Merge pull request #6174 from thinkyhead/rc_ubl_continued
UBL additional cleanup
This commit is contained in:
commit
baadb11536
33 changed files with 551 additions and 545 deletions
|
@ -120,7 +120,7 @@ script:
|
|||
# Test a simple build of AUTO_BED_LEVELING_UBL
|
||||
#
|
||||
- restore_configs
|
||||
- opt_enable AUTO_BED_LEVELING_UBL FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
|
||||
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
|
||||
- build_marlin
|
||||
#
|
||||
# Test a Sled Z Probe
|
||||
|
|
|
@ -862,7 +862,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -26,7 +26,7 @@
|
|||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
||||
|
||||
#include "Marlin.h"
|
||||
#include "Configuration.h"
|
||||
|
@ -38,7 +38,7 @@
|
|||
|
||||
#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
|
||||
#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
|
||||
#define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all
|
||||
#define NOZZLE 0.3 // these numbers for their printer so they don't need to type all
|
||||
#define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
|
||||
#define LAYER_HEIGHT 0.2
|
||||
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
|
||||
|
@ -113,9 +113,7 @@
|
|||
* Y # Y coordinate Specify the starting location of the drawing activity.
|
||||
*/
|
||||
|
||||
extern bool ubl_has_control_of_lcd_panel;
|
||||
extern float feedrate;
|
||||
//extern bool relative_mode;
|
||||
extern Planner planner;
|
||||
//#if ENABLED(ULTRA_LCD)
|
||||
extern char lcd_status_message[];
|
||||
|
@ -171,8 +169,7 @@
|
|||
|
||||
int8_t prime_flag = 0;
|
||||
|
||||
bool keep_heaters_on = false,
|
||||
g26_debug_flag = false;
|
||||
bool keep_heaters_on = false;
|
||||
|
||||
/**
|
||||
* G26: Mesh Validation Pattern generation.
|
||||
|
@ -181,15 +178,13 @@
|
|||
* nozzle in a problem area and doing a G29 P4 R command.
|
||||
*/
|
||||
void gcode_G26() {
|
||||
float circle_x, circle_y, x, y, xe, ye, tmp,
|
||||
start_angle, end_angle;
|
||||
int i, xi, yi, lcd_init_counter = 0;
|
||||
float tmp, start_angle, end_angle;
|
||||
int i, xi, yi;
|
||||
mesh_index_pair location;
|
||||
|
||||
if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first
|
||||
gcode_G28();
|
||||
|
||||
if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
|
||||
// Don't allow Mesh Validation without homing first
|
||||
// If the paramter parsing did not go OK, we abort the command
|
||||
if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
|
||||
|
||||
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
|
||||
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
||||
|
@ -197,17 +192,12 @@
|
|||
set_current_to_destination();
|
||||
}
|
||||
|
||||
ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
|
||||
if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
|
||||
goto LEAVE; // has gone wrong.
|
||||
if (turn_on_heaters()) goto LEAVE;
|
||||
|
||||
axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
|
||||
//relative_mode = false; // planner and stepper motors!
|
||||
current_position[E_AXIS] = 0.0;
|
||||
sync_plan_position_e();
|
||||
|
||||
if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out.
|
||||
goto LEAVE;
|
||||
if (prime_flag && prime_nozzle()) goto LEAVE;
|
||||
|
||||
/**
|
||||
* Bed is preheated
|
||||
|
@ -219,20 +209,17 @@
|
|||
* It's "Show Time" !!!
|
||||
*/
|
||||
|
||||
// Clear all of the flags we need
|
||||
ZERO(circle_flags);
|
||||
ZERO(horizontal_mesh_line_flags);
|
||||
ZERO(vertical_mesh_line_flags);
|
||||
|
||||
//
|
||||
// Move nozzle to the specified height for the first layer
|
||||
//
|
||||
set_destination_to_current();
|
||||
destination[Z_AXIS] = layer_height;
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
|
||||
|
||||
ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel!
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
//debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
|
||||
|
||||
/**
|
||||
|
@ -264,14 +251,13 @@
|
|||
goto LEAVE;
|
||||
}
|
||||
|
||||
if (continue_with_closest)
|
||||
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]);
|
||||
else
|
||||
location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
||||
location = continue_with_closest
|
||||
? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
|
||||
: find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
|
||||
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
circle_x = ubl.map_x_index_to_bed_location(location.x_index);
|
||||
circle_y = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float circle_x = ubl.mesh_index_to_xpos[location.x_index],
|
||||
circle_y = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
|
||||
#ifdef DELTA
|
||||
|
@ -292,7 +278,7 @@
|
|||
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
|
||||
yi = location.y_index;
|
||||
|
||||
if (g26_debug_flag) {
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
|
@ -329,24 +315,23 @@
|
|||
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
|
||||
int tmp_div_30 = tmp / 30.0;
|
||||
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
|
||||
|
||||
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
|
||||
y = circle_y + sin_table[tmp_div_30];
|
||||
|
||||
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
|
||||
xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
|
||||
ye = circle_y + sin_table[tmp_div_30 + 1];
|
||||
|
||||
float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
|
||||
y = circle_y + sin_table[tmp_div_30],
|
||||
xe = circle_x + cos_table[tmp_div_30 + 1],
|
||||
ye = circle_y + sin_table[tmp_div_30 + 1];
|
||||
#ifdef DELTA
|
||||
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
|
||||
continue; // the 'circle' is on the bed. If
|
||||
#else // not, we need to skip
|
||||
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
#endif
|
||||
|
||||
//if (g26_debug_flag) {
|
||||
//if (ubl.g26_debug_flag) {
|
||||
// char ccc, *cptr, seg_msg[50], seg_num[10];
|
||||
// strcpy(seg_msg, " segment: ");
|
||||
// strcpy(seg_num, " \n");
|
||||
|
@ -357,15 +342,9 @@
|
|||
// debug_current_and_destination(seg_msg);
|
||||
//}
|
||||
|
||||
print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height);
|
||||
print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
|
||||
|
||||
}
|
||||
//lcd_init_counter++;
|
||||
//if (lcd_init_counter > 10) {
|
||||
// lcd_init_counter = 0;
|
||||
// lcd_init(); // Some people's LCD Displays are locking up. This might help them
|
||||
// ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel
|
||||
//}
|
||||
|
||||
//debug_current_and_destination((char*)"Looking for lines to connect.");
|
||||
look_for_lines_to_connect();
|
||||
|
@ -373,8 +352,8 @@
|
|||
}
|
||||
|
||||
//debug_current_and_destination((char*)"Done with current circle.");
|
||||
}
|
||||
while (location.x_index >= 0 && location.y_index >= 0);
|
||||
|
||||
} while (location.x_index >= 0 && location.y_index >= 0);
|
||||
|
||||
LEAVE:
|
||||
lcd_reset_alert_level();
|
||||
|
@ -394,7 +373,7 @@
|
|||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
|
||||
//debug_current_and_destination((char*)"done doing X/Y move.");
|
||||
|
||||
ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
||||
ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
|
||||
|
||||
if (!keep_heaters_on) {
|
||||
#if HAS_TEMP_BED
|
||||
|
@ -420,8 +399,8 @@
|
|||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||
if (!is_bit_set(circle_flags, i, j)) {
|
||||
mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed
|
||||
my = ubl.map_y_index_to_bed_location(j);
|
||||
mx = ubl.mesh_index_to_xpos[i]; // We found a circle that needs to be printed
|
||||
my = ubl.mesh_index_to_ypos[j];
|
||||
|
||||
dx = X - mx; // Get the distance to this intersection
|
||||
dy = Y - my;
|
||||
|
@ -466,11 +445,11 @@
|
|||
// We found two circles that need a horizontal line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.map_x_index_to_bed_location(i);
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
|
||||
sy = ubl.map_y_index_to_bed_location(j);
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
|
||||
ex = ubl.map_x_index_to_bed_location(i + 1);
|
||||
ex = ubl.mesh_index_to_xpos[i + 1];
|
||||
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
|
||||
ey = sy;
|
||||
|
||||
|
@ -479,7 +458,7 @@
|
|||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (g26_debug_flag) {
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
|
||||
SERIAL_ECHOPAIR(", sy=", sy);
|
||||
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
||||
|
@ -503,12 +482,12 @@
|
|||
// We found two circles that need a vertical line to connect them
|
||||
// Print it!
|
||||
//
|
||||
sx = ubl.map_x_index_to_bed_location(i);
|
||||
sy = ubl.map_y_index_to_bed_location(j);
|
||||
sx = ubl.mesh_index_to_xpos[i];
|
||||
sy = ubl.mesh_index_to_ypos[j];
|
||||
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
|
||||
|
||||
ex = sx;
|
||||
ey = ubl.map_y_index_to_bed_location(j + 1);
|
||||
ey = ubl.mesh_index_to_ypos[j + 1];
|
||||
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
|
||||
|
||||
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
|
||||
|
@ -516,7 +495,7 @@
|
|||
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
|
||||
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
|
||||
|
||||
if (g26_debug_flag) {
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
|
||||
SERIAL_ECHOPAIR(", sy=", sy);
|
||||
SERIAL_ECHOPAIR(") -> (ex=", ex);
|
||||
|
@ -541,10 +520,10 @@
|
|||
|
||||
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
|
||||
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
|
||||
|
||||
if (z != last_z) {
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
|
||||
|
||||
last_z = z;
|
||||
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
|
||||
|
@ -559,24 +538,24 @@
|
|||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
|
||||
//if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move");
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move");
|
||||
}
|
||||
|
||||
// Check if X or Y is involved in the movement.
|
||||
// Yes: a 'normal' movement. No: a retract() or un_retract()
|
||||
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
|
||||
|
||||
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
||||
if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
|
||||
|
||||
destination[X_AXIS] = x;
|
||||
destination[Y_AXIS] = y;
|
||||
destination[E_AXIS] += e_delta;
|
||||
|
||||
//if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
|
||||
|
||||
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
|
||||
|
||||
//if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
|
||||
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
|
||||
|
||||
stepper.synchronize();
|
||||
set_destination_to_current();
|
||||
|
@ -586,9 +565,9 @@
|
|||
void retract_filament() {
|
||||
if (!g26_retracted) { // Only retract if we are not already retracted!
|
||||
g26_retracted = true;
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -596,7 +575,7 @@
|
|||
if (g26_retracted) { // Only un-retract if we are retracted.
|
||||
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
|
||||
g26_retracted = false;
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -633,7 +612,7 @@
|
|||
// On very small lines we don't do the optimization because it just isn't worth it.
|
||||
//
|
||||
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
|
||||
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
|
||||
return;
|
||||
}
|
||||
|
@ -642,7 +621,7 @@
|
|||
|
||||
if (dist_start > 2.0) {
|
||||
retract_filament();
|
||||
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
|
||||
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
|
||||
}
|
||||
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
|
||||
|
||||
|
@ -650,7 +629,7 @@
|
|||
|
||||
un_retract_filament();
|
||||
|
||||
//if (g26_debug_flag) {
|
||||
//if (ubl.g26_debug_flag) {
|
||||
// SERIAL_ECHOLNPGM(" doing printing move.");
|
||||
// debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
|
||||
//}
|
||||
|
@ -810,7 +789,7 @@
|
|||
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
ubl_has_control_of_lcd_panel = true;
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
thermalManager.setTargetBed(bed_temp);
|
||||
while (abs(thermalManager.degBed() - bed_temp) > 3) {
|
||||
if (ubl_lcd_clicked()) return exit_from_g26();
|
||||
|
@ -845,6 +824,9 @@
|
|||
float Total_Prime = 0.0;
|
||||
|
||||
if (prime_flag == -1) { // The user wants to control how much filament gets purged
|
||||
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
|
||||
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
|
||||
chirp_at_user();
|
||||
|
||||
|
@ -881,6 +863,9 @@
|
|||
lcd_setstatuspgm(PSTR("Done Priming"), 99);
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
|
||||
}
|
||||
else {
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
|
@ -901,4 +886,4 @@
|
|||
return UBL_OK;
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
|
||||
|
|
|
@ -76,10 +76,10 @@ void gcode_M100() {
|
|||
// We want to start and end the dump on a nice 16 byte boundry even though
|
||||
// the values we are using are not 16 byte aligned.
|
||||
//
|
||||
SERIAL_ECHOPAIR("\nbss_end : ", hex_word((uint16_t)ptr));
|
||||
SERIAL_ECHOPAIR("\nbss_end : 0x", hex_word((uint16_t)ptr));
|
||||
ptr = (char*)((uint32_t)ptr & 0xfff0);
|
||||
sp = top_of_stack();
|
||||
SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_word((uint16_t)sp));
|
||||
SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
|
||||
sp = (char*)((uint32_t)sp | 0x000f);
|
||||
n = sp - ptr;
|
||||
//
|
||||
|
|
|
@ -430,4 +430,8 @@ void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
|
|||
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
|
||||
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
|
||||
|
||||
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
|
||||
bool axis_unhomed_error(const bool x, const bool y, const bool z);
|
||||
#endif
|
||||
|
||||
#endif //MARLIN_H
|
||||
|
|
|
@ -299,11 +299,11 @@
|
|||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#include "UBL.h"
|
||||
unified_bed_leveling ubl;
|
||||
#define UBL_MESH_VALID !( z_values[0][0] == z_values[0][1] && z_values[0][1] == z_values[0][2] \
|
||||
&& z_values[1][0] == z_values[1][1] && z_values[1][1] == z_values[1][2] \
|
||||
&& z_values[2][0] == z_values[2][1] && z_values[2][1] == z_values[2][2] \
|
||||
&& z_values[0][0] == 0 && z_values[1][0] == 0 && z_values[2][0] == 0 \
|
||||
|| isnan(z_values[0][0]))
|
||||
#define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
|
||||
&& ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
|
||||
&& ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
|
||||
&& ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
|
||||
|| isnan(ubl.z_values[0][0]))
|
||||
#endif
|
||||
|
||||
bool Running = true;
|
||||
|
@ -3221,7 +3221,7 @@ inline void gcode_G4() {
|
|||
*/
|
||||
inline void gcode_G12() {
|
||||
// Don't allow nozzle cleaning without homing first
|
||||
if (axis_unhomed_error(true, true, true)) { return; }
|
||||
if (axis_unhomed_error(true, true, true)) return;
|
||||
|
||||
const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
|
||||
strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
|
||||
|
@ -5344,17 +5344,15 @@ inline void gcode_M42() {
|
|||
|
||||
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
||||
|
||||
inline void gcode_M49() {
|
||||
ubl.g26_debug_flag = !ubl.g26_debug_flag;
|
||||
SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
|
||||
if ((g26_debug_flag = !g26_debug_flag))
|
||||
SERIAL_PROTOCOLLNPGM("on.");
|
||||
else
|
||||
SERIAL_PROTOCOLLNPGM("off.");
|
||||
serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
|
||||
|
||||
/**
|
||||
* M75: Start print timer
|
||||
|
@ -7210,13 +7208,59 @@ void quickstop_stepper() {
|
|||
/**
|
||||
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
|
||||
*
|
||||
* S[bool] Turns leveling on or off
|
||||
* Z[height] Sets the Z fade height (0 or none to disable)
|
||||
* V[bool] Verbose - Print the leveling grid
|
||||
* S[bool] Turns leveling on or off
|
||||
* Z[height] Sets the Z fade height (0 or none to disable)
|
||||
* V[bool] Verbose - Print the leveling grid
|
||||
*
|
||||
* With AUTO_BED_LEVELING_UBL only:
|
||||
*
|
||||
* L[index] Load UBL mesh from index (0 is default)
|
||||
*/
|
||||
inline void gcode_M420() {
|
||||
bool to_enable = false;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
// L to load a mesh from the EEPROM
|
||||
if (code_seen('L')) {
|
||||
const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
|
||||
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
|
||||
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||
return;
|
||||
}
|
||||
|
||||
ubl.load_mesh(storage_slot);
|
||||
if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
|
||||
ubl.state.eeprom_storage_slot = storage_slot;
|
||||
ubl.display_map(0); // Right now, we only support one type of map
|
||||
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
|
||||
SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
|
||||
}
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
// V to print the matrix or mesh
|
||||
if (code_seen('V')) {
|
||||
#if ABL_PLANAR
|
||||
planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
if (bilinear_grid_spacing[X_AXIS]) {
|
||||
print_bilinear_leveling_grid();
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
bed_level_virt_print();
|
||||
#endif
|
||||
}
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
ubl.display_map(0); // Currently only supports one map type
|
||||
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
|
||||
SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
if (mbl.has_mesh()) {
|
||||
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
|
||||
mbl_mesh_report();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
bool to_enable = false;
|
||||
if (code_seen('S')) {
|
||||
to_enable = code_value_bool();
|
||||
set_bed_leveling_enabled(to_enable);
|
||||
|
@ -7243,28 +7287,6 @@ void quickstop_stepper() {
|
|||
|
||||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
|
||||
|
||||
// V to print the matrix or mesh
|
||||
if (code_seen('V')) {
|
||||
#if ABL_PLANAR
|
||||
planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
if (bilinear_grid_spacing[X_AXIS]) {
|
||||
print_bilinear_leveling_grid();
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
bed_level_virt_print();
|
||||
#endif
|
||||
}
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
ubl.display_map(0); // Right now, we only support one type of map
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
if (mbl.has_mesh()) {
|
||||
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
|
||||
mbl_mesh_report();
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
}
|
||||
#endif
|
||||
|
||||
|
@ -8579,7 +8601,7 @@ void process_next_command() {
|
|||
break;
|
||||
#endif // INCH_MODE_SUPPORT
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
||||
case 26: // G26: Mesh Validation Pattern generation
|
||||
gcode_G26();
|
||||
break;
|
||||
|
@ -8595,7 +8617,7 @@ void process_next_command() {
|
|||
gcode_G28();
|
||||
break;
|
||||
|
||||
#if PLANNER_LEVELING
|
||||
#if PLANNER_LEVELING && !ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
||||
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
|
||||
// or provides access to the UBL System if enabled.
|
||||
gcode_G29();
|
||||
|
@ -8711,11 +8733,11 @@ void process_next_command() {
|
|||
break;
|
||||
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED)
|
||||
case 49: // M49: Turn on or off g26_debug_flag for verbose output
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
||||
case 49: // M49: Turn on or off G26 debug flag for verbose output
|
||||
gcode_M49();
|
||||
break;
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
|
||||
|
||||
case 75: // M75: Start print timer
|
||||
gcode_M75(); break;
|
||||
|
|
449
Marlin/UBL.h
449
Marlin/UBL.h
|
@ -39,7 +39,6 @@
|
|||
|
||||
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
|
||||
|
||||
bool axis_unhomed_error(bool, bool, bool);
|
||||
void dump(char * const str, const float &f);
|
||||
bool ubl_lcd_clicked();
|
||||
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
|
||||
|
@ -78,271 +77,279 @@
|
|||
|
||||
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
|
||||
|
||||
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0))
|
||||
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0))
|
||||
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
|
||||
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
|
||||
|
||||
#if ENABLED(UBL_MESH_EDIT_ENABLED)
|
||||
extern bool g26_debug_flag;
|
||||
#else
|
||||
constexpr bool g26_debug_flag = false;
|
||||
#endif
|
||||
extern float last_specified_z;
|
||||
extern float fade_scaling_factor_for_current_height;
|
||||
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
|
||||
extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the
|
||||
extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
typedef struct {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int8_t eeprom_storage_slot = -1,
|
||||
n_x = UBL_MESH_NUM_X_POINTS,
|
||||
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||
|
||||
float mesh_x_min = UBL_MESH_MIN_X,
|
||||
mesh_y_min = UBL_MESH_MIN_Y,
|
||||
mesh_x_max = UBL_MESH_MAX_X,
|
||||
mesh_y_max = UBL_MESH_MAX_Y,
|
||||
mesh_x_dist = MESH_X_DIST,
|
||||
mesh_y_dist = MESH_Y_DIST;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
|
||||
// so keep this value and its reciprocal.
|
||||
#else
|
||||
const float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0;
|
||||
#endif
|
||||
|
||||
// If you change this struct, adjust TOTAL_STRUCT_SIZE
|
||||
|
||||
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
|
||||
|
||||
// padding provides space to add state variables without
|
||||
// changing the location of data structures in the EEPROM.
|
||||
// This is for compatibility with future versions to keep
|
||||
// users from having to regenerate their mesh data.
|
||||
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
|
||||
|
||||
} ubl_state;
|
||||
|
||||
class unified_bed_leveling {
|
||||
private:
|
||||
|
||||
static float last_specified_z,
|
||||
fade_scaling_factor_for_current_height;
|
||||
|
||||
public:
|
||||
struct ubl_state {
|
||||
bool active = false;
|
||||
float z_offset = 0.0;
|
||||
int eeprom_storage_slot = -1,
|
||||
n_x = UBL_MESH_NUM_X_POINTS,
|
||||
n_y = UBL_MESH_NUM_Y_POINTS;
|
||||
float mesh_x_min = UBL_MESH_MIN_X,
|
||||
mesh_y_min = UBL_MESH_MIN_Y,
|
||||
mesh_x_max = UBL_MESH_MAX_X,
|
||||
mesh_y_max = UBL_MESH_MAX_Y,
|
||||
mesh_x_dist = MESH_X_DIST,
|
||||
mesh_y_dist = MESH_Y_DIST;
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
float g29_correction_fade_height = 10.0,
|
||||
g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
|
||||
// point divide. So, we keep this number in both forms. The first
|
||||
// is for the user. The second one is the one that is actually used
|
||||
// again and again and again during the correction calculations.
|
||||
#endif
|
||||
static ubl_state state, pre_initialized;
|
||||
|
||||
unsigned char padding[24]; // This is just to allow room to add state variables without
|
||||
// changing the location of data structures in the EEPROM.
|
||||
// This is for compatability with future versions to keep
|
||||
// people from having to regenerate thier mesh data.
|
||||
//
|
||||
// If you change the contents of this struct, please adjust
|
||||
// the padding[] to keep the size the same!
|
||||
} state, pre_initialized;
|
||||
static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||
mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
|
||||
mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
|
||||
|
||||
unified_bed_leveling();
|
||||
// ~unified_bed_leveling(); // No destructor because this object never goes away!
|
||||
static bool g26_debug_flag,
|
||||
has_control_of_lcd_panel;
|
||||
|
||||
void display_map(const int);
|
||||
static int8_t eeprom_start;
|
||||
|
||||
void reset();
|
||||
void invalidate();
|
||||
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
|
||||
|
||||
void store_state();
|
||||
void load_state();
|
||||
void store_mesh(const int16_t);
|
||||
void load_mesh(const int16_t);
|
||||
unified_bed_leveling();
|
||||
|
||||
bool sanity_check();
|
||||
static void display_map(const int);
|
||||
|
||||
FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); };
|
||||
FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); };
|
||||
static void reset();
|
||||
static void invalidate();
|
||||
|
||||
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
static void store_state();
|
||||
static void load_state();
|
||||
static void store_mesh(const int16_t);
|
||||
static void load_mesh(const int16_t);
|
||||
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static bool sanity_check();
|
||||
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
|
||||
}
|
||||
static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
|
||||
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
|
||||
}
|
||||
static int8_t get_cell_index_x(const float &x) {
|
||||
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
|
||||
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
static int8_t get_cell_index_y(const float &y) {
|
||||
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
|
||||
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
|
||||
} // position. But with this defined this way, it is possible
|
||||
// to extrapolate off of this point even further out. Probably
|
||||
// that is OK because something else should be keeping that from
|
||||
// happening and should not be worried about at this level.
|
||||
|
||||
/**
|
||||
* z2 --|
|
||||
* z0 | |
|
||||
* | | + (z2-z1)
|
||||
* z1 | | |
|
||||
* ---+-------------+--------+-- --|
|
||||
* a1 a0 a2
|
||||
* |<---delta_a---------->|
|
||||
*
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||
* find the expected Z Height at a position between two known Z-Height locations.
|
||||
*
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1),
|
||||
delta_a = (a0 - a1) / (a2 - a1);
|
||||
return z1 + delta_a * delta_z;
|
||||
}
|
||||
|
||||
/**
|
||||
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||
* point operations.
|
||||
*/
|
||||
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
|
||||
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
static int8_t find_closest_x_index(const float &x) {
|
||||
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
|
||||
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
|
||||
}
|
||||
|
||||
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi],
|
||||
z2 = z_values[x1_i + 1][yi],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + xratio * dz;
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||
//
|
||||
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
|
||||
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
static int8_t find_closest_y_index(const float &y) {
|
||||
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
|
||||
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i],
|
||||
z2 = z_values[xi][y1_i + 1],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + yratio * dz;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
float get_z_correction(const float &x0, const float &y0) const {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(y0));
|
||||
|
||||
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||
SERIAL_ECHOPAIR(", y0=", y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
return 0.0; // this used to return state.z_offset
|
||||
/**
|
||||
* z2 --|
|
||||
* z0 | |
|
||||
* | | + (z2-z1)
|
||||
* z1 | | |
|
||||
* ---+-------------+--------+-- --|
|
||||
* a1 a0 a2
|
||||
* |<---delta_a---------->|
|
||||
*
|
||||
* calc_z0 is the basis for all the Mesh Based correction. It is used to
|
||||
* find the expected Z Height at a position between two known Z-Height locations.
|
||||
*
|
||||
* It is fairly expensive with its 4 floating point additions and 2 floating point
|
||||
* multiplications.
|
||||
*/
|
||||
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
|
||||
const float delta_z = (z2 - z1),
|
||||
delta_a = (a0 - a1) / (a2 - a1);
|
||||
return z1 + delta_a * delta_z;
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(x0),
|
||||
map_x_index_to_bed_location(cx), z_values[cx][cy],
|
||||
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(RAW_X_POSITION(x0),
|
||||
map_x_index_to_bed_location(cx), z_values[cx][cy + 1],
|
||||
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]);
|
||||
float z0 = calc_z0(RAW_Y_POSITION(y0),
|
||||
map_y_index_to_bed_location(cy), z1,
|
||||
map_y_index_to_bed_location(cy + 1), z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||
SERIAL_ECHOPAIR(",", y0);
|
||||
SERIAL_ECHOPGM(")=");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
/**
|
||||
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
|
||||
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
|
||||
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
|
||||
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
|
||||
* the X index of the x0 intersection available and we don't want to perform any extra floating
|
||||
* point operations.
|
||||
*/
|
||||
static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
|
||||
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
|
||||
SERIAL_ECHOPAIR(",x1_i=", x1_i);
|
||||
SERIAL_ECHOPAIR(",yi=", yi);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[x1_i][yi],
|
||||
z2 = z_values[x1_i + 1][yi],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + xratio * dz;
|
||||
}
|
||||
|
||||
//
|
||||
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
|
||||
//
|
||||
static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
|
||||
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
|
||||
SERIAL_ECHOPAIR(", x1_i=", xi);
|
||||
SERIAL_ECHOPAIR(", yi=", y1_i);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
return NAN;
|
||||
}
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
|
||||
z1 = z_values[xi][y1_i],
|
||||
z2 = z_values[xi][y1_i + 1],
|
||||
dz = (z2 - z1);
|
||||
|
||||
return z1 + yratio * dz;
|
||||
}
|
||||
|
||||
/**
|
||||
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
|
||||
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
|
||||
* Z-Height at both ends. Then it does a linear interpolation of these heights based
|
||||
* on the Y position within the cell.
|
||||
*/
|
||||
static float get_z_correction(const float &x0, const float &y0) {
|
||||
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
|
||||
cy = get_cell_index_y(RAW_Y_POSITION(y0));
|
||||
|
||||
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
|
||||
|
||||
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
|
||||
SERIAL_ECHOPAIR(", y0=", y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
|
||||
lcd_quick_feedback();
|
||||
#endif
|
||||
return 0.0; // this used to return state.z_offset
|
||||
}
|
||||
|
||||
const float z1 = calc_z0(RAW_X_POSITION(x0),
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy],
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
|
||||
z2 = calc_z0(RAW_X_POSITION(x0),
|
||||
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
|
||||
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
|
||||
float z0 = calc_z0(RAW_Y_POSITION(y0),
|
||||
mesh_index_to_ypos[cy], z1,
|
||||
mesh_index_to_ypos[cy + 1], z2);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( ");
|
||||
SERIAL_ECHO(x0);
|
||||
SERIAL_ECHOPGM(", ");
|
||||
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
|
||||
SERIAL_CHAR(',')
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_ECHOLNPGM(" )");
|
||||
SERIAL_ECHOPGM(") = ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return z0; // there used to be a +state.z_offset on this line
|
||||
}
|
||||
|
||||
/**
|
||||
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
|
||||
* optimized for speed. It avoids floating point operations by checking if the requested scaling
|
||||
* factor is going to be the same as the last time the function calculated a value. If so, it just
|
||||
* returns it.
|
||||
*
|
||||
* It returns a scaling factor of 1.0 if UBL is inactive.
|
||||
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPGM(" >>>---> ");
|
||||
SERIAL_ECHO_F(z0, 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
|
||||
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) const {
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
fade_scaling_factor_for_current_height =
|
||||
state.active && rz < state.g29_correction_fade_height
|
||||
? 1.0 - (rz * state.g29_fade_height_multiplier)
|
||||
: 0.0;
|
||||
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
|
||||
z0 = 0.0; // in ubl.z_values[][] and propagate through the
|
||||
// calculations. If our correction is NAN, we throw it out
|
||||
// because part of the Mesh is undefined and we don't have the
|
||||
// information we need to complete the height correction.
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(MESH_ADJUST)) {
|
||||
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(y0);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
return fade_scaling_factor_for_current_height;
|
||||
return z0; // there used to be a +state.z_offset on this line
|
||||
}
|
||||
|
||||
#else
|
||||
/**
|
||||
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
|
||||
* optimized for speed. It avoids floating point operations by checking if the requested scaling
|
||||
* factor is going to be the same as the last time the function calculated a value. If so, it just
|
||||
* returns it.
|
||||
*
|
||||
* It returns a scaling factor of 1.0 if UBL is inactive.
|
||||
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
|
||||
*/
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
|
||||
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
|
||||
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
|
||||
const float rz = RAW_Z_POSITION(lz);
|
||||
if (last_specified_z != rz) {
|
||||
last_specified_z = rz;
|
||||
fade_scaling_factor_for_current_height =
|
||||
state.active && rz < state.g29_correction_fade_height
|
||||
? 1.0 - (rz * state.g29_fade_height_multiplier)
|
||||
: 0.0;
|
||||
}
|
||||
return fade_scaling_factor_for_current_height;
|
||||
}
|
||||
|
||||
#endif
|
||||
#else
|
||||
|
||||
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
|
||||
|
||||
#endif
|
||||
|
||||
}; // class unified_bed_leveling
|
||||
|
||||
extern unified_bed_leveling ubl;
|
||||
extern int ubl_eeprom_start;
|
||||
|
||||
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
#endif // UNIFIED_BED_LEVELING_H
|
||||
|
|
|
@ -57,26 +57,26 @@
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* These variables used to be declared inside the unified_bed_leveling class. We are going to
|
||||
* still declare them within the .cpp file for bed leveling. But there is only one instance of
|
||||
* the bed leveling object and we can get rid of a level of inderection by not making them
|
||||
* 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be
|
||||
* moved back inside the bed leveling class.
|
||||
*/
|
||||
float last_specified_z,
|
||||
fade_scaling_factor_for_current_height,
|
||||
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||
mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
|
||||
mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell
|
||||
ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
|
||||
|
||||
float unified_bed_leveling::z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
|
||||
unified_bed_leveling::last_specified_z,
|
||||
unified_bed_leveling::fade_scaling_factor_for_current_height,
|
||||
unified_bed_leveling::mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
|
||||
unified_bed_leveling::mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
|
||||
|
||||
bool unified_bed_leveling::g26_debug_flag = false,
|
||||
unified_bed_leveling::has_control_of_lcd_panel = false;
|
||||
|
||||
int8_t unified_bed_leveling::eeprom_start = -1;
|
||||
|
||||
volatile int unified_bed_leveling::encoder_diff;
|
||||
|
||||
unified_bed_leveling::unified_bed_leveling() {
|
||||
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||
mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i);
|
||||
|
||||
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety
|
||||
mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
|
||||
|
||||
for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
|
||||
mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
|
||||
for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
|
||||
mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
|
||||
reset();
|
||||
}
|
||||
|
||||
|
@ -95,7 +95,7 @@
|
|||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
/**
|
||||
* These lines can go away in a few weeks. They are just
|
||||
* to make sure people updating thier firmware won't be using
|
||||
* to make sure people updating their firmware won't be using
|
||||
* an incomplete Bed_Leveling.state structure. For speed
|
||||
* we now multiply by the inverse of the Fade Height instead of
|
||||
* dividing by it. Soon... all of the old structures will be
|
||||
|
@ -110,7 +110,7 @@
|
|||
}
|
||||
|
||||
void unified_bed_leveling::load_mesh(const int16_t m) {
|
||||
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
|
||||
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
|
||||
|
||||
if (m == -1) {
|
||||
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
|
||||
|
@ -118,7 +118,7 @@
|
|||
return;
|
||||
}
|
||||
|
||||
if (m < 0 || m >= j || ubl_eeprom_start <= 0) {
|
||||
if (m < 0 || m >= j || eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||
return;
|
||||
}
|
||||
|
@ -131,9 +131,9 @@
|
|||
}
|
||||
|
||||
void unified_bed_leveling::store_mesh(const int16_t m) {
|
||||
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
|
||||
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
|
||||
|
||||
if (m < 0 || m >= j || ubl_eeprom_start <= 0) {
|
||||
if (m < 0 || m >= j || eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
|
||||
SERIAL_PROTOCOL(m);
|
||||
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
|
||||
|
@ -164,9 +164,6 @@
|
|||
}
|
||||
|
||||
void unified_bed_leveling::invalidate() {
|
||||
print_hex_word((uint16_t)this);
|
||||
SERIAL_EOL;
|
||||
|
||||
state.active = false;
|
||||
state.z_offset = 0;
|
||||
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
|
@ -201,9 +198,8 @@
|
|||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
const bool is_current = i == current_xi && j == current_yi;
|
||||
|
||||
// is the nozzle here? if so, mark the number
|
||||
if (map0)
|
||||
SERIAL_CHAR(is_current ? '[' : ' ');
|
||||
// is the nozzle here? then mark the number
|
||||
if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
|
||||
|
||||
const float f = z_values[i][j];
|
||||
if (isnan(f)) {
|
||||
|
@ -211,12 +207,11 @@
|
|||
}
|
||||
else {
|
||||
// if we don't do this, the columns won't line up nicely
|
||||
if (f >= 0.0 && map0) SERIAL_CHAR(' ');
|
||||
if (map0 && f >= 0.0) SERIAL_CHAR(' ');
|
||||
SERIAL_PROTOCOL_F(f, 3);
|
||||
idle();
|
||||
}
|
||||
if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1)
|
||||
SERIAL_CHAR(',');
|
||||
if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) SERIAL_CHAR(',');
|
||||
|
||||
#if TX_BUFFER_SIZE > 0
|
||||
MYSERIAL.flushTX();
|
||||
|
@ -251,47 +246,40 @@
|
|||
bool unified_bed_leveling::sanity_check() {
|
||||
uint8_t error_flag = 0;
|
||||
|
||||
if (state.n_x != UBL_MESH_NUM_X_POINTS) {
|
||||
if (state.n_x != UBL_MESH_NUM_X_POINTS) {
|
||||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
|
||||
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
|
||||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.mesh_x_min != UBL_MESH_MIN_X) {
|
||||
if (state.mesh_x_min != UBL_MESH_MIN_X) {
|
||||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
|
||||
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
|
||||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.mesh_x_max != UBL_MESH_MAX_X) {
|
||||
if (state.mesh_x_max != UBL_MESH_MAX_X) {
|
||||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
|
||||
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
|
||||
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.mesh_x_dist != MESH_X_DIST) {
|
||||
if (state.mesh_x_dist != MESH_X_DIST) {
|
||||
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
if (state.mesh_y_dist != MESH_Y_DIST) {
|
||||
if (state.mesh_y_dist != MESH_Y_DIST) {
|
||||
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
|
||||
error_flag++;
|
||||
}
|
||||
|
||||
const int j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
|
||||
const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
|
||||
if (j < 1) {
|
||||
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
|
||||
error_flag++;
|
||||
|
|
|
@ -22,7 +22,7 @@
|
|||
|
||||
#include "MarlinConfig.h"
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
|
||||
//#include "vector_3.h"
|
||||
//#include "qr_solve.h"
|
||||
|
||||
|
@ -39,7 +39,10 @@
|
|||
void lcd_return_to_status();
|
||||
bool lcd_clicked();
|
||||
void lcd_implementation_clear();
|
||||
|
||||
void lcd_mesh_edit_setup(float initial);
|
||||
float lcd_mesh_edit();
|
||||
void lcd_z_offset_edit_setup(float);
|
||||
float lcd_z_offset_edit();
|
||||
extern float meshedit_done;
|
||||
extern long babysteps_done;
|
||||
extern float code_value_float();
|
||||
|
@ -141,7 +144,7 @@
|
|||
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
|
||||
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
|
||||
* was turned on. Setting the entire Mesh to Zero is a special case that allows
|
||||
* a subsequent G or T leveling operation for backward compatability.
|
||||
* a subsequent G or T leveling operation for backward compatibility.
|
||||
*
|
||||
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
|
||||
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
|
||||
|
@ -294,14 +297,10 @@
|
|||
* this is going to be helpful to the users!)
|
||||
*
|
||||
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
|
||||
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
|
||||
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
|
||||
* we now have the functionality and features of all three systems combined.
|
||||
*/
|
||||
|
||||
int ubl_eeprom_start = -1;
|
||||
bool ubl_has_control_of_lcd_panel = false;
|
||||
volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
|
||||
|
||||
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
|
||||
static int g29_verbose_level, phase_value = -1, repetition_cnt,
|
||||
storage_slot = 0, map_type; //unlevel_value = -1;
|
||||
|
@ -313,8 +312,8 @@
|
|||
#endif
|
||||
|
||||
void gcode_G29() {
|
||||
SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start);
|
||||
if (ubl_eeprom_start < 0) {
|
||||
SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
|
||||
if (ubl.eeprom_start < 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
|
||||
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
|
||||
return;
|
||||
|
@ -335,7 +334,7 @@
|
|||
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
|
||||
break; // No more invalid Mesh Points to populate
|
||||
}
|
||||
z_values[location.x_index][location.y_index] = NAN;
|
||||
ubl.z_values[location.x_index][location.y_index] = NAN;
|
||||
}
|
||||
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
|
||||
}
|
||||
|
@ -354,21 +353,21 @@
|
|||
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
|
||||
const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
|
||||
p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
|
||||
z_values[x][y] += 2.0 * HYPOT(p1, p2);
|
||||
ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
|
||||
}
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
|
||||
z_values[x][x] += 9.999;
|
||||
z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
|
||||
ubl.z_values[x][x] += 9.999;
|
||||
ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
// Allow the user to specify the height because 10mm is a little extreme in some cases.
|
||||
for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
|
||||
for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
|
||||
z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
|
||||
ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
@ -390,17 +389,18 @@
|
|||
return;
|
||||
}
|
||||
switch (phase_value) {
|
||||
//
|
||||
// Zero Mesh Data
|
||||
//
|
||||
case 0:
|
||||
//
|
||||
// Zero Mesh Data
|
||||
//
|
||||
ubl.reset();
|
||||
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
|
||||
break;
|
||||
//
|
||||
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
|
||||
//
|
||||
|
||||
case 1:
|
||||
//
|
||||
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
|
||||
//
|
||||
if (!code_seen('C') ) {
|
||||
ubl.invalidate();
|
||||
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
|
||||
|
@ -414,10 +414,11 @@
|
|||
probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
||||
code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
|
||||
break;
|
||||
//
|
||||
// Manually Probe Mesh in areas that can't be reached by the probe
|
||||
//
|
||||
|
||||
case 2: {
|
||||
//
|
||||
// Manually Probe Mesh in areas that can't be reached by the probe
|
||||
//
|
||||
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
|
||||
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
|
||||
if (!x_flag && !y_flag) { // use a good default location for the path
|
||||
|
@ -450,24 +451,24 @@
|
|||
|
||||
} break;
|
||||
|
||||
//
|
||||
// Populate invalid Mesh areas with a constant
|
||||
//
|
||||
case 3: {
|
||||
//
|
||||
// Populate invalid Mesh areas with a constant
|
||||
//
|
||||
const float height = code_seen('C') ? ubl_constant : 0.0;
|
||||
// If no repetition is specified, do the whole Mesh
|
||||
if (!repeat_flag) repetition_cnt = 9999;
|
||||
while (repetition_cnt--) {
|
||||
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
|
||||
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
|
||||
z_values[location.x_index][location.y_index] = height;
|
||||
ubl.z_values[location.x_index][location.y_index] = height;
|
||||
}
|
||||
} break;
|
||||
|
||||
//
|
||||
// Fine Tune (Or Edit) the Mesh
|
||||
//
|
||||
case 4:
|
||||
//
|
||||
// Fine Tune (i.e., Edit) the Mesh
|
||||
//
|
||||
fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
|
||||
break;
|
||||
case 5:
|
||||
|
@ -482,16 +483,16 @@
|
|||
SERIAL_ECHO_START;
|
||||
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
ubl_has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
while (!ubl_lcd_clicked()) {
|
||||
safe_delay(250);
|
||||
if (ubl_encoderDiff) {
|
||||
SERIAL_ECHOLN((int)ubl_encoderDiff);
|
||||
ubl_encoderDiff = 0;
|
||||
if (ubl.encoder_diff) {
|
||||
SERIAL_ECHOLN((int)ubl.encoder_diff);
|
||||
ubl.encoder_diff = 0;
|
||||
}
|
||||
}
|
||||
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
break;
|
||||
|
||||
|
@ -503,9 +504,9 @@
|
|||
wait_for_user = true;
|
||||
while (wait_for_user) {
|
||||
safe_delay(250);
|
||||
if (ubl_encoderDiff) {
|
||||
SERIAL_ECHOLN((int)ubl_encoderDiff);
|
||||
ubl_encoderDiff = 0;
|
||||
if (ubl.encoder_diff) {
|
||||
SERIAL_ECHOLN((int)ubl.encoder_diff);
|
||||
ubl.encoder_diff = 0;
|
||||
}
|
||||
}
|
||||
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
|
||||
|
@ -557,9 +558,9 @@
|
|||
if (code_seen('L')) { // Load Current Mesh Data
|
||||
storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
|
||||
|
||||
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
|
||||
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
|
||||
|
||||
if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
|
||||
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||
return;
|
||||
}
|
||||
|
@ -581,19 +582,19 @@
|
|||
SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
|
||||
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||
if (!isnan(z_values[x][y])) {
|
||||
if (!isnan(ubl.z_values[x][y])) {
|
||||
SERIAL_ECHOPAIR("M421 I ", x);
|
||||
SERIAL_ECHOPAIR(" J ", y);
|
||||
SERIAL_ECHOPGM(" Z ");
|
||||
SERIAL_ECHO_F(z_values[x][y], 6);
|
||||
SERIAL_ECHO_F(ubl.z_values[x][y], 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values);
|
||||
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
|
||||
|
||||
if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) {
|
||||
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
|
||||
goto LEAVE;
|
||||
|
@ -617,7 +618,7 @@
|
|||
save_ubl_active_state_and_disable();
|
||||
//measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
|
||||
|
||||
ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware
|
||||
ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware
|
||||
measured_z = 1.5;
|
||||
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
|
||||
// The user is not going to be locking in a new Z-Offset very often so
|
||||
|
@ -633,7 +634,7 @@
|
|||
do_blocking_move_to_z(measured_z);
|
||||
} while (!ubl_lcd_clicked());
|
||||
|
||||
ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
||||
// or here. So, until we are done looking for a long Encoder Wheel Press,
|
||||
// we need to take control of the panel
|
||||
|
@ -653,7 +654,7 @@
|
|||
goto LEAVE;
|
||||
}
|
||||
}
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
safe_delay(20); // We don't want any switch noise.
|
||||
|
||||
ubl.state.z_offset = measured_z;
|
||||
|
@ -670,7 +671,7 @@
|
|||
lcd_quick_feedback();
|
||||
#endif
|
||||
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
}
|
||||
|
||||
void find_mean_mesh_height() {
|
||||
|
@ -682,8 +683,8 @@
|
|||
n = 0;
|
||||
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||
if (!isnan(z_values[x][y])) {
|
||||
sum += z_values[x][y];
|
||||
if (!isnan(ubl.z_values[x][y])) {
|
||||
sum += ubl.z_values[x][y];
|
||||
n++;
|
||||
}
|
||||
|
||||
|
@ -694,8 +695,8 @@
|
|||
//
|
||||
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||
if (!isnan(z_values[x][y])) {
|
||||
difference = (z_values[x][y] - mean);
|
||||
if (!isnan(ubl.z_values[x][y])) {
|
||||
difference = (ubl.z_values[x][y] - mean);
|
||||
sum_of_diff_squared += difference * difference;
|
||||
}
|
||||
|
||||
|
@ -712,15 +713,15 @@
|
|||
if (c_flag)
|
||||
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||
if (!isnan(z_values[x][y]))
|
||||
z_values[x][y] -= mean + ubl_constant;
|
||||
if (!isnan(ubl.z_values[x][y]))
|
||||
ubl.z_values[x][y] -= mean + ubl_constant;
|
||||
}
|
||||
|
||||
void shift_mesh_height() {
|
||||
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||
if (!isnan(z_values[x][y]))
|
||||
z_values[x][y] += ubl_constant;
|
||||
if (!isnan(ubl.z_values[x][y]))
|
||||
ubl.z_values[x][y] += ubl_constant;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -730,7 +731,7 @@
|
|||
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
|
||||
mesh_index_pair location;
|
||||
|
||||
ubl_has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
DEPLOY_PROBE();
|
||||
|
||||
|
@ -740,7 +741,7 @@
|
|||
lcd_quick_feedback();
|
||||
STOW_PROBE();
|
||||
while (ubl_lcd_clicked()) idle();
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
restore_ubl_active_state_and_leave();
|
||||
safe_delay(50); // Debounce the Encoder wheel
|
||||
return;
|
||||
|
@ -749,18 +750,18 @@
|
|||
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
|
||||
if (location.x_index >= 0 && location.y_index >= 0) {
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
|
||||
rawy = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
rawy = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
||||
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
goto LEAVE;
|
||||
}
|
||||
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
|
||||
z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
|
||||
ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
|
||||
}
|
||||
|
||||
if (do_ubl_mesh_map) ubl.display_map(map_type);
|
||||
|
@ -837,7 +838,7 @@
|
|||
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||
c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
|
||||
z_values[i][j] += c;
|
||||
ubl.z_values[i][j] += c;
|
||||
}
|
||||
}
|
||||
return normal;
|
||||
|
@ -847,9 +848,9 @@
|
|||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
||||
idle();
|
||||
if (ubl_encoderDiff) {
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff));
|
||||
ubl_encoderDiff = 0;
|
||||
if (ubl.encoder_diff) {
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
|
||||
ubl.encoder_diff = 0;
|
||||
}
|
||||
}
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
@ -858,7 +859,7 @@
|
|||
|
||||
float measure_business_card_thickness(const float &in_height) {
|
||||
|
||||
ubl_has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
|
||||
|
@ -868,7 +869,7 @@
|
|||
|
||||
const float z1 = use_encoder_wheel_to_measure_point();
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
|
||||
const float z2 = use_encoder_wheel_to_measure_point();
|
||||
|
@ -885,7 +886,7 @@
|
|||
|
||||
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
|
||||
|
||||
ubl_has_control_of_lcd_panel++;
|
||||
ubl.has_control_of_lcd_panel++;
|
||||
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
|
||||
do_blocking_move_to_z(z_clearance);
|
||||
do_blocking_move_to_xy(lx, ly);
|
||||
|
@ -899,14 +900,14 @@
|
|||
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
|
||||
if (location.x_index < 0 && location.y_index < 0) continue;
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
|
||||
rawy = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
rawy = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
||||
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
goto LEAVE;
|
||||
}
|
||||
|
||||
|
@ -926,13 +927,13 @@
|
|||
last_y = yProbe;
|
||||
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
ubl_has_control_of_lcd_panel = true;
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
|
||||
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
|
||||
idle();
|
||||
if (ubl_encoderDiff) {
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0);
|
||||
ubl_encoderDiff = 0;
|
||||
if (ubl.encoder_diff) {
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
|
||||
ubl.encoder_diff = 0;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -944,17 +945,17 @@
|
|||
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
|
||||
lcd_quick_feedback();
|
||||
while (ubl_lcd_clicked()) idle();
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
restore_ubl_active_state_and_leave();
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
|
||||
ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
|
||||
if (g29_verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
|
||||
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
|
||||
SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
|
||||
SERIAL_EOL;
|
||||
}
|
||||
} while (location.x_index >= 0 && location.y_index >= 0);
|
||||
|
@ -1105,7 +1106,7 @@
|
|||
* good to have the extra information. Soon... we prune this to just a few items
|
||||
*/
|
||||
void g29_what_command() {
|
||||
const uint16_t k = E2END - ubl_eeprom_start;
|
||||
const uint16_t k = E2END - ubl.eeprom_start;
|
||||
|
||||
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
|
||||
if (ubl.state.active)
|
||||
|
@ -1136,7 +1137,7 @@
|
|||
|
||||
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
|
||||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1);
|
||||
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
safe_delay(50);
|
||||
}
|
||||
|
@ -1144,7 +1145,7 @@
|
|||
|
||||
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
|
||||
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
|
||||
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1);
|
||||
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
safe_delay(50);
|
||||
}
|
||||
|
@ -1162,21 +1163,21 @@
|
|||
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
|
||||
SERIAL_EOL;
|
||||
safe_delay(50);
|
||||
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start));
|
||||
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
|
||||
|
||||
SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END));
|
||||
SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END));
|
||||
safe_delay(50);
|
||||
|
||||
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
|
||||
SERIAL_EOL;
|
||||
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
|
||||
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
|
||||
SERIAL_EOL;
|
||||
safe_delay(50);
|
||||
|
||||
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
|
||||
safe_delay(50);
|
||||
|
||||
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values));
|
||||
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
|
||||
SERIAL_PROTOCOLLNPGM(" meshes.\n");
|
||||
safe_delay(50);
|
||||
|
||||
|
@ -1240,9 +1241,9 @@
|
|||
}
|
||||
storage_slot = code_value_int();
|
||||
|
||||
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values);
|
||||
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
|
||||
|
||||
if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) {
|
||||
if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
|
||||
return;
|
||||
}
|
||||
|
@ -1251,12 +1252,12 @@
|
|||
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
|
||||
|
||||
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
|
||||
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing
|
||||
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
|
||||
// the address in the EEPROM where the Mesh is stored.
|
||||
|
||||
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
|
||||
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
|
||||
z_values[x][y] = z_values[x][y] - tmp_z_values[x][y];
|
||||
ubl.z_values[x][y] -= tmp_z_values[x][y];
|
||||
}
|
||||
|
||||
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
|
||||
|
@ -1275,15 +1276,15 @@
|
|||
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
|
||||
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
|
||||
|
||||
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|
||||
|| (type == REAL && !isnan(z_values[i][j]))
|
||||
if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
|
||||
|| (type == REAL && !isnan(ubl.z_values[i][j]))
|
||||
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
|
||||
) {
|
||||
|
||||
// We only get here if we found a Mesh Point of the specified type
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location
|
||||
rawy = ubl.map_y_index_to_bed_location(j);
|
||||
const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
|
||||
rawy = ubl.mesh_index_to_ypos[j];
|
||||
|
||||
// If using the probe as the reference there are some unreachable locations.
|
||||
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
|
||||
|
@ -1303,7 +1304,7 @@
|
|||
if (far_flag) { // If doing the far_flag action, we want to be as far as possible
|
||||
for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
|
||||
for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
|
||||
if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
|
||||
if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
|
||||
distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
|
||||
+ sq(j - l) * (MESH_Y_DIST) * .05;
|
||||
}
|
||||
|
@ -1349,26 +1350,26 @@
|
|||
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
|
||||
// different location the next time through the loop
|
||||
|
||||
const float rawx = ubl.map_x_index_to_bed_location(location.x_index),
|
||||
rawy = ubl.map_y_index_to_bed_location(location.y_index);
|
||||
const float rawx = ubl.mesh_index_to_xpos[location.x_index],
|
||||
rawy = ubl.mesh_index_to_ypos[location.y_index];
|
||||
|
||||
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
|
||||
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
|
||||
SERIAL_ERROR_START;
|
||||
SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
goto FINE_TUNE_EXIT;
|
||||
}
|
||||
|
||||
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
|
||||
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
|
||||
float new_z = z_values[location.x_index][location.y_index];
|
||||
float new_z = ubl.z_values[location.x_index][location.y_index];
|
||||
|
||||
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
|
||||
new_z = float(round_off) / 1000.0;
|
||||
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
ubl_has_control_of_lcd_panel = true;
|
||||
ubl.has_control_of_lcd_panel = true;
|
||||
|
||||
lcd_implementation_clear();
|
||||
lcd_mesh_edit_setup(new_z);
|
||||
|
@ -1380,7 +1381,7 @@
|
|||
|
||||
lcd_return_to_status();
|
||||
|
||||
ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
|
||||
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
|
||||
// or here.
|
||||
|
||||
|
@ -1401,7 +1402,7 @@
|
|||
|
||||
safe_delay(20); // We don't want any switch noise.
|
||||
|
||||
z_values[location.x_index][location.y_index] = new_z;
|
||||
ubl.z_values[location.x_index][location.y_index] = new_z;
|
||||
|
||||
lcd_implementation_clear();
|
||||
|
||||
|
@ -1409,7 +1410,7 @@
|
|||
|
||||
FINE_TUNE_EXIT:
|
||||
|
||||
ubl_has_control_of_lcd_panel = false;
|
||||
ubl.has_control_of_lcd_panel = false;
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
||||
if (do_ubl_mesh_map) ubl.display_map(map_type);
|
||||
|
|
|
@ -31,12 +31,12 @@
|
|||
|
||||
extern float destination[XYZE];
|
||||
extern void set_current_to_destination();
|
||||
|
||||
extern float destination[];
|
||||
void debug_current_and_destination(char *title) {
|
||||
|
||||
// if the title message starts with a '!' it is so important, we are going to
|
||||
// ignore the status of the g26_debug_flag
|
||||
if (*title != '!' && !g26_debug_flag) return;
|
||||
if (*title != '!' && !ubl.g26_debug_flag) return;
|
||||
|
||||
const float de = destination[E_AXIS] - current_position[E_AXIS];
|
||||
|
||||
|
@ -121,7 +121,7 @@
|
|||
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)),
|
||||
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end));
|
||||
|
||||
if (g26_debug_flag) {
|
||||
if (ubl.g26_debug_flag) {
|
||||
SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
|
||||
SERIAL_ECHO(x_end);
|
||||
SERIAL_ECHOPGM(", ye=");
|
||||
|
@ -150,7 +150,7 @@
|
|||
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
|
||||
set_current_to_destination();
|
||||
|
||||
if (g26_debug_flag)
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
|
||||
|
||||
return;
|
||||
|
@ -167,16 +167,16 @@
|
|||
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
|
||||
*/
|
||||
|
||||
const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
|
||||
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
|
||||
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
|
||||
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
|
||||
|
||||
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
|
||||
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
|
||||
|
||||
const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
|
||||
const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
|
||||
|
||||
float z0 = z1 + (z2 - z1) * yratio;
|
||||
|
||||
|
@ -212,7 +212,7 @@
|
|||
|
||||
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
|
||||
|
||||
if (g26_debug_flag)
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
|
||||
|
||||
set_current_to_destination();
|
||||
|
@ -274,7 +274,7 @@
|
|||
current_yi += down_flag; // Line is heading down, we just want to go to the bottom
|
||||
while (current_yi != cell_dest_yi + down_flag) {
|
||||
current_yi += dyi;
|
||||
const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
|
||||
const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
|
||||
|
||||
/**
|
||||
* inf_m_flag? the slope of the line is infinite, we won't do the calculations
|
||||
|
@ -314,9 +314,9 @@
|
|||
* because part of the Mesh is undefined and we don't have the
|
||||
* information we need to complete the height correction.
|
||||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]);
|
||||
const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
|
||||
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
|
@ -339,7 +339,7 @@
|
|||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
if (g26_debug_flag)
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
|
||||
|
||||
//
|
||||
|
@ -365,7 +365,7 @@
|
|||
// edge of this cell for the first move.
|
||||
while (current_xi != cell_dest_xi + left_flag) {
|
||||
current_xi += dxi;
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]),
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
|
||||
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
|
||||
|
||||
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
|
||||
|
@ -401,7 +401,7 @@
|
|||
*/
|
||||
if (isnan(z0)) z0 = 0.0;
|
||||
|
||||
const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]);
|
||||
const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]);
|
||||
|
||||
/**
|
||||
* Without this check, it is possible for the algorithm to generate a zero length move in the case
|
||||
|
@ -424,7 +424,7 @@
|
|||
} //else printf("FIRST MOVE PRUNED ");
|
||||
}
|
||||
|
||||
if (g26_debug_flag)
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
|
||||
|
||||
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
|
||||
|
@ -451,8 +451,8 @@
|
|||
|
||||
while (xi_cnt > 0 || yi_cnt > 0) {
|
||||
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]),
|
||||
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
|
||||
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
|
||||
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
|
||||
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
|
||||
// about m being equal to 0.0 If this was the case, we would have
|
||||
|
@ -563,7 +563,7 @@
|
|||
}
|
||||
}
|
||||
|
||||
if (g26_debug_flag)
|
||||
if (ubl.g26_debug_flag)
|
||||
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
|
||||
|
||||
if (current_position[0] != x_end || current_position[1] != y_end)
|
||||
|
|
|
@ -846,7 +846,7 @@ void Config_Postprocess() {
|
|||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
|
||||
ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
|
||||
// can float up or down a little bit without
|
||||
// disrupting the Unified Bed Leveling data
|
||||
ubl.load_state();
|
||||
|
@ -1232,7 +1232,7 @@ void Config_ResetDefault() {
|
|||
SERIAL_ECHO_F(ubl.state.z_offset, 6);
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values)));
|
||||
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values)));
|
||||
SERIAL_ECHOLNPGM(" meshes.\n");
|
||||
|
||||
SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS " STRINGIFY(UBL_MESH_NUM_X_POINTS));
|
||||
|
|
|
@ -863,7 +863,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -846,7 +846,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -846,7 +846,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -855,7 +855,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -857,7 +857,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -892,7 +892,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -863,7 +863,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -863,7 +863,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -863,7 +863,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -862,7 +862,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -878,7 +878,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -884,7 +884,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -855,7 +855,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -863,7 +863,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -968,7 +968,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -954,7 +954,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -958,7 +958,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -957,7 +957,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -967,7 +967,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -866,7 +866,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -859,7 +859,7 @@
|
|||
#define UBL_PROBE_PT_2_Y 20
|
||||
#define UBL_PROBE_PT_3_X 180
|
||||
#define UBL_PROBE_PT_3_Y 20
|
||||
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing
|
||||
//#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
|
|
|
@ -124,8 +124,7 @@ uint16_t max_display_update_time = 0;
|
|||
int32_t lastEncoderMovementMillis;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
extern bool ubl_has_control_of_lcd_panel;
|
||||
extern int8_t ubl_encoderDiff;
|
||||
#include "UBL.h"
|
||||
#endif
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
|
@ -860,9 +859,9 @@ void kill_screen(const char* lcd_msg) {
|
|||
|
||||
static void _lcd_mesh_fine_tune(const char* msg) {
|
||||
defer_return_to_status = true;
|
||||
if (ubl_encoderDiff) {
|
||||
ubl_encoderPosition = (ubl_encoderDiff > 0) ? 1 : -1;
|
||||
ubl_encoderDiff = 0;
|
||||
if (ubl.encoder_diff) {
|
||||
ubl_encoderPosition = (ubl.encoder_diff > 0) ? 1 : -1;
|
||||
ubl.encoder_diff = 0;
|
||||
|
||||
mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0;
|
||||
mesh_edit_value = mesh_edit_accumulator;
|
||||
|
@ -3206,7 +3205,7 @@ void lcd_update() {
|
|||
lcd_buttons_update();
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
const bool UBL_CONDITION = !ubl_has_control_of_lcd_panel;
|
||||
const bool UBL_CONDITION = !ubl.has_control_of_lcd_panel;
|
||||
#else
|
||||
constexpr bool UBL_CONDITION = true;
|
||||
#endif
|
||||
|
@ -3622,8 +3621,8 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
|
|||
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
|
||||
}
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
if (ubl_has_control_of_lcd_panel) {
|
||||
ubl_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
|
||||
if (ubl.has_control_of_lcd_panel) {
|
||||
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
|
||||
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
|
||||
// wheel has not turned.
|
||||
}
|
||||
|
|
Reference in a new issue