Merge pull request #4389 from thinkyhead/rc_optimize_planner

Optimize planner with precalculation, etc.
This commit is contained in:
Scott Lahteine 2016-07-24 17:48:23 -07:00 committed by GitHub
commit b7b7c90477
9 changed files with 116 additions and 83 deletions

View file

@ -610,6 +610,20 @@ static void report_current_position();
print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0) print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
#endif #endif
/**
* sync_plan_position
* Set planner / stepper positions to the cartesian current_position.
* The stepper code translates these coordinates into step units.
* Allows translation between steps and millimeters for cartesian & core robots
*/
inline void sync_plan_position() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
inline void sync_plan_position_delta() { inline void sync_plan_position_delta() {
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
@ -897,16 +911,15 @@ void setup() {
// Send "ok" after commands by default // Send "ok" after commands by default
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true; for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate) // Load data from EEPROM if available (or use defaults)
// This also updates variables in the planner, elsewhere
Config_RetrieveSettings(); Config_RetrieveSettings();
// Initialize current position based on home_offset // Initialize current position based on home_offset
memcpy(current_position, home_offset, sizeof(home_offset)); memcpy(current_position, home_offset, sizeof(home_offset));
#if ENABLED(DELTA) || ENABLED(SCARA) // Vital to init stepper/planner equivalent for current_position
// Vital to init kinematic equivalent for X0 Y0 Z0 SYNC_PLAN_POSITION_KINEMATIC();
SYNC_PLAN_POSITION_KINEMATIC();
#endif
thermalManager.init(); // Initialize temperature loop thermalManager.init(); // Initialize temperature loop
@ -1319,7 +1332,7 @@ inline bool code_value_bool() { return code_value_byte() > 0; }
case TEMPUNIT_C: case TEMPUNIT_C:
return code_value_float(); return code_value_float();
case TEMPUNIT_F: case TEMPUNIT_F:
return (code_value_float() - 32) / 1.8; return (code_value_float() - 32) * 0.5555555556;
case TEMPUNIT_K: case TEMPUNIT_K:
return code_value_float() - 272.15; return code_value_float() - 272.15;
default: default:
@ -1333,7 +1346,7 @@ inline bool code_value_bool() { return code_value_byte() > 0; }
case TEMPUNIT_K: case TEMPUNIT_K:
return code_value_float(); return code_value_float();
case TEMPUNIT_F: case TEMPUNIT_F:
return code_value_float() / 1.8; return code_value_float() * 0.5555555556;
default: default:
return code_value_float(); return code_value_float();
} }
@ -1627,19 +1640,6 @@ inline void line_to_destination(float fr_mm_m) {
} }
inline void line_to_destination() { line_to_destination(feedrate_mm_m); } inline void line_to_destination() { line_to_destination(feedrate_mm_m); }
/**
* sync_plan_position
* Set planner / stepper positions to the cartesian current_position.
* The stepper code translates these coordinates into step units.
* Allows translation between steps and millimeters for cartesian & core robots
*/
inline void sync_plan_position() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
#endif
planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
@ -5147,6 +5147,7 @@ inline void gcode_M92() {
} }
} }
} }
planner.refresh_positioning();
} }
/** /**
@ -6140,7 +6141,7 @@ inline void gcode_M428() {
bool err = false; bool err = false;
LOOP_XYZ(i) { LOOP_XYZ(i) {
if (axis_homed[i]) { if (axis_homed[i]) {
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0, float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
diff = current_position[i] - LOGICAL_POSITION(base, i); diff = current_position[i] - LOGICAL_POSITION(base, i);
if (diff > -20 && diff < 20) { if (diff > -20 && diff < 20) {
set_home_offset((AxisEnum)i, home_offset[i] - diff); set_home_offset((AxisEnum)i, home_offset[i] - diff);

View file

@ -171,10 +171,16 @@ void Config_Postprocess() {
// steps per s2 needs to be updated to agree with units per s2 // steps per s2 needs to be updated to agree with units per s2
planner.reset_acceleration_rates(); planner.reset_acceleration_rates();
// Make sure delta kinematics are updated before refreshing the
// planner position so the stepper counts will be set correctly.
#if ENABLED(DELTA) #if ENABLED(DELTA)
recalc_delta_settings(delta_radius, delta_diagonal_rod); recalc_delta_settings(delta_radius, delta_diagonal_rod);
#endif #endif
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
// and init stepper.count[], planner.position[] with current_position
planner.refresh_positioning();
#if ENABLED(PIDTEMP) #if ENABLED(PIDTEMP)
thermalManager.updatePID(); thermalManager.updatePID();
#endif #endif

View file

@ -80,29 +80,31 @@ block_t Planner::block_buffer[BLOCK_BUFFER_SIZE];
volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed volatile uint8_t Planner::block_buffer_head = 0; // Index of the next block to be pushed
volatile uint8_t Planner::block_buffer_tail = 0; volatile uint8_t Planner::block_buffer_tail = 0;
float Planner::max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second float Planner::max_feedrate_mm_s[NUM_AXIS], // Max speeds in mm per second
float Planner::axis_steps_per_mm[NUM_AXIS]; Planner::axis_steps_per_mm[NUM_AXIS],
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS]; Planner::steps_to_mm[NUM_AXIS];
unsigned long Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
unsigned long Planner::max_acceleration_steps_per_s2[NUM_AXIS],
Planner::max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
millis_t Planner::min_segment_time; millis_t Planner::min_segment_time;
float Planner::min_feedrate_mm_s; float Planner::min_feedrate_mm_s,
float Planner::acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX Planner::acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
float Planner::retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX Planner::retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
float Planner::travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX Planner::travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
float Planner::max_xy_jerk; // The largest speed change requiring no acceleration Planner::max_xy_jerk, // The largest speed change requiring no acceleration
float Planner::max_z_jerk; Planner::max_z_jerk,
float Planner::max_e_jerk; Planner::max_e_jerk,
float Planner::min_travel_feedrate_mm_s; Planner::min_travel_feedrate_mm_s;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(AUTO_BED_LEVELING_FEATURE)
matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level matrix_3x3 Planner::bed_level_matrix; // Transform to compensate for bed level
#endif #endif
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
float Planner::autotemp_max = 250; float Planner::autotemp_max = 250,
float Planner::autotemp_min = 210; Planner::autotemp_min = 210,
float Planner::autotemp_factor = 0.1; Planner::autotemp_factor = 0.1;
bool Planner::autotemp_enabled = false; bool Planner::autotemp_enabled = false;
#endif #endif
@ -110,9 +112,8 @@ float Planner::min_travel_feedrate_mm_s;
long Planner::position[NUM_AXIS] = { 0 }; long Planner::position[NUM_AXIS] = { 0 };
float Planner::previous_speed[NUM_AXIS]; float Planner::previous_speed[NUM_AXIS],
Planner::previous_nominal_speed;
float Planner::previous_nominal_speed;
#if ENABLED(DISABLE_INACTIVE_EXTRUDER) #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 }; uint8_t Planner::g_uc_extruder_last_move[EXTRUDERS] = { 0 };
@ -783,31 +784,37 @@ void Planner::check_axes_activity() {
#if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ) #if ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
float delta_mm[6]; float delta_mm[6];
#if ENABLED(COREXY) #if ENABLED(COREXY)
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS]; delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[B_AXIS]; delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS]; delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_mm[A_AXIS]; delta_mm[A_AXIS] = (dx + dy) * steps_to_mm[A_AXIS];
delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_mm[B_AXIS]; delta_mm[B_AXIS] = (dx - dy) * steps_to_mm[B_AXIS];
#elif ENABLED(COREXZ) #elif ENABLED(COREXZ)
delta_mm[X_HEAD] = dx / axis_steps_per_mm[A_AXIS]; delta_mm[X_HEAD] = dx * steps_to_mm[A_AXIS];
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS]; delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS]; delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_mm[A_AXIS]; delta_mm[A_AXIS] = (dx + dz) * steps_to_mm[A_AXIS];
delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_mm[C_AXIS]; delta_mm[C_AXIS] = (dx - dz) * steps_to_mm[C_AXIS];
#elif ENABLED(COREYZ) #elif ENABLED(COREYZ)
delta_mm[X_AXIS] = dx / axis_steps_per_mm[A_AXIS]; delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
delta_mm[Y_HEAD] = dy / axis_steps_per_mm[Y_AXIS]; delta_mm[Y_HEAD] = dy * steps_to_mm[B_AXIS];
delta_mm[Z_HEAD] = dz / axis_steps_per_mm[C_AXIS]; delta_mm[Z_HEAD] = dz * steps_to_mm[C_AXIS];
delta_mm[B_AXIS] = (dy + dz) / axis_steps_per_mm[B_AXIS]; delta_mm[B_AXIS] = (dy + dz) * steps_to_mm[B_AXIS];
delta_mm[C_AXIS] = (dy - dz) / axis_steps_per_mm[C_AXIS]; delta_mm[C_AXIS] = (dy - dz) * steps_to_mm[C_AXIS];
#endif #endif
#else #else
float delta_mm[4]; float delta_mm[4];
delta_mm[X_AXIS] = dx / axis_steps_per_mm[X_AXIS]; #if ENABLED(DELTA)
delta_mm[Y_AXIS] = dy / axis_steps_per_mm[Y_AXIS]; // On delta all axes (should!) have the same steps-per-mm
delta_mm[Z_AXIS] = dz / axis_steps_per_mm[Z_AXIS]; // so calculate distance in steps first, then do one division
// at the end to get millimeters
#else
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
#endif
#endif #endif
delta_mm[E_AXIS] = (de / axis_steps_per_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0; delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder];
if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
block->millimeters = fabs(delta_mm[E_AXIS]); block->millimeters = fabs(delta_mm[E_AXIS]);
@ -820,10 +827,16 @@ void Planner::check_axes_activity() {
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD]) sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
#elif ENABLED(COREYZ) #elif ENABLED(COREYZ)
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD]) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
#elif ENABLED(DELTA)
sq(dx) + sq(dy) + sq(dz)
#else #else
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS]) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
#endif #endif
); )
#if ENABLED(DELTA)
* steps_to_mm[X_AXIS]
#endif
;
} }
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
@ -875,7 +888,7 @@ void Planner::check_axes_activity() {
while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM; while (filwidth_delay_dist >= MMD_MM) filwidth_delay_dist -= MMD_MM;
// Convert into an index into the measurement array // Convert into an index into the measurement array
filwidth_delay_index1 = (int)(filwidth_delay_dist / 10.0 + 0.0001); filwidth_delay_index1 = (int)(filwidth_delay_dist * 0.1 + 0.0001);
// If the index has changed (must have gone forward)... // If the index has changed (must have gone forward)...
if (filwidth_delay_index1 != filwidth_delay_index2) { if (filwidth_delay_index1 != filwidth_delay_index2) {
@ -962,7 +975,7 @@ void Planner::check_axes_activity() {
block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS]; block->acceleration_steps_per_s2 = (max_acceleration_steps_per_s2[E_AXIS] * block->step_event_count) / block->steps[E_AXIS];
} }
block->acceleration = block->acceleration_steps_per_s2 / steps_per_mm; block->acceleration = block->acceleration_steps_per_s2 / steps_per_mm;
block->acceleration_rate = (long)(block->acceleration_steps_per_s2 * 16777216.0 / ((F_CPU) / 8.0)); block->acceleration_rate = (long)(block->acceleration_steps_per_s2 * 16777216.0 / ((F_CPU) * 0.125));
#if 0 // Use old jerk for now #if 0 // Use old jerk for now
@ -1008,10 +1021,12 @@ void Planner::check_axes_activity() {
#endif #endif
// Start with a safe speed // Start with a safe speed
float vmax_junction = max_xy_jerk / 2; float vmax_junction = max_xy_jerk * 0.5,
float vmax_junction_factor = 1.0; vmax_junction_factor = 1.0,
float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2; mz2 = max_z_jerk * 0.5,
float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS]; me2 = max_e_jerk * 0.5,
csz = current_speed[Z_AXIS],
cse = current_speed[E_AXIS];
if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2); if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2); if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
vmax_junction = min(vmax_junction, block->nominal_speed); vmax_junction = min(vmax_junction, block->nominal_speed);
@ -1164,6 +1179,7 @@ void Planner::check_axes_activity() {
void Planner::set_e_position_mm(const float& e) { void Planner::set_e_position_mm(const float& e) {
position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]); position[E_AXIS] = lround(e * axis_steps_per_mm[E_AXIS]);
stepper.set_e_position(position[E_AXIS]); stepper.set_e_position(position[E_AXIS]);
previous_speed[E_AXIS] = 0.0;
} }
// Recalculate the steps/s^2 acceleration rates, based on the mm/s^2 // Recalculate the steps/s^2 acceleration rates, based on the mm/s^2
@ -1172,6 +1188,13 @@ void Planner::reset_acceleration_rates() {
max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i]; max_acceleration_steps_per_s2[i] = max_acceleration_mm_per_s2[i] * axis_steps_per_mm[i];
} }
// Recalculate position, steps_to_mm if axis_steps_per_mm changes!
void Planner::refresh_positioning() {
LOOP_XYZE(i) planner.steps_to_mm[i] = 1.0 / planner.axis_steps_per_mm[i];
set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
reset_acceleration_rates();
}
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
void Planner::autotemp_M109() { void Planner::autotemp_M109() {

View file

@ -121,6 +121,7 @@ class Planner {
static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second static float max_feedrate_mm_s[NUM_AXIS]; // Max speeds in mm per second
static float axis_steps_per_mm[NUM_AXIS]; static float axis_steps_per_mm[NUM_AXIS];
static float steps_to_mm[NUM_AXIS];
static unsigned long max_acceleration_steps_per_s2[NUM_AXIS]; static unsigned long max_acceleration_steps_per_s2[NUM_AXIS];
static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software static unsigned long max_acceleration_mm_per_s2[NUM_AXIS]; // Use M201 to override by software
@ -142,7 +143,7 @@ class Planner {
/** /**
* The current position of the tool in absolute steps * The current position of the tool in absolute steps
* Reclculated if any axis_steps_per_mm are changed by gcode * Recalculated if any axis_steps_per_mm are changed by gcode
*/ */
static long position[NUM_AXIS]; static long position[NUM_AXIS];
@ -187,6 +188,7 @@ class Planner {
*/ */
static void reset_acceleration_rates(); static void reset_acceleration_rates();
static void refresh_positioning();
// Manage fans, paste pressure, etc. // Manage fans, paste pressure, etc.
static void check_axes_activity(); static void check_axes_activity();

View file

@ -944,14 +944,14 @@ float Stepper::get_axis_position_mm(AxisEnum axis) {
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
// ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
// ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) / 2.0f; axis_steps = (pos1 + ((axis == CORE_AXIS_1) ? pos2 : -pos2)) * 0.5f;
} }
else else
axis_steps = position(axis); axis_steps = position(axis);
#else #else
axis_steps = position(axis); axis_steps = position(axis);
#endif #endif
return axis_steps / planner.axis_steps_per_mm[axis]; return axis_steps * planner.steps_to_mm[axis];
} }
void Stepper::finish_and_disable() { void Stepper::finish_and_disable() {
@ -973,9 +973,9 @@ void Stepper::endstop_triggered(AxisEnum axis) {
float axis_pos = count_position[axis]; float axis_pos = count_position[axis];
if (axis == CORE_AXIS_1) if (axis == CORE_AXIS_1)
axis_pos = (axis_pos + count_position[CORE_AXIS_2]) / 2; axis_pos = (axis_pos + count_position[CORE_AXIS_2]) * 0.5;
else if (axis == CORE_AXIS_2) else if (axis == CORE_AXIS_2)
axis_pos = (count_position[CORE_AXIS_1] - axis_pos) / 2; axis_pos = (count_position[CORE_AXIS_1] - axis_pos) * 0.5;
endstops_trigsteps[axis] = axis_pos; endstops_trigsteps[axis] = axis_pos;
#else // !COREXY && !COREXZ && !COREYZ #else // !COREXY && !COREXZ && !COREYZ

View file

@ -262,7 +262,7 @@ class Stepper {
// Triggered position of an axis in mm (not core-savvy) // Triggered position of an axis in mm (not core-savvy)
// //
static FORCE_INLINE float triggered_position_mm(AxisEnum axis) { static FORCE_INLINE float triggered_position_mm(AxisEnum axis) {
return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis]; return endstops_trigsteps[axis] * planner.steps_to_mm[axis];
} }
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)

View file

@ -319,13 +319,13 @@ unsigned char Temperature::soft_pwm[HOTENDS];
SERIAL_PROTOCOLPAIR(MSG_T_MIN, min); SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
SERIAL_PROTOCOLPAIR(MSG_T_MAX, max); SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
if (cycles > 2) { if (cycles > 2) {
Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0); Ku = (4.0 * d) / (3.14159265 * (max - min) * 0.5);
Tu = ((float)(t_low + t_high) / 1000.0); Tu = ((float)(t_low + t_high) * 0.001);
SERIAL_PROTOCOLPAIR(MSG_KU, Ku); SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
SERIAL_PROTOCOLPAIR(MSG_TU, Tu); SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
workKp = 0.6 * Ku; workKp = 0.6 * Ku;
workKi = 2 * workKp / Tu; workKi = 2 * workKp / Tu;
workKd = workKp * Tu / 8; workKd = workKp * Tu * 0.125;
SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID); SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
SERIAL_PROTOCOLPAIR(MSG_KP, workKp); SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
SERIAL_PROTOCOLPAIR(MSG_KI, workKi); SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
@ -572,7 +572,7 @@ float Temperature::get_pid_output(int e) {
lpq[lpq_ptr] = 0; lpq[lpq_ptr] = 0;
} }
if (++lpq_ptr >= lpq_len) lpq_ptr = 0; if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] / planner.axis_steps_per_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX); cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
pid_output += cTerm[HOTEND_INDEX]; pid_output += cTerm[HOTEND_INDEX];
} }
#endif //PID_ADD_EXTRUSION_RATE #endif //PID_ADD_EXTRUSION_RATE
@ -753,7 +753,7 @@ void Temperature::manage_heater() {
// Get the delayed info and add 100 to reconstitute to a percent of // Get the delayed info and add 100 to reconstitute to a percent of
// the nominal filament diameter then square it to get an area // the nominal filament diameter then square it to get an area
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY); meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2); float vm = pow((measurement_delay[meas_shift_index] + 100.0) * 0.01, 2);
NOLESS(vm, 0.01); NOLESS(vm, 0.01);
volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm; volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
} }

View file

@ -678,7 +678,7 @@ void kill_screen(const char* lcd_msg) {
} }
if (lcdDrawUpdate) if (lcdDrawUpdate)
lcd_implementation_drawedit(msg, ftostr43sign( lcd_implementation_drawedit(msg, ftostr43sign(
((1000 * babysteps_done) / planner.axis_steps_per_mm[axis]) * 0.001f ((1000 * babysteps_done) * planner.steps_to_mm[axis]) * 0.001f
)); ));
} }
@ -1769,6 +1769,7 @@ void kill_screen(const char* lcd_msg) {
} }
static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); } static void _reset_acceleration_rates() { planner.reset_acceleration_rates(); }
static void _planner_refresh_positioning() { planner.refresh_positioning(); }
/** /**
* *
@ -1805,14 +1806,14 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates); MENU_ITEM_EDIT_CALLBACK(long5, MSG_AMAX MSG_E, &planner.max_acceleration_mm_per_s2[E_AXIS], 100, 99000, _reset_acceleration_rates);
MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_RETRACT, &planner.retract_acceleration, 100, 99000);
MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000); MENU_ITEM_EDIT(float5, MSG_A_TRAVEL, &planner.travel_acceleration, 100, 99000);
MENU_ITEM_EDIT(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999); MENU_ITEM_EDIT_CALLBACK(float52, MSG_XSTEPS, &planner.axis_steps_per_mm[X_AXIS], 5, 9999, _planner_refresh_positioning);
MENU_ITEM_EDIT(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999); MENU_ITEM_EDIT_CALLBACK(float52, MSG_YSTEPS, &planner.axis_steps_per_mm[Y_AXIS], 5, 9999, _planner_refresh_positioning);
#if ENABLED(DELTA) #if ENABLED(DELTA)
MENU_ITEM_EDIT(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999); MENU_ITEM_EDIT_CALLBACK(float52, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999, _planner_refresh_positioning);
#else #else
MENU_ITEM_EDIT(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999); MENU_ITEM_EDIT_CALLBACK(float51, MSG_ZSTEPS, &planner.axis_steps_per_mm[Z_AXIS], 5, 9999, _planner_refresh_positioning);
#endif #endif
MENU_ITEM_EDIT(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999); MENU_ITEM_EDIT_CALLBACK(float51, MSG_ESTEPS, &planner.axis_steps_per_mm[E_AXIS], 5, 9999, _planner_refresh_positioning);
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit); MENU_ITEM_EDIT(bool, MSG_ENDSTOP_ABORT, &stepper.abort_on_endstop_hit);
#endif #endif

View file

@ -385,7 +385,7 @@ static void lcd_implementation_status_screen() {
// SD Card Progress bar and clock // SD Card Progress bar and clock
if (IS_SD_PRINTING) { if (IS_SD_PRINTING) {
// Progress bar solid part // Progress bar solid part
u8g.drawBox(55, 50, (unsigned int)(71.f * card.percentDone() / 100.f), 2 - (TALL_FONT_CORRECTION)); u8g.drawBox(55, 50, (unsigned int)(71 * card.percentDone() * 0.01), 2 - (TALL_FONT_CORRECTION));
} }
u8g.setPrintPos(80,48); u8g.setPrintPos(80,48);