Implement COREXZ in stepper.cpp and planner.cpp
This commit is contained in:
parent
fa00e1d97f
commit
9f53e2f0c9
2 changed files with 118 additions and 72 deletions
|
@ -542,6 +542,11 @@ float junction_deviation = 0.1;
|
|||
block->steps[A_AXIS] = labs(dx + dy);
|
||||
block->steps[B_AXIS] = labs(dx - dy);
|
||||
block->steps[Z_AXIS] = labs(dz);
|
||||
#elif defined(COREXZ)
|
||||
// corexz planning
|
||||
block->steps[A_AXIS] = labs(dx + dz);
|
||||
block->steps[Y_AXIS] = labs(dy);
|
||||
block->steps[C_AXIS] = labs(dx - dz);
|
||||
#else
|
||||
// default non-h-bot planning
|
||||
block->steps[X_AXIS] = labs(dx);
|
||||
|
@ -572,6 +577,12 @@ float junction_deviation = 0.1;
|
|||
if (dz < 0) db |= BIT(Z_AXIS);
|
||||
if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
|
||||
if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
|
||||
#elif defined(COREXZ)
|
||||
if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
|
||||
if (dy < 0) db |= BIT(Y_AXIS);
|
||||
if (dz < 0) db |= BIT(Z_HEAD); // ...and Z
|
||||
if (dx + dz < 0) db |= BIT(A_AXIS); // Motor A direction
|
||||
if (dx - dz < 0) db |= BIT(C_AXIS); // Motor B direction
|
||||
#else
|
||||
if (dx < 0) db |= BIT(X_AXIS);
|
||||
if (dy < 0) db |= BIT(Y_AXIS);
|
||||
|
@ -591,6 +602,11 @@ float junction_deviation = 0.1;
|
|||
#ifndef Z_LATE_ENABLE
|
||||
if (block->steps[Z_AXIS]) enable_z();
|
||||
#endif
|
||||
#elif defined(COREXZ)
|
||||
if (block->steps[A_AXIS] || block->steps[C_AXIS]) {
|
||||
enable_x();
|
||||
enable_z();
|
||||
}
|
||||
#else
|
||||
if (block->steps[X_AXIS]) enable_x();
|
||||
if (block->steps[Y_AXIS]) enable_y();
|
||||
|
@ -683,6 +699,13 @@ float junction_deviation = 0.1;
|
|||
delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
|
||||
#elif defined(COREXZ)
|
||||
float delta_mm[6];
|
||||
delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
|
||||
delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS];
|
||||
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS];
|
||||
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS];
|
||||
#else
|
||||
float delta_mm[4];
|
||||
delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
|
||||
|
@ -698,6 +721,8 @@ float junction_deviation = 0.1;
|
|||
block->millimeters = sqrt(
|
||||
#ifdef COREXY
|
||||
square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS])
|
||||
#elif defined(COREXZ)
|
||||
square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD])
|
||||
#else
|
||||
square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS])
|
||||
#endif
|
||||
|
|
|
@ -342,34 +342,38 @@ FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
|
|||
return timer;
|
||||
}
|
||||
|
||||
// set the stepper direction of each axis
|
||||
/**
|
||||
* Set the stepper direction of each axis
|
||||
*
|
||||
* X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY
|
||||
* X_AXIS=A_AXIS and Z_AXIS=C_AXIS for COREXZ
|
||||
*/
|
||||
void set_stepper_direction() {
|
||||
|
||||
// Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
|
||||
if (TEST(out_bits, X_AXIS)) {
|
||||
X_APPLY_DIR(INVERT_X_DIR,0);
|
||||
if (TEST(out_bits, X_AXIS)) { // A_AXIS
|
||||
X_APPLY_DIR(INVERT_X_DIR, 0);
|
||||
count_direction[X_AXIS] = -1;
|
||||
}
|
||||
else {
|
||||
X_APPLY_DIR(!INVERT_X_DIR,0);
|
||||
X_APPLY_DIR(!INVERT_X_DIR, 0);
|
||||
count_direction[X_AXIS] = 1;
|
||||
}
|
||||
|
||||
if (TEST(out_bits, Y_AXIS)) {
|
||||
Y_APPLY_DIR(INVERT_Y_DIR,0);
|
||||
if (TEST(out_bits, Y_AXIS)) { // B_AXIS
|
||||
Y_APPLY_DIR(INVERT_Y_DIR, 0);
|
||||
count_direction[Y_AXIS] = -1;
|
||||
}
|
||||
else {
|
||||
Y_APPLY_DIR(!INVERT_Y_DIR,0);
|
||||
Y_APPLY_DIR(!INVERT_Y_DIR, 0);
|
||||
count_direction[Y_AXIS] = 1;
|
||||
}
|
||||
|
||||
if (TEST(out_bits, Z_AXIS)) {
|
||||
Z_APPLY_DIR(INVERT_Z_DIR,0);
|
||||
if (TEST(out_bits, Z_AXIS)) { // C_AXIS
|
||||
Z_APPLY_DIR(INVERT_Z_DIR, 0);
|
||||
count_direction[Z_AXIS] = -1;
|
||||
}
|
||||
else {
|
||||
Z_APPLY_DIR(!INVERT_Z_DIR,0);
|
||||
Z_APPLY_DIR(!INVERT_Z_DIR, 0);
|
||||
count_direction[Z_AXIS] = 1;
|
||||
}
|
||||
|
||||
|
@ -503,6 +507,11 @@ ISR(TIMER1_COMPA_vect) {
|
|||
// If DeltaX == -DeltaY, the movement is only in Y axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
|
||||
if (TEST(out_bits, X_HEAD))
|
||||
#elif defined(COREXZ)
|
||||
// Head direction in -X axis for CoreXZ bots.
|
||||
// If DeltaX == -DeltaZ, the movement is only in Z axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, C_AXIS))) {
|
||||
if (TEST(out_bits, X_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular Cartesian bot)
|
||||
#endif
|
||||
|
@ -528,8 +537,11 @@ ISR(TIMER1_COMPA_vect) {
|
|||
#endif
|
||||
}
|
||||
}
|
||||
#ifdef COREXY
|
||||
#if defined(COREXY) || defined(COREXZ)
|
||||
}
|
||||
#endif
|
||||
|
||||
#ifdef COREXY
|
||||
// Head direction in -Y axis for CoreXY bots.
|
||||
// If DeltaX == DeltaY, the movement is only in X axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
|
||||
|
@ -547,82 +559,91 @@ ISR(TIMER1_COMPA_vect) {
|
|||
UPDATE_ENDSTOP(Y, MAX);
|
||||
#endif
|
||||
}
|
||||
#ifdef COREXY
|
||||
#if defined(COREXY) || defined(COREXZ)
|
||||
}
|
||||
#endif
|
||||
if (TEST(out_bits, Z_AXIS)) { // z -direction
|
||||
#if HAS_Z_MIN
|
||||
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
SET_ENDSTOP_BIT(Z, MIN);
|
||||
#if HAS_Z2_MIN
|
||||
SET_ENDSTOP_BIT(Z2, MIN);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
||||
#endif
|
||||
#ifdef COREXZ
|
||||
// Head direction in -Z axis for CoreXZ bots.
|
||||
// If DeltaX == DeltaZ, the movement is only in X axis
|
||||
if ((current_block->steps[A_AXIS] != current_block->steps[C_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, C_AXIS))) {
|
||||
if (TEST(out_bits, Z_HEAD))
|
||||
#else
|
||||
if (TEST(out_bits, Z_AXIS))
|
||||
#endif
|
||||
{ // z -direction
|
||||
#if HAS_Z_MIN
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
SET_ENDSTOP_BIT(Z, MIN);
|
||||
#if HAS_Z2_MIN
|
||||
SET_ENDSTOP_BIT(Z2, MIN);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN);
|
||||
#endif
|
||||
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
UPDATE_ENDSTOP(Z, MIN);
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MIN_PIN
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
UPDATE_ENDSTOP(Z, PROBE);
|
||||
UPDATE_ENDSTOP(Z, MIN);
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MIN_PIN
|
||||
|
||||
if (TEST_ENDSTOP(Z_PROBE))
|
||||
{
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_PROBE);
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
UPDATE_ENDSTOP(Z, PROBE);
|
||||
|
||||
if (TEST_ENDSTOP(Z_PROBE))
|
||||
{
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_PROBE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
else { // z +direction
|
||||
#if HAS_Z_MAX
|
||||
else { // z +direction
|
||||
#if HAS_Z_MAX
|
||||
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
#ifdef Z_DUAL_ENDSTOPS
|
||||
|
||||
SET_ENDSTOP_BIT(Z, MAX);
|
||||
#if HAS_Z2_MAX
|
||||
SET_ENDSTOP_BIT(Z2, MAX);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
|
||||
#endif
|
||||
SET_ENDSTOP_BIT(Z, MAX);
|
||||
#if HAS_Z2_MAX
|
||||
SET_ENDSTOP_BIT(Z2, MAX);
|
||||
#else
|
||||
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
|
||||
#endif
|
||||
|
||||
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
|
||||
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
|
||||
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_MIN);
|
||||
if (!performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing...
|
||||
step_events_completed = current_block->step_event_count;
|
||||
}
|
||||
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
#else // !Z_DUAL_ENDSTOPS
|
||||
|
||||
UPDATE_ENDSTOP(Z, MAX);
|
||||
UPDATE_ENDSTOP(Z, MAX);
|
||||
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MAX_PIN
|
||||
#endif // !Z_DUAL_ENDSTOPS
|
||||
#endif // Z_MAX_PIN
|
||||
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
UPDATE_ENDSTOP(Z, PROBE);
|
||||
#ifdef Z_PROBE_ENDSTOP
|
||||
UPDATE_ENDSTOP(Z, PROBE);
|
||||
|
||||
if (TEST_ENDSTOP(Z_PROBE))
|
||||
{
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_PROBE);
|
||||
if (TEST_ENDSTOP(Z_PROBE))
|
||||
{
|
||||
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
||||
endstop_hit_bits |= BIT(Z_PROBE);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
old_endstop_bits = current_endstop_bits;
|
||||
}
|
||||
|
||||
|
|
Reference in a new issue