Merge pull request #6174 from thinkyhead/rc_ubl_continued

UBL additional cleanup
This commit is contained in:
Scott Lahteine 2017-03-31 03:39:50 -05:00 committed by GitHub
commit baadb11536
33 changed files with 551 additions and 545 deletions

View file

@ -120,7 +120,7 @@ script:
# Test a simple build of AUTO_BED_LEVELING_UBL # Test a simple build of AUTO_BED_LEVELING_UBL
# #
- restore_configs - restore_configs
- opt_enable AUTO_BED_LEVELING_UBL FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL - opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
- build_marlin - build_marlin
# #
# Test a Sled Z Probe # Test a Sled Z Probe

View file

@ -862,7 +862,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -26,7 +26,7 @@
#include "MarlinConfig.h" #include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
#include "Marlin.h" #include "Marlin.h"
#include "Configuration.h" #include "Configuration.h"
@ -38,7 +38,7 @@
#define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But #define EXTRUSION_MULTIPLIER 1.0 // This is too much clutter for the main Configuration.h file But
#define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize #define RETRACTION_MULTIPLIER 1.0 // some user have expressed an interest in being able to customize
#define NOZZLE 0.3 // these numbers for thier printer so they don't need to type all #define NOZZLE 0.3 // these numbers for their printer so they don't need to type all
#define FILAMENT 1.75 // the options every time they do a Mesh Validation Print. #define FILAMENT 1.75 // the options every time they do a Mesh Validation Print.
#define LAYER_HEIGHT 0.2 #define LAYER_HEIGHT 0.2
#define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place. #define PRIME_LENGTH 10.0 // So, we put these number in an easy to find and change place.
@ -113,9 +113,7 @@
* Y # Y coordinate Specify the starting location of the drawing activity. * Y # Y coordinate Specify the starting location of the drawing activity.
*/ */
extern bool ubl_has_control_of_lcd_panel;
extern float feedrate; extern float feedrate;
//extern bool relative_mode;
extern Planner planner; extern Planner planner;
//#if ENABLED(ULTRA_LCD) //#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[]; extern char lcd_status_message[];
@ -171,8 +169,7 @@
int8_t prime_flag = 0; int8_t prime_flag = 0;
bool keep_heaters_on = false, bool keep_heaters_on = false;
g26_debug_flag = false;
/** /**
* G26: Mesh Validation Pattern generation. * G26: Mesh Validation Pattern generation.
@ -181,15 +178,13 @@
* nozzle in a problem area and doing a G29 P4 R command. * nozzle in a problem area and doing a G29 P4 R command.
*/ */
void gcode_G26() { void gcode_G26() {
float circle_x, circle_y, x, y, xe, ye, tmp, float tmp, start_angle, end_angle;
start_angle, end_angle; int i, xi, yi;
int i, xi, yi, lcd_init_counter = 0;
mesh_index_pair location; mesh_index_pair location;
if (axis_unhomed_error(true, true, true)) // Don't allow Mesh Validation without homing first // Don't allow Mesh Validation without homing first
gcode_G28(); // If the paramter parsing did not go OK, we abort the command
if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
if (parse_G26_parameters()) return; // If the paramter parsing did not go OK, we abort the command
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
@ -197,17 +192,12 @@
set_current_to_destination(); set_current_to_destination();
} }
ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel! if (turn_on_heaters()) goto LEAVE;
if (turn_on_heaters()) // Turn on the heaters, leave the command if anything
goto LEAVE; // has gone wrong.
axis_relative_modes[E_AXIS] = false; // Get things setup so we can take control of the
//relative_mode = false; // planner and stepper motors!
current_position[E_AXIS] = 0.0; current_position[E_AXIS] = 0.0;
sync_plan_position_e(); sync_plan_position_e();
if (prime_flag && prime_nozzle()) // if prime_nozzle() returns an error, we just bail out. if (prime_flag && prime_nozzle()) goto LEAVE;
goto LEAVE;
/** /**
* Bed is preheated * Bed is preheated
@ -219,20 +209,17 @@
* It's "Show Time" !!! * It's "Show Time" !!!
*/ */
// Clear all of the flags we need
ZERO(circle_flags); ZERO(circle_flags);
ZERO(horizontal_mesh_line_flags); ZERO(horizontal_mesh_line_flags);
ZERO(vertical_mesh_line_flags); ZERO(vertical_mesh_line_flags);
//
// Move nozzle to the specified height for the first layer // Move nozzle to the specified height for the first layer
//
set_destination_to_current(); set_destination_to_current();
destination[Z_AXIS] = layer_height; destination[Z_AXIS] = layer_height;
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
ubl_has_control_of_lcd_panel = true; // Take control of the LCD Panel! ubl.has_control_of_lcd_panel++;
//debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern."); //debug_current_and_destination((char*)"Starting G26 Mesh Validation Pattern.");
/** /**
@ -264,14 +251,13 @@
goto LEAVE; goto LEAVE;
} }
if (continue_with_closest) location = continue_with_closest
location = find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]); ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
else : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
location = find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
circle_x = ubl.map_x_index_to_bed_location(location.x_index); const float circle_x = ubl.mesh_index_to_xpos[location.x_index],
circle_y = ubl.map_y_index_to_bed_location(location.y_index); circle_y = ubl.mesh_index_to_ypos[location.y_index];
// Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
#ifdef DELTA #ifdef DELTA
@ -292,7 +278,7 @@
xi = location.x_index; // Just to shrink the next few lines and make them easier to understand xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
yi = location.y_index; yi = location.y_index;
if (g26_debug_flag) { if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
SERIAL_ECHOPAIR(", yi=", yi); SERIAL_ECHOPAIR(", yi=", yi);
SERIAL_CHAR(')'); SERIAL_CHAR(')');
@ -329,24 +315,23 @@
for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
int tmp_div_30 = tmp / 30.0; int tmp_div_30 = tmp / 30.0;
if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
x = circle_x + cos_table[tmp_div_30]; // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30];
if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
xe = circle_x + cos_table[tmp_div_30 + 1]; // for speed, these are now a lookup table entry
ye = circle_y + sin_table[tmp_div_30 + 1]; float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
y = circle_y + sin_table[tmp_div_30],
xe = circle_x + cos_table[tmp_div_30 + 1],
ye = circle_y + sin_table[tmp_div_30 + 1];
#ifdef DELTA #ifdef DELTA
if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
continue; // the 'circle' is on the bed. If continue; // the 'circle' is on the bed. If
#else // not, we need to skip #else // not, we need to skip
x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
#endif #endif
//if (g26_debug_flag) { //if (ubl.g26_debug_flag) {
// char ccc, *cptr, seg_msg[50], seg_num[10]; // char ccc, *cptr, seg_msg[50], seg_num[10];
// strcpy(seg_msg, " segment: "); // strcpy(seg_msg, " segment: ");
// strcpy(seg_num, " \n"); // strcpy(seg_num, " \n");
@ -357,15 +342,9 @@
// debug_current_and_destination(seg_msg); // debug_current_and_destination(seg_msg);
//} //}
print_line_from_here_to_there(x, y, layer_height, xe, ye, layer_height); print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
} }
//lcd_init_counter++;
//if (lcd_init_counter > 10) {
// lcd_init_counter = 0;
// lcd_init(); // Some people's LCD Displays are locking up. This might help them
// ubl_has_control_of_lcd_panel = true; // Make sure UBL still is controlling the LCD Panel
//}
//debug_current_and_destination((char*)"Looking for lines to connect."); //debug_current_and_destination((char*)"Looking for lines to connect.");
look_for_lines_to_connect(); look_for_lines_to_connect();
@ -373,8 +352,8 @@
} }
//debug_current_and_destination((char*)"Done with current circle."); //debug_current_and_destination((char*)"Done with current circle.");
}
while (location.x_index >= 0 && location.y_index >= 0); } while (location.x_index >= 0 && location.y_index >= 0);
LEAVE: LEAVE:
lcd_reset_alert_level(); lcd_reset_alert_level();
@ -394,7 +373,7 @@
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
//debug_current_and_destination((char*)"done doing X/Y move."); //debug_current_and_destination((char*)"done doing X/Y move.");
ubl_has_control_of_lcd_panel = false; // Give back control of the LCD Panel! ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
if (!keep_heaters_on) { if (!keep_heaters_on) {
#if HAS_TEMP_BED #if HAS_TEMP_BED
@ -420,8 +399,8 @@
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!is_bit_set(circle_flags, i, j)) { if (!is_bit_set(circle_flags, i, j)) {
mx = ubl.map_x_index_to_bed_location(i); // We found a circle that needs to be printed mx = ubl.mesh_index_to_xpos[i]; // We found a circle that needs to be printed
my = ubl.map_y_index_to_bed_location(j); my = ubl.mesh_index_to_ypos[j];
dx = X - mx; // Get the distance to this intersection dx = X - mx; // Get the distance to this intersection
dy = Y - my; dy = Y - my;
@ -466,11 +445,11 @@
// We found two circles that need a horizontal line to connect them // We found two circles that need a horizontal line to connect them
// Print it! // Print it!
// //
sx = ubl.map_x_index_to_bed_location(i); sx = ubl.mesh_index_to_xpos[i];
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
sy = ubl.map_y_index_to_bed_location(j); sy = ubl.mesh_index_to_ypos[j];
ex = ubl.map_x_index_to_bed_location(i + 1); ex = ubl.mesh_index_to_xpos[i + 1];
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
ey = sy; ey = sy;
@ -479,7 +458,7 @@
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (g26_debug_flag) { if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(") -> (ex=", ex);
@ -503,12 +482,12 @@
// We found two circles that need a vertical line to connect them // We found two circles that need a vertical line to connect them
// Print it! // Print it!
// //
sx = ubl.map_x_index_to_bed_location(i); sx = ubl.mesh_index_to_xpos[i];
sy = ubl.map_y_index_to_bed_location(j); sy = ubl.mesh_index_to_ypos[j];
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
ex = sx; ex = sx;
ey = ubl.map_y_index_to_bed_location(j + 1); ey = ubl.mesh_index_to_ypos[j + 1];
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
@ -516,7 +495,7 @@
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (g26_debug_flag) { if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy); SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex); SERIAL_ECHOPAIR(") -> (ex=", ex);
@ -541,10 +520,10 @@
bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
//if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
if (z != last_z) { if (z != last_z) {
//if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
last_z = z; last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
@ -559,24 +538,24 @@
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();
//if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move"); //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() done with Z move");
} }
// Check if X or Y is involved in the movement. // Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or un_retract() // Yes: a 'normal' movement. No: a retract() or un_retract()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = x; destination[X_AXIS] = x;
destination[Y_AXIS] = y; destination[Y_AXIS] = y;
destination[E_AXIS] += e_delta; destination[E_AXIS] += e_delta;
//if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move"); //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0); ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
//if (g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move"); //if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
stepper.synchronize(); stepper.synchronize();
set_destination_to_current(); set_destination_to_current();
@ -586,9 +565,9 @@
void retract_filament() { void retract_filament() {
if (!g26_retracted) { // Only retract if we are not already retracted! if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true; g26_retracted = true;
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract."); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done."); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
} }
} }
@ -596,7 +575,7 @@
if (g26_retracted) { // Only un-retract if we are retracted. if (g26_retracted) { // Only un-retract if we are retracted.
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier); move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
g26_retracted = false; g26_retracted = false;
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done."); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
} }
} }
@ -633,7 +612,7 @@
// On very small lines we don't do the optimization because it just isn't worth it. // On very small lines we don't do the optimization because it just isn't worth it.
// //
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) { if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()"); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
return; return;
} }
@ -642,7 +621,7 @@
if (dist_start > 2.0) { if (dist_start > 2.0) {
retract_filament(); retract_filament();
//if (g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted."); //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
} }
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
@ -650,7 +629,7 @@
un_retract_filament(); un_retract_filament();
//if (g26_debug_flag) { //if (ubl.g26_debug_flag) {
// SERIAL_ECHOLNPGM(" doing printing move."); // SERIAL_ECHOLNPGM(" doing printing move.");
// debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()"); // debug_current_and_destination((char*)"doing final move_to() inside print_line_from_here_to_there()");
//} //}
@ -810,7 +789,7 @@
lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99); lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
ubl_has_control_of_lcd_panel = true; ubl.has_control_of_lcd_panel++;
thermalManager.setTargetBed(bed_temp); thermalManager.setTargetBed(bed_temp);
while (abs(thermalManager.degBed() - bed_temp) > 3) { while (abs(thermalManager.degBed() - bed_temp) > 3) {
if (ubl_lcd_clicked()) return exit_from_g26(); if (ubl_lcd_clicked()) return exit_from_g26();
@ -845,6 +824,9 @@
float Total_Prime = 0.0; float Total_Prime = 0.0;
if (prime_flag == -1) { // The user wants to control how much filament gets purged if (prime_flag == -1) { // The user wants to control how much filament gets purged
ubl.has_control_of_lcd_panel++;
lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99); lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
chirp_at_user(); chirp_at_user();
@ -881,6 +863,9 @@
lcd_setstatuspgm(PSTR("Done Priming"), 99); lcd_setstatuspgm(PSTR("Done Priming"), 99);
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
ubl.has_control_of_lcd_panel = false;
} }
else { else {
#if ENABLED(ULTRA_LCD) #if ENABLED(ULTRA_LCD)
@ -901,4 +886,4 @@
return UBL_OK; return UBL_OK;
} }
#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING

View file

@ -76,10 +76,10 @@ void gcode_M100() {
// We want to start and end the dump on a nice 16 byte boundry even though // We want to start and end the dump on a nice 16 byte boundry even though
// the values we are using are not 16 byte aligned. // the values we are using are not 16 byte aligned.
// //
SERIAL_ECHOPAIR("\nbss_end : ", hex_word((uint16_t)ptr)); SERIAL_ECHOPAIR("\nbss_end : 0x", hex_word((uint16_t)ptr));
ptr = (char*)((uint32_t)ptr & 0xfff0); ptr = (char*)((uint32_t)ptr & 0xfff0);
sp = top_of_stack(); sp = top_of_stack();
SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_word((uint16_t)sp)); SERIAL_ECHOLNPAIR("\nStack Pointer : 0x", hex_word((uint16_t)sp));
sp = (char*)((uint32_t)sp | 0x000f); sp = (char*)((uint32_t)sp | 0x000f);
n = sp - ptr; n = sp - ptr;
// //

View file

@ -430,4 +430,8 @@ void do_blocking_move_to_x(const float &x, const float &fr_mm_s=0.0);
void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0); void do_blocking_move_to_z(const float &z, const float &fr_mm_s=0.0);
void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0); void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s=0.0);
#if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
bool axis_unhomed_error(const bool x, const bool y, const bool z);
#endif
#endif //MARLIN_H #endif //MARLIN_H

View file

@ -299,11 +299,11 @@
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
#include "UBL.h" #include "UBL.h"
unified_bed_leveling ubl; unified_bed_leveling ubl;
#define UBL_MESH_VALID !( z_values[0][0] == z_values[0][1] && z_values[0][1] == z_values[0][2] \ #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
&& z_values[1][0] == z_values[1][1] && z_values[1][1] == z_values[1][2] \ && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
&& z_values[2][0] == z_values[2][1] && z_values[2][1] == z_values[2][2] \ && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
&& z_values[0][0] == 0 && z_values[1][0] == 0 && z_values[2][0] == 0 \ && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
|| isnan(z_values[0][0])) || isnan(ubl.z_values[0][0]))
#endif #endif
bool Running = true; bool Running = true;
@ -3221,7 +3221,7 @@ inline void gcode_G4() {
*/ */
inline void gcode_G12() { inline void gcode_G12() {
// Don't allow nozzle cleaning without homing first // Don't allow nozzle cleaning without homing first
if (axis_unhomed_error(true, true, true)) { return; } if (axis_unhomed_error(true, true, true)) return;
const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0, const uint8_t pattern = code_seen('P') ? code_value_ushort() : 0,
strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES, strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES,
@ -5344,17 +5344,15 @@ inline void gcode_M42() {
#endif // Z_MIN_PROBE_REPEATABILITY_TEST #endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
inline void gcode_M49() { inline void gcode_M49() {
ubl.g26_debug_flag = !ubl.g26_debug_flag;
SERIAL_PROTOCOLPGM("UBL Debug Flag turned "); SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
if ((g26_debug_flag = !g26_debug_flag)) serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
SERIAL_PROTOCOLLNPGM("on.");
else
SERIAL_PROTOCOLLNPGM("off.");
} }
#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
/** /**
* M75: Start print timer * M75: Start print timer
@ -7210,13 +7208,59 @@ void quickstop_stepper() {
/** /**
* M420: Enable/Disable Bed Leveling and/or set the Z fade height. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
* *
* S[bool] Turns leveling on or off * S[bool] Turns leveling on or off
* Z[height] Sets the Z fade height (0 or none to disable) * Z[height] Sets the Z fade height (0 or none to disable)
* V[bool] Verbose - Print the leveling grid * V[bool] Verbose - Print the leveling grid
*
* With AUTO_BED_LEVELING_UBL only:
*
* L[index] Load UBL mesh from index (0 is default)
*/ */
inline void gcode_M420() { inline void gcode_M420() {
bool to_enable = false;
#if ENABLED(AUTO_BED_LEVELING_UBL)
// L to load a mesh from the EEPROM
if (code_seen('L')) {
const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
ubl.load_mesh(storage_slot);
if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state();
ubl.state.eeprom_storage_slot = storage_slot;
ubl.display_map(0); // Right now, we only support one type of map
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
}
#endif // AUTO_BED_LEVELING_UBL
// V to print the matrix or mesh
if (code_seen('V')) {
#if ABL_PLANAR
planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (bilinear_grid_spacing[X_AXIS]) {
print_bilinear_leveling_grid();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_print();
#endif
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.display_map(0); // Currently only supports one map type
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
SERIAL_ECHOLNPAIR("eeprom_storage_slot = ", ubl.state.eeprom_storage_slot);
#elif ENABLED(MESH_BED_LEVELING)
if (mbl.has_mesh()) {
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
mbl_mesh_report();
}
#endif
}
bool to_enable = false;
if (code_seen('S')) { if (code_seen('S')) {
to_enable = code_value_bool(); to_enable = code_value_bool();
set_bed_leveling_enabled(to_enable); set_bed_leveling_enabled(to_enable);
@ -7243,28 +7287,6 @@ void quickstop_stepper() {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF); SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
// V to print the matrix or mesh
if (code_seen('V')) {
#if ABL_PLANAR
planner.bed_level_matrix.debug("Bed Level Correction Matrix:");
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
if (bilinear_grid_spacing[X_AXIS]) {
print_bilinear_leveling_grid();
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_print();
#endif
}
#elif ENABLED(AUTO_BED_LEVELING_UBL)
ubl.display_map(0); // Right now, we only support one type of map
#elif ENABLED(MESH_BED_LEVELING)
if (mbl.has_mesh()) {
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
mbl_mesh_report();
}
#endif
}
} }
#endif #endif
@ -8579,7 +8601,7 @@ void process_next_command() {
break; break;
#endif // INCH_MODE_SUPPORT #endif // INCH_MODE_SUPPORT
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
case 26: // G26: Mesh Validation Pattern generation case 26: // G26: Mesh Validation Pattern generation
gcode_G26(); gcode_G26();
break; break;
@ -8595,7 +8617,7 @@ void process_next_command() {
gcode_G28(); gcode_G28();
break; break;
#if PLANNER_LEVELING #if PLANNER_LEVELING && !ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points, case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
// or provides access to the UBL System if enabled. // or provides access to the UBL System if enabled.
gcode_G29(); gcode_G29();
@ -8711,11 +8733,11 @@ void process_next_command() {
break; break;
#endif // Z_MIN_PROBE_REPEATABILITY_TEST #endif // Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_MESH_EDIT_ENABLED) #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
case 49: // M49: Turn on or off g26_debug_flag for verbose output case 49: // M49: Turn on or off G26 debug flag for verbose output
gcode_M49(); gcode_M49();
break; break;
#endif // AUTO_BED_LEVELING_UBL && UBL_MESH_EDIT_ENABLED #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING
case 75: // M75: Start print timer case 75: // M75: Start print timer
gcode_M75(); break; gcode_M75(); break;

View file

@ -39,7 +39,6 @@
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP }; enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
bool axis_unhomed_error(bool, bool, bool);
void dump(char * const str, const float &f); void dump(char * const str, const float &f);
bool ubl_lcd_clicked(); bool ubl_lcd_clicked();
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool); void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
@ -78,271 +77,279 @@
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 }; enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
#define MESH_X_DIST ((float(UBL_MESH_MAX_X) - float(UBL_MESH_MIN_X)) / (float(UBL_MESH_NUM_X_POINTS) - 1.0)) #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
#define MESH_Y_DIST ((float(UBL_MESH_MAX_Y) - float(UBL_MESH_MIN_Y)) / (float(UBL_MESH_NUM_Y_POINTS) - 1.0)) #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
#if ENABLED(UBL_MESH_EDIT_ENABLED) typedef struct {
extern bool g26_debug_flag; bool active = false;
#else float z_offset = 0.0;
constexpr bool g26_debug_flag = false; int8_t eeprom_storage_slot = -1,
#endif n_x = UBL_MESH_NUM_X_POINTS,
extern float last_specified_z; n_y = UBL_MESH_NUM_Y_POINTS;
extern float fade_scaling_factor_for_current_height;
extern float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; float mesh_x_min = UBL_MESH_MIN_X,
extern float mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1]; // +1 just because of paranoia that we might end up on the mesh_y_min = UBL_MESH_MIN_Y,
extern float mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
// so keep this value and its reciprocal.
#else
const float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0;
#endif
// If you change this struct, adjust TOTAL_STRUCT_SIZE
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
// padding provides space to add state variables without
// changing the location of data structures in the EEPROM.
// This is for compatibility with future versions to keep
// users from having to regenerate their mesh data.
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
} ubl_state;
class unified_bed_leveling { class unified_bed_leveling {
private:
static float last_specified_z,
fade_scaling_factor_for_current_height;
public: public:
struct ubl_state {
bool active = false;
float z_offset = 0.0;
int eeprom_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X,
mesh_y_min = UBL_MESH_MIN_Y,
mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) static ubl_state state, pre_initialized;
float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0; // It is cheaper to do a floating point multiply than a floating
// point divide. So, we keep this number in both forms. The first
// is for the user. The second one is the one that is actually used
// again and again and again during the correction calculations.
#endif
unsigned char padding[24]; // This is just to allow room to add state variables without static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
// changing the location of data structures in the EEPROM. mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
// This is for compatability with future versions to keep mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
// people from having to regenerate thier mesh data.
//
// If you change the contents of this struct, please adjust
// the padding[] to keep the size the same!
} state, pre_initialized;
unified_bed_leveling(); static bool g26_debug_flag,
// ~unified_bed_leveling(); // No destructor because this object never goes away! has_control_of_lcd_panel;
void display_map(const int); static int8_t eeprom_start;
void reset(); static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
void invalidate();
void store_state(); unified_bed_leveling();
void load_state();
void store_mesh(const int16_t);
void load_mesh(const int16_t);
bool sanity_check(); static void display_map(const int);
FORCE_INLINE static float map_x_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_X) + (((float) MESH_X_DIST) * (float) i); }; static void reset();
FORCE_INLINE static float map_y_index_to_bed_location(const int8_t i) { return ((float) UBL_MESH_MIN_Y) + (((float) MESH_Y_DIST) * (float) i); }; static void invalidate();
FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; } static void store_state();
static void load_state();
static void store_mesh(const int16_t);
static void load_mesh(const int16_t);
static int8_t get_cell_index_x(const float &x) { static bool sanity_check();
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t find_closest_x_index(const float &x) { static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
}
static int8_t find_closest_y_index(const float &y) { static int8_t get_cell_index_x(const float &x) {
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST)); const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1; return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} } // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
/** static int8_t find_closest_x_index(const float &x) {
* z2 --| const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
* z0 | | return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
* | | + (z2-z1)
* z1 | | |
* ---+-------------+--------+-- --|
* a1 a0 a2
* |<---delta_a---------->|
*
* calc_z0 is the basis for all the Mesh Based correction. It is used to
* find the expected Z Height at a position between two known Z-Height locations.
*
* It is fairly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
const float delta_z = (z2 - z1),
delta_a = (a0 - a1) / (a2 - a1);
return z1 + delta_a * delta_z;
}
/**
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
* the X index of the x0 intersection available and we don't want to perform any extra floating
* point operations.
*/
inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
} }
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_x_location[x1_i]) * (1.0 / (MESH_X_DIST)), static int8_t find_closest_y_index(const float &y) {
z1 = z_values[x1_i][yi], const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
z2 = z_values[x1_i + 1][yi], return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
dz = (z2 - z1);
return z1 + xratio * dz;
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
//
inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
} }
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_y_location[y1_i]) * (1.0 / (MESH_Y_DIST)), /**
z1 = z_values[xi][y1_i], * z2 --|
z2 = z_values[xi][y1_i + 1], * z0 | |
dz = (z2 - z1); * | | + (z2-z1)
* z1 | | |
return z1 + yratio * dz; * ---+-------------+--------+-- --|
} * a1 a0 a2
* |<---delta_a---------->|
/** *
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first * calc_z0 is the basis for all the Mesh Based correction. It is used to
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the * find the expected Z Height at a position between two known Z-Height locations.
* Z-Height at both ends. Then it does a linear interpolation of these heights based *
* on the Y position within the cell. * It is fairly expensive with its 4 floating point additions and 2 floating point
*/ * multiplications.
float get_z_correction(const float &x0, const float &y0) const { */
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)), static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
cy = get_cell_index_y(RAW_Y_POSITION(y0)); const float delta_z = (z2 - z1),
delta_a = (a0 - a1) / (a2 - a1);
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) { return z1 + delta_a * delta_z;
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
} }
const float z1 = calc_z0(RAW_X_POSITION(x0), /**
map_x_index_to_bed_location(cx), z_values[cx][cy], * get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy]), * three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
z2 = calc_z0(RAW_X_POSITION(x0), * we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
map_x_index_to_bed_location(cx), z_values[cx][cy + 1], * the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
map_x_index_to_bed_location(cx + 1), z_values[cx + 1][cy + 1]); * the X index of the x0 intersection available and we don't want to perform any extra floating
float z0 = calc_z0(RAW_Y_POSITION(y0), * point operations.
map_y_index_to_bed_location(cy), z1, */
map_y_index_to_bed_location(cy + 1), z2); static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
#if ENABLED(DEBUG_LEVELING_FEATURE) SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
if (DEBUGGING(MESH_ADJUST)) { SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(" raw get_z_correction(", x0); SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_ECHOPAIR(",", y0); SERIAL_CHAR(')');
SERIAL_ECHOPGM(")=");
SERIAL_ECHO_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_ECHO_F(z0, 6);
SERIAL_EOL; SERIAL_EOL;
return NAN;
} }
#endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
z0 = 0.0; // in ubl.z_values[][] and propagate through the z1 = z_values[x1_i][yi],
// calculations. If our correction is NAN, we throw it out z2 = z_values[x1_i + 1][yi],
// because part of the Mesh is undefined and we don't have the dz = (z2 - z1);
// information we need to complete the height correction.
return z1 + xratio * dz;
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
//
static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i],
z2 = z_values[xi][y1_i + 1],
dz = (z2 - z1);
return z1 + yratio * dz;
}
/**
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
static float get_z_correction(const float &x0, const float &y0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
cy = get_cell_index_y(RAW_Y_POSITION(y0));
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
}
const float z1 = calc_z0(RAW_X_POSITION(x0),
mesh_index_to_xpos[cx], z_values[cx][cy],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
z2 = calc_z0(RAW_X_POSITION(x0),
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
float z0 = calc_z0(RAW_Y_POSITION(y0),
mesh_index_to_ypos[cy], z1,
mesh_index_to_ypos[cy + 1], z2);
#if ENABLED(DEBUG_LEVELING_FEATURE) #if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) { if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM("??? Yikes! NAN in get_z_correction( "); SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
SERIAL_ECHO(x0); SERIAL_CHAR(',')
SERIAL_ECHOPGM(", ");
SERIAL_ECHO(y0); SERIAL_ECHO(y0);
SERIAL_ECHOLNPGM(" )"); SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(z0, 6);
} }
#endif #endif
}
return z0; // there used to be a +state.z_offset on this line
}
/** #if ENABLED(DEBUG_LEVELING_FEATURE)
* This routine is used to scale the Z correction depending upon the current nozzle height. It is if (DEBUGGING(MESH_ADJUST)) {
* optimized for speed. It avoids floating point operations by checking if the requested scaling SERIAL_ECHOPGM(" >>>---> ");
* factor is going to be the same as the last time the function calculated a value. If so, it just SERIAL_ECHO_F(z0, 6);
* returns it. SERIAL_EOL;
* }
* It returns a scaling factor of 1.0 if UBL is inactive. #endif
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) const { if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
const float rz = RAW_Z_POSITION(lz); z0 = 0.0; // in ubl.z_values[][] and propagate through the
if (last_specified_z != rz) { // calculations. If our correction is NAN, we throw it out
last_specified_z = rz; // because part of the Mesh is undefined and we don't have the
fade_scaling_factor_for_current_height = // information we need to complete the height correction.
state.active && rz < state.g29_correction_fade_height
? 1.0 - (rz * state.g29_fade_height_multiplier) #if ENABLED(DEBUG_LEVELING_FEATURE)
: 0.0; if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
SERIAL_CHAR(',');
SERIAL_ECHO(y0);
SERIAL_CHAR(')');
SERIAL_EOL;
}
#endif
} }
return fade_scaling_factor_for_current_height; return z0; // there used to be a +state.z_offset on this line
} }
#else /**
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
* optimized for speed. It avoids floating point operations by checking if the requested scaling
* factor is going to be the same as the last time the function calculated a value. If so, it just
* returns it.
*
* It returns a scaling factor of 1.0 if UBL is inactive.
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; } FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
const float rz = RAW_Z_POSITION(lz);
if (last_specified_z != rz) {
last_specified_z = rz;
fade_scaling_factor_for_current_height =
state.active && rz < state.g29_correction_fade_height
? 1.0 - (rz * state.g29_fade_height_multiplier)
: 0.0;
}
return fade_scaling_factor_for_current_height;
}
#endif #else
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
#endif
}; // class unified_bed_leveling }; // class unified_bed_leveling
extern unified_bed_leveling ubl; extern unified_bed_leveling ubl;
extern int ubl_eeprom_start;
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state)) #define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
#endif // AUTO_BED_LEVELING_UBL #endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H #endif // UNIFIED_BED_LEVELING_H

View file

@ -57,26 +57,26 @@
} }
} }
/** ubl_state unified_bed_leveling::state, unified_bed_leveling::pre_initialized;
* These variables used to be declared inside the unified_bed_leveling class. We are going to
* still declare them within the .cpp file for bed leveling. But there is only one instance of float unified_bed_leveling::z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
* the bed leveling object and we can get rid of a level of inderection by not making them unified_bed_leveling::last_specified_z,
* 'member data'. So, in the interest of speed, we do it this way. On a 32-bit CPU they can be unified_bed_leveling::fade_scaling_factor_for_current_height,
* moved back inside the bed leveling class. unified_bed_leveling::mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
*/ unified_bed_leveling::mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
float last_specified_z,
fade_scaling_factor_for_current_height, bool unified_bed_leveling::g26_debug_flag = false,
z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS], unified_bed_leveling::has_control_of_lcd_panel = false;
mesh_index_to_x_location[UBL_MESH_NUM_X_POINTS + 1], // +1 just because of paranoia that we might end up on the
mesh_index_to_y_location[UBL_MESH_NUM_Y_POINTS + 1]; // the last Mesh Line and that is the start of a whole new cell int8_t unified_bed_leveling::eeprom_start = -1;
volatile int unified_bed_leveling::encoder_diff;
unified_bed_leveling::unified_bed_leveling() { unified_bed_leveling::unified_bed_leveling() {
for (uint8_t i = 0; i <= UBL_MESH_NUM_X_POINTS; i++) // We go one past what we expect to ever need for safety for (uint8_t i = 0; i < COUNT(mesh_index_to_xpos); i++)
mesh_index_to_x_location[i] = double(UBL_MESH_MIN_X) + double(MESH_X_DIST) * double(i); mesh_index_to_xpos[i] = UBL_MESH_MIN_X + i * (MESH_X_DIST);
for (uint8_t i = 0; i < COUNT(mesh_index_to_ypos); i++)
for (uint8_t i = 0; i <= UBL_MESH_NUM_Y_POINTS; i++) // We go one past what we expect to ever need for safety mesh_index_to_ypos[i] = UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
mesh_index_to_y_location[i] = double(UBL_MESH_MIN_Y) + double(MESH_Y_DIST) * double(i);
reset(); reset();
} }
@ -95,7 +95,7 @@
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
/** /**
* These lines can go away in a few weeks. They are just * These lines can go away in a few weeks. They are just
* to make sure people updating thier firmware won't be using * to make sure people updating their firmware won't be using
* an incomplete Bed_Leveling.state structure. For speed * an incomplete Bed_Leveling.state structure. For speed
* we now multiply by the inverse of the Fade Height instead of * we now multiply by the inverse of the Fade Height instead of
* dividing by it. Soon... all of the old structures will be * dividing by it. Soon... all of the old structures will be
@ -110,7 +110,7 @@
} }
void unified_bed_leveling::load_mesh(const int16_t m) { void unified_bed_leveling::load_mesh(const int16_t m) {
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (m == -1) { if (m == -1) {
SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n"); SERIAL_PROTOCOLLNPGM("?No mesh saved in EEPROM. Zeroing mesh in memory.\n");
@ -118,7 +118,7 @@
return; return;
} }
if (m < 0 || m >= j || ubl_eeprom_start <= 0) { if (m < 0 || m >= j || eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
return; return;
} }
@ -131,9 +131,9 @@
} }
void unified_bed_leveling::store_mesh(const int16_t m) { void unified_bed_leveling::store_mesh(const int16_t m) {
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (m < 0 || m >= j || ubl_eeprom_start <= 0) { if (m < 0 || m >= j || eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
SERIAL_PROTOCOL(m); SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n"); SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");
@ -164,9 +164,6 @@
} }
void unified_bed_leveling::invalidate() { void unified_bed_leveling::invalidate() {
print_hex_word((uint16_t)this);
SERIAL_EOL;
state.active = false; state.active = false;
state.z_offset = 0; state.z_offset = 0;
for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (int x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
@ -201,9 +198,8 @@
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
const bool is_current = i == current_xi && j == current_yi; const bool is_current = i == current_xi && j == current_yi;
// is the nozzle here? if so, mark the number // is the nozzle here? then mark the number
if (map0) if (map0) SERIAL_CHAR(is_current ? '[' : ' ');
SERIAL_CHAR(is_current ? '[' : ' ');
const float f = z_values[i][j]; const float f = z_values[i][j];
if (isnan(f)) { if (isnan(f)) {
@ -211,12 +207,11 @@
} }
else { else {
// if we don't do this, the columns won't line up nicely // if we don't do this, the columns won't line up nicely
if (f >= 0.0 && map0) SERIAL_CHAR(' '); if (map0 && f >= 0.0) SERIAL_CHAR(' ');
SERIAL_PROTOCOL_F(f, 3); SERIAL_PROTOCOL_F(f, 3);
idle(); idle();
} }
if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) if (!map0 && i < UBL_MESH_NUM_X_POINTS - 1) SERIAL_CHAR(',');
SERIAL_CHAR(',');
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
MYSERIAL.flushTX(); MYSERIAL.flushTX();
@ -251,47 +246,40 @@
bool unified_bed_leveling::sanity_check() { bool unified_bed_leveling::sanity_check() {
uint8_t error_flag = 0; uint8_t error_flag = 0;
if (state.n_x != UBL_MESH_NUM_X_POINTS) { if (state.n_x != UBL_MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_X_POINTS set wrong\n");
error_flag++; error_flag++;
} }
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
if (state.n_y != UBL_MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_NUM_Y_POINTS set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_x_min != UBL_MESH_MIN_X) {
if (state.mesh_x_min != UBL_MESH_MIN_X) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_X set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
if (state.mesh_y_min != UBL_MESH_MIN_Y) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MIN_Y set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_x_max != UBL_MESH_MAX_X) {
if (state.mesh_x_max != UBL_MESH_MAX_X) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_X set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
if (state.mesh_y_max != UBL_MESH_MAX_Y) {
SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n"); SERIAL_PROTOCOLLNPGM("?UBL_MESH_MAX_Y set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_x_dist != MESH_X_DIST) {
if (state.mesh_x_dist != MESH_X_DIST) {
SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n"); SERIAL_PROTOCOLLNPGM("?MESH_X_DIST set wrong\n");
error_flag++; error_flag++;
} }
if (state.mesh_y_dist != MESH_Y_DIST) {
if (state.mesh_y_dist != MESH_Y_DIST) {
SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n"); SERIAL_PROTOCOLLNPGM("?MESH_Y_DIST set wrong\n");
error_flag++; error_flag++;
} }
const int j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); const int j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (j < 1) { if (j < 1) {
SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n"); SERIAL_PROTOCOLLNPGM("?No EEPROM storage available for a mesh of this size.\n");
error_flag++; error_flag++;

View file

@ -22,7 +22,7 @@
#include "MarlinConfig.h" #include "MarlinConfig.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
//#include "vector_3.h" //#include "vector_3.h"
//#include "qr_solve.h" //#include "qr_solve.h"
@ -39,7 +39,10 @@
void lcd_return_to_status(); void lcd_return_to_status();
bool lcd_clicked(); bool lcd_clicked();
void lcd_implementation_clear(); void lcd_implementation_clear();
void lcd_mesh_edit_setup(float initial);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
extern float meshedit_done; extern float meshedit_done;
extern long babysteps_done; extern long babysteps_done;
extern float code_value_float(); extern float code_value_float();
@ -141,7 +144,7 @@
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows * was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatability. * a subsequent G or T leveling operation for backward compatibility.
* *
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
@ -294,14 +297,10 @@
* this is going to be helpful to the users!) * this is going to be helpful to the users!)
* *
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining their contributions
* we now have the functionality and features of all three systems combined. * we now have the functionality and features of all three systems combined.
*/ */
int ubl_eeprom_start = -1;
bool ubl_has_control_of_lcd_panel = false;
volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update
// The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine.
static int g29_verbose_level, phase_value = -1, repetition_cnt, static int g29_verbose_level, phase_value = -1, repetition_cnt,
storage_slot = 0, map_type; //unlevel_value = -1; storage_slot = 0, map_type; //unlevel_value = -1;
@ -313,8 +312,8 @@
#endif #endif
void gcode_G29() { void gcode_G29() {
SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start); SERIAL_PROTOCOLLNPAIR("ubl.eeprom_start=", ubl.eeprom_start);
if (ubl_eeprom_start < 0) { if (ubl.eeprom_start < 0) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it");
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
return; return;
@ -335,7 +334,7 @@
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate break; // No more invalid Mesh Points to populate
} }
z_values[location.x_index][location.y_index] = NAN; ubl.z_values[location.x_index][location.y_index] = NAN;
} }
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
} }
@ -354,21 +353,21 @@
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta. for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // a poorly calibrated Delta.
const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x, const float p1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x,
p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; p2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y;
z_values[x][y] += 2.0 * HYPOT(p1, p2); ubl.z_values[x][y] += 2.0 * HYPOT(p1, p2);
} }
} }
break; break;
case 1: case 1:
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh cells thick that is raised
z_values[x][x] += 9.999; ubl.z_values[x][x] += 9.999;
z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick ubl.z_values[x][x + (x < UBL_MESH_NUM_Y_POINTS - 1) ? 1 : -1] += 9.999; // We want the altered line several mesh points thick
} }
break; break;
case 2: case 2:
// Allow the user to specify the height because 10mm is a little extreme in some cases. // Allow the user to specify the height because 10mm is a little extreme in some cases.
for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in
for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed
z_values[x][y] += code_seen('C') ? ubl_constant : 9.99; ubl.z_values[x][y] += code_seen('C') ? ubl_constant : 9.99;
break; break;
} }
} }
@ -390,17 +389,18 @@
return; return;
} }
switch (phase_value) { switch (phase_value) {
//
// Zero Mesh Data
//
case 0: case 0:
//
// Zero Mesh Data
//
ubl.reset(); ubl.reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
break; break;
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
case 1: case 1:
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
if (!code_seen('C') ) { if (!code_seen('C') ) {
ubl.invalidate(); ubl.invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
@ -414,10 +414,11 @@
probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER,
code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U'));
break; break;
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
case 2: { case 2: {
//
// Manually Probe Mesh in areas that can't be reached by the probe
//
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!x_flag && !y_flag) { // use a good default location for the path if (!x_flag && !y_flag) { // use a good default location for the path
@ -450,24 +451,24 @@
} break; } break;
//
// Populate invalid Mesh areas with a constant
//
case 3: { case 3: {
//
// Populate invalid Mesh areas with a constant
//
const float height = code_seen('C') ? ubl_constant : 0.0; const float height = code_seen('C') ? ubl_constant : 0.0;
// If no repetition is specified, do the whole Mesh // If no repetition is specified, do the whole Mesh
if (!repeat_flag) repetition_cnt = 9999; if (!repeat_flag) repetition_cnt = 9999;
while (repetition_cnt--) { while (repetition_cnt--) {
const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) break; // No more invalid Mesh Points to populate if (location.x_index < 0) break; // No more invalid Mesh Points to populate
z_values[location.x_index][location.y_index] = height; ubl.z_values[location.x_index][location.y_index] = height;
} }
} break; } break;
//
// Fine Tune (Or Edit) the Mesh
//
case 4: case 4:
//
// Fine Tune (i.e., Edit) the Mesh
//
fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M'));
break; break;
case 5: case 5:
@ -482,16 +483,16 @@
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:");
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl_has_control_of_lcd_panel++; ubl.has_control_of_lcd_panel++;
while (!ubl_lcd_clicked()) { while (!ubl_lcd_clicked()) {
safe_delay(250); safe_delay(250);
if (ubl_encoderDiff) { if (ubl.encoder_diff) {
SERIAL_ECHOLN((int)ubl_encoderDiff); SERIAL_ECHOLN((int)ubl.encoder_diff);
ubl_encoderDiff = 0; ubl.encoder_diff = 0;
} }
} }
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
break; break;
@ -503,9 +504,9 @@
wait_for_user = true; wait_for_user = true;
while (wait_for_user) { while (wait_for_user) {
safe_delay(250); safe_delay(250);
if (ubl_encoderDiff) { if (ubl.encoder_diff) {
SERIAL_ECHOLN((int)ubl_encoderDiff); SERIAL_ECHOLN((int)ubl.encoder_diff);
ubl_encoderDiff = 0; ubl.encoder_diff = 0;
} }
} }
SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel.");
@ -557,9 +558,9 @@
if (code_seen('L')) { // Load Current Mesh Data if (code_seen('L')) { // Load Current Mesh Data
storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return; return;
} }
@ -581,19 +582,19 @@
SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) { if (!isnan(ubl.z_values[x][y])) {
SERIAL_ECHOPAIR("M421 I ", x); SERIAL_ECHOPAIR("M421 I ", x);
SERIAL_ECHOPAIR(" J ", y); SERIAL_ECHOPAIR(" J ", y);
SERIAL_ECHOPGM(" Z "); SERIAL_ECHOPGM(" Z ");
SERIAL_ECHO_F(z_values[x][y], 6); SERIAL_ECHO_F(ubl.z_values[x][y], 6);
SERIAL_EOL; SERIAL_EOL;
} }
return; return;
} }
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
goto LEAVE; goto LEAVE;
@ -617,7 +618,7 @@
save_ubl_active_state_and_disable(); save_ubl_active_state_and_disable();
//measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level);
ubl_has_control_of_lcd_panel++; // Grab the LCD Hardware ubl.has_control_of_lcd_panel++; // Grab the LCD Hardware
measured_z = 1.5; measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
// The user is not going to be locking in a new Z-Offset very often so // The user is not going to be locking in a new Z-Offset very often so
@ -633,7 +634,7 @@
do_blocking_move_to_z(measured_z); do_blocking_move_to_z(measured_z);
} while (!ubl_lcd_clicked()); } while (!ubl_lcd_clicked());
ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked. ubl.has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
// or here. So, until we are done looking for a long Encoder Wheel Press, // or here. So, until we are done looking for a long Encoder Wheel Press,
// we need to take control of the panel // we need to take control of the panel
@ -653,7 +654,7 @@
goto LEAVE; goto LEAVE;
} }
} }
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
safe_delay(20); // We don't want any switch noise. safe_delay(20); // We don't want any switch noise.
ubl.state.z_offset = measured_z; ubl.state.z_offset = measured_z;
@ -670,7 +671,7 @@
lcd_quick_feedback(); lcd_quick_feedback();
#endif #endif
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
} }
void find_mean_mesh_height() { void find_mean_mesh_height() {
@ -682,8 +683,8 @@
n = 0; n = 0;
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) { if (!isnan(ubl.z_values[x][y])) {
sum += z_values[x][y]; sum += ubl.z_values[x][y];
n++; n++;
} }
@ -694,8 +695,8 @@
// //
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) { if (!isnan(ubl.z_values[x][y])) {
difference = (z_values[x][y] - mean); difference = (ubl.z_values[x][y] - mean);
sum_of_diff_squared += difference * difference; sum_of_diff_squared += difference * difference;
} }
@ -712,15 +713,15 @@
if (c_flag) if (c_flag)
for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) if (!isnan(ubl.z_values[x][y]))
z_values[x][y] -= mean + ubl_constant; ubl.z_values[x][y] -= mean + ubl_constant;
} }
void shift_mesh_height() { void shift_mesh_height() {
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
if (!isnan(z_values[x][y])) if (!isnan(ubl.z_values[x][y]))
z_values[x][y] += ubl_constant; ubl.z_values[x][y] += ubl_constant;
} }
/** /**
@ -730,7 +731,7 @@
void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) { void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) {
mesh_index_pair location; mesh_index_pair location;
ubl_has_control_of_lcd_panel++; ubl.has_control_of_lcd_panel++;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE(); DEPLOY_PROBE();
@ -740,7 +741,7 @@
lcd_quick_feedback(); lcd_quick_feedback();
STOW_PROBE(); STOW_PROBE();
while (ubl_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel safe_delay(50); // Debounce the Encoder wheel
return; return;
@ -749,18 +750,18 @@
location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe
if (location.x_index >= 0 && location.y_index >= 0) { if (location.x_index >= 0 && location.y_index >= 0) {
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.mesh_index_to_xpos[location.x_index],
rawy = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) { if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to probe off the bed."); SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
goto LEAVE; goto LEAVE;
} }
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level); const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
} }
if (do_ubl_mesh_map) ubl.display_map(map_type); if (do_ubl_mesh_map) ubl.display_map(map_type);
@ -837,7 +838,7 @@
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
z_values[i][j] += c; ubl.z_values[i][j] += c;
} }
} }
return normal; return normal;
@ -847,9 +848,9 @@
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle(); idle();
if (ubl_encoderDiff) { if (ubl.encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff)); do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl.encoder_diff));
ubl_encoderDiff = 0; ubl.encoder_diff = 0;
} }
} }
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
@ -858,7 +859,7 @@
float measure_business_card_thickness(const float &in_height) { float measure_business_card_thickness(const float &in_height) {
ubl_has_control_of_lcd_panel++; ubl.has_control_of_lcd_panel++;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
@ -868,7 +869,7 @@
const float z1 = use_encoder_wheel_to_measure_point(); const float z1 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
const float z2 = use_encoder_wheel_to_measure_point(); const float z2 = use_encoder_wheel_to_measure_point();
@ -885,7 +886,7 @@
void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) {
ubl_has_control_of_lcd_panel++; ubl.has_control_of_lcd_panel++;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(z_clearance); do_blocking_move_to_z(z_clearance);
do_blocking_move_to_xy(lx, ly); do_blocking_move_to_xy(lx, ly);
@ -899,14 +900,14 @@
// It doesn't matter if the probe can't reach the NAN location. This is a manual probe. // It doesn't matter if the probe can't reach the NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue; if (location.x_index < 0 && location.y_index < 0) continue;
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.mesh_index_to_xpos[location.x_index],
rawy = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to probe off the bed."); SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
goto LEAVE; goto LEAVE;
} }
@ -926,13 +927,13 @@
last_y = yProbe; last_y = yProbe;
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl_has_control_of_lcd_panel = true; ubl.has_control_of_lcd_panel = true;
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle(); idle();
if (ubl_encoderDiff) { if (ubl.encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0); do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl.encoder_diff) / 100.0);
ubl_encoderDiff = 0; ubl.encoder_diff = 0;
} }
} }
@ -944,17 +945,17 @@
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_quick_feedback(); lcd_quick_feedback();
while (ubl_lcd_clicked()) idle(); while (ubl_lcd_clicked()) idle();
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
restore_ubl_active_state_and_leave(); restore_ubl_active_state_and_leave();
return; return;
} }
} }
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; ubl.z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
if (g29_verbose_level > 2) { if (g29_verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mesh Point Measured at: "); SERIAL_PROTOCOLPGM("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_PROTOCOL_F(ubl.z_values[location.x_index][location.y_index], 6);
SERIAL_EOL; SERIAL_EOL;
} }
} while (location.x_index >= 0 && location.y_index >= 0); } while (location.x_index >= 0 && location.y_index >= 0);
@ -1105,7 +1106,7 @@
* good to have the extra information. Soon... we prune this to just a few items * good to have the extra information. Soon... we prune this to just a few items
*/ */
void g29_what_command() { void g29_what_command() {
const uint16_t k = E2END - ubl_eeprom_start; const uint16_t k = E2END - ubl.eeprom_start;
SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 ");
if (ubl.state.active) if (ubl.state.active)
@ -1136,7 +1137,7 @@
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), 1); SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[i]), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1144,7 +1145,7 @@
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(i)), 1); SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[i]), 1);
SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOLPGM(" ");
safe_delay(50); safe_delay(50);
} }
@ -1162,21 +1163,21 @@
SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk);
SERIAL_EOL; SERIAL_EOL;
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl_eeprom_start)); SERIAL_PROTOCOLLNPAIR("Free EEPROM space starts at: 0x", hex_word(ubl.eeprom_start));
SERIAL_PROTOCOLLNPAIR("end of EEPROM : ", hex_word(E2END)); SERIAL_PROTOCOLLNPAIR("end of EEPROM : 0x", hex_word(E2END));
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl));
SERIAL_EOL; SERIAL_EOL;
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(ubl.z_values));
SERIAL_EOL; SERIAL_EOL;
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k)); SERIAL_PROTOCOLLNPAIR("EEPROM free for UBL: 0x", hex_word(k));
safe_delay(50); safe_delay(50);
SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(z_values)); SERIAL_PROTOCOLPAIR("EEPROM can hold ", k / sizeof(ubl.z_values));
SERIAL_PROTOCOLLNPGM(" meshes.\n"); SERIAL_PROTOCOLLNPGM(" meshes.\n");
safe_delay(50); safe_delay(50);
@ -1240,9 +1241,9 @@
} }
storage_slot = code_value_int(); storage_slot = code_value_int();
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values); int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) { if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return; return;
} }
@ -1251,12 +1252,12 @@
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot);
SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address ", hex_word(j)); // Soon, we can remove the extra clutter of printing SERIAL_PROTOCOLLNPAIR(" loaded from EEPROM address 0x", hex_word(j)); // Soon, we can remove the extra clutter of printing
// the address in the EEPROM where the Mesh is stored. // the address in the EEPROM where the Mesh is stored.
for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++)
for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++)
z_values[x][y] = z_values[x][y] - tmp_z_values[x][y]; ubl.z_values[x][y] -= tmp_z_values[x][y];
} }
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) {
@ -1275,15 +1276,15 @@
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing if ( (type == INVALID && isnan(ubl.z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j])) || (type == REAL && !isnan(ubl.z_values[i][j]))
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
) { ) {
// We only get here if we found a Mesh Point of the specified type // We only get here if we found a Mesh Point of the specified type
const float rawx = ubl.map_x_index_to_bed_location(i), // Check if we can probe this mesh location const float rawx = ubl.mesh_index_to_xpos[i], // Check if we can probe this mesh location
rawy = ubl.map_y_index_to_bed_location(j); rawy = ubl.mesh_index_to_ypos[j];
// If using the probe as the reference there are some unreachable locations. // If using the probe as the reference there are some unreachable locations.
// Prune them from the list and ignore them till the next Phase (manual nozzle probing). // Prune them from the list and ignore them till the next Phase (manual nozzle probing).
@ -1303,7 +1304,7 @@
if (far_flag) { // If doing the far_flag action, we want to be as far as possible if (far_flag) { // If doing the far_flag action, we want to be as far as possible
for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We for (uint8_t k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We
for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces for (uint8_t l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces
if (!isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed if (!isnan(ubl.z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed
distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find. distance += sq(i - k) * (MESH_X_DIST) * .05 // point we can find.
+ sq(j - l) * (MESH_Y_DIST) * .05; + sq(j - l) * (MESH_Y_DIST) * .05;
} }
@ -1349,26 +1350,26 @@
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop // different location the next time through the loop
const float rawx = ubl.map_x_index_to_bed_location(location.x_index), const float rawx = ubl.mesh_index_to_xpos[location.x_index],
rawy = ubl.map_y_index_to_bed_location(location.y_index); rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility) // TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check. if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
goto FINE_TUNE_EXIT; goto FINE_TUNE_EXIT;
} }
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy)); do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
float new_z = z_values[location.x_index][location.y_index]; float new_z = ubl.z_values[location.x_index][location.y_index];
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the
new_z = float(round_off) / 1000.0; new_z = float(round_off) / 1000.0;
KEEPALIVE_STATE(PAUSED_FOR_USER); KEEPALIVE_STATE(PAUSED_FOR_USER);
ubl_has_control_of_lcd_panel = true; ubl.has_control_of_lcd_panel = true;
lcd_implementation_clear(); lcd_implementation_clear();
lcd_mesh_edit_setup(new_z); lcd_mesh_edit_setup(new_z);
@ -1380,7 +1381,7 @@
lcd_return_to_status(); lcd_return_to_status();
ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. ubl.has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune)
// or here. // or here.
@ -1401,7 +1402,7 @@
safe_delay(20); // We don't want any switch noise. safe_delay(20); // We don't want any switch noise.
z_values[location.x_index][location.y_index] = new_z; ubl.z_values[location.x_index][location.y_index] = new_z;
lcd_implementation_clear(); lcd_implementation_clear();
@ -1409,7 +1410,7 @@
FINE_TUNE_EXIT: FINE_TUNE_EXIT:
ubl_has_control_of_lcd_panel = false; ubl.has_control_of_lcd_panel = false;
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) ubl.display_map(map_type); if (do_ubl_mesh_map) ubl.display_map(map_type);

View file

@ -31,12 +31,12 @@
extern float destination[XYZE]; extern float destination[XYZE];
extern void set_current_to_destination(); extern void set_current_to_destination();
extern float destination[];
void debug_current_and_destination(char *title) { void debug_current_and_destination(char *title) {
// if the title message starts with a '!' it is so important, we are going to // if the title message starts with a '!' it is so important, we are going to
// ignore the status of the g26_debug_flag // ignore the status of the g26_debug_flag
if (*title != '!' && !g26_debug_flag) return; if (*title != '!' && !ubl.g26_debug_flag) return;
const float de = destination[E_AXIS] - current_position[E_AXIS]; const float de = destination[E_AXIS] - current_position[E_AXIS];
@ -121,7 +121,7 @@
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)), cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)),
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end)); cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end));
if (g26_debug_flag) { if (ubl.g26_debug_flag) {
SERIAL_ECHOPGM(" ubl_line_to_destination(xe="); SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
SERIAL_ECHO(x_end); SERIAL_ECHO(x_end);
SERIAL_ECHOPGM(", ye="); SERIAL_ECHOPGM(", ye=");
@ -150,7 +150,7 @@
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder); planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
set_current_to_destination(); set_current_to_destination();
if (g26_debug_flag) if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()"); debug_current_and_destination((char*)"out of bounds in ubl_line_to_destination()");
return; return;
@ -167,16 +167,16 @@
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/ */
const float xratio = (RAW_X_POSITION(x_end) - mesh_index_to_x_location[cell_dest_xi]) * (1.0 / (MESH_X_DIST)), const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio * z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]), (ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio * z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
(z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]); (ubl.z_values[cell_dest_xi + 1][cell_dest_yi + 1] - ubl.z_values[cell_dest_xi][cell_dest_yi + 1]);
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(y_end) - mesh_index_to_y_location[cell_dest_yi]) * (1.0 / (MESH_Y_DIST)); const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio; float z0 = z1 + (z2 - z1) * yratio;
@ -212,7 +212,7 @@
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder); planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
if (g26_debug_flag) if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()"); debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
set_current_to_destination(); set_current_to_destination();
@ -274,7 +274,7 @@
current_yi += down_flag; // Line is heading down, we just want to go to the bottom current_yi += down_flag; // Line is heading down, we just want to go to the bottom
while (current_yi != cell_dest_yi + down_flag) { while (current_yi != cell_dest_yi + down_flag) {
current_yi += dyi; current_yi += dyi;
const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); const float next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
/** /**
* inf_m_flag? the slope of the line is infinite, we won't do the calculations * inf_m_flag? the slope of the line is infinite, we won't do the calculations
@ -316,7 +316,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi]); const float y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi]);
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -339,7 +339,7 @@
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
if (g26_debug_flag) if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()"); debug_current_and_destination((char*)"vertical move done in ubl_line_to_destination()");
// //
@ -365,7 +365,7 @@
// edge of this cell for the first move. // edge of this cell for the first move.
while (current_xi != cell_dest_xi + left_flag) { while (current_xi != cell_dest_xi + left_flag) {
current_xi += dxi; current_xi += dxi;
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]), const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi); float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
@ -401,7 +401,7 @@
*/ */
if (isnan(z0)) z0 = 0.0; if (isnan(z0)) z0 = 0.0;
const float x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi]); const float x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]);
/** /**
* Without this check, it is possible for the algorithm to generate a zero length move in the case * Without this check, it is possible for the algorithm to generate a zero length move in the case
@ -424,7 +424,7 @@
} //else printf("FIRST MOVE PRUNED "); } //else printf("FIRST MOVE PRUNED ");
} }
if (g26_debug_flag) if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()"); debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end) if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
@ -451,8 +451,8 @@
while (xi_cnt > 0 || yi_cnt > 0) { while (xi_cnt > 0 || yi_cnt > 0) {
const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_x_location[current_xi + dxi]), const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_y_location[current_yi + dyi]), next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
// about m being equal to 0.0 If this was the case, we would have // about m being equal to 0.0 If this was the case, we would have
@ -563,7 +563,7 @@
} }
} }
if (g26_debug_flag) if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()"); debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
if (current_position[0] != x_end || current_position[1] != y_end) if (current_position[0] != x_end || current_position[1] != y_end)

View file

@ -846,7 +846,7 @@ void Config_Postprocess() {
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
ubl_eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it ubl.eeprom_start = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
// can float up or down a little bit without // can float up or down a little bit without
// disrupting the Unified Bed Leveling data // disrupting the Unified Bed Leveling data
ubl.load_state(); ubl.load_state();
@ -1232,7 +1232,7 @@ void Config_ResetDefault() {
SERIAL_ECHO_F(ubl.state.z_offset, 6); SERIAL_ECHO_F(ubl.state.z_offset, 6);
SERIAL_EOL; SERIAL_EOL;
SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values))); SERIAL_ECHOPAIR("EEPROM can hold ", (int)((UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values)));
SERIAL_ECHOLNPGM(" meshes.\n"); SERIAL_ECHOLNPGM(" meshes.\n");
SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS " STRINGIFY(UBL_MESH_NUM_X_POINTS)); SERIAL_ECHOLNPGM("UBL_MESH_NUM_X_POINTS " STRINGIFY(UBL_MESH_NUM_X_POINTS));

View file

@ -863,7 +863,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -846,7 +846,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -846,7 +846,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -855,7 +855,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -857,7 +857,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -892,7 +892,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -863,7 +863,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -863,7 +863,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -863,7 +863,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -862,7 +862,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -878,7 +878,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -884,7 +884,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -855,7 +855,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -863,7 +863,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -968,7 +968,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -954,7 +954,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -958,7 +958,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -957,7 +957,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -967,7 +967,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -866,7 +866,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -859,7 +859,7 @@
#define UBL_PROBE_PT_2_Y 20 #define UBL_PROBE_PT_2_Y 20
#define UBL_PROBE_PT_3_X 180 #define UBL_PROBE_PT_3_X 180
#define UBL_PROBE_PT_3_Y 20 #define UBL_PROBE_PT_3_Y 20
#define UBL_MESH_EDIT_ENABLED // Enable G26 mesh editing //#define UBL_G26_MESH_EDITING // Enable G26 mesh editing
#elif ENABLED(MESH_BED_LEVELING) #elif ENABLED(MESH_BED_LEVELING)

View file

@ -124,8 +124,7 @@ uint16_t max_display_update_time = 0;
int32_t lastEncoderMovementMillis; int32_t lastEncoderMovementMillis;
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
extern bool ubl_has_control_of_lcd_panel; #include "UBL.h"
extern int8_t ubl_encoderDiff;
#endif #endif
#if HAS_POWER_SWITCH #if HAS_POWER_SWITCH
@ -860,9 +859,9 @@ void kill_screen(const char* lcd_msg) {
static void _lcd_mesh_fine_tune(const char* msg) { static void _lcd_mesh_fine_tune(const char* msg) {
defer_return_to_status = true; defer_return_to_status = true;
if (ubl_encoderDiff) { if (ubl.encoder_diff) {
ubl_encoderPosition = (ubl_encoderDiff > 0) ? 1 : -1; ubl_encoderPosition = (ubl.encoder_diff > 0) ? 1 : -1;
ubl_encoderDiff = 0; ubl.encoder_diff = 0;
mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0; mesh_edit_accumulator += float(ubl_encoderPosition) * 0.005 / 2.0;
mesh_edit_value = mesh_edit_accumulator; mesh_edit_value = mesh_edit_accumulator;
@ -3206,7 +3205,7 @@ void lcd_update() {
lcd_buttons_update(); lcd_buttons_update();
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
const bool UBL_CONDITION = !ubl_has_control_of_lcd_panel; const bool UBL_CONDITION = !ubl.has_control_of_lcd_panel;
#else #else
constexpr bool UBL_CONDITION = true; constexpr bool UBL_CONDITION = true;
#endif #endif
@ -3622,8 +3621,8 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
case encrot3: ENCODER_SPIN(encrot2, encrot0); break; case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
} }
#if ENABLED(AUTO_BED_LEVELING_UBL) #if ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl_has_control_of_lcd_panel) { if (ubl.has_control_of_lcd_panel) {
ubl_encoderDiff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// wheel has not turned. // wheel has not turned.
} }