From b3eb0c8569f399fbcf1ad2739669d9ed6be9b1db Mon Sep 17 00:00:00 2001 From: Scott Lahteine Date: Fri, 22 Jul 2016 17:46:05 -0700 Subject: [PATCH] Add LOGICAL_POSITION macro, apply to kinematics --- Marlin/Marlin_main.cpp | 92 ++++++++++++++++++++++-------------------- 1 file changed, 48 insertions(+), 44 deletions(-) diff --git a/Marlin/Marlin_main.cpp b/Marlin/Marlin_main.cpp index f36c175b4..699331e9d 100644 --- a/Marlin/Marlin_main.cpp +++ b/Marlin/Marlin_main.cpp @@ -330,6 +330,7 @@ float position_shift[3] = { 0 }; // Set by M206, M428, or menu item. Saved to EEPROM. float home_offset[3] = { 0 }; +#define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS)) @@ -1402,7 +1403,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); static float x_home_pos(int extruder) { if (extruder == 0) - return base_home_pos(X_AXIS) + home_offset[X_AXIS]; + return LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); else /** * In dual carriage mode the extruder offset provides an override of the @@ -1437,7 +1438,7 @@ XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); * at the same positions relative to the machine. */ static void update_software_endstops(AxisEnum axis) { - float offs = home_offset[axis] + position_shift[axis]; + float offs = LOGICAL_POSITION(0, axis); #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { @@ -1508,7 +1509,7 @@ static void set_axis_is_at_home(AxisEnum axis) { if (active_extruder != 0) current_position[X_AXIS] = x_home_pos(active_extruder); else - current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS]; + current_position[X_AXIS] = LOGICAL_POSITION(base_home_pos(X_AXIS), X_AXIS); update_software_endstops(X_AXIS); return; } @@ -1519,7 +1520,8 @@ static void set_axis_is_at_home(AxisEnum axis) { if (axis == X_AXIS || axis == Y_AXIS) { float homeposition[3]; - for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); + for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) + homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); @@ -1529,23 +1531,12 @@ static void set_axis_is_at_home(AxisEnum axis) { * and calculates homing offset using forward kinematics */ inverse_kinematics(homeposition); - - // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]); - // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); - - for (int i = 0; i < 2; i++) delta[i] -= home_offset[i]; - - // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]); - // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]); - // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); - // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); - forward_kinematics_SCARA(delta); - // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]); + // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); - current_position[axis] = delta[axis]; + current_position[axis] = LOGICAL_POSITION(delta[axis], axis); /** * SCARA home positions are based on configuration since the actual @@ -1557,7 +1548,7 @@ static void set_axis_is_at_home(AxisEnum axis) { else #endif { - current_position[axis] = base_home_pos(axis) + home_offset[axis]; + current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis); update_software_endstops(axis); #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP) @@ -1786,7 +1777,7 @@ static void clean_up_after_endstop_or_probe_move() { SERIAL_ECHOLNPGM(")"); } #endif - float z_dest = home_offset[Z_AXIS] + z_raise; + float z_dest = LOGICAL_POSITION(z_raise, Z_AXIS); if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset; @@ -2089,7 +2080,7 @@ static void clean_up_after_endstop_or_probe_move() { #if ENABLED(DELTA) #define SET_Z_FROM_STEPPERS() set_current_from_steppers() #else - #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS) + #define SET_Z_FROM_STEPPERS() current_position[Z_AXIS] = LOGICAL_POSITION(stepper.get_axis_position_mm(Z_AXIS), Z_AXIS) #endif // Do a single Z probe and return with current_position[Z_AXIS] @@ -2958,7 +2949,7 @@ inline void gcode_G28() { if (home_all_axis || homeX || homeY) { // Raise Z before homing any other axes and z is not already high enough (never lower z) - destination[Z_AXIS] = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING; + destination[Z_AXIS] = LOGICAL_POSITION(MIN_Z_HEIGHT_FOR_HOMING, Z_AXIS); if (destination[Z_AXIS] > current_position[Z_AXIS]) { #if ENABLED(DEBUG_LEVELING_FEATURE) @@ -3213,12 +3204,12 @@ inline void gcode_G28() { ; line_to_current_position(); - current_position[X_AXIS] = x + home_offset[X_AXIS]; - current_position[Y_AXIS] = y + home_offset[Y_AXIS]; + current_position[X_AXIS] = LOGICAL_POSITION(x, X_AXIS); + current_position[Y_AXIS] = LOGICAL_POSITION(y, Y_AXIS); line_to_current_position(); #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0 - current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; + current_position[Z_AXIS] = LOGICAL_POSITION(MESH_HOME_SEARCH_Z, Z_AXIS); line_to_current_position(); #endif @@ -3636,14 +3627,14 @@ inline void gcode_G28() { #endif // Probe at 3 arbitrary points - float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], - ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], + float z_at_pt_1 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_1_X, X_AXIS), + LOGICAL_POSITION(ABL_PROBE_PT_1_Y, Y_AXIS), stow_probe_after_each, verbose_level), - z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], - ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], + z_at_pt_2 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_2_X, X_AXIS), + LOGICAL_POSITION(ABL_PROBE_PT_2_Y, Y_AXIS), stow_probe_after_each, verbose_level), - z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], - ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], + z_at_pt_3 = probe_pt( LOGICAL_POSITION(ABL_PROBE_PT_3_X, X_AXIS), + LOGICAL_POSITION(ABL_PROBE_PT_3_Y, Y_AXIS), stow_probe_after_each, verbose_level); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); @@ -5174,9 +5165,9 @@ static void report_current_position() { SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); - SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); + SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); - SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); + SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90); SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); @@ -6143,7 +6134,7 @@ inline void gcode_M428() { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (axis_homed[i]) { float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, - diff = current_position[i] - base; + diff = current_position[i] - LOGICAL_POSITION(base, i); if (diff > -20 && diff < 20) { set_home_offset((AxisEnum)i, home_offset[i] - diff); } @@ -7739,6 +7730,12 @@ void clamp_to_software_endstops(float target[3]) { void inverse_kinematics(const float in_cartesian[3]) { + const float cartesian[3] = { + RAW_POSITION(in_cartesian[X_AXIS], X_AXIS), + RAW_POSITION(in_cartesian[Y_AXIS], Y_AXIS), + RAW_POSITION(in_cartesian[Z_AXIS], Z_AXIS) + }; + delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 - sq(delta_tower1_x - cartesian[X_AXIS]) - sq(delta_tower1_y - cartesian[Y_AXIS]) @@ -7763,10 +7760,14 @@ void clamp_to_software_endstops(float target[3]) { } float delta_safe_distance_from_top() { - float cartesian[3] = { 0 }; + float cartesian[3] = { + LOGICAL_POSITION(0, X_AXIS), + LOGICAL_POSITION(0, Y_AXIS), + LOGICAL_POSITION(0, Z_AXIS) + }; inverse_kinematics(cartesian); float distance = delta[TOWER_3]; - cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS; + cartesian[Y_AXIS] = LOGICAL_POSITION(DELTA_PRINTABLE_RADIUS, Y_AXIS); inverse_kinematics(cartesian); return abs(distance - delta[TOWER_3]); } @@ -7846,8 +7847,8 @@ void clamp_to_software_endstops(float target[3]) { void set_cartesian_from_steppers() { forward_kinematics_DELTA(stepper.get_axis_position_mm(X_AXIS), - stepper.get_axis_position_mm(Y_AXIS), - stepper.get_axis_position_mm(Z_AXIS)); + stepper.get_axis_position_mm(Y_AXIS), + stepper.get_axis_position_mm(Z_AXIS)); } #if ENABLED(AUTO_BED_LEVELING_FEATURE) @@ -7858,8 +7859,8 @@ void clamp_to_software_endstops(float target[3]) { int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; float h1 = 0.001 - half, h2 = half - 0.001, - grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), - grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); + grid_x = max(h1, min(h2, RAW_POSITION(cartesian[X_AXIS], X_AXIS) / delta_grid_spacing[0])), + grid_y = max(h1, min(h2, RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) / delta_grid_spacing[1])); int floor_x = floor(grid_x), floor_y = floor(grid_y); float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, z1 = bed_level[floor_x + half][floor_y + half], @@ -7910,6 +7911,9 @@ void set_current_from_steppers() { current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS); current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS); #endif + + for (uint8_t i = X_AXIS; i <= Z_AXIS; i++) + current_position[i] += LOGICAL_POSITION(0, i); } #if ENABLED(MESH_BED_LEVELING) @@ -7940,14 +7944,14 @@ void mesh_line_to_destination(float fr_mm_m, uint8_t x_splits = 0xff, uint8_t y_ int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2); if (cx2 != cx1 && TEST(x_splits, gcx)) { memcpy(end, destination, sizeof(end)); - destination[X_AXIS] = mbl.get_probe_x(gcx) + home_offset[X_AXIS] + position_shift[X_AXIS]; + destination[X_AXIS] = LOGICAL_POSITION(mbl.get_probe_x(gcx), X_AXIS); normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]); destination[Y_AXIS] = MBL_SEGMENT_END(Y); CBI(x_splits, gcx); } else if (cy2 != cy1 && TEST(y_splits, gcy)) { memcpy(end, destination, sizeof(end)); - destination[Y_AXIS] = mbl.get_probe_y(gcy) + home_offset[Y_AXIS] + position_shift[Y_AXIS]; + destination[Y_AXIS] = LOGICAL_POSITION(mbl.get_probe_y(gcy), Y_AXIS); normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]); destination[X_AXIS] = MBL_SEGMENT_END(X); CBI(y_splits, gcy); @@ -8362,8 +8366,8 @@ void prepare_move_to_destination() { float SCARA_pos[2]; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; - SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y - SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. + SCARA_pos[X_AXIS] = RAW_POSITION(cartesian[X_AXIS], X_AXIS) * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y + SCARA_pos[Y_AXIS] = RAW_POSITION(cartesian[Y_AXIS], Y_AXIS) * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. #if (Linkage_1 == Linkage_2) SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; @@ -8381,7 +8385,7 @@ void prepare_move_to_destination() { delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) - delta[Z_AXIS] = cartesian[Z_AXIS]; + delta[Z_AXIS] = RAW_POSITION(cartesian[Z_AXIS], Z_AXIS); /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);