Clean up least_squares_fit
This commit is contained in:
parent
8020069371
commit
a35c681453
2 changed files with 43 additions and 55 deletions
|
@ -21,13 +21,13 @@
|
|||
*/
|
||||
|
||||
/**
|
||||
* Least Squares Best Fit By Roxy and Ed Williams
|
||||
* Least Squares Best Fit by Roxy and Ed Williams
|
||||
*
|
||||
* This algorithm is high speed and has a very small code footprint.
|
||||
* Its results are identical to both the Iterative Least-Squares published
|
||||
* earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE
|
||||
* it saves roughly 10K of program memory. It also does not require all of
|
||||
* coordinates to be present during the calculations. Each point can be
|
||||
* it saves roughly 10K of program memory. It also does not require all of
|
||||
* coordinates to be present during the calculations. Each point can be
|
||||
* probed and then discarded.
|
||||
*
|
||||
*/
|
||||
|
@ -41,56 +41,44 @@
|
|||
|
||||
#include "least_squares_fit.h"
|
||||
|
||||
void incremental_LSF_reset(struct linear_fit_data *lsf) {
|
||||
lsf->n = 0;
|
||||
lsf->A = 0.0; // probably a memset() can be done to zero
|
||||
lsf->B = 0.0; // this whole structure
|
||||
lsf->D = 0.0;
|
||||
lsf->xbar = lsf->ybar = lsf->zbar = 0.0;
|
||||
lsf->x2bar = lsf->y2bar = lsf->z2bar = 0.0;
|
||||
lsf->xybar = lsf->xzbar = lsf->yzbar = 0.0;
|
||||
lsf->max_absx = lsf->max_absy = 0.0;
|
||||
}
|
||||
void incremental_LSF_reset(struct linear_fit_data *lsf) { ZERO(lsf); }
|
||||
|
||||
void incremental_LSF(struct linear_fit_data *lsf, float x, float y, float z) {
|
||||
lsf->xbar += x;
|
||||
lsf->ybar += y;
|
||||
lsf->zbar += z;
|
||||
lsf->x2bar += x*x;
|
||||
lsf->y2bar += y*y;
|
||||
lsf->z2bar += z*z;
|
||||
lsf->xybar += x*y;
|
||||
lsf->xzbar += x*z;
|
||||
lsf->yzbar += y*z;
|
||||
lsf->max_absx = (fabs(x) > lsf->max_absx) ? fabs(x) : lsf->max_absx;
|
||||
lsf->max_absy = (fabs(y) > lsf->max_absy) ? fabs(y) : lsf->max_absy;
|
||||
lsf->n++;
|
||||
return;
|
||||
}
|
||||
lsf->xbar += x;
|
||||
lsf->ybar += y;
|
||||
lsf->zbar += z;
|
||||
lsf->x2bar += sq(x);
|
||||
lsf->y2bar += sq(y);
|
||||
lsf->z2bar += sq(z);
|
||||
lsf->xybar += sq(x);
|
||||
lsf->xzbar += sq(x);
|
||||
lsf->yzbar += sq(y);
|
||||
lsf->max_absx = max(fabs(x), lsf->max_absx);
|
||||
lsf->max_absy = max(fabs(y), lsf->max_absy);
|
||||
lsf->n++;
|
||||
}
|
||||
|
||||
int finish_incremental_LSF(struct linear_fit_data *lsf) {
|
||||
float DD, N;
|
||||
const float N = (float)lsf->n;
|
||||
|
||||
N = (float) lsf->n;
|
||||
lsf->xbar /= N;
|
||||
lsf->ybar /= N;
|
||||
lsf->zbar /= N;
|
||||
lsf->x2bar = lsf->x2bar/N - lsf->xbar*lsf->xbar;
|
||||
lsf->y2bar = lsf->y2bar/N - lsf->ybar*lsf->ybar;
|
||||
lsf->z2bar = lsf->z2bar/N - lsf->zbar*lsf->zbar;
|
||||
lsf->xybar = lsf->xybar/N - lsf->xbar*lsf->ybar;
|
||||
lsf->yzbar = lsf->yzbar/N - lsf->ybar*lsf->zbar;
|
||||
lsf->xzbar = lsf->xzbar/N - lsf->xbar*lsf->zbar;
|
||||
lsf->xbar /= N;
|
||||
lsf->ybar /= N;
|
||||
lsf->zbar /= N;
|
||||
lsf->x2bar = lsf->x2bar / N - lsf->xbar * lsf->xbar;
|
||||
lsf->y2bar = lsf->y2bar / N - lsf->ybar * lsf->ybar;
|
||||
lsf->z2bar = lsf->z2bar / N - lsf->zbar * lsf->zbar;
|
||||
lsf->xybar = lsf->xybar / N - lsf->xbar * lsf->ybar;
|
||||
lsf->yzbar = lsf->yzbar / N - lsf->ybar * lsf->zbar;
|
||||
lsf->xzbar = lsf->xzbar / N - lsf->xbar * lsf->zbar;
|
||||
|
||||
DD = lsf->x2bar*lsf->y2bar - lsf->xybar*lsf->xybar;
|
||||
if (fabs(DD) <= 1e-10*(lsf->max_absx+lsf->max_absy))
|
||||
return -1;
|
||||
|
||||
lsf->A = (lsf->yzbar*lsf->xybar - lsf->xzbar*lsf->y2bar) / DD;
|
||||
lsf->B = (lsf->xzbar*lsf->xybar - lsf->yzbar*lsf->x2bar) / DD;
|
||||
lsf->D = -(lsf->zbar + lsf->A*lsf->xbar + lsf->B*lsf->ybar);
|
||||
return 0;
|
||||
const float DD = lsf->x2bar * lsf->y2bar - sq(lsf->xybar);
|
||||
if (fabs(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
|
||||
return -1;
|
||||
|
||||
lsf->A = (lsf->yzbar * lsf->xybar - lsf->xzbar * lsf->y2bar) / DD;
|
||||
lsf->B = (lsf->xzbar * lsf->xybar - lsf->yzbar * lsf->x2bar) / DD;
|
||||
lsf->D = -(lsf->zbar + lsf->A * lsf->xbar + lsf->B * lsf->ybar);
|
||||
return 0;
|
||||
}
|
||||
#endif
|
||||
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
|
|
@ -27,7 +27,7 @@
|
|||
* Its results are identical to both the Iterative Least-Squares published
|
||||
* earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE
|
||||
* it saves roughly 10K of program memory. And even better... the data
|
||||
* fed into the algorithm does not need to all be present at the same time.
|
||||
* fed into the algorithm does not need to all be present at the same time.
|
||||
* A point can be probed and its values fed into the algorithm and then discarded.
|
||||
*
|
||||
*/
|
||||
|
@ -42,14 +42,14 @@
|
|||
|
||||
struct linear_fit_data {
|
||||
int n;
|
||||
float xbar, ybar, zbar;
|
||||
float x2bar, y2bar, z2bar;
|
||||
float xybar, xzbar, yzbar;
|
||||
float max_absx, max_absy;
|
||||
float A, B, D;
|
||||
float xbar, ybar, zbar,
|
||||
x2bar, y2bar, z2bar,
|
||||
xybar, xzbar, yzbar,
|
||||
max_absx, max_absy,
|
||||
A, B, D;
|
||||
};
|
||||
|
||||
void incremental_LSF_reset(struct linear_fit_data *);
|
||||
void incremental_LSF_reset(struct linear_fit_data *);
|
||||
void incremental_LSF(struct linear_fit_data *, float x, float y, float z);
|
||||
int finish_incremental_LSF(struct linear_fit_data *);
|
||||
|
||||
|
|
Reference in a new issue