decoupled axes sucessfully at least on pure x or y jog

This commit is contained in:
Erik van der Zalm 2012-07-14 13:43:19 +02:00
parent b67dacdc8f
commit aa65fe22ed
2 changed files with 116 additions and 26 deletions

View file

@ -35,6 +35,10 @@
#define MOTHERBOARD 7 #define MOTHERBOARD 7
#endif #endif
/// Comment out the following line to enable normal kinematics
#define COREXY
//=========================================================================== //===========================================================================
//=============================Thermal Settings ============================ //=============================Thermal Settings ============================
//=========================================================================== //===========================================================================
@ -168,7 +172,7 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define DISABLE_E false // For all extruders #define DISABLE_E false // For all extruders
#define INVERT_X_DIR true // for Mendel set to false, for Orca set to true #define INVERT_X_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_Y_DIR false // for Mendel set to true, for Orca set to false #define INVERT_Y_DIR true // for Mendel set to true, for Orca set to false
#define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true #define INVERT_Z_DIR true // for Mendel set to false, for Orca set to true
#define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E0_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
#define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false #define INVERT_E1_DIR false // for direct drive extruder v9 set to true, for geared extruder set to false
@ -180,8 +184,8 @@ const bool Z_ENDSTOPS_INVERTING = true; // set to true to invert the logic of th
#define Y_HOME_DIR -1 #define Y_HOME_DIR -1
#define Z_HOME_DIR -1 #define Z_HOME_DIR -1
#define min_software_endstops true //If true, axis won't move to coordinates less than HOME_POS. #define min_software_endstops false //If true, axis won't move to coordinates less than HOME_POS.
#define max_software_endstops true //If true, axis won't move to coordinates greater than the defined lengths below. #define max_software_endstops false //If true, axis won't move to coordinates greater than the defined lengths below.
#define X_MAX_LENGTH 205 #define X_MAX_LENGTH 205
#define Y_MAX_LENGTH 205 #define Y_MAX_LENGTH 205
#define Z_MAX_LENGTH 200 #define Z_MAX_LENGTH 200

View file

@ -214,6 +214,12 @@ void st_wake_up() {
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
void step_wait(){
for(int8_t i=0; i < 6; i++){
}
}
FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer; unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
@ -317,8 +323,10 @@ ISR(TIMER1_COMPA_vect)
out_bits = current_block->direction_bits; out_bits = current_block->direction_bits;
// Set direction en check limit switches // Set direction en check limit switches
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction if ((out_bits & (1<<X_AXIS)) != 0) { // stepping along -X axis
WRITE(X_DIR_PIN, INVERT_X_DIR); #if !defined COREXY //NOT COREXY
WRITE(X_DIR_PIN, INVERT_X_DIR);
#endif
count_direction[X_AXIS]=-1; count_direction[X_AXIS]=-1;
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
@ -334,7 +342,10 @@ ISR(TIMER1_COMPA_vect)
} }
} }
else { // +direction else { // +direction
WRITE(X_DIR_PIN,!INVERT_X_DIR); #if !defined COREXY //NOT COREXY
WRITE(X_DIR_PIN,!INVERT_X_DIR);
#endif
count_direction[X_AXIS]=1; count_direction[X_AXIS]=1;
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
@ -351,7 +362,9 @@ ISR(TIMER1_COMPA_vect)
} }
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
WRITE(Y_DIR_PIN,INVERT_Y_DIR); #if !defined COREXY //NOT COREXY
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
#endif
count_direction[Y_AXIS]=-1; count_direction[Y_AXIS]=-1;
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
@ -367,7 +380,9 @@ ISR(TIMER1_COMPA_vect)
} }
} }
else { // +direction else { // +direction
WRITE(Y_DIR_PIN,!INVERT_Y_DIR); #if !defined COREXY //NOT COREXY
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
#endif
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
CHECK_ENDSTOPS CHECK_ENDSTOPS
{ {
@ -383,6 +398,27 @@ ISR(TIMER1_COMPA_vect)
} }
} }
#ifdef COREXY //coreXY kinematics defined
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) == 0)){ //+X is major axis
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
}
if((current_block->steps_x >= current_block->steps_y)&&((out_bits & (1<<X_AXIS)) != 0)){ //-X is major axis
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
}
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) == 0)){ //+Y is major axis
WRITE(X_DIR_PIN, !INVERT_X_DIR);
WRITE(Y_DIR_PIN, INVERT_Y_DIR);
}
if((current_block->steps_y > current_block->steps_x)&&((out_bits & (1<<Y_AXIS)) != 0)){ //-Y is major axis
WRITE(X_DIR_PIN, INVERT_X_DIR);
WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
}
#endif //coreXY
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
WRITE(Z_DIR_PIN,INVERT_Z_DIR); WRITE(Z_DIR_PIN,INVERT_Z_DIR);
count_direction[Z_AXIS]=-1; count_direction[Z_AXIS]=-1;
@ -447,21 +483,71 @@ ISR(TIMER1_COMPA_vect)
} }
#endif //ADVANCE #endif //ADVANCE
counter_x += current_block->steps_x; #if !defined COREXY
if (counter_x > 0) { counter_x += current_block->steps_x;
WRITE(X_STEP_PIN, HIGH); if (counter_x > 0) {
counter_x -= current_block->step_event_count; WRITE(X_STEP_PIN, HIGH);
WRITE(X_STEP_PIN, LOW); counter_x -= current_block->step_event_count;
count_position[X_AXIS]+=count_direction[X_AXIS]; WRITE(X_STEP_PIN, LOW);
} count_position[X_AXIS]+=count_direction[X_AXIS];
}
counter_y += current_block->steps_y; counter_y += current_block->steps_y;
if (counter_y > 0) { if (counter_y > 0) {
WRITE(Y_STEP_PIN, HIGH); WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW); WRITE(Y_STEP_PIN, LOW);
count_position[Y_AXIS]+=count_direction[Y_AXIS];
} }
#endif
#ifdef COREXY
counter_x += current_block->steps_x;
counter_y += current_block->steps_y;
if ((counter_x > 0)&&!(counter_y>0)){ //X step only
WRITE(X_STEP_PIN, HIGH);
WRITE(Y_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
WRITE(Y_STEP_PIN, LOW);
count_position[X_AXIS]+=count_direction[X_AXIS];
}
if (!(counter_x > 0)&&(counter_y>0)){ //Y step only
WRITE(X_STEP_PIN, HIGH);
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
WRITE(Y_STEP_PIN, LOW);
count_position[Y_AXIS]+=count_direction[Y_AXIS];
}
if ((counter_x > 0)&&(counter_y>0)){ //step in both axes
if (((out_bits & (1<<X_AXIS)) == 0)^((out_bits & (1<<Y_AXIS)) == 0)){ //X and Y in different directions
WRITE(Y_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(Y_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(Y_STEP_PIN, LOW);
}
else{ //X and Y in same direction
WRITE(X_STEP_PIN, HIGH);
counter_x -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW) ;
step_wait();
count_position[X_AXIS]+=count_direction[X_AXIS];
count_position[Y_AXIS]+=count_direction[Y_AXIS];
WRITE(X_STEP_PIN, HIGH);
counter_y -= current_block->step_event_count;
WRITE(X_STEP_PIN, LOW);
}
}
#endif //corexy
counter_z += current_block->steps_z; counter_z += current_block->steps_z;
if (counter_z > 0) { if (counter_z > 0) {