigned long raw_temp_0_value = 0;
|
||||
|
@ -1320,340 +1258,172 @@ ISR(TIMER0_COMPB_vect)
|
|||
static unsigned long raw_temp_2_value = 0;
|
||||
static unsigned long raw_temp_3_value = 0;
|
||||
static unsigned long raw_temp_bed_value = 0;
|
||||
static unsigned char temp_state = 12;
|
||||
static TempState temp_state = StartupDelay;
|
||||
static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
|
||||
static unsigned char soft_pwm_0;
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
|
||||
// Static members for each heater
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
static unsigned char slow_pwm_count = 0;
|
||||
static unsigned char state_heater_0 = 0;
|
||||
static unsigned char state_timer_heater_0 = 0;
|
||||
#endif
|
||||
#define ISR_STATICS(n) \
|
||||
static unsigned char soft_pwm_ ## n; \
|
||||
static unsigned char state_heater_ ## n = 0; \
|
||||
static unsigned char state_timer_heater_ ## n = 0
|
||||
#else
|
||||
#define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
|
||||
#endif
|
||||
|
||||
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
||||
static unsigned char soft_pwm_1;
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
static unsigned char state_heater_1 = 0;
|
||||
static unsigned char state_timer_heater_1 = 0;
|
||||
#endif
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
static unsigned char soft_pwm_2;
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
static unsigned char state_heater_2 = 0;
|
||||
static unsigned char state_timer_heater_2 = 0;
|
||||
#endif
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
static unsigned char soft_pwm_3;
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
static unsigned char state_heater_3 = 0;
|
||||
static unsigned char state_timer_heater_3 = 0;
|
||||
#endif
|
||||
#endif
|
||||
// Statics per heater
|
||||
ISR_STATICS(0);
|
||||
#if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
|
||||
ISR_STATICS(1);
|
||||
#if EXTRUDERS > 2
|
||||
ISR_STATICS(2);
|
||||
#if EXTRUDERS > 3
|
||||
ISR_STATICS(3);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
ISR_STATICS(BED);
|
||||
#endif
|
||||
|
||||
#if HEATER_BED_PIN > -1
|
||||
static unsigned char soft_pwm_b;
|
||||
#ifdef SLOW_PWM_HEATERS
|
||||
static unsigned char state_heater_b = 0;
|
||||
static unsigned char state_timer_heater_b = 0;
|
||||
#endif
|
||||
#endif
|
||||
#if HAS_FILAMENT_SENSOR
|
||||
static unsigned long raw_filwidth_value = 0;
|
||||
#endif
|
||||
|
||||
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
||||
static unsigned long raw_filwidth_value = 0; //added for filament width sensor
|
||||
#endif
|
||||
|
||||
#ifndef SLOW_PWM_HEATERS
|
||||
/*
|
||||
#ifndef SLOW_PWM_HEATERS
|
||||
/**
|
||||
* standard PWM modulation
|
||||
*/
|
||||
if(pwm_count == 0){
|
||||
if (pwm_count == 0) {
|
||||
soft_pwm_0 = soft_pwm[0];
|
||||
if(soft_pwm_0 > 0) {
|
||||
WRITE(HEATER_0_PIN,1);
|
||||
#ifdef HEATERS_PARALLEL
|
||||
WRITE(HEATER_1_PIN,1);
|
||||
#endif
|
||||
} else WRITE(HEATER_0_PIN,0);
|
||||
if (soft_pwm_0 > 0) {
|
||||
WRITE_HEATER_0(1);
|
||||
}
|
||||
else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
#if EXTRUDERS > 1
|
||||
soft_pwm_1 = soft_pwm[1];
|
||||
if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
|
||||
#if EXTRUDERS > 2
|
||||
soft_pwm_2 = soft_pwm[2];
|
||||
if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
|
||||
#if EXTRUDERS > 3
|
||||
soft_pwm_3 = soft_pwm[3];
|
||||
if(soft_pwm_3 > 0) WRITE(HEATER_3_PIN,1); else WRITE(HEATER_3_PIN,0);
|
||||
#endif
|
||||
WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
soft_pwm_b = soft_pwm_bed;
|
||||
if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
|
||||
#endif
|
||||
#ifdef FAN_SOFT_PWM
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
soft_pwm_BED = soft_pwm_bed;
|
||||
WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
|
||||
#endif
|
||||
#ifdef FAN_SOFT_PWM
|
||||
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
||||
if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
||||
#endif
|
||||
}
|
||||
if(soft_pwm_0 < pwm_count) {
|
||||
WRITE(HEATER_0_PIN,0);
|
||||
#ifdef HEATERS_PARALLEL
|
||||
WRITE(HEATER_1_PIN,0);
|
||||
#endif
|
||||
WRITE(FAN_PIN, soft_pwm_fan > 0 ? 1 : 0);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
if(soft_pwm_3 < pwm_count) WRITE(HEATER_3_PIN,0);
|
||||
#endif
|
||||
if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
|
||||
#if EXTRUDERS > 1
|
||||
if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
|
||||
#if EXTRUDERS > 2
|
||||
if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
|
||||
#if EXTRUDERS > 3
|
||||
if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
|
||||
#endif
|
||||
#ifdef FAN_SOFT_PWM
|
||||
if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
|
||||
#endif
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
|
||||
#endif
|
||||
|
||||
#ifdef FAN_SOFT_PWM
|
||||
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN, 0);
|
||||
#endif
|
||||
|
||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
|
||||
#else //ifndef SLOW_PWM_HEATERS
|
||||
#else // SLOW_PWM_HEATERS
|
||||
/*
|
||||
* SLOW PWM HEATERS
|
||||
*
|
||||
* for heaters drived by relay
|
||||
*/
|
||||
#ifndef MIN_STATE_TIME
|
||||
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
||||
#endif
|
||||
#ifndef MIN_STATE_TIME
|
||||
#define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
|
||||
#endif
|
||||
|
||||
// Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
|
||||
#define _SLOW_PWM_ROUTINE(NR, src) \
|
||||
soft_pwm_ ## NR = src; \
|
||||
if (soft_pwm_ ## NR > 0) { \
|
||||
if (state_timer_heater_ ## NR == 0) { \
|
||||
if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
|
||||
state_heater_ ## NR = 1; \
|
||||
WRITE_HEATER_ ## NR(1); \
|
||||
} \
|
||||
} \
|
||||
else { \
|
||||
if (state_timer_heater_ ## NR == 0) { \
|
||||
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
|
||||
state_heater_ ## NR = 0; \
|
||||
WRITE_HEATER_ ## NR(0); \
|
||||
} \
|
||||
}
|
||||
#define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
|
||||
|
||||
#define PWM_OFF_ROUTINE(NR) \
|
||||
if (soft_pwm_ ## NR < slow_pwm_count) { \
|
||||
if (state_timer_heater_ ## NR == 0) { \
|
||||
if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
|
||||
state_heater_ ## NR = 0; \
|
||||
WRITE_HEATER_ ## NR (0); \
|
||||
} \
|
||||
}
|
||||
|
||||
if (slow_pwm_count == 0) {
|
||||
// EXTRUDER 0
|
||||
soft_pwm_0 = soft_pwm[0];
|
||||
if (soft_pwm_0 > 0) {
|
||||
// turn ON heather only if the minimum time is up
|
||||
if (state_timer_heater_0 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_0 == 0) {
|
||||
state_timer_heater_0 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_0 = 1;
|
||||
WRITE(HEATER_0_PIN, 1);
|
||||
#ifdef HEATERS_PARALLEL
|
||||
WRITE(HEATER_1_PIN, 1);
|
||||
#endif
|
||||
}
|
||||
} else {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_0 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_0 == 1) {
|
||||
state_timer_heater_0 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_0 = 0;
|
||||
WRITE(HEATER_0_PIN, 0);
|
||||
#ifdef HEATERS_PARALLEL
|
||||
WRITE(HEATER_1_PIN, 0);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
// EXTRUDER 1
|
||||
soft_pwm_1 = soft_pwm[1];
|
||||
if (soft_pwm_1 > 0) {
|
||||
// turn ON heather only if the minimum time is up
|
||||
if (state_timer_heater_1 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_1 == 0) {
|
||||
state_timer_heater_1 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_1 = 1;
|
||||
WRITE(HEATER_1_PIN, 1);
|
||||
}
|
||||
} else {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_1 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_1 == 1) {
|
||||
state_timer_heater_1 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_1 = 0;
|
||||
WRITE(HEATER_1_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
SLOW_PWM_ROUTINE(0); // EXTRUDER 0
|
||||
#if EXTRUDERS > 1
|
||||
SLOW_PWM_ROUTINE(1); // EXTRUDER 1
|
||||
#if EXTRUDERS > 2
|
||||
SLOW_PWM_ROUTINE(2); // EXTRUDER 2
|
||||
#if EXTRUDERS > 3
|
||||
SLOW_PWM_ROUTINE(3); // EXTRUDER 3
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
_SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS > 2
|
||||
// EXTRUDER 2
|
||||
soft_pwm_2 = soft_pwm[2];
|
||||
if (soft_pwm_2 > 0) {
|
||||
// turn ON heather only if the minimum time is up
|
||||
if (state_timer_heater_2 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_2 == 0) {
|
||||
state_timer_heater_2 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_2 = 1;
|
||||
WRITE(HEATER_2_PIN, 1);
|
||||
}
|
||||
} else {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_2 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_2 == 1) {
|
||||
state_timer_heater_2 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_2 = 0;
|
||||
WRITE(HEATER_2_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} // slow_pwm_count == 0
|
||||
|
||||
#if EXTRUDERS > 3
|
||||
// EXTRUDER 3
|
||||
soft_pwm_3 = soft_pwm[3];
|
||||
if (soft_pwm_3 > 0) {
|
||||
// turn ON heather only if the minimum time is up
|
||||
if (state_timer_heater_3 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_3 == 0) {
|
||||
state_timer_heater_3 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_3 = 1;
|
||||
WRITE(HEATER_3_PIN, 1);
|
||||
}
|
||||
} else {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_3 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_3 == 1) {
|
||||
state_timer_heater_3 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_3 = 0;
|
||||
WRITE(HEATER_3_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
PWM_OFF_ROUTINE(0); // EXTRUDER 0
|
||||
#if EXTRUDERS > 1
|
||||
PWM_OFF_ROUTINE(1); // EXTRUDER 1
|
||||
#if EXTRUDERS > 2
|
||||
PWM_OFF_ROUTINE(2); // EXTRUDER 2
|
||||
#if EXTRUDERS > 3
|
||||
PWM_OFF_ROUTINE(3); // EXTRUDER 3
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
PWM_OFF_ROUTINE(BED); // BED
|
||||
#endif
|
||||
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
// BED
|
||||
soft_pwm_b = soft_pwm_bed;
|
||||
if (soft_pwm_b > 0) {
|
||||
// turn ON heather only if the minimum time is up
|
||||
if (state_timer_heater_b == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_b == 0) {
|
||||
state_timer_heater_b = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_b = 1;
|
||||
WRITE(HEATER_BED_PIN, 1);
|
||||
}
|
||||
} else {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_b == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_b == 1) {
|
||||
state_timer_heater_b = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_b = 0;
|
||||
WRITE(HEATER_BED_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
} // if (slow_pwm_count == 0)
|
||||
|
||||
// EXTRUDER 0
|
||||
if (soft_pwm_0 < slow_pwm_count) {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_0 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_0 == 1) {
|
||||
state_timer_heater_0 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_0 = 0;
|
||||
WRITE(HEATER_0_PIN, 0);
|
||||
#ifdef HEATERS_PARALLEL
|
||||
WRITE(HEATER_1_PIN, 0);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
// EXTRUDER 1
|
||||
if (soft_pwm_1 < slow_pwm_count) {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_1 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_1 == 1) {
|
||||
state_timer_heater_1 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_1 = 0;
|
||||
WRITE(HEATER_1_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS > 2
|
||||
// EXTRUDER 2
|
||||
if (soft_pwm_2 < slow_pwm_count) {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_2 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_2 == 1) {
|
||||
state_timer_heater_2 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_2 = 0;
|
||||
WRITE(HEATER_2_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS > 3
|
||||
// EXTRUDER 3
|
||||
if (soft_pwm_3 < slow_pwm_count) {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_3 == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_3 == 1) {
|
||||
state_timer_heater_3 = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_3 = 0;
|
||||
WRITE(HEATER_3_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
// BED
|
||||
if (soft_pwm_b < slow_pwm_count) {
|
||||
// turn OFF heather only if the minimum time is up
|
||||
if (state_timer_heater_b == 0) {
|
||||
// if change state set timer
|
||||
if (state_heater_b == 1) {
|
||||
state_timer_heater_b = MIN_STATE_TIME;
|
||||
}
|
||||
state_heater_b = 0;
|
||||
WRITE(HEATER_BED_PIN, 0);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef FAN_SOFT_PWM
|
||||
if (pwm_count == 0){
|
||||
#ifdef FAN_SOFT_PWM
|
||||
if (pwm_count == 0) {
|
||||
soft_pwm_fan = fanSpeedSoftPwm / 2;
|
||||
if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
|
||||
WRITE(FAN_PIN, soft_pwm_fan > 0 ? 1 : 0);
|
||||
}
|
||||
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
|
||||
#endif
|
||||
if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN, 0);
|
||||
#endif //FAN_SOFT_PWM
|
||||
|
||||
pwm_count += (1 << SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
|
@ -1663,199 +1433,149 @@ ISR(TIMER0_COMPB_vect)
|
|||
slow_pwm_count++;
|
||||
slow_pwm_count &= 0x7f;
|
||||
|
||||
// Extruder 0
|
||||
if (state_timer_heater_0 > 0) {
|
||||
state_timer_heater_0--;
|
||||
}
|
||||
// EXTRUDER 0
|
||||
if (state_timer_heater_0 > 0) state_timer_heater_0--;
|
||||
#if EXTRUDERS > 1 // EXTRUDER 1
|
||||
if (state_timer_heater_1 > 0) state_timer_heater_1--;
|
||||
#if EXTRUDERS > 2 // EXTRUDER 2
|
||||
if (state_timer_heater_2 > 0) state_timer_heater_2--;
|
||||
#if EXTRUDERS > 3 // EXTRUDER 3
|
||||
if (state_timer_heater_3 > 0) state_timer_heater_3--;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1 // BED
|
||||
if (state_timer_heater_BED > 0) state_timer_heater_BED--;
|
||||
#endif
|
||||
} // (pwm_count % 64) == 0
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
// Extruder 1
|
||||
if (state_timer_heater_1 > 0)
|
||||
state_timer_heater_1--;
|
||||
#endif
|
||||
#endif // SLOW_PWM_HEATERS
|
||||
|
||||
#if EXTRUDERS > 2
|
||||
// Extruder 2
|
||||
if (state_timer_heater_2 > 0)
|
||||
state_timer_heater_2--;
|
||||
#endif
|
||||
|
||||
#if EXTRUDERS > 3
|
||||
// Extruder 3
|
||||
if (state_timer_heater_3 > 0)
|
||||
state_timer_heater_3--;
|
||||
#endif
|
||||
|
||||
#if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
|
||||
// Bed
|
||||
if (state_timer_heater_b > 0)
|
||||
state_timer_heater_b--;
|
||||
#endif
|
||||
} //if ((pwm_count % 64) == 0) {
|
||||
|
||||
#endif //ifndef SLOW_PWM_HEATERS
|
||||
#define SET_ADMUX_ADCSRA(pin) ADMUX = (1 << REFS0) | (pin & 0x07); ADCSRA |= 1<<ADSC
|
||||
#ifdef MUX5
|
||||
#define SET_ADCSRB(pin) if (pin > 7) ADCSRB = 1 << MUX5; else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#else
|
||||
#define SET_ADCSRB(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
|
||||
#endif
|
||||
|
||||
switch(temp_state) {
|
||||
case 0: // Prepare TEMP_0
|
||||
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
||||
#if TEMP_0_PIN > 7
|
||||
ADCSRB = 1<<MUX5;
|
||||
#else
|
||||
ADCSRB = 0;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
case PrepareTemp_0:
|
||||
#if HAS_TEMP_0
|
||||
SET_ADCSRB(TEMP_0_PIN);
|
||||
#endif
|
||||
lcd_buttons_update();
|
||||
temp_state = 1;
|
||||
temp_state = MeasureTemp_0;
|
||||
break;
|
||||
case 1: // Measure TEMP_0
|
||||
#if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
|
||||
case MeasureTemp_0:
|
||||
#if HAS_TEMP_0
|
||||
raw_temp_0_value += ADC;
|
||||
#endif
|
||||
temp_state = 2;
|
||||
temp_state = PrepareTemp_BED;
|
||||
break;
|
||||
case 2: // Prepare TEMP_BED
|
||||
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
||||
#if TEMP_BED_PIN > 7
|
||||
ADCSRB = 1<<MUX5;
|
||||
#else
|
||||
ADCSRB = 0;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
case PrepareTemp_BED:
|
||||
#if HAS_TEMP_BED
|
||||
SET_ADCSRB(TEMP_BED_PIN);
|
||||
#endif
|
||||
lcd_buttons_update();
|
||||
temp_state = 3;
|
||||
temp_state = MeasureTemp_BED;
|
||||
break;
|
||||
case 3: // Measure TEMP_BED
|
||||
#if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
|
||||
case MeasureTemp_BED:
|
||||
#if HAS_TEMP_BED
|
||||
raw_temp_bed_value += ADC;
|
||||
#endif
|
||||
temp_state = 4;
|
||||
temp_state = PrepareTemp_1;
|
||||
break;
|
||||
case 4: // Prepare TEMP_1
|
||||
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
||||
#if TEMP_1_PIN > 7
|
||||
ADCSRB = 1<<MUX5;
|
||||
#else
|
||||
ADCSRB = 0;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
case PrepareTemp_1:
|
||||
#if HAS_TEMP_1
|
||||
SET_ADCSRB(TEMP_1_PIN);
|
||||
#endif
|
||||
lcd_buttons_update();
|
||||
temp_state = 5;
|
||||
temp_state = MeasureTemp_1;
|
||||
break;
|
||||
case 5: // Measure TEMP_1
|
||||
#if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
|
||||
case MeasureTemp_1:
|
||||
#if HAS_TEMP_1
|
||||
raw_temp_1_value += ADC;
|
||||
#endif
|
||||
temp_state = 6;
|
||||
temp_state = PrepareTemp_2;
|
||||
break;
|
||||
case 6: // Prepare TEMP_2
|
||||
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
||||
#if TEMP_2_PIN > 7
|
||||
ADCSRB = 1<<MUX5;
|
||||
#else
|
||||
ADCSRB = 0;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
case PrepareTemp_2:
|
||||
#if HAS_TEMP_2
|
||||
SET_ADCSRB(TEMP_2_PIN);
|
||||
#endif
|
||||
lcd_buttons_update();
|
||||
temp_state = 7;
|
||||
temp_state = MeasureTemp_2;
|
||||
break;
|
||||
case 7: // Measure TEMP_2
|
||||
#if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
|
||||
case MeasureTemp_2:
|
||||
#if HAS_TEMP_2
|
||||
raw_temp_2_value += ADC;
|
||||
#endif
|
||||
temp_state = 8;
|
||||
temp_state = PrepareTemp_3;
|
||||
break;
|
||||
case 8: // Prepare TEMP_3
|
||||
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
|
||||
#if TEMP_3_PIN > 7
|
||||
ADCSRB = 1<<MUX5;
|
||||
#else
|
||||
ADCSRB = 0;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (TEMP_3_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
case PrepareTemp_3:
|
||||
#if HAS_TEMP_3
|
||||
SET_ADCSRB(TEMP_3_PIN);
|
||||
#endif
|
||||
lcd_buttons_update();
|
||||
temp_state = 9;
|
||||
temp_state = MeasureTemp_3;
|
||||
break;
|
||||
case 9: // Measure TEMP_3
|
||||
#if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
|
||||
case MeasureTemp_3:
|
||||
#if HAS_TEMP_3
|
||||
raw_temp_3_value += ADC;
|
||||
#endif
|
||||
temp_state = 10; //change so that Filament Width is also measured
|
||||
temp_state = Prepare_FILWIDTH;
|
||||
break;
|
||||
case 10: //Prepare FILWIDTH
|
||||
#if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1)
|
||||
#if FILWIDTH_PIN>7
|
||||
ADCSRB = 1<<MUX5;
|
||||
#else
|
||||
ADCSRB = 0;
|
||||
#endif
|
||||
ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07));
|
||||
ADCSRA |= 1<<ADSC; // Start conversion
|
||||
case Prepare_FILWIDTH:
|
||||
#if HAS_FILAMENT_SENSOR
|
||||
SET_ADCSRB(FILWIDTH_PIN);
|
||||
#endif
|
||||
lcd_buttons_update();
|
||||
temp_state = 11;
|
||||
temp_state = Measure_FILWIDTH;
|
||||
break;
|
||||
case 11: //Measure FILWIDTH
|
||||
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
||||
//raw_filwidth_value += ADC; //remove to use an IIR filter approach
|
||||
if(ADC>102) //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
|
||||
{
|
||||
raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7); //multipliy raw_filwidth_value by 127/128
|
||||
|
||||
raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7); //add new ADC reading
|
||||
case Measure_FILWIDTH:
|
||||
#if HAS_FILAMENT_SENSOR
|
||||
// raw_filwidth_value += ADC; //remove to use an IIR filter approach
|
||||
if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
|
||||
raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
|
||||
raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
|
||||
}
|
||||
#endif
|
||||
temp_state = 0;
|
||||
|
||||
temp_state = PrepareTemp_0;
|
||||
temp_count++;
|
||||
break;
|
||||
|
||||
|
||||
case 12: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
|
||||
temp_state = 0;
|
||||
case StartupDelay:
|
||||
temp_state = PrepareTemp_0;
|
||||
break;
|
||||
// default:
|
||||
// SERIAL_ERROR_START;
|
||||
// SERIAL_ERRORLNPGM("Temp measurement error!");
|
||||
// break;
|
||||
}
|
||||
|
||||
if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
||||
{
|
||||
if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
|
||||
{
|
||||
#ifndef HEATER_0_USES_MAX6675
|
||||
// default:
|
||||
// SERIAL_ERROR_START;
|
||||
// SERIAL_ERRORLNPGM("Temp measurement error!");
|
||||
// break;
|
||||
} // switch(temp_state)
|
||||
|
||||
if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
|
||||
if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
|
||||
#ifndef HEATER_0_USES_MAX6675
|
||||
current_temperature_raw[0] = raw_temp_0_value;
|
||||
#endif
|
||||
#if EXTRUDERS > 1
|
||||
#endif
|
||||
#if EXTRUDERS > 1
|
||||
current_temperature_raw[1] = raw_temp_1_value;
|
||||
#endif
|
||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
redundant_temperature_raw = raw_temp_1_value;
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
#if EXTRUDERS > 2
|
||||
current_temperature_raw[2] = raw_temp_2_value;
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
#if EXTRUDERS > 3
|
||||
current_temperature_raw[3] = raw_temp_3_value;
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#endif
|
||||
#ifdef TEMP_SENSOR_1_AS_REDUNDANT
|
||||
redundant_temperature_raw = raw_temp_1_value;
|
||||
#endif
|
||||
current_temperature_bed_raw = raw_temp_bed_value;
|
||||
}
|
||||
|
||||
//Add similar code for Filament Sensor - can be read any time since IIR filtering is used
|
||||
#if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
|
||||
current_raw_filwidth = raw_filwidth_value>>10; //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
||||
#endif
|
||||
} //!temp_meas_ready
|
||||
|
||||
// Filament Sensor - can be read any time since IIR filtering is used
|
||||
#if HAS_FILAMENT_SENSOR
|
||||
current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
|
||||
#endif
|
||||
|
||||
temp_meas_ready = true;
|
||||
temp_count = 0;
|
||||
|
@ -1865,131 +1585,47 @@ ISR(TIMER0_COMPB_vect)
|
|||
raw_temp_3_value = 0;
|
||||
raw_temp_bed_value = 0;
|
||||
|
||||
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
||||
if(current_temperature_raw[0] <= maxttemp_raw[0]) {
|
||||
#else
|
||||
if(current_temperature_raw[0] >= maxttemp_raw[0]) {
|
||||
#endif
|
||||
#ifndef HEATER_0_USES_MAX6675
|
||||
max_temp_error(0);
|
||||
#endif
|
||||
}
|
||||
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
||||
if(current_temperature_raw[0] >= minttemp_raw[0]) {
|
||||
#else
|
||||
if(current_temperature_raw[0] <= minttemp_raw[0]) {
|
||||
#endif
|
||||
#ifndef HEATER_0_USES_MAX6675
|
||||
min_temp_error(0);
|
||||
#endif
|
||||
}
|
||||
#if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
|
||||
#define MAXTEST <=
|
||||
#define MINTEST >=
|
||||
#else
|
||||
#define MAXTEST >=
|
||||
#define MINTEST <=
|
||||
#endif
|
||||
|
||||
|
||||
#if EXTRUDERS > 1
|
||||
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
||||
if(current_temperature_raw[1] <= maxttemp_raw[1]) {
|
||||
#else
|
||||
if(current_temperature_raw[1] >= maxttemp_raw[1]) {
|
||||
#endif
|
||||
max_temp_error(1);
|
||||
for (int i=0; i<EXTRUDERS; i++) {
|
||||
if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i);
|
||||
else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i);
|
||||
}
|
||||
#if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
|
||||
if(current_temperature_raw[1] >= minttemp_raw[1]) {
|
||||
#else
|
||||
if(current_temperature_raw[1] <= minttemp_raw[1]) {
|
||||
#endif
|
||||
min_temp_error(1);
|
||||
}
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
||||
if(current_temperature_raw[2] <= maxttemp_raw[2]) {
|
||||
#else
|
||||
if(current_temperature_raw[2] >= maxttemp_raw[2]) {
|
||||
#endif
|
||||
max_temp_error(2);
|
||||
}
|
||||
#if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
|
||||
if(current_temperature_raw[2] >= minttemp_raw[2]) {
|
||||
#else
|
||||
if(current_temperature_raw[2] <= minttemp_raw[2]) {
|
||||
#endif
|
||||
min_temp_error(2);
|
||||
}
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
|
||||
if(current_temperature_raw[3] <= maxttemp_raw[3]) {
|
||||
#else
|
||||
if(current_temperature_raw[3] >= maxttemp_raw[3]) {
|
||||
#endif
|
||||
max_temp_error(3);
|
||||
}
|
||||
#if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
|
||||
if(current_temperature_raw[3] >= minttemp_raw[3]) {
|
||||
#else
|
||||
if(current_temperature_raw[3] <= minttemp_raw[3]) {
|
||||
#endif
|
||||
min_temp_error(3);
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
/* No bed MINTEMP error? */
|
||||
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
||||
# if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
|
||||
if(current_temperature_bed_raw <= bed_maxttemp_raw) {
|
||||
#else
|
||||
if(current_temperature_bed_raw >= bed_maxttemp_raw) {
|
||||
#endif
|
||||
#if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
|
||||
if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) {
|
||||
target_temperature_bed = 0;
|
||||
bed_max_temp_error();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
} // temp_count >= OVERSAMPLENR
|
||||
|
||||
#ifdef BABYSTEPPING
|
||||
for(uint8_t axis=0;axis<3;axis++)
|
||||
{
|
||||
#ifdef BABYSTEPPING
|
||||
for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
|
||||
int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
|
||||
|
||||
if(curTodo>0)
|
||||
{
|
||||
if (curTodo > 0) {
|
||||
babystep(axis,/*fwd*/true);
|
||||
babystepsTodo[axis]--; //less to do next time
|
||||
}
|
||||
else
|
||||
if(curTodo<0)
|
||||
{
|
||||
else if(curTodo < 0) {
|
||||
babystep(axis,/*fwd*/false);
|
||||
babystepsTodo[axis]++; //less to do next time
|
||||
}
|
||||
}
|
||||
#endif //BABYSTEPPING
|
||||
#endif //BABYSTEPPING
|
||||
}
|
||||
|
||||
#ifdef PIDTEMP
|
||||
// Apply the scale factors to the PID values
|
||||
|
||||
|
||||
float scalePID_i(float i)
|
||||
{
|
||||
return i*PID_dT;
|
||||
}
|
||||
|
||||
float unscalePID_i(float i)
|
||||
{
|
||||
return i/PID_dT;
|
||||
}
|
||||
|
||||
float scalePID_d(float d)
|
||||
{
|
||||
return d/PID_dT;
|
||||
}
|
||||
|
||||
float unscalePID_d(float d)
|
||||
{
|
||||
return d*PID_dT;
|
||||
}
|
||||
|
||||
// Apply the scale factors to the PID values
|
||||
float scalePID_i(float i) { return i * PID_dT; }
|
||||
float unscalePID_i(float i) { return i / PID_dT; }
|
||||
float scalePID_d(float d) { return d / PID_dT; }
|
||||
float unscalePID_d(float d) { return d * PID_dT; }
|
||||
#endif //PIDTEMP
|
||||
|
|
|
@ -85,55 +85,25 @@ extern float current_temperature_bed;
|
|||
//inline so that there is no performance decrease.
|
||||
//deg=degreeCelsius
|
||||
|
||||
FORCE_INLINE float degHotend(uint8_t extruder) {
|
||||
return current_temperature[extruder];
|
||||
};
|
||||
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
|
||||
FORCE_INLINE float degBed() { return current_temperature_bed; }
|
||||
|
||||
#ifdef SHOW_TEMP_ADC_VALUES
|
||||
FORCE_INLINE float rawHotendTemp(uint8_t extruder) {
|
||||
return current_temperature_raw[extruder];
|
||||
};
|
||||
|
||||
FORCE_INLINE float rawBedTemp() {
|
||||
return current_temperature_bed_raw;
|
||||
};
|
||||
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
|
||||
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
|
||||
#endif
|
||||
|
||||
FORCE_INLINE float degBed() {
|
||||
return current_temperature_bed;
|
||||
};
|
||||
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
|
||||
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
|
||||
|
||||
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
|
||||
return target_temperature[extruder];
|
||||
};
|
||||
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }
|
||||
FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
|
||||
|
||||
FORCE_INLINE float degTargetBed() {
|
||||
return target_temperature_bed;
|
||||
};
|
||||
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
|
||||
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
||||
|
||||
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
|
||||
target_temperature[extruder] = celsius;
|
||||
};
|
||||
|
||||
FORCE_INLINE void setTargetBed(const float &celsius) {
|
||||
target_temperature_bed = celsius;
|
||||
};
|
||||
|
||||
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){
|
||||
return target_temperature[extruder] > current_temperature[extruder];
|
||||
};
|
||||
|
||||
FORCE_INLINE bool isHeatingBed() {
|
||||
return target_temperature_bed > current_temperature_bed;
|
||||
};
|
||||
|
||||
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) {
|
||||
return target_temperature[extruder] < current_temperature[extruder];
|
||||
};
|
||||
|
||||
FORCE_INLINE bool isCoolingBed() {
|
||||
return target_temperature_bed < current_temperature_bed;
|
||||
};
|
||||
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
|
||||
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
||||
|
||||
#define degHotend0() degHotend(0)
|
||||
#define degTargetHotend0() degTargetHotend(0)
|
||||
|
@ -141,38 +111,36 @@ FORCE_INLINE bool isCoolingBed() {
|
|||
#define isHeatingHotend0() isHeatingHotend(0)
|
||||
#define isCoolingHotend0() isCoolingHotend(0)
|
||||
#if EXTRUDERS > 1
|
||||
#define degHotend1() degHotend(1)
|
||||
#define degTargetHotend1() degTargetHotend(1)
|
||||
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
|
||||
#define isHeatingHotend1() isHeatingHotend(1)
|
||||
#define isCoolingHotend1() isCoolingHotend(1)
|
||||
#define degHotend1() degHotend(1)
|
||||
#define degTargetHotend1() degTargetHotend(1)
|
||||
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
|
||||
#define isHeatingHotend1() isHeatingHotend(1)
|
||||
#define isCoolingHotend1() isCoolingHotend(1)
|
||||
#else
|
||||
#define setTargetHotend1(_celsius) do{}while(0)
|
||||
#define setTargetHotend1(_celsius) do{}while(0)
|
||||
#endif
|
||||
#if EXTRUDERS > 2
|
||||
#define degHotend2() degHotend(2)
|
||||
#define degTargetHotend2() degTargetHotend(2)
|
||||
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
|
||||
#define isHeatingHotend2() isHeatingHotend(2)
|
||||
#define isCoolingHotend2() isCoolingHotend(2)
|
||||
#define degHotend2() degHotend(2)
|
||||
#define degTargetHotend2() degTargetHotend(2)
|
||||
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
|
||||
#define isHeatingHotend2() isHeatingHotend(2)
|
||||
#define isCoolingHotend2() isCoolingHotend(2)
|
||||
#else
|
||||
#define setTargetHotend2(_celsius) do{}while(0)
|
||||
#define setTargetHotend2(_celsius) do{}while(0)
|
||||
#endif
|
||||
#if EXTRUDERS > 3
|
||||
#define degHotend3() degHotend(3)
|
||||
#define degTargetHotend3() degTargetHotend(3)
|
||||
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
|
||||
#define isHeatingHotend3() isHeatingHotend(3)
|
||||
#define isCoolingHotend3() isCoolingHotend(3)
|
||||
#define degHotend3() degHotend(3)
|
||||
#define degTargetHotend3() degTargetHotend(3)
|
||||
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
|
||||
#define isHeatingHotend3() isHeatingHotend(3)
|
||||
#define isCoolingHotend3() isCoolingHotend(3)
|
||||
#else
|
||||
#define setTargetHotend3(_celsius) do{}while(0)
|
||||
#define setTargetHotend3(_celsius) do{}while(0)
|
||||
#endif
|
||||
#if EXTRUDERS > 4
|
||||
#error Invalid number of extruders
|
||||
#error Invalid number of extruders
|
||||
#endif
|
||||
|
||||
|
||||
|
||||
int getHeaterPower(int heater);
|
||||
void disable_heater();
|
||||
void setWatch();
|
||||
|
@ -189,15 +157,14 @@ static bool thermal_runaway = false;
|
|||
#endif
|
||||
#endif
|
||||
|
||||
FORCE_INLINE void autotempShutdown(){
|
||||
#ifdef AUTOTEMP
|
||||
if(autotemp_enabled)
|
||||
{
|
||||
autotemp_enabled=false;
|
||||
if(degTargetHotend(active_extruder)>autotemp_min)
|
||||
setTargetHotend(0,active_extruder);
|
||||
FORCE_INLINE void autotempShutdown() {
|
||||
#ifdef AUTOTEMP
|
||||
if (autotemp_enabled) {
|
||||
autotemp_enabled = false;
|
||||
if (degTargetHotend(active_extruder) > autotemp_min)
|
||||
setTargetHotend(0, active_extruder);
|
||||
}
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
void PID_autotune(float temp, int extruder, int ncycles);
|
||||
|
|
Reference in a new issue