Patched up, cleaned up

This commit is contained in:
Scott Lahteine 2016-09-26 01:30:34 -05:00
parent 2911aa7ffa
commit a2864ab7fe
6 changed files with 257 additions and 254 deletions

View file

@ -86,7 +86,7 @@
// User-specified version info of this build to display in [Pronterface, etc] terminal window during // User-specified version info of this build to display in [Pronterface, etc] terminal window during
// startup. Implementation of an idea by Prof Braino to inform user that any changes made to this // startup. Implementation of an idea by Prof Braino to inform user that any changes made to this
// build by the user have been successfully uploaded into firmware. // build by the user have been successfully uploaded into firmware.
#define STRING_CONFIG_H_AUTHOR "Bob Kuhn, G2/G3 radius testing" // Who made the changes. #define STRING_CONFIG_H_AUTHOR "(none, default config)" // Who made the changes.
#define SHOW_BOOTSCREEN #define SHOW_BOOTSCREEN
#define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1 #define STRING_SPLASH_LINE1 SHORT_BUILD_VERSION // will be shown during bootup in line 1
#define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2 #define STRING_SPLASH_LINE2 WEBSITE_URL // will be shown during bootup in line 2
@ -105,15 +105,24 @@
//#define SHOW_CUSTOM_BOOTSCREEN //#define SHOW_CUSTOM_BOOTSCREEN
// @section machine // @section machine
// SERIAL_PORT selects which serial port should be used for communication with the host. /**
// This allows the connection of wireless adapters (for instance) to non-default port pins. * Select which serial port on the board will be used for communication with the host.
// Serial port 0 is still used by the Arduino bootloader regardless of this setting. * This allows the connection of wireless adapters (for instance) to non-default port pins.
// :[0,1,2,3,4,5,6,7] * Serial port 0 is always used by the Arduino bootloader regardless of this setting.
*
* :[0,1,2,3,4,5,6,7]
*/
#define SERIAL_PORT 0 #define SERIAL_PORT 0
// This determines the communication speed of the printer #define BAUDRATE 250000
// :[2400,9600,19200,38400,57600,115200,250000] /**
#define BAUDRATE 115200 * This setting determines the communication speed of the printer.
*
* 250000 works in most cases, but you might try a lower speed if
* you commonly experience drop-outs during host printing.
*
* :[2400,9600,19200,38400,57600,115200,250000]
*/
// Enable the Bluetooth serial interface on AT90USB devices // Enable the Bluetooth serial interface on AT90USB devices
//#define BLUETOOTH //#define BLUETOOTH
@ -121,7 +130,7 @@
// The following define selects which electronics board you have. // The following define selects which electronics board you have.
// Please choose the name from boards.h that matches your setup // Please choose the name from boards.h that matches your setup
#ifndef MOTHERBOARD #ifndef MOTHERBOARD
#define MOTHERBOARD BOARD_AZTEEG_X3_PRO #define MOTHERBOARD BOARD_RAMPS_14_EFB
#endif #endif
// Optional custom name for your RepStrap or other custom machine // Optional custom name for your RepStrap or other custom machine
@ -169,14 +178,22 @@
//#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis //#define HOTEND_OFFSET_X {0.0, 20.00} // (in mm) for each extruder, offset of the hotend on the X axis
//#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis //#define HOTEND_OFFSET_Y {0.0, 5.00} // (in mm) for each extruder, offset of the hotend on the Y axis
//// The following define selects which power supply you have. Please choose the one that matches your setup /**
// 1 = ATX * Select your power supply here. Use 0 if you haven't connected the PS_ON_PIN
// 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC) *
// :{1:'ATX',2:'X-Box 360'} * 0 = No Power Switch
#define POWER_SUPPLY 1 * 1 = ATX
* 2 = X-Box 360 203Watts (the blue wire connected to PS_ON and the red wire to VCC)
*
* :{0:'No power switch',1:'ATX',2:'X-Box 360'}
*/
#define POWER_SUPPLY 0
// Define this to have the electronics keep the power supply off on startup. If you don't know what this is leave it. #if POWER_SUPPLY > 0
//#define PS_DEFAULT_OFF // Enable this option to leave the PSU off at startup.
// Power to steppers and heaters will need to be turned on with M80.
//#define PS_DEFAULT_OFF
#endif
// @section temperature // @section temperature
@ -222,10 +239,10 @@
// 110 is Pt100 with 1k pullup (non standard) // 110 is Pt100 with 1k pullup (non standard)
// 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below. // 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine. // Use it for Testing or Development purposes. NEVER for production machine.
#define DUMMY_THERMISTOR_998_VALUE 25 //#define DUMMY_THERMISTOR_998_VALUE 25
//#define DUMMY_THERMISTOR_999_VALUE 100 //#define DUMMY_THERMISTOR_999_VALUE 100
// :{ '0': "Not used",'1':"100k / 4.7k - EPCOS",'2':"200k / 4.7k - ATC Semitec 204GT-2",'3':"Mendel-parts / 4.7k",'4':"10k !! do not use for a hotend. Bad resolution at high temp. !!",'5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)",'6':"100k / 4.7k EPCOS - Not as accurate as Table 1",'7':"100k / 4.7k Honeywell 135-104LAG-J01",'8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT",'9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1",'10':"100k / 4.7k RS 198-961",'11':"100k / 4.7k beta 3950 1%",'12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)",'13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'",'20':"PT100 (Ultimainboard V2.x)",'51':"100k / 1k - EPCOS",'52':"200k / 1k - ATC Semitec 204GT-2",'55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)",'60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950",'66':"Dyze Design 4.7M High Temperature thermistor",'70':"the 100K thermistor found in the bq Hephestos 2",'71':"100k / 4.7k Honeywell 135-104LAF-J01",'147':"Pt100 / 4.7k",'1047':"Pt1000 / 4.7k",'110':"Pt100 / 1k (non-standard)",'1010':"Pt1000 / 1k (non standard)",'-3':"Thermocouple + MAX31855 (only for sensor 0)",'-2':"Thermocouple + MAX6675 (only for sensor 0)",'-1':"Thermocouple + AD595",'998':"Dummy 1",'999':"Dummy 2" } // :{ '0': "Not used",'1':"100k / 4.7k - EPCOS",'2':"200k / 4.7k - ATC Semitec 204GT-2",'3':"Mendel-parts / 4.7k",'4':"10k !! do not use for a hotend. Bad resolution at high temp. !!",'5':"100K / 4.7k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)",'6':"100k / 4.7k EPCOS - Not as accurate as Table 1",'7':"100k / 4.7k Honeywell 135-104LAG-J01",'8':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT",'9':"100k / 4.7k GE Sensing AL03006-58.2K-97-G1",'10':"100k / 4.7k RS 198-961",'11':"100k / 4.7k beta 3950 1%",'12':"100k / 4.7k 0603 SMD Vishay NTCS0603E3104FXT (calibrated for Makibox hot bed)",'13':"100k Hisens 3950 1% up to 300°C for hotend 'Simple ONE ' & hotend 'All In ONE'",'20':"PT100 (Ultimainboard V2.x)",'51':"100k / 1k - EPCOS",'52':"200k / 1k - ATC Semitec 204GT-2",'55':"100k / 1k - ATC Semitec 104GT-2 (Used in ParCan & J-Head)",'60':"100k Maker's Tool Works Kapton Bed Thermistor beta=3950",'66':"Dyze Design 4.7M High Temperature thermistor",'70':"the 100K thermistor found in the bq Hephestos 2",'71':"100k / 4.7k Honeywell 135-104LAF-J01",'147':"Pt100 / 4.7k",'1047':"Pt1000 / 4.7k",'110':"Pt100 / 1k (non-standard)",'1010':"Pt1000 / 1k (non standard)",'-3':"Thermocouple + MAX31855 (only for sensor 0)",'-2':"Thermocouple + MAX6675 (only for sensor 0)",'-1':"Thermocouple + AD595",'998':"Dummy 1",'999':"Dummy 2" }
#define TEMP_SENSOR_0 998 #define TEMP_SENSOR_0 1
#define TEMP_SENSOR_1 0 #define TEMP_SENSOR_1 0
#define TEMP_SENSOR_2 0 #define TEMP_SENSOR_2 0
#define TEMP_SENSOR_3 0 #define TEMP_SENSOR_3 0
@ -355,8 +372,9 @@
#define EXTRUDE_MINTEMP 170 #define EXTRUDE_MINTEMP 170
// This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH. // This option prevents a single extrusion longer than EXTRUDE_MAXLENGTH.
// Note that for Bowden Extruders a too-small value here may prevent loading.
#define PREVENT_LENGTHY_EXTRUDE #define PREVENT_LENGTHY_EXTRUDE
#define EXTRUDE_MAXLENGTH (X_MAX_LENGTH+Y_MAX_LENGTH) #define EXTRUDE_MAXLENGTH 200
//=========================================================================== //===========================================================================
//======================== Thermal Runaway Protection ======================= //======================== Thermal Runaway Protection =======================
@ -403,9 +421,9 @@
#define USE_XMIN_PLUG #define USE_XMIN_PLUG
#define USE_YMIN_PLUG #define USE_YMIN_PLUG
#define USE_ZMIN_PLUG #define USE_ZMIN_PLUG
#define USE_XMAX_PLUG //#define USE_XMAX_PLUG
#define USE_YMAX_PLUG //#define USE_YMAX_PLUG
#define USE_ZMAX_PLUG //#define USE_ZMAX_PLUG
// coarse Endstop Settings // coarse Endstop Settings
#define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors #define ENDSTOPPULLUPS // Comment this out (using // at the start of the line) to disable the endstop pullup resistors
@ -422,13 +440,13 @@
#endif #endif
// Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup). // Mechanical endstop with COM to ground and NC to Signal uses "false" here (most common setup).
#define X_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define X_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define Y_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define Z_MIN_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define X_MAX_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define X_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Y_MAX_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define Y_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MAX_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define Z_MAX_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
#define Z_MIN_PROBE_ENDSTOP_INVERTING true // set to true to invert the logic of the endstop. #define Z_MIN_PROBE_ENDSTOP_INVERTING false // set to true to invert the logic of the endstop.
//============================================================================= //=============================================================================
@ -436,20 +454,56 @@
//============================================================================= //=============================================================================
// @section motion // @section motion
#define DEFAULT_AXIS_STEPS_PER_UNIT {8*24.8139,8*24.8139,8*24.8139,100} /**
#define DEFAULT_MAX_FEEDRATE {35, 35, 25, 25} // (mm/sec) * Default Settings
#define DEFAULT_MAX_ACCELERATION {3000,3000,100,10000} // X, Y, Z, E maximum start speed for accelerated moves. E default values are good for Skeinforge 40+, for older versions raise them a lot. *
* These settings can be reset by M502
*
* Note that if EEPROM is enabled, saved values will override these.
*/
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration in mm/s^2 for printing moves /**
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration in mm/s^2 for retracts * Default Axis Steps Per Unit (steps/mm)
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration in mm/s^2 for travel (non printing) moves * Override with M92
*/
#define DEFAULT_AXIS_STEPS_PER_UNIT { 80, 80, 4000, 500 }
// "Jerk" specifies the minimum speed change that requires acceleration. /**
// When changing speed and direction, if the difference is less than the * Default Max Feed Rate (mm/s)
// value set here, it may happen instantaneously. * Override with M203
#define DEFAULT_XYJERK 20.0 // (mm/sec) */
#define DEFAULT_ZJERK 0.4 // (mm/sec) #define DEFAULT_MAX_FEEDRATE { 300, 300, 5, 25 }
#define DEFAULT_EJERK 5.0 // (mm/sec)
/**
* Default Max Acceleration (change/s) change = mm/s
* Override with M201
*
* Maximum start speed for accelerated moves: { X, Y, Z, E }
*/
#define DEFAULT_MAX_ACCELERATION { 3000, 3000, 100, 10000 }
/**
* Default Acceleration (change/s) change = mm/s
* Override with M204
*
* M204 P Acceleration
* M204 R Retract Acceleration
* M204 T Travel Acceleration
*/
#define DEFAULT_ACCELERATION 3000 // X, Y, Z and E acceleration for printing moves
#define DEFAULT_RETRACT_ACCELERATION 3000 // E acceleration for retracts
#define DEFAULT_TRAVEL_ACCELERATION 3000 // X, Y, Z acceleration for travel (non printing) moves
/**
* Defult Jerk (mm/s)
*
* "Jerk" specifies the minimum speed change that requires acceleration.
* When changing speed and direction, if the difference is less than the
* value set here, it may happen instantaneously.
*/
#define DEFAULT_XYJERK 20.0
#define DEFAULT_ZJERK 0.4
#define DEFAULT_EJERK 5.0
//=========================================================================== //===========================================================================
@ -474,6 +528,7 @@
//#define FIX_MOUNTED_PROBE //#define FIX_MOUNTED_PROBE
// The BLTouch probe emulates a servo probe. // The BLTouch probe emulates a servo probe.
// The default connector is SERVO 0. Set Z_ENDSTOP_SERVO_NR below to override.
//#define BLTOUCH //#define BLTOUCH
// Z Servo Probe, such as an endstop switch on a rotating arm. // Z Servo Probe, such as an endstop switch on a rotating arm.
@ -610,9 +665,9 @@
// @section machine // @section machine
// Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way. // Invert the stepper direction. Change (or reverse the motor connector) if an axis goes the wrong way.
#define INVERT_X_DIR true // positive is away from the motor #define INVERT_X_DIR false
#define INVERT_Y_DIR false // positive is towards the motor #define INVERT_Y_DIR true
#define INVERT_Z_DIR true // positive is away from the motor #define INVERT_Z_DIR false
// @section extruder // @section extruder
@ -640,12 +695,12 @@
// @section machine // @section machine
// Travel limits after homing (units are in mm) // Travel limits after homing (units are in mm)
#define X_MIN_POS -100 #define X_MIN_POS 0
#define Y_MIN_POS -100 #define Y_MIN_POS 0
#define Z_MIN_POS -100 #define Z_MIN_POS 0
#define X_MAX_POS 375 #define X_MAX_POS 200
#define Y_MAX_POS 450 #define Y_MAX_POS 200
#define Z_MAX_POS 450 #define Z_MAX_POS 200
//=========================================================================== //===========================================================================
//========================= Filament Runout Sensor ========================== //========================= Filament Runout Sensor ==========================
@ -1005,7 +1060,7 @@
// SD Card support is disabled by default. If your controller has an SD slot, // SD Card support is disabled by default. If your controller has an SD slot,
// you must uncomment the following option or it won't work. // you must uncomment the following option or it won't work.
// //
#define SDSUPPORT //#define SDSUPPORT
// //
// SD CARD: SPI SPEED // SD CARD: SPI SPEED
@ -1022,7 +1077,7 @@
// //
// Use CRC checks and retries on the SD communication. // Use CRC checks and retries on the SD communication.
// //
#define SD_CHECK_AND_RETRY //#define SD_CHECK_AND_RETRY
// //
// ENCODER SETTINGS // ENCODER SETTINGS

View file

@ -244,16 +244,16 @@
// Dual Y Steppers // Dual Y Steppers
// Uncomment this option to drive two Y axis motors. // Uncomment this option to drive two Y axis motors.
// The next unused E driver will be assigned to the second Y stepper. // The next unused E driver will be assigned to the second Y stepper.
#define Y_DUAL_STEPPER_DRIVERS //#define Y_DUAL_STEPPER_DRIVERS
#if ENABLED(Y_DUAL_STEPPER_DRIVERS) #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
// Set true if the two Y motors need to rotate in opposite directions // Set true if the two Y motors need to rotate in opposite directions
#define INVERT_Y2_VS_Y_DIR false #define INVERT_Y2_VS_Y_DIR true
#endif #endif
// A single Z stepper driver is usually used to drive 2 stepper motors. // A single Z stepper driver is usually used to drive 2 stepper motors.
// Uncomment this option to use a separate stepper driver for each Z axis motor. // Uncomment this option to use a separate stepper driver for each Z axis motor.
// The next unused E driver will be assigned to the second Z stepper. // The next unused E driver will be assigned to the second Z stepper.
#define Z_DUAL_STEPPER_DRIVERS //#define Z_DUAL_STEPPER_DRIVERS
#if ENABLED(Z_DUAL_STEPPER_DRIVERS) #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
@ -532,6 +532,12 @@
// Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes. // Support for G5 with XYZE destination and IJPQ offsets. Requires ~2666 bytes.
//#define BEZIER_CURVE_SUPPORT //#define BEZIER_CURVE_SUPPORT
// G38 Probe Target
//#define G38_2_3
#if ENABLED(G38_2_3)
#define G38_MINIMUM_MOVE 0.0275 // minimum distance in mm that will produce a move (determined using the print statement in check_move)
#endif
// Moves (or segments) with fewer steps than this will be joined with the next move // Moves (or segments) with fewer steps than this will be joined with the next move
#define MIN_STEPS_PER_SEGMENT 6 #define MIN_STEPS_PER_SEGMENT 6

View file

@ -209,10 +209,9 @@ void manage_inactivity(bool ignore_stepper_queue = false);
#endif // !MIXING_EXTRUDER #endif // !MIXING_EXTRUDER
#define G38_2_3 #if ENABLED(G38_2_3)
#ifdef G38_2_3 extern bool G38_move, // flag to tell the interrupt handler that a G38 command is being run
extern bool G38_flag ; //flag to tell the interrupt handler that a G38 command is being run G38_endstop_hit; // flag from the interrupt handler to indicate if the endstop went active
extern bool G38_flag_pass ; //flag from the interrupt handler to indicate if the endstop went active
#endif #endif
/** /**

View file

@ -117,7 +117,7 @@
* G30 - Single Z probe, probes bed at current XY location. * G30 - Single Z probe, probes bed at current XY location.
* G31 - Dock sled (Z_PROBE_SLED only) * G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only)
* G38 - Probe target - similar to G28 except it uses the Z_Probe for all three axis * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
* G90 - Use Absolute Coordinates * G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates * G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given * G92 - Set current position to coordinates given
@ -277,9 +277,9 @@
TWIBus i2c; TWIBus i2c;
#endif #endif
#ifdef G38_2_3 #if ENABLED(G38_2_3)
bool G38_flag = false; // init G38 flags bool G38_move = false,
bool G38_flag_pass = false; G38_endstop_hit = false;
#endif #endif
bool Running = true; bool Running = true;
@ -2331,146 +2331,6 @@ static void clean_up_after_endstop_or_probe_move() {
#endif // AUTO_BED_LEVELING_BILINEAR #endif // AUTO_BED_LEVELING_BILINEAR
#ifdef G38_2_3
#define G38_minimum_move 0.0275 // minimum distance in mm that will produce a move (determined using the print statement in check_move)
bool check_move() //checks that at least one of the axis in the command line has an actual move
// motion planner only does moves of 0.001mm and larger
{
bool move_flag = false;
for(int8_t i=0; i < 3; i++) {
/* debug used to determine prints
SERIAL_PROTOCOLPGM("axis: ");
SERIAL_PROTOCOL(axis_codes[i]);
SERIAL_PROTOCOLPGM(" code_seen : ");
SERIAL_PROTOCOL(code_seen(axis_codes[i]));
SERIAL_PROTOCOLPGM(" destination : ");
SERIAL_PROTOCOL(destination[i]);
SERIAL_PROTOCOLPGM(" current : ");
SERIAL_PROTOCOL(current_position[i]);
SERIAL_PROTOCOLPGM(" dif x 1000 : ");
SERIAL_PROTOCOLLN((destination[i] - current_position[i]) * 1000);
*/
if (code_seen(axis_codes[i]) && (fabs(destination[i] - current_position[i]) >= G38_minimum_move)) move_flag = true ;
/*
?? 0.0275mm produced a move on my machine along with an updated current position.
0.0265mm did NOT produce a move and did NOT change the current position
this is very different than the 0.001 in the planner.
0.001" is .0254mm so maybe the 0.0275 observed comes from digital storage limitations/conversion/rounding
*/
}
return move_flag;
}
static void G38_run_probe(bool *G38_pass_fail) {
G38_flag = true; //tell the interrupt handler that we're doing a G38 probe
*G38_pass_fail = false;
#ifdef X_HOME_BUMP_MM
#ifdef Y_HOME_BUMP_MM
#ifdef Z_HOME_BUMP_MM
float G38_X_retract_mm = home_bump_mm(X_AXIS);
float G38_Y_retract_mm = home_bump_mm(Y_AXIS);
float G38_Z_retract_mm = home_bump_mm(Z_AXIS);
#else
float G38_X_retract_mm = 5;
float G38_Y_retract_mm = 5;
float G38_Z_retract_mm = 2;
#endif
#endif
#endif
// only retract the axis if the axis is in the command
if( (!code_seen('X') || (code_value_axis_units(X_AXIS) == 0))) G38_X_retract_mm = 0;
if( (!code_seen('Y') || (code_value_axis_units(Y_AXIS) == 0))) G38_Y_retract_mm = 0;
if( (!code_seen('Z') || (code_value_axis_units(Z_AXIS) == 0))) G38_Z_retract_mm = 0;
// change the direction of the retract if needed
if ((destination[X_AXIS] - current_position[X_AXIS])>0) G38_X_retract_mm = -G38_X_retract_mm;
if ((destination[Y_AXIS] - current_position[Y_AXIS])>0) G38_Y_retract_mm = -G38_Y_retract_mm;
if ((destination[Z_AXIS] - current_position[Z_AXIS])>0) G38_Z_retract_mm = -G38_Z_retract_mm;
stepper.synchronize(); // wait until the machine is idle
bool save_endstops = endstops.enabled; //remember state of endstops so we can retore them at the end
endstops.enable(true);
// move until you reach the destination or hit an endstop or hit the target
// it's an error unless have hit the target
G38_flag_pass = false;
*G38_pass_fail = false;
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate_mm_s, active_extruder);
stepper.synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
// and we need to update current_position[axis]
current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS] , current_position[Z_AXIS] , current_position[E_AXIS]);
*G38_pass_fail = G38_flag_pass ; // only care if hit target on the first move
if (*G38_pass_fail) { // no sense in doing the remaining moves if we didn't hit the endstop
// move away the retract distance
float xPosition = current_position[X_AXIS] + G38_X_retract_mm;
float yPosition = current_position[Y_AXIS] + G38_Y_retract_mm;
float zPosition = current_position[Z_AXIS] + G38_Z_retract_mm;
// disable endstops on retract otherwise sometimes can't get away
endstops.enable(false);
G38_flag = false;
planner.buffer_line(xPosition, yPosition , zPosition , current_position[E_AXIS], feedrate_mm_s/4, active_extruder);
stepper.synchronize();
// move back slowly
xPosition -= G38_X_retract_mm * 2;
yPosition -= G38_Y_retract_mm * 2;
zPosition -= G38_Z_retract_mm * 2;
// enable endstops on move back
endstops.enable(true);
G38_flag = true;
planner.buffer_line(xPosition, yPosition , zPosition , current_position[E_AXIS], feedrate_mm_s/4, active_extruder);
stepper.synchronize();
// we have to let the planner know where we are right now as it is not where we said to go.
// and we need to update current_position[axis]
current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS] , current_position[Z_AXIS] , current_position[E_AXIS]);
}
// clean_up_after_endstop_move();
endstops.enable(save_endstops); //restore endstops to same state as when we started
endstops.hit_on_purpose();
G38_flag = false; //tell the interrupt handler that we're done
}
#endif //G38_2_3
/** /**
* Home an individual linear axis * Home an individual linear axis
*/ */
@ -4306,25 +4166,93 @@ inline void gcode_G28() {
#endif // HAS_BED_PROBE #endif // HAS_BED_PROBE
#ifdef G38_2_3 #if ENABLED(G38_2_3)
inline void gcode_G38(float code_num) {
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) || ENABLED(Z_MIN_PROBE_ENDSTOP) //must have valid Z_MIN_PROBE definition for this command to work static bool G38_run_probe() {
if ((code_num == 38.2 || code_num == 38.3 ) && (code_seen('X') || code_seen('Y') || code_seen('Z'))) {
gcode_get_destination(); // For X Y Z E F bool G38_pass_fail = false;
if (check_move()) { // see if the commanded movement will result in a physical movement
bool G38_pass_fail = false; // Get direction of move and retract
G38_run_probe(&G38_pass_fail); float retract_mm[XYZ];
if (!G38_pass_fail && (code_num == 38.2) ) SERIAL_PROTOCOLLNPGM(" ERROR - failed to reach target "); LOOP_XYZ(i) {
} float dist = destination[i] - current_position[i];
retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm(i) * (dist > 0 ? -1 : 1);
} }
}
#else
SERIAL_PROTOCOLLNPGM(" ERROR - Z_MIN_PROBE must be enabled "); stepper.synchronize(); // wait until the machine is idle
}
#endif
#endif //G38_2_3
// Move until destination reached or target hit
endstops.enable(true);
G38_move = true;
G38_endstop_hit = false;
prepare_move_to_destination();
stepper.synchronize();
G38_move = false;
endstops.hit_on_purpose();
set_current_from_steppers_for_axis(ALL_AXES);
SYNC_PLAN_POSITION_KINEMATIC();
// Only do remaining moves if target was hit
if (G38_endstop_hit) {
G38_pass_fail = true;
// Move away by the retract distance
set_destination_to_current();
LOOP_XYZ(i) destination[i] += retract_mm[i];
endstops.enable(false);
prepare_move_to_destination();
stepper.synchronize();
feedrate_mm_s /= 4;
// Bump the target more slowly
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
endstops.enable(true);
G38_move = true;
prepare_move_to_destination();
stepper.synchronize();
G38_move = false;
set_current_from_steppers_for_axis(ALL_AXES);
SYNC_PLAN_POSITION_KINEMATIC();
}
endstops.hit_on_purpose();
endstops.not_homing();
return G38_pass_fail;
}
/**
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
* G38.3 - probe toward workpiece, stop on contact
*
* Like G28 except uses Z min endstop for all axes
*/
inline void gcode_G38(bool is_38_2) {
// Get X Y Z E F
gcode_get_destination();
setup_for_endstop_or_probe_move();
// If any axis has enough movement, do the move
LOOP_XYZ(i)
if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
// If G38.2 fails throw an error
if (!G38_run_probe() && is_38_2) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Failed to reach target");
}
break;
}
clean_up_after_endstop_or_probe_move();
}
#endif // G38_2_3
/** /**
* G92: Set current position to given X Y Z E * G92: Set current position to given X Y Z E
@ -7447,23 +7375,32 @@ void process_next_command() {
// Skip spaces to get the numeric part // Skip spaces to get the numeric part
while (*cmd_ptr == ' ') cmd_ptr++; while (*cmd_ptr == ' ') cmd_ptr++;
// Allow for decimal point in command
#if ENABLED(G38_2_3)
uint8_t subcode = 0;
#endif
uint16_t codenum = 0; // define ahead of goto uint16_t codenum = 0; // define ahead of goto
// Bail early if there's no code // Bail early if there's no code
bool code_is_good = NUMERIC(*cmd_ptr); bool code_is_good = NUMERIC(*cmd_ptr);
if (!code_is_good) goto ExitUnknownCommand; if (!code_is_good) goto ExitUnknownCommand;
#ifdef G38_2_3
double codenum_float;
codenum_float = atof(cmd_ptr); //allow for decimal point in command
#endif
// Get and skip the code number // Get and skip the code number
do { do {
codenum = (codenum * 10) + (*cmd_ptr - '0'); codenum = (codenum * 10) + (*cmd_ptr - '0');
cmd_ptr++; cmd_ptr++;
} while (NUMERIC(*cmd_ptr)); } while (NUMERIC(*cmd_ptr));
// Allow for decimal point in command
#if ENABLED(G38_2_3)
if (*cmd_ptr == '.') {
cmd_ptr++;
while (NUMERIC(*cmd_ptr))
subcode = (subcode * 10) + (*cmd_ptr++ - '0');
}
#endif
// Skip all spaces to get to the first argument, or nul // Skip all spaces to get to the first argument, or nul
while (*cmd_ptr == ' ') cmd_ptr++; while (*cmd_ptr == ' ') cmd_ptr++;
@ -7564,11 +7501,12 @@ void process_next_command() {
#endif // Z_PROBE_SLED #endif // Z_PROBE_SLED
#endif // HAS_BED_PROBE #endif // HAS_BED_PROBE
#ifdef G38_2_3 #if ENABLED(G38_2_3)
case 38: //G38.2 & G38.3 case 38: // G38.2 & G38.3
gcode_G38(codenum_float); if (subcode == 2 || subcode == 3)
gcode_G38(subcode == 2);
break; break;
#endif #endif
case 90: // G90 case 90: // G90
relative_mode = false; relative_mode = false;

View file

@ -851,6 +851,17 @@
#endif #endif
#endif #endif
/**
* G38 Probe Target
*/
#if ENABLED(G38_2_3)
#if !HAS_BED_PROBE
#error "G38_2_3 requires a bed probe."
#elif !IS_CARTESIAN
#error "G38_2_3 requires a Cartesian machine."
#endif
#endif
/** /**
* Make sure only one display is enabled * Make sure only one display is enabled
* *

View file

@ -243,33 +243,27 @@ void Endstops::update() {
// COPY_BIT: copy the value of COPY_BIT to BIT in bits // COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT)) #define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
#define _UPDATE_ENDSTOP(AXIS,MINMAX,CODE) do { \
#if defined(G38_2_3) && defined(Z_MIN_PIN) && Z_MIN_PIN > -1 // If G38 command then check Z_MIN for every axis and every direction
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
} \
if (G38_flag) {\
UPDATE_ENDSTOP_BIT(Z, MIN); \
if (TEST_ENDSTOP(_ENDSTOP(Z, MIN)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \
G38_flag_pass = true;\
} \
} \
} while(0)
#else
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \ UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \
_ENDSTOP_HIT(AXIS); \ _ENDSTOP_HIT(AXIS); \
stepper.endstop_triggered(_AXIS(AXIS)); \ stepper.endstop_triggered(_AXIS(AXIS)); \
CODE; \
} \ } \
} while(0) } while(0)
#endif #if ENABLED(G38_2_3) && PIN_EXISTS(Z_MIN) // If G38 command then check Z_MIN for every axis and every direction
#define UPDATE_ENDSTOP(AXIS,MINMAX) do { \
_UPDATE_ENDSTOP(AXIS,MINMAX,NOOP); \
if (G38_move) _UPDATE_ENDSTOP(Z, MIN, G38_endstop_hit = true); \
} while(0)
#else
#define UPDATE_ENDSTOP(AXIS,MINMAX) _UPDATE_ENDSTOP(AXIS,MINMAX,NOOP)
#endif
#if ENABLED(COREXY) || ENABLED(COREXZ) #if ENABLED(COREXY) || ENABLED(COREXZ)
// Head direction in -X axis for CoreXY and CoreXZ bots. // Head direction in -X axis for CoreXY and CoreXZ bots.