Planner class parity with 1.1.x

This commit is contained in:
Scott Lahteine 2017-11-30 15:55:08 -06:00
parent bee2b5eea4
commit a52fec6ac4
2 changed files with 39 additions and 35 deletions

View file

@ -105,11 +105,10 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
// Initialized by settings.load()
float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter Planner::filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area Planner::volumetric_area_nominal = CIRCLE_AREA((DEFAULT_NOMINAL_FILAMENT_DIA) * 0.5), // Nominal cross-sectional area
Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor Planner::volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software Planner::max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override by software
@ -129,12 +128,11 @@ float Planner::min_feedrate_mm_s,
#if ABL_PLANAR #if ABL_PLANAR
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif #endif
#endif #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float Planner::z_fade_height, // Initialized by settings.load() float Planner::z_fade_height, // Initialized by settings.load()
Planner::inverse_z_fade_height, Planner::inverse_z_fade_height,
Planner::last_fade_z; Planner::last_fade_z;
#endif
#endif #endif
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
@ -571,7 +569,7 @@ void Planner::calculate_volumetric_multipliers() {
*/ */
void Planner::apply_leveling(float &rx, float &ry, float &rz) { void Planner::apply_leveling(float &rx, float &ry, float &rz) {
if (!planner.leveling_active) return; if (!leveling_active) return;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float fade_scaling_factor = fade_scaling_factor_for_z(rz); const float fade_scaling_factor = fade_scaling_factor_for_z(rz);
@ -614,20 +612,22 @@ void Planner::calculate_volumetric_multipliers() {
void Planner::unapply_leveling(float raw[XYZ]) { void Planner::unapply_leveling(float raw[XYZ]) {
if (!planner.leveling_active) return; if (!leveling_active) return;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (z_fade_height && raw[Z_AXIS] >= z_fade_height) return; if (!leveling_active_at_z(raw[Z_AXIS])) return;
#endif #endif
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
const float z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]); const float z_physical = raw[Z_AXIS],
float z_raw = raw[Z_AXIS] - z_correct; z_correct = ubl.get_z_correction(raw[X_AXIS], raw[Y_AXIS]),
z_virtual = z_physical - z_correct;
float z_raw = z_virtual;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
// for P=physical_z, L=raw_z, M=mesh_z, H=fade_height, // for P=physical_z, L=logical_z, M=mesh_z, H=fade_height,
// Given P=L+M(1-L/H) (faded mesh correction formula for L<H) // Given P=L+M(1-L/H) (faded mesh correction formula for L<H)
// then L=P-M(1-L/H) // then L=P-M(1-L/H)
// so L=P-M+ML/H // so L=P-M+ML/H
@ -637,7 +637,7 @@ void Planner::calculate_volumetric_multipliers() {
if (planner.z_fade_height) { if (planner.z_fade_height) {
if (z_raw >= planner.z_fade_height) if (z_raw >= planner.z_fade_height)
z_raw = raw[Z_AXIS]; z_raw = z_physical;
else else
z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height; z_raw /= 1.0 - z_correct * planner.inverse_z_fade_height;
} }
@ -646,28 +646,32 @@ void Planner::calculate_volumetric_multipliers() {
raw[Z_AXIS] = z_raw; raw[Z_AXIS] = z_raw;
#elif ENABLED(MESH_BED_LEVELING) return; // don't fall thru to other ENABLE_LEVELING_FADE_HEIGHT logic
#endif
#if ENABLED(MESH_BED_LEVELING)
if (leveling_active) {
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0); const float c = mbl.get_z(raw[X_AXIS], raw[Y_AXIS], 1.0);
raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS] - c)) / (z_fade_height - c); raw[Z_AXIS] = (z_fade_height * (raw[Z_AXIS]) - c) / (z_fade_height - c);
#else #else
raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]); raw[Z_AXIS] -= mbl.get_z(raw[X_AXIS], raw[Y_AXIS]);
#endif #endif
}
#elif ABL_PLANAR #elif ABL_PLANAR
matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix); matrix_3x3 inverse = matrix_3x3::transpose(bed_level_matrix);
float dx = raw[X_AXIS] - (X_TILT_FULCRUM), float dx = raw[X_AXIS] - (X_TILT_FULCRUM),
dy = raw[Y_AXIS] - (Y_TILT_FULCRUM), dy = raw[Y_AXIS] - (Y_TILT_FULCRUM);
dz = raw[Z_AXIS];
apply_rotation_xyz(inverse, dx, dy, dz); apply_rotation_xyz(inverse, dx, dy, raw[Z_AXIS]);
raw[X_AXIS] = dx + X_TILT_FULCRUM; raw[X_AXIS] = dx + X_TILT_FULCRUM;
raw[Y_AXIS] = dy + Y_TILT_FULCRUM; raw[Y_AXIS] = dy + Y_TILT_FULCRUM;
raw[Z_AXIS] = dz;
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR) #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)

View file

@ -342,12 +342,12 @@ class Planner {
/** /**
* Planner::_buffer_line * Planner::_buffer_line
* *
* Add a new direct linear movement to the buffer. * Add a new linear movement to the buffer in axis units.
* *
* Leveling and kinematics should be applied ahead of this. * Leveling and kinematics should be applied ahead of calling this.
* *
* a,b,c,e - target position in mm or degrees * a,b,c,e - target positions in mm and/or degrees
* fr_mm_s - (target) speed of the move (mm/s) * fr_mm_s - (target) speed of the move
* extruder - target extruder * extruder - target extruder
*/ */
static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder); static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
@ -444,7 +444,7 @@ class Planner {
if (blocks_queued()) { if (blocks_queued()) {
block_t* block = &block_buffer[block_buffer_tail]; block_t* block = &block_buffer[block_buffer_tail];
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
block_buffer_runtime_us -= block->segment_time_us; //We can't be sure how long an active block will take, so don't count it. block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
#endif #endif
SBI(block->flag, BLOCK_BIT_BUSY); SBI(block->flag, BLOCK_BIT_BUSY);
return block; return block;