Merge pull request #4980 from thinkyhead/rc_lin_update
LIN_ADVANCE bug fix and optimization
This commit is contained in:
commit
bbeaca5839
5 changed files with 64 additions and 37 deletions
|
@ -4899,8 +4899,8 @@ inline void gcode_M42() {
|
|||
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
||||
mean = sum / (n + 1);
|
||||
|
||||
if(sample_set[n] < min) min = sample_set[n];
|
||||
if(sample_set[n] > max) max = sample_set[n];
|
||||
NOMORE(min, sample_set[n]);
|
||||
NOLESS(max, sample_set[n]);
|
||||
|
||||
/**
|
||||
* Now, use that mean to calculate the standard deviation for the
|
||||
|
@ -4956,7 +4956,6 @@ inline void gcode_M42() {
|
|||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_EOL;
|
||||
|
||||
SERIAL_EOL;
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
|
|
|
@ -95,7 +95,7 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
|
|||
volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
volatile long Stepper::e_steps[E_STEPPERS];
|
||||
volatile int Stepper::e_steps[E_STEPPERS];
|
||||
int Stepper::extruder_advance_k = LIN_ADVANCE_K,
|
||||
Stepper::final_estep_rate,
|
||||
Stepper::current_estep_rate[E_STEPPERS],
|
||||
|
@ -311,8 +311,20 @@ void Stepper::set_directions() {
|
|||
#endif // !ADVANCE && !LIN_ADVANCE
|
||||
}
|
||||
|
||||
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
||||
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
|
||||
/**
|
||||
* Stepper Driver Interrupt
|
||||
*
|
||||
* Directly pulses the stepper motors at high frequency.
|
||||
* Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
|
||||
*
|
||||
* OCR1A Frequency
|
||||
* 1 2 MHz
|
||||
* 50 40 KHz
|
||||
* 100 20 KHz - capped max rate
|
||||
* 200 10 KHz - nominal max rate
|
||||
* 2000 1 KHz - sleep rate
|
||||
* 4000 500 Hz - init rate
|
||||
*/
|
||||
ISR(TIMER1_COMPA_vect) { Stepper::isr(); }
|
||||
|
||||
void Stepper::isr() {
|
||||
|
@ -323,7 +335,7 @@ void Stepper::isr() {
|
|||
if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
|
||||
#endif
|
||||
cleaning_buffer_counter--;
|
||||
OCR1A = 200;
|
||||
OCR1A = 200; // Run at max speed - 10 KHz
|
||||
return;
|
||||
}
|
||||
|
||||
|
@ -348,7 +360,7 @@ void Stepper::isr() {
|
|||
#if ENABLED(Z_LATE_ENABLE)
|
||||
if (current_block->steps[Z_AXIS] > 0) {
|
||||
enable_z();
|
||||
OCR1A = 2000; //1ms wait
|
||||
OCR1A = 2000; // Run at slow speed - 1 KHz
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
@ -358,7 +370,7 @@ void Stepper::isr() {
|
|||
// #endif
|
||||
}
|
||||
else {
|
||||
OCR1A = 2000; // 1kHz.
|
||||
OCR1A = 2000; // Run at slow speed - 1 KHz
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
@ -391,7 +403,7 @@ void Stepper::isr() {
|
|||
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
// Step mixing steppers proportionally
|
||||
bool dir = motor_direction(E_AXIS);
|
||||
const bool dir = motor_direction(E_AXIS);
|
||||
MIXING_STEPPERS_LOOP(j) {
|
||||
counter_m[j] += current_block->steps[E_AXIS];
|
||||
if (counter_m[j] > 0) {
|
||||
|
@ -401,22 +413,6 @@ void Stepper::isr() {
|
|||
}
|
||||
#endif
|
||||
|
||||
if (current_block->use_advance_lead) {
|
||||
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
// Mixing extruders apply advance lead proportionally
|
||||
MIXING_STEPPERS_LOOP(j) {
|
||||
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
|
||||
e_steps[j] += steps;
|
||||
current_adv_steps[j] += steps;
|
||||
}
|
||||
#else
|
||||
// For most extruders, advance the single E stepper
|
||||
e_steps[TOOL_E_INDEX] += delta_adv_steps;
|
||||
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
|
||||
#endif
|
||||
}
|
||||
|
||||
#elif ENABLED(ADVANCE)
|
||||
|
||||
// Always count the unified E axis
|
||||
|
@ -432,7 +428,7 @@ void Stepper::isr() {
|
|||
#if ENABLED(MIXING_EXTRUDER)
|
||||
|
||||
// Step mixing steppers proportionally
|
||||
bool dir = motor_direction(E_AXIS);
|
||||
const bool dir = motor_direction(E_AXIS);
|
||||
MIXING_STEPPERS_LOOP(j) {
|
||||
counter_m[j] += current_block->steps[E_AXIS];
|
||||
if (counter_m[j] > 0) {
|
||||
|
@ -536,6 +532,21 @@ void Stepper::isr() {
|
|||
}
|
||||
}
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
if (current_block->use_advance_lead) {
|
||||
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
|
||||
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
// Mixing extruders apply advance lead proportionally
|
||||
MIXING_STEPPERS_LOOP(j)
|
||||
e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
|
||||
#else
|
||||
// For most extruders, advance the single E stepper
|
||||
e_steps[TOOL_E_INDEX] += delta_adv_steps;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
||||
// If we have esteps to execute, fire the next advance_isr "now"
|
||||
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
|
||||
|
@ -593,7 +604,7 @@ void Stepper::isr() {
|
|||
#endif // ADVANCE or LIN_ADVANCE
|
||||
|
||||
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
||||
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
||||
eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]); //>> 3 is divide by 8. Reason: Timer 0 runs at 16/8=2MHz, Timer 1 at 16/64=0.25MHz. ==> 2/0.25=8.
|
||||
#endif
|
||||
}
|
||||
else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
|
||||
|
@ -643,7 +654,7 @@ void Stepper::isr() {
|
|||
#endif // ADVANCE or LIN_ADVANCE
|
||||
|
||||
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
|
||||
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
||||
eISR_Rate = (timer >> 3) * step_loops / abs(e_steps[TOOL_E_INDEX]);
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
|
@ -653,7 +664,7 @@ void Stepper::isr() {
|
|||
if (current_block->use_advance_lead)
|
||||
current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
|
||||
|
||||
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
|
||||
eISR_Rate = (OCR1A_nominal >> 3) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
|
||||
|
||||
#endif
|
||||
|
||||
|
@ -904,6 +915,7 @@ void Stepper::init() {
|
|||
// output mode = 00 (disconnected)
|
||||
TCCR1A &= ~(3 << COM1A0);
|
||||
TCCR1A &= ~(3 << COM1B0);
|
||||
|
||||
// Set the timer pre-scaler
|
||||
// Generally we use a divider of 8, resulting in a 2MHz timer
|
||||
// frequency on a 16MHz MCU. If you are going to change this, be
|
||||
|
@ -911,6 +923,7 @@ void Stepper::init() {
|
|||
// create_speed_lookuptable.py
|
||||
TCCR1B = (TCCR1B & ~(0x07 << CS10)) | (2 << CS10);
|
||||
|
||||
// Init Stepper ISR to 122 Hz for quick starting
|
||||
OCR1A = 0x4000;
|
||||
TCNT1 = 0;
|
||||
ENABLE_STEPPER_DRIVER_INTERRUPT();
|
||||
|
|
|
@ -108,7 +108,7 @@ class Stepper {
|
|||
static unsigned char old_OCR0A;
|
||||
static volatile unsigned char eISR_Rate;
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
static volatile long e_steps[E_STEPPERS];
|
||||
static volatile int e_steps[E_STEPPERS];
|
||||
static int extruder_advance_k;
|
||||
static int final_estep_rate;
|
||||
static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s]
|
||||
|
|
|
@ -1371,7 +1371,7 @@ void Temperature::set_current_temp_raw() {
|
|||
* Timer 0 is shared with millies so don't change the prescaler.
|
||||
*
|
||||
* This ISR uses the compare method so it runs at the base
|
||||
* frequency (16 MHz / 256 = 62500 Hz), but at the TCNT0 set
|
||||
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
|
||||
* in OCR0B above (128 or halfway between OVFs).
|
||||
*
|
||||
* - Manage PWM to all the heaters and fan
|
||||
|
@ -1485,9 +1485,16 @@ void Temperature::isr() {
|
|||
#endif
|
||||
#endif
|
||||
|
||||
// 488.28 Hz (or 1:976.56, 2:1953.12, 3:3906.25, 4:7812.5, 5:7812.5 6:15625, 6:15625 7:31250)
|
||||
// SOFT_PWM_SCALE to frequency:
|
||||
//
|
||||
// 0: 16000000/64/256/128 = 7.6294 Hz
|
||||
// 1: / 64 = 15.2588 Hz
|
||||
// 2: / 32 = 30.5176 Hz
|
||||
// 3: / 16 = 61.0352 Hz
|
||||
// 4: / 8 = 122.0703 Hz
|
||||
// 5: / 4 = 244.1406 Hz
|
||||
pwm_count += _BV(SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
pwm_count &= 0x7F;
|
||||
|
||||
#else // SLOW_PWM_HEATERS
|
||||
|
||||
|
@ -1586,10 +1593,18 @@ void Temperature::isr() {
|
|||
#endif
|
||||
#endif //FAN_SOFT_PWM
|
||||
|
||||
// SOFT_PWM_SCALE to frequency:
|
||||
//
|
||||
// 0: 16000000/64/256/128 = 7.6294 Hz
|
||||
// 1: / 64 = 15.2588 Hz
|
||||
// 2: / 32 = 30.5176 Hz
|
||||
// 3: / 16 = 61.0352 Hz
|
||||
// 4: / 8 = 122.0703 Hz
|
||||
// 5: / 4 = 244.1406 Hz
|
||||
pwm_count += _BV(SOFT_PWM_SCALE);
|
||||
pwm_count &= 0x7f;
|
||||
pwm_count &= 0x7F;
|
||||
|
||||
// increment slow_pwm_count only every 64 pwm_count circa 65.5ms
|
||||
// increment slow_pwm_count only every 64 pwm_count (e.g., every 8s)
|
||||
if ((pwm_count % 64) == 0) {
|
||||
slow_pwm_count++;
|
||||
slow_pwm_count &= 0x7f;
|
||||
|
|
|
@ -223,7 +223,7 @@ uint8_t lcdDrawUpdate = LCDVIEW_CLEAR_CALL_REDRAW; // Set when the LCD needs to
|
|||
static int8_t _countedItems = 0; \
|
||||
int8_t encoderLine = encoderPosition / ENCODER_STEPS_PER_MENU_ITEM; \
|
||||
if (_countedItems > 0 && encoderLine >= _countedItems - LIMIT) { \
|
||||
encoderLine = _countedItems - LIMIT; \
|
||||
encoderLine = max(0, _countedItems - LIMIT); \
|
||||
encoderPosition = encoderLine * (ENCODER_STEPS_PER_MENU_ITEM); \
|
||||
}
|
||||
|
||||
|
|
Reference in a new issue