Eliminate goto in gcode_M48
This commit is contained in:
parent
75e6ead5fd
commit
ac76101ec3
1 changed files with 132 additions and 128 deletions
|
@ -7038,150 +7038,154 @@ inline void gcode_M42() {
|
|||
|
||||
// Move to the first point, deploy, and probe
|
||||
const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
|
||||
if (nan_error(t)) goto FAIL;
|
||||
bool probing_good = !isnan(t);
|
||||
|
||||
randomSeed(millis());
|
||||
if (probing_good) {
|
||||
randomSeed(millis());
|
||||
|
||||
for (uint8_t n = 0; n < n_samples; n++) {
|
||||
if (n_legs) {
|
||||
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
||||
float angle = random(0.0, 360.0);
|
||||
const float radius = random(
|
||||
#if ENABLED(DELTA)
|
||||
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
||||
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
||||
#else
|
||||
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
||||
#endif
|
||||
);
|
||||
for (uint8_t n = 0; n < n_samples; n++) {
|
||||
if (n_legs) {
|
||||
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
||||
float angle = random(0.0, 360.0);
|
||||
const float radius = random(
|
||||
#if ENABLED(DELTA)
|
||||
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
||||
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
||||
#else
|
||||
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
||||
#endif
|
||||
);
|
||||
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
||||
SERIAL_ECHOPAIR(" angle: ", angle);
|
||||
SERIAL_ECHOPGM(" Direction: ");
|
||||
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
||||
SERIAL_ECHOLNPGM("Clockwise");
|
||||
}
|
||||
|
||||
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
||||
double delta_angle;
|
||||
|
||||
if (schizoid_flag)
|
||||
// The points of a 5 point star are 72 degrees apart. We need to
|
||||
// skip a point and go to the next one on the star.
|
||||
delta_angle = dir * 2.0 * 72.0;
|
||||
|
||||
else
|
||||
// If we do this line, we are just trying to move further
|
||||
// around the circle.
|
||||
delta_angle = dir * (float) random(25, 45);
|
||||
|
||||
angle += delta_angle;
|
||||
|
||||
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
||||
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
||||
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
||||
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
||||
|
||||
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
||||
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
||||
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
||||
#else
|
||||
// If we have gone out too far, we can do a simple fix and scale the numbers
|
||||
// back in closer to the origin.
|
||||
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
|
||||
X_current *= 0.8;
|
||||
Y_current *= 0.8;
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
||||
SERIAL_ECHOLNPAIR(", ", Y_current);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_PROTOCOLPGM("Going to:");
|
||||
SERIAL_ECHOPAIR(" X", X_current);
|
||||
SERIAL_ECHOPAIR(" Y", Y_current);
|
||||
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
||||
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
||||
SERIAL_ECHOPAIR(" angle: ", angle);
|
||||
SERIAL_ECHOPGM(" Direction: ");
|
||||
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
||||
SERIAL_ECHOLNPGM("Clockwise");
|
||||
}
|
||||
do_blocking_move_to_xy(X_current, Y_current);
|
||||
} // n_legs loop
|
||||
} // n_legs
|
||||
|
||||
// Probe a single point
|
||||
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
|
||||
if (nan_error(sample_set[n])) goto FAIL;
|
||||
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
||||
double delta_angle;
|
||||
|
||||
/**
|
||||
* Get the current mean for the data points we have so far
|
||||
*/
|
||||
double sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
||||
mean = sum / (n + 1);
|
||||
if (schizoid_flag)
|
||||
// The points of a 5 point star are 72 degrees apart. We need to
|
||||
// skip a point and go to the next one on the star.
|
||||
delta_angle = dir * 2.0 * 72.0;
|
||||
|
||||
NOMORE(min, sample_set[n]);
|
||||
NOLESS(max, sample_set[n]);
|
||||
else
|
||||
// If we do this line, we are just trying to move further
|
||||
// around the circle.
|
||||
delta_angle = dir * (float) random(25, 45);
|
||||
|
||||
/**
|
||||
* Now, use that mean to calculate the standard deviation for the
|
||||
* data points we have so far
|
||||
*/
|
||||
sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++)
|
||||
sum += sq(sample_set[j] - mean);
|
||||
angle += delta_angle;
|
||||
|
||||
sigma = SQRT(sum / (n + 1));
|
||||
if (verbose_level > 0) {
|
||||
if (verbose_level > 1) {
|
||||
SERIAL_PROTOCOL(n + 1);
|
||||
SERIAL_PROTOCOLPGM(" of ");
|
||||
SERIAL_PROTOCOL((int)n_samples);
|
||||
SERIAL_PROTOCOLPGM(": z: ");
|
||||
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 4);
|
||||
SERIAL_PROTOCOLPGM(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_PROTOCOLPGM(" min: ");
|
||||
SERIAL_PROTOCOL_F(min, 3);
|
||||
SERIAL_PROTOCOLPGM(" max: ");
|
||||
SERIAL_PROTOCOL_F(max, 3);
|
||||
SERIAL_PROTOCOLPGM(" range: ");
|
||||
SERIAL_PROTOCOL_F(max-min, 3);
|
||||
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
||||
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
||||
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
||||
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
||||
|
||||
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
||||
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
||||
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
||||
#else
|
||||
// If we have gone out too far, we can do a simple fix and scale the numbers
|
||||
// back in closer to the origin.
|
||||
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
|
||||
X_current *= 0.8;
|
||||
Y_current *= 0.8;
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
||||
SERIAL_ECHOLNPAIR(", ", Y_current);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_PROTOCOLPGM("Going to:");
|
||||
SERIAL_ECHOPAIR(" X", X_current);
|
||||
SERIAL_ECHOPAIR(" Y", Y_current);
|
||||
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
||||
}
|
||||
do_blocking_move_to_xy(X_current, Y_current);
|
||||
} // n_legs loop
|
||||
} // n_legs
|
||||
|
||||
// Probe a single point
|
||||
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
|
||||
|
||||
// Break the loop if the probe fails
|
||||
probing_good = !isnan(sample_set[n]);
|
||||
if (!probing_good) break;
|
||||
|
||||
/**
|
||||
* Get the current mean for the data points we have so far
|
||||
*/
|
||||
double sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
||||
mean = sum / (n + 1);
|
||||
|
||||
NOMORE(min, sample_set[n]);
|
||||
NOLESS(max, sample_set[n]);
|
||||
|
||||
/**
|
||||
* Now, use that mean to calculate the standard deviation for the
|
||||
* data points we have so far
|
||||
*/
|
||||
sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++)
|
||||
sum += sq(sample_set[j] - mean);
|
||||
|
||||
sigma = SQRT(sum / (n + 1));
|
||||
if (verbose_level > 0) {
|
||||
if (verbose_level > 1) {
|
||||
SERIAL_PROTOCOL(n + 1);
|
||||
SERIAL_PROTOCOLPGM(" of ");
|
||||
SERIAL_PROTOCOL((int)n_samples);
|
||||
SERIAL_PROTOCOLPGM(": z: ");
|
||||
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 4);
|
||||
SERIAL_PROTOCOLPGM(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_PROTOCOLPGM(" min: ");
|
||||
SERIAL_PROTOCOL_F(min, 3);
|
||||
SERIAL_PROTOCOLPGM(" max: ");
|
||||
SERIAL_PROTOCOL_F(max, 3);
|
||||
SERIAL_PROTOCOLPGM(" range: ");
|
||||
SERIAL_PROTOCOL_F(max-min, 3);
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
}
|
||||
|
||||
} // End of probe loop
|
||||
|
||||
if (STOW_PROBE()) goto FAIL;
|
||||
|
||||
SERIAL_PROTOCOLPGM("Finished!");
|
||||
SERIAL_EOL();
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("Mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_PROTOCOLPGM(" Min: ");
|
||||
SERIAL_PROTOCOL_F(min, 3);
|
||||
SERIAL_PROTOCOLPGM(" Max: ");
|
||||
SERIAL_PROTOCOL_F(max, 3);
|
||||
SERIAL_PROTOCOLPGM(" Range: ");
|
||||
SERIAL_PROTOCOL_F(max-min, 3);
|
||||
SERIAL_EOL();
|
||||
} // n_samples loop
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_EOL();
|
||||
SERIAL_EOL();
|
||||
STOW_PROBE();
|
||||
|
||||
FAIL:
|
||||
if (probing_good) {
|
||||
SERIAL_PROTOCOLLNPGM("Finished!");
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("Mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_PROTOCOLPGM(" Min: ");
|
||||
SERIAL_PROTOCOL_F(min, 3);
|
||||
SERIAL_PROTOCOLPGM(" Max: ");
|
||||
SERIAL_PROTOCOL_F(max, 3);
|
||||
SERIAL_PROTOCOLPGM(" Range: ");
|
||||
SERIAL_PROTOCOL_F(max-min, 3);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_EOL();
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
|
||||
|
|
Reference in a new issue