Main controller updates
This commit is contained in:
parent
142d8aae56
commit
bca67a5b79
3 changed files with 285 additions and 8345 deletions
|
@ -28,7 +28,7 @@
|
|||
* - https://github.com/simen/grbl/tree
|
||||
*/
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "src/inc/MarlinConfig.h"
|
||||
|
||||
#if ENABLED(ULTRA_LCD)
|
||||
#if ENABLED(LCD_I2C_TYPE_PCF8575)
|
||||
|
|
|
@ -243,42 +243,40 @@
|
|||
|
||||
#include "Marlin.h"
|
||||
|
||||
#include "ultralcd.h"
|
||||
#include "planner.h"
|
||||
#include "stepper.h"
|
||||
#include "endstops.h"
|
||||
#include "temperature.h"
|
||||
#include "cardreader.h"
|
||||
#include "configuration_store.h"
|
||||
#include "language.h"
|
||||
#include "lcd/ultralcd.h"
|
||||
#include "module/planner.h"
|
||||
#include "module/stepper.h"
|
||||
#include "module/endstops.h"
|
||||
#include "module/temperature.h"
|
||||
#include "sd/cardreader.h"
|
||||
#include "module/configuration_store.h"
|
||||
#ifdef ARDUINO
|
||||
#include "pins_arduino.h"
|
||||
#include <pins_arduino.h>
|
||||
#endif
|
||||
#include "math.h"
|
||||
#include "nozzle.h"
|
||||
#include "duration_t.h"
|
||||
#include "types.h"
|
||||
#include "gcode.h"
|
||||
#include <math.h>
|
||||
#include "libs/nozzle.h"
|
||||
#include "libs/duration_t.h"
|
||||
#include "gcode/parser.h"
|
||||
|
||||
#if HAS_ABL
|
||||
#include "vector_3.h"
|
||||
#include "libs/vector_3.h"
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
#include "least_squares_fit.h"
|
||||
#include "libs/least_squares_fit.h"
|
||||
#endif
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
#include "mesh_bed_leveling.h"
|
||||
#include "feature/mbl/mesh_bed_leveling.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
#include "planner_bezier.h"
|
||||
#include "module/planner_bezier.h"
|
||||
#endif
|
||||
|
||||
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
|
||||
#include "buzzer.h"
|
||||
#include "libs/buzzer.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(MAX7219_DEBUG)
|
||||
#include "Max7219_Debug_LEDs.h"
|
||||
#include "feature/leds/Max7219_Debug_LEDs.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(NEOPIXEL_RGBW_LED)
|
||||
|
@ -286,16 +284,15 @@
|
|||
#endif
|
||||
|
||||
#if ENABLED(BLINKM)
|
||||
#include "blinkm.h"
|
||||
#include "Wire.h"
|
||||
#include "feature/leds/blinkm.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(PCA9632)
|
||||
#include "pca9632.h"
|
||||
#include "feature/leds/pca9632.h"
|
||||
#endif
|
||||
|
||||
#if HAS_SERVOS
|
||||
#include "src/HAL/servo.h"
|
||||
#include "HAL/servo.h"
|
||||
#endif
|
||||
|
||||
#if HAS_DIGIPOTSS
|
||||
|
@ -303,19 +300,19 @@
|
|||
#endif
|
||||
|
||||
#if ENABLED(DAC_STEPPER_CURRENT)
|
||||
#include "stepper_dac.h"
|
||||
#include "feature/dac/stepper_dac.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
||||
#include "twibus.h"
|
||||
#include "feature/twibus.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
#include "I2CPositionEncoder.h"
|
||||
#include "feature/I2CPositionEncoder.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
|
||||
#include "src/HAL/HAL_endstop_interrupts.h"
|
||||
#include "HAL/HAL_endstop_interrupts.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
||||
|
@ -337,7 +334,7 @@
|
|||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#include "ubl.h"
|
||||
#include "feature/ubl/ubl.h"
|
||||
extern bool defer_return_to_status;
|
||||
unified_bed_leveling ubl;
|
||||
#define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
|
||||
|
@ -662,10 +659,6 @@ static bool send_ok[BUFSIZE];
|
|||
bool chdkActive = false;
|
||||
#endif
|
||||
|
||||
#ifdef AUTOMATIC_CURRENT_CONTROL
|
||||
bool auto_current_control = 0;
|
||||
#endif
|
||||
|
||||
#if ENABLED(PID_EXTRUSION_SCALING)
|
||||
int lpq_len = 20;
|
||||
#endif
|
||||
|
@ -718,17 +711,11 @@ void prepare_move_to_destination();
|
|||
void get_cartesian_from_steppers();
|
||||
void set_current_from_steppers_for_axis(const AxisEnum axis);
|
||||
|
||||
#if ENABLED(ARC_SUPPORT)
|
||||
void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
|
||||
#endif
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
void plan_cubic_move(const float offset[4]);
|
||||
#endif
|
||||
|
||||
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
|
||||
void report_current_position();
|
||||
void report_current_position_detail();
|
||||
|
||||
/**
|
||||
* sync_plan_position
|
||||
|
@ -1177,7 +1164,7 @@ inline void get_serial_commands() {
|
|||
static bool stop_buffering = false,
|
||||
sd_comment_mode = false;
|
||||
|
||||
if (!card.sdprinting) return;
|
||||
if (!IS_SD_PRINTING) return;
|
||||
|
||||
/**
|
||||
* '#' stops reading from SD to the buffer prematurely, so procedural
|
||||
|
@ -3324,531 +3311,47 @@ void gcode_get_destination() {
|
|||
***************** GCode Handlers *****************
|
||||
**************************************************/
|
||||
|
||||
/**
|
||||
* G0, G1: Coordinated movement of X Y Z E axes
|
||||
*/
|
||||
inline void gcode_G0_G1(
|
||||
#if IS_SCARA
|
||||
bool fast_move=false
|
||||
#endif
|
||||
) {
|
||||
if (IsRunning()) {
|
||||
gcode_get_destination(); // For X Y Z E F
|
||||
#include "gcode/motion/G0_G1.h"
|
||||
|
||||
#if ENABLED(FWRETRACT)
|
||||
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
||||
// When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
|
||||
if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
|
||||
const float echange = destination[E_AXIS] - current_position[E_AXIS];
|
||||
// Is this a retract or recover move?
|
||||
if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
|
||||
current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
|
||||
sync_plan_position_e(); // AND from the planner
|
||||
return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
|
||||
}
|
||||
}
|
||||
}
|
||||
#endif // FWRETRACT
|
||||
|
||||
#if IS_SCARA
|
||||
fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
|
||||
#else
|
||||
prepare_move_to_destination();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* G2: Clockwise Arc
|
||||
* G3: Counterclockwise Arc
|
||||
*
|
||||
* This command has two forms: IJ-form and R-form.
|
||||
*
|
||||
* - I specifies an X offset. J specifies a Y offset.
|
||||
* At least one of the IJ parameters is required.
|
||||
* X and Y can be omitted to do a complete circle.
|
||||
* The given XY is not error-checked. The arc ends
|
||||
* based on the angle of the destination.
|
||||
* Mixing I or J with R will throw an error.
|
||||
*
|
||||
* - R specifies the radius. X or Y is required.
|
||||
* Omitting both X and Y will throw an error.
|
||||
* X or Y must differ from the current XY.
|
||||
* Mixing R with I or J will throw an error.
|
||||
*
|
||||
* - P specifies the number of full circles to do
|
||||
* before the specified arc move.
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* G2 I10 ; CW circle centered at X+10
|
||||
* G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
|
||||
*/
|
||||
#if ENABLED(ARC_SUPPORT)
|
||||
|
||||
inline void gcode_G2_G3(bool clockwise) {
|
||||
if (IsRunning()) {
|
||||
|
||||
#if ENABLED(SF_ARC_FIX)
|
||||
const bool relative_mode_backup = relative_mode;
|
||||
relative_mode = true;
|
||||
#include "gcode/motion/G2_G3.h"
|
||||
#endif
|
||||
|
||||
gcode_get_destination();
|
||||
|
||||
#if ENABLED(SF_ARC_FIX)
|
||||
relative_mode = relative_mode_backup;
|
||||
#endif
|
||||
|
||||
float arc_offset[2] = { 0.0, 0.0 };
|
||||
if (parser.seenval('R')) {
|
||||
const float r = parser.value_linear_units(),
|
||||
p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
|
||||
p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
|
||||
if (r && (p2 != p1 || q2 != q1)) {
|
||||
const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
|
||||
dx = p2 - p1, dy = q2 - q1, // X and Y differences
|
||||
d = HYPOT(dx, dy), // Linear distance between the points
|
||||
h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
|
||||
mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
|
||||
sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
|
||||
cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
|
||||
arc_offset[0] = cx - p1;
|
||||
arc_offset[1] = cy - q1;
|
||||
}
|
||||
}
|
||||
else {
|
||||
if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
|
||||
if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
|
||||
}
|
||||
|
||||
if (arc_offset[0] || arc_offset[1]) {
|
||||
|
||||
#if ENABLED(ARC_P_CIRCLES)
|
||||
// P indicates number of circles to do
|
||||
int8_t circles_to_do = parser.byteval('P');
|
||||
if (!WITHIN(circles_to_do, 0, 100)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
||||
}
|
||||
while (circles_to_do--)
|
||||
plan_arc(current_position, arc_offset, clockwise);
|
||||
#endif
|
||||
|
||||
// Send the arc to the planner
|
||||
plan_arc(destination, arc_offset, clockwise);
|
||||
refresh_cmd_timeout();
|
||||
}
|
||||
else {
|
||||
// Bad arguments
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ARC_SUPPORT
|
||||
|
||||
void dwell(millis_t time) {
|
||||
refresh_cmd_timeout();
|
||||
time += previous_cmd_ms;
|
||||
while (PENDING(millis(), time)) idle();
|
||||
}
|
||||
|
||||
/**
|
||||
* G4: Dwell S<seconds> or P<milliseconds>
|
||||
*/
|
||||
inline void gcode_G4() {
|
||||
millis_t dwell_ms = 0;
|
||||
|
||||
if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
|
||||
if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
|
||||
|
||||
dwell(dwell_ms);
|
||||
}
|
||||
#include "gcode/motion/G4.h"
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
|
||||
/**
|
||||
* Parameters interpreted according to:
|
||||
* http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
|
||||
* However I, J omission is not supported at this point; all
|
||||
* parameters can be omitted and default to zero.
|
||||
*/
|
||||
|
||||
/**
|
||||
* G5: Cubic B-spline
|
||||
*/
|
||||
inline void gcode_G5() {
|
||||
if (IsRunning()) {
|
||||
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
if (workspace_plane != PLANE_XY) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
|
||||
return;
|
||||
}
|
||||
#include "gcode/motion/G5.h"
|
||||
#endif
|
||||
|
||||
gcode_get_destination();
|
||||
|
||||
const float offset[] = {
|
||||
parser.linearval('I'),
|
||||
parser.linearval('J'),
|
||||
parser.linearval('P'),
|
||||
parser.linearval('Q')
|
||||
};
|
||||
|
||||
plan_cubic_move(offset);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // BEZIER_CURVE_SUPPORT
|
||||
|
||||
#if ENABLED(FWRETRACT)
|
||||
|
||||
/**
|
||||
* G10 - Retract filament according to settings of M207
|
||||
*/
|
||||
inline void gcode_G10() {
|
||||
#if EXTRUDERS > 1
|
||||
const bool rs = parser.boolval('S');
|
||||
retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
|
||||
#include "gcode/feature/fwretract/G10_G11.h"
|
||||
#endif
|
||||
retract(true
|
||||
#if EXTRUDERS > 1
|
||||
, rs
|
||||
#endif
|
||||
);
|
||||
}
|
||||
|
||||
/**
|
||||
* G11 - Recover filament according to settings of M208
|
||||
*/
|
||||
inline void gcode_G11() { retract(false); }
|
||||
|
||||
#endif // FWRETRACT
|
||||
|
||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
||||
/**
|
||||
* G12: Clean the nozzle
|
||||
*/
|
||||
inline void gcode_G12() {
|
||||
// Don't allow nozzle cleaning without homing first
|
||||
if (axis_unhomed_error()) return;
|
||||
|
||||
const uint8_t pattern = parser.ushortval('P', 0),
|
||||
strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
|
||||
objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
|
||||
const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
|
||||
|
||||
Nozzle::clean(pattern, strokes, radius, objects);
|
||||
}
|
||||
#include "gcode/feature/clean/G12.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
|
||||
void report_workspace_plane() {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPGM("Workspace Plane ");
|
||||
serialprintPGM(workspace_plane == PLANE_YZ ? PSTR("YZ\n") : workspace_plane == PLANE_ZX ? PSTR("ZX\n") : PSTR("XY\n"));
|
||||
}
|
||||
|
||||
/**
|
||||
* G17: Select Plane XY
|
||||
* G18: Select Plane ZX
|
||||
* G19: Select Plane YZ
|
||||
*/
|
||||
inline void gcode_G17() { workspace_plane = PLANE_XY; }
|
||||
inline void gcode_G18() { workspace_plane = PLANE_ZX; }
|
||||
inline void gcode_G19() { workspace_plane = PLANE_YZ; }
|
||||
|
||||
#endif // CNC_WORKSPACE_PLANES
|
||||
#include "gcode/feature/clean/G17-G19.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(INCH_MODE_SUPPORT)
|
||||
/**
|
||||
* G20: Set input mode to inches
|
||||
*/
|
||||
inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
|
||||
#include "gcode/units/G20_G21.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* G21: Set input mode to millimeters
|
||||
*/
|
||||
inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
|
||||
#if ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
#include "gcode/calibrate/G26.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(NOZZLE_PARK_FEATURE)
|
||||
/**
|
||||
* G27: Park the nozzle
|
||||
*/
|
||||
inline void gcode_G27() {
|
||||
// Don't allow nozzle parking without homing first
|
||||
if (axis_unhomed_error()) return;
|
||||
Nozzle::park(parser.ushortval('P'));
|
||||
}
|
||||
#endif // NOZZLE_PARK_FEATURE
|
||||
|
||||
#if ENABLED(QUICK_HOME)
|
||||
|
||||
static void quick_home_xy() {
|
||||
|
||||
// Pretend the current position is 0,0
|
||||
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
||||
sync_plan_position();
|
||||
|
||||
const int x_axis_home_dir =
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
x_home_dir(active_extruder)
|
||||
#else
|
||||
home_dir(X_AXIS)
|
||||
#include "gcode/feature/pause/G27.h"
|
||||
#endif
|
||||
;
|
||||
|
||||
const float mlx = max_length(X_AXIS),
|
||||
mly = max_length(Y_AXIS),
|
||||
mlratio = mlx > mly ? mly / mlx : mlx / mly,
|
||||
fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
|
||||
|
||||
do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
|
||||
}
|
||||
|
||||
#endif // QUICK_HOME
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
|
||||
void log_machine_info() {
|
||||
SERIAL_ECHOPGM("Machine Type: ");
|
||||
#if ENABLED(DELTA)
|
||||
SERIAL_ECHOLNPGM("Delta");
|
||||
#elif IS_SCARA
|
||||
SERIAL_ECHOLNPGM("SCARA");
|
||||
#elif IS_CORE
|
||||
SERIAL_ECHOLNPGM("Core");
|
||||
#else
|
||||
SERIAL_ECHOLNPGM("Cartesian");
|
||||
#endif
|
||||
|
||||
SERIAL_ECHOPGM("Probe: ");
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
SERIAL_ECHOLNPGM("PROBE_MANUALLY");
|
||||
#elif ENABLED(FIX_MOUNTED_PROBE)
|
||||
SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
|
||||
#elif ENABLED(BLTOUCH)
|
||||
SERIAL_ECHOLNPGM("BLTOUCH");
|
||||
#elif HAS_Z_SERVO_ENDSTOP
|
||||
SERIAL_ECHOLNPGM("SERVO PROBE");
|
||||
#elif ENABLED(Z_PROBE_SLED)
|
||||
SERIAL_ECHOLNPGM("Z_PROBE_SLED");
|
||||
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
||||
SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
|
||||
#else
|
||||
SERIAL_ECHOLNPGM("NONE");
|
||||
#endif
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
|
||||
#if X_PROBE_OFFSET_FROM_EXTRUDER > 0
|
||||
SERIAL_ECHOPGM(" (Right");
|
||||
#elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
SERIAL_ECHOPGM(" (Left");
|
||||
#elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
|
||||
SERIAL_ECHOPGM(" (Middle");
|
||||
#else
|
||||
SERIAL_ECHOPGM(" (Aligned With");
|
||||
#endif
|
||||
#if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
|
||||
SERIAL_ECHOPGM("-Back");
|
||||
#elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
|
||||
SERIAL_ECHOPGM("-Front");
|
||||
#elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
|
||||
SERIAL_ECHOPGM("-Center");
|
||||
#endif
|
||||
if (zprobe_zoffset < 0)
|
||||
SERIAL_ECHOPGM(" & Below");
|
||||
else if (zprobe_zoffset > 0)
|
||||
SERIAL_ECHOPGM(" & Above");
|
||||
else
|
||||
SERIAL_ECHOPGM(" & Same Z as");
|
||||
SERIAL_ECHOLNPGM(" Nozzle)");
|
||||
#endif
|
||||
|
||||
#if HAS_ABL
|
||||
SERIAL_ECHOPGM("Auto Bed Leveling: ");
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
SERIAL_ECHOPGM("LINEAR");
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
SERIAL_ECHOPGM("BILINEAR");
|
||||
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
||||
SERIAL_ECHOPGM("3POINT");
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
SERIAL_ECHOPGM("UBL");
|
||||
#endif
|
||||
if (leveling_is_active()) {
|
||||
SERIAL_ECHOLNPGM(" (enabled)");
|
||||
#if ABL_PLANAR
|
||||
const float diff[XYZ] = {
|
||||
stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
|
||||
stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
|
||||
stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
|
||||
};
|
||||
SERIAL_ECHOPGM("ABL Adjustment X");
|
||||
if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
|
||||
SERIAL_ECHO(diff[X_AXIS]);
|
||||
SERIAL_ECHOPGM(" Y");
|
||||
if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
|
||||
SERIAL_ECHO(diff[Y_AXIS]);
|
||||
SERIAL_ECHOPGM(" Z");
|
||||
if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
|
||||
SERIAL_ECHO(diff[Z_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
|
||||
#endif
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOLNPGM(" (disabled)");
|
||||
|
||||
SERIAL_EOL();
|
||||
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
SERIAL_ECHOPGM("Mesh Bed Leveling");
|
||||
if (leveling_is_active()) {
|
||||
float lz = current_position[Z_AXIS];
|
||||
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], lz);
|
||||
SERIAL_ECHOLNPGM(" (enabled)");
|
||||
SERIAL_ECHOPAIR("MBL Adjustment Z", lz);
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOPGM(" (disabled)");
|
||||
|
||||
SERIAL_EOL();
|
||||
|
||||
#endif // MESH_BED_LEVELING
|
||||
}
|
||||
|
||||
#endif // DEBUG_LEVELING_FEATURE
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
/**
|
||||
* A delta can only safely home all axes at the same time
|
||||
* This is like quick_home_xy() but for 3 towers.
|
||||
*/
|
||||
inline bool home_delta() {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
|
||||
#endif
|
||||
// Init the current position of all carriages to 0,0,0
|
||||
ZERO(current_position);
|
||||
sync_plan_position();
|
||||
|
||||
// Move all carriages together linearly until an endstop is hit.
|
||||
current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (DELTA_HEIGHT + home_offset[Z_AXIS] + 10);
|
||||
feedrate_mm_s = homing_feedrate(X_AXIS);
|
||||
line_to_current_position();
|
||||
stepper.synchronize();
|
||||
|
||||
// If an endstop was not hit, then damage can occur if homing is continued.
|
||||
// This can occur if the delta height (DELTA_HEIGHT + home_offset[Z_AXIS]) is
|
||||
// not set correctly.
|
||||
if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
|
||||
LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
|
||||
return false;
|
||||
}
|
||||
|
||||
endstops.hit_on_purpose(); // clear endstop hit flags
|
||||
|
||||
// At least one carriage has reached the top.
|
||||
// Now re-home each carriage separately.
|
||||
HOMEAXIS(A);
|
||||
HOMEAXIS(B);
|
||||
HOMEAXIS(C);
|
||||
|
||||
// Set all carriages to their home positions
|
||||
// Do this here all at once for Delta, because
|
||||
// XYZ isn't ABC. Applying this per-tower would
|
||||
// give the impression that they are the same.
|
||||
LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
|
||||
#endif
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
#endif // DELTA
|
||||
|
||||
#if ENABLED(Z_SAFE_HOMING)
|
||||
|
||||
inline void home_z_safely() {
|
||||
|
||||
// Disallow Z homing if X or Y are unknown
|
||||
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
|
||||
LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
|
||||
return;
|
||||
}
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
|
||||
#endif
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
/**
|
||||
* Move the Z probe (or just the nozzle) to the safe homing point
|
||||
*/
|
||||
destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
|
||||
destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
|
||||
destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
|
||||
|
||||
#if HOMING_Z_WITH_PROBE
|
||||
destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
#endif
|
||||
|
||||
if (position_is_reachable_xy(destination[X_AXIS], destination[Y_AXIS])) {
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
|
||||
#endif
|
||||
|
||||
// This causes the carriage on Dual X to unpark
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
active_extruder_parked = false;
|
||||
#endif
|
||||
|
||||
do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
|
||||
HOMEAXIS(Z);
|
||||
}
|
||||
else {
|
||||
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
||||
}
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // Z_SAFE_HOMING
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
bool g29_in_progress = false;
|
||||
|
@ -3856,217 +3359,7 @@ inline void gcode_G4() {
|
|||
constexpr bool g29_in_progress = false;
|
||||
#endif
|
||||
|
||||
/**
|
||||
* G28: Home all axes according to settings
|
||||
*
|
||||
* Parameters
|
||||
*
|
||||
* None Home to all axes with no parameters.
|
||||
* With QUICK_HOME enabled XY will home together, then Z.
|
||||
*
|
||||
* Cartesian parameters
|
||||
*
|
||||
* X Home to the X endstop
|
||||
* Y Home to the Y endstop
|
||||
* Z Home to the Z endstop
|
||||
*
|
||||
*/
|
||||
inline void gcode_G28(const bool always_home_all) {
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPGM(">>> gcode_G28");
|
||||
log_machine_info();
|
||||
}
|
||||
#endif
|
||||
|
||||
// Wait for planner moves to finish!
|
||||
stepper.synchronize();
|
||||
|
||||
// Cancel the active G29 session
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
g29_in_progress = false;
|
||||
#endif
|
||||
|
||||
// Disable the leveling matrix before homing
|
||||
#if HAS_LEVELING
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
const bool ubl_state_at_entry = leveling_is_active();
|
||||
#endif
|
||||
set_bed_leveling_enabled(false);
|
||||
#endif
|
||||
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
workspace_plane = PLANE_XY;
|
||||
#endif
|
||||
|
||||
// Always home with tool 0 active
|
||||
#if HOTENDS > 1
|
||||
const uint8_t old_tool_index = active_extruder;
|
||||
tool_change(0, 0, true);
|
||||
#endif
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
||||
extruder_duplication_enabled = false;
|
||||
#endif
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
||||
#endif
|
||||
endstops.enable(true); // Enable endstops for next homing move
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
|
||||
home_delta();
|
||||
UNUSED(always_home_all);
|
||||
|
||||
#else // NOT DELTA
|
||||
|
||||
const bool homeX = always_home_all || parser.seen('X'),
|
||||
homeY = always_home_all || parser.seen('Y'),
|
||||
homeZ = always_home_all || parser.seen('Z'),
|
||||
home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
|
||||
|
||||
set_destination_to_current();
|
||||
|
||||
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
||||
|
||||
if (home_all || homeZ) {
|
||||
HOMEAXIS(Z);
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
if (home_all || homeX || homeY) {
|
||||
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
||||
destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
|
||||
if (destination[Z_AXIS] > current_position[Z_AXIS]) {
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING))
|
||||
SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
|
||||
#endif
|
||||
|
||||
do_blocking_move_to_z(destination[Z_AXIS]);
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(QUICK_HOME)
|
||||
|
||||
if (home_all || (homeX && homeY)) quick_home_xy();
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(HOME_Y_BEFORE_X)
|
||||
|
||||
// Home Y
|
||||
if (home_all || homeY) {
|
||||
HOMEAXIS(Y);
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// Home X
|
||||
if (home_all || homeX) {
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
|
||||
// Always home the 2nd (right) extruder first
|
||||
active_extruder = 1;
|
||||
HOMEAXIS(X);
|
||||
|
||||
// Remember this extruder's position for later tool change
|
||||
inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
|
||||
|
||||
// Home the 1st (left) extruder
|
||||
active_extruder = 0;
|
||||
HOMEAXIS(X);
|
||||
|
||||
// Consider the active extruder to be parked
|
||||
COPY(raised_parked_position, current_position);
|
||||
delayed_move_time = 0;
|
||||
active_extruder_parked = true;
|
||||
|
||||
#else
|
||||
|
||||
HOMEAXIS(X);
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if DISABLED(HOME_Y_BEFORE_X)
|
||||
// Home Y
|
||||
if (home_all || homeY) {
|
||||
HOMEAXIS(Y);
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
// Home Z last if homing towards the bed
|
||||
#if Z_HOME_DIR < 0
|
||||
if (home_all || homeZ) {
|
||||
#if ENABLED(Z_SAFE_HOMING)
|
||||
home_z_safely();
|
||||
#else
|
||||
HOMEAXIS(Z);
|
||||
#endif
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
|
||||
#endif
|
||||
} // home_all || homeZ
|
||||
#endif // Z_HOME_DIR < 0
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
#endif // !DELTA (gcode_G28)
|
||||
|
||||
endstops.not_homing();
|
||||
|
||||
#if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
||||
// move to a height where we can use the full xy-area
|
||||
do_blocking_move_to_z(delta_clip_start_height);
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
set_bed_leveling_enabled(ubl_state_at_entry);
|
||||
#endif
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
|
||||
// Restore the active tool after homing
|
||||
#if HOTENDS > 1
|
||||
tool_change(old_tool_index, 0,
|
||||
#if ENABLED(PARKING_EXTRUDER)
|
||||
false // fetch the previous toolhead
|
||||
#else
|
||||
true
|
||||
#endif
|
||||
);
|
||||
#endif
|
||||
|
||||
lcd_refresh();
|
||||
|
||||
report_current_position();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
|
||||
#endif
|
||||
} // G28
|
||||
#include "gcode/calibrate/G28.h"
|
||||
|
||||
void home_all_axes() { gcode_G28(true); }
|
||||
|
||||
|
@ -4080,2480 +3373,70 @@ void home_all_axes() { gcode_G28(true); }
|
|||
|
||||
#endif
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
|
||||
extern bool lcd_wait_for_move;
|
||||
#endif
|
||||
|
||||
inline void _manual_goto_xy(const float &x, const float &y) {
|
||||
const float old_feedrate_mm_s = feedrate_mm_s;
|
||||
#if MANUAL_PROBE_HEIGHT > 0
|
||||
const float prev_z = current_position[Z_AXIS];
|
||||
feedrate_mm_s = homing_feedrate(Z_AXIS);
|
||||
current_position[Z_AXIS] = LOGICAL_Z_POSITION(MANUAL_PROBE_HEIGHT);
|
||||
line_to_current_position();
|
||||
#endif
|
||||
|
||||
feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
|
||||
current_position[X_AXIS] = LOGICAL_X_POSITION(x);
|
||||
current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
|
||||
line_to_current_position();
|
||||
|
||||
#if MANUAL_PROBE_HEIGHT > 0
|
||||
feedrate_mm_s = homing_feedrate(Z_AXIS);
|
||||
current_position[Z_AXIS] = prev_z; // move back to the previous Z.
|
||||
line_to_current_position();
|
||||
#endif
|
||||
|
||||
feedrate_mm_s = old_feedrate_mm_s;
|
||||
stepper.synchronize();
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY) && ENABLED(LCD_BED_LEVELING)
|
||||
lcd_wait_for_move = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
// Save 130 bytes with non-duplication of PSTR
|
||||
void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
|
||||
|
||||
void mbl_mesh_report() {
|
||||
SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
|
||||
SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
|
||||
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
||||
print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
|
||||
[](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
|
||||
);
|
||||
}
|
||||
|
||||
void mesh_probing_done() {
|
||||
mbl.set_has_mesh(true);
|
||||
home_all_axes();
|
||||
set_bed_leveling_enabled(true);
|
||||
#if ENABLED(MESH_G28_REST_ORIGIN)
|
||||
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS);
|
||||
set_destination_to_current();
|
||||
line_to_destination(homing_feedrate(Z_AXIS));
|
||||
stepper.synchronize();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* G29: Mesh-based Z probe, probes a grid and produces a
|
||||
* mesh to compensate for variable bed height
|
||||
*
|
||||
* Parameters With MESH_BED_LEVELING:
|
||||
*
|
||||
* S0 Produce a mesh report
|
||||
* S1 Start probing mesh points
|
||||
* S2 Probe the next mesh point
|
||||
* S3 Xn Yn Zn.nn Manually modify a single point
|
||||
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
|
||||
* S5 Reset and disable mesh
|
||||
*
|
||||
* The S0 report the points as below
|
||||
*
|
||||
* +----> X-axis 1-n
|
||||
* |
|
||||
* |
|
||||
* v Y-axis 1-n
|
||||
*
|
||||
*/
|
||||
inline void gcode_G29() {
|
||||
|
||||
static int mbl_probe_index = -1;
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
static bool enable_soft_endstops;
|
||||
#endif
|
||||
|
||||
const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
|
||||
if (!WITHIN(state, 0, 5)) {
|
||||
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
|
||||
return;
|
||||
}
|
||||
|
||||
int8_t px, py;
|
||||
|
||||
switch (state) {
|
||||
case MeshReport:
|
||||
if (leveling_is_valid()) {
|
||||
SERIAL_PROTOCOLLNPAIR("State: ", leveling_is_active() ? MSG_ON : MSG_OFF);
|
||||
mbl_mesh_report();
|
||||
}
|
||||
else
|
||||
SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
|
||||
break;
|
||||
|
||||
case MeshStart:
|
||||
mbl.reset();
|
||||
mbl_probe_index = 0;
|
||||
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
|
||||
break;
|
||||
|
||||
case MeshNext:
|
||||
if (mbl_probe_index < 0) {
|
||||
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
||||
return;
|
||||
}
|
||||
// For each G29 S2...
|
||||
if (mbl_probe_index == 0) {
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
// For the initial G29 S2 save software endstop state
|
||||
enable_soft_endstops = soft_endstops_enabled;
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// For G29 S2 after adjusting Z.
|
||||
mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
soft_endstops_enabled = enable_soft_endstops;
|
||||
#endif
|
||||
}
|
||||
// If there's another point to sample, move there with optional lift.
|
||||
if (mbl_probe_index < GRID_MAX_POINTS) {
|
||||
mbl.zigzag(mbl_probe_index, px, py);
|
||||
_manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
|
||||
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
// Disable software endstops to allow manual adjustment
|
||||
// If G29 is not completed, they will not be re-enabled
|
||||
soft_endstops_enabled = false;
|
||||
#endif
|
||||
|
||||
mbl_probe_index++;
|
||||
}
|
||||
else {
|
||||
// One last "return to the bed" (as originally coded) at completion
|
||||
current_position[Z_AXIS] = LOGICAL_Z_POSITION(Z_MIN_POS) + MANUAL_PROBE_HEIGHT;
|
||||
line_to_current_position();
|
||||
stepper.synchronize();
|
||||
|
||||
// After recording the last point, activate home and activate
|
||||
mbl_probe_index = -1;
|
||||
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
||||
BUZZ(100, 659);
|
||||
BUZZ(100, 698);
|
||||
mesh_probing_done();
|
||||
}
|
||||
break;
|
||||
|
||||
case MeshSet:
|
||||
if (parser.seenval('X')) {
|
||||
px = parser.value_int() - 1;
|
||||
if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
|
||||
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
SERIAL_CHAR('X'); echo_not_entered();
|
||||
return;
|
||||
}
|
||||
|
||||
if (parser.seenval('Y')) {
|
||||
py = parser.value_int() - 1;
|
||||
if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
|
||||
return;
|
||||
}
|
||||
}
|
||||
else {
|
||||
SERIAL_CHAR('Y'); echo_not_entered();
|
||||
return;
|
||||
}
|
||||
|
||||
if (parser.seenval('Z')) {
|
||||
mbl.z_values[px][py] = parser.value_linear_units();
|
||||
}
|
||||
else {
|
||||
SERIAL_CHAR('Z'); echo_not_entered();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case MeshSetZOffset:
|
||||
if (parser.seenval('Z')) {
|
||||
mbl.z_offset = parser.value_linear_units();
|
||||
}
|
||||
else {
|
||||
SERIAL_CHAR('Z'); echo_not_entered();
|
||||
return;
|
||||
}
|
||||
break;
|
||||
|
||||
case MeshReset:
|
||||
reset_bed_level();
|
||||
break;
|
||||
|
||||
} // switch(state)
|
||||
|
||||
report_current_position();
|
||||
}
|
||||
|
||||
#elif HAS_ABL && DISABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
#if ABL_GRID
|
||||
#if ENABLED(PROBE_Y_FIRST)
|
||||
#define PR_OUTER_VAR xCount
|
||||
#define PR_OUTER_END abl_grid_points_x
|
||||
#define PR_INNER_VAR yCount
|
||||
#define PR_INNER_END abl_grid_points_y
|
||||
#else
|
||||
#define PR_OUTER_VAR yCount
|
||||
#define PR_OUTER_END abl_grid_points_y
|
||||
#define PR_INNER_VAR xCount
|
||||
#define PR_INNER_END abl_grid_points_x
|
||||
#endif
|
||||
#endif
|
||||
|
||||
/**
|
||||
* G29: Detailed Z probe, probes the bed at 3 or more points.
|
||||
* Will fail if the printer has not been homed with G28.
|
||||
*
|
||||
* Enhanced G29 Auto Bed Leveling Probe Routine
|
||||
*
|
||||
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
||||
* or alter the bed level data. Useful to check the topology
|
||||
* after a first run of G29.
|
||||
*
|
||||
* J Jettison current bed leveling data
|
||||
*
|
||||
* V Set the verbose level (0-4). Example: "G29 V3"
|
||||
*
|
||||
* Parameters With LINEAR leveling only:
|
||||
*
|
||||
* P Set the size of the grid that will be probed (P x P points).
|
||||
* Example: "G29 P4"
|
||||
*
|
||||
* X Set the X size of the grid that will be probed (X x Y points).
|
||||
* Example: "G29 X7 Y5"
|
||||
*
|
||||
* Y Set the Y size of the grid that will be probed (X x Y points).
|
||||
*
|
||||
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
||||
* This is useful for manual bed leveling and finding flaws in the bed (to
|
||||
* assist with part placement).
|
||||
* Not supported by non-linear delta printer bed leveling.
|
||||
*
|
||||
* Parameters With LINEAR and BILINEAR leveling only:
|
||||
*
|
||||
* S Set the XY travel speed between probe points (in units/min)
|
||||
*
|
||||
* F Set the Front limit of the probing grid
|
||||
* B Set the Back limit of the probing grid
|
||||
* L Set the Left limit of the probing grid
|
||||
* R Set the Right limit of the probing grid
|
||||
*
|
||||
* Parameters with DEBUG_LEVELING_FEATURE only:
|
||||
*
|
||||
* C Make a totally fake grid with no actual probing.
|
||||
* For use in testing when no probing is possible.
|
||||
*
|
||||
* Parameters with BILINEAR leveling only:
|
||||
*
|
||||
* Z Supply an additional Z probe offset
|
||||
*
|
||||
* Extra parameters with PROBE_MANUALLY:
|
||||
*
|
||||
* To do manual probing simply repeat G29 until the procedure is complete.
|
||||
* The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
|
||||
*
|
||||
* Q Query leveling and G29 state
|
||||
*
|
||||
* A Abort current leveling procedure
|
||||
*
|
||||
* Extra parameters with BILINEAR only:
|
||||
*
|
||||
* W Write a mesh point. (If G29 is idle.)
|
||||
* I X index for mesh point
|
||||
* J Y index for mesh point
|
||||
* X X for mesh point, overrides I
|
||||
* Y Y for mesh point, overrides J
|
||||
* Z Z for mesh point. Otherwise, raw current Z.
|
||||
*
|
||||
* Without PROBE_MANUALLY:
|
||||
*
|
||||
* E By default G29 will engage the Z probe, test the bed, then disengage.
|
||||
* Include "E" to engage/disengage the Z probe for each sample.
|
||||
* There's no extra effect if you have a fixed Z probe.
|
||||
*
|
||||
*/
|
||||
inline void gcode_G29() {
|
||||
|
||||
// G29 Q is also available if debugging
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
const bool query = parser.seen('Q');
|
||||
const uint8_t old_debug_flags = marlin_debug_flags;
|
||||
if (query) marlin_debug_flags |= DEBUG_LEVELING;
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
DEBUG_POS(">>> gcode_G29", current_position);
|
||||
log_machine_info();
|
||||
}
|
||||
marlin_debug_flags = old_debug_flags;
|
||||
#if DISABLED(PROBE_MANUALLY)
|
||||
if (query) return;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
|
||||
const bool faux = parser.boolval('C');
|
||||
#elif ENABLED(PROBE_MANUALLY)
|
||||
const bool faux = no_action;
|
||||
#else
|
||||
bool constexpr faux = false;
|
||||
#endif
|
||||
|
||||
// Don't allow auto-leveling without homing first
|
||||
if (axis_unhomed_error()) return;
|
||||
|
||||
// Define local vars 'static' for manual probing, 'auto' otherwise
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
#define ABL_VAR static
|
||||
#else
|
||||
#define ABL_VAR
|
||||
#endif
|
||||
|
||||
ABL_VAR int verbose_level;
|
||||
ABL_VAR float xProbe, yProbe, measured_z;
|
||||
ABL_VAR bool dryrun, abl_should_enable;
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
ABL_VAR int abl_probe_index;
|
||||
#endif
|
||||
|
||||
#if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
|
||||
ABL_VAR bool enable_soft_endstops = true;
|
||||
#endif
|
||||
|
||||
#if ABL_GRID
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
ABL_VAR uint8_t PR_OUTER_VAR;
|
||||
ABL_VAR int8_t PR_INNER_VAR;
|
||||
#endif
|
||||
|
||||
ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
|
||||
ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
|
||||
abl_grid_points_y = GRID_MAX_POINTS_Y;
|
||||
ABL_VAR bool do_topography_map;
|
||||
#else // Bilinear
|
||||
uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
|
||||
abl_grid_points_y = GRID_MAX_POINTS_Y;
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
ABL_VAR int abl2;
|
||||
#else // Bilinear
|
||||
int constexpr abl2 = GRID_MAX_POINTS;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
ABL_VAR float zoffset;
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
|
||||
ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
|
||||
|
||||
ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
|
||||
eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
|
||||
mean;
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
||||
|
||||
int constexpr abl2 = 3;
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
ABL_VAR vector_3 points[3] = {
|
||||
vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
|
||||
vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
|
||||
vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
|
||||
};
|
||||
|
||||
#endif // AUTO_BED_LEVELING_3POINT
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
struct linear_fit_data lsf_results;
|
||||
incremental_LSF_reset(&lsf_results);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* On the initial G29 fetch command parameters.
|
||||
*/
|
||||
if (!g29_in_progress) {
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
abl_probe_index = -1;
|
||||
#endif
|
||||
|
||||
abl_should_enable = leveling_is_active();
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
if (parser.seen('W')) {
|
||||
if (!leveling_is_valid()) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("No bilinear grid");
|
||||
return;
|
||||
}
|
||||
|
||||
const float z = parser.floatval('Z', RAW_CURRENT_POSITION(Z));
|
||||
if (!WITHIN(z, -10, 10)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("Bad Z value");
|
||||
return;
|
||||
}
|
||||
|
||||
const float x = parser.floatval('X', NAN),
|
||||
y = parser.floatval('Y', NAN);
|
||||
int8_t i = parser.byteval('I', -1),
|
||||
j = parser.byteval('J', -1);
|
||||
|
||||
if (!isnan(x) && !isnan(y)) {
|
||||
// Get nearest i / j from x / y
|
||||
i = (x - LOGICAL_X_POSITION(bilinear_start[X_AXIS]) + 0.5 * xGridSpacing) / xGridSpacing;
|
||||
j = (y - LOGICAL_Y_POSITION(bilinear_start[Y_AXIS]) + 0.5 * yGridSpacing) / yGridSpacing;
|
||||
i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
|
||||
j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
|
||||
}
|
||||
if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
|
||||
set_bed_leveling_enabled(false);
|
||||
z_values[i][j] = z;
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
bed_level_virt_interpolate();
|
||||
#endif
|
||||
set_bed_leveling_enabled(abl_should_enable);
|
||||
}
|
||||
return;
|
||||
} // parser.seen('W')
|
||||
|
||||
#endif
|
||||
|
||||
#if HAS_LEVELING
|
||||
|
||||
// Jettison bed leveling data
|
||||
if (parser.seen('J')) {
|
||||
reset_bed_level();
|
||||
return;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
verbose_level = parser.intval('V');
|
||||
if (!WITHIN(verbose_level, 0, 4)) {
|
||||
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
||||
return;
|
||||
}
|
||||
|
||||
dryrun = parser.boolval('D')
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
|| no_action
|
||||
#endif
|
||||
;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
|
||||
do_topography_map = verbose_level > 2 || parser.boolval('T');
|
||||
|
||||
// X and Y specify points in each direction, overriding the default
|
||||
// These values may be saved with the completed mesh
|
||||
abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
|
||||
abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
|
||||
if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
|
||||
|
||||
if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
|
||||
SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
|
||||
return;
|
||||
}
|
||||
|
||||
abl2 = abl_grid_points_x * abl_grid_points_y;
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
zoffset = parser.linearval('Z');
|
||||
|
||||
#endif
|
||||
|
||||
#if ABL_GRID
|
||||
|
||||
xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
|
||||
|
||||
left_probe_bed_position = (int)parser.linearval('L', LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION));
|
||||
right_probe_bed_position = (int)parser.linearval('R', LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION));
|
||||
front_probe_bed_position = (int)parser.linearval('F', LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION));
|
||||
back_probe_bed_position = (int)parser.linearval('B', LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION));
|
||||
|
||||
const bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
|
||||
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
|
||||
right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
|
||||
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
||||
front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
|
||||
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
|
||||
back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
|
||||
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
||||
|
||||
if (left_out || right_out || front_out || back_out) {
|
||||
if (left_out) {
|
||||
out_of_range_error(PSTR("(L)eft"));
|
||||
left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
|
||||
}
|
||||
if (right_out) {
|
||||
out_of_range_error(PSTR("(R)ight"));
|
||||
right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
|
||||
}
|
||||
if (front_out) {
|
||||
out_of_range_error(PSTR("(F)ront"));
|
||||
front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
|
||||
}
|
||||
if (back_out) {
|
||||
out_of_range_error(PSTR("(B)ack"));
|
||||
back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// probe at the points of a lattice grid
|
||||
xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
|
||||
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
|
||||
|
||||
#endif // ABL_GRID
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
|
||||
if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
|
||||
}
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
// Disable auto bed leveling during G29
|
||||
planner.abl_enabled = false;
|
||||
|
||||
if (!dryrun) {
|
||||
// Re-orient the current position without leveling
|
||||
// based on where the steppers are positioned.
|
||||
set_current_from_steppers_for_axis(ALL_AXES);
|
||||
|
||||
// Sync the planner to where the steppers stopped
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
}
|
||||
#include "gcode/calibrate/G29.h"
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
// Deploy the probe. Probe will raise if needed.
|
||||
if (DEPLOY_PROBE()) {
|
||||
planner.abl_enabled = abl_should_enable;
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
if (!faux) setup_for_endstop_or_probe_move();
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
if (!no_action)
|
||||
#endif
|
||||
if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
|
||||
|| yGridSpacing != bilinear_grid_spacing[Y_AXIS]
|
||||
|| left_probe_bed_position != LOGICAL_X_POSITION(bilinear_start[X_AXIS])
|
||||
|| front_probe_bed_position != LOGICAL_Y_POSITION(bilinear_start[Y_AXIS])
|
||||
) {
|
||||
if (dryrun) {
|
||||
// Before reset bed level, re-enable to correct the position
|
||||
planner.abl_enabled = abl_should_enable;
|
||||
}
|
||||
// Reset grid to 0.0 or "not probed". (Also disables ABL)
|
||||
reset_bed_level();
|
||||
|
||||
// Initialize a grid with the given dimensions
|
||||
bilinear_grid_spacing[X_AXIS] = xGridSpacing;
|
||||
bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
|
||||
bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
|
||||
bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
|
||||
|
||||
// Can't re-enable (on error) until the new grid is written
|
||||
abl_should_enable = false;
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_BILINEAR
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_3POINT)
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
|
||||
#endif
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
points[0].z = points[1].z = points[2].z = 0;
|
||||
|
||||
#endif // AUTO_BED_LEVELING_3POINT
|
||||
|
||||
} // !g29_in_progress
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
|
||||
// For manual probing, get the next index to probe now.
|
||||
// On the first probe this will be incremented to 0.
|
||||
if (!no_action) {
|
||||
++abl_probe_index;
|
||||
g29_in_progress = true;
|
||||
}
|
||||
|
||||
// Abort current G29 procedure, go back to idle state
|
||||
if (seenA && g29_in_progress) {
|
||||
SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
soft_endstops_enabled = enable_soft_endstops;
|
||||
#endif
|
||||
planner.abl_enabled = abl_should_enable;
|
||||
g29_in_progress = false;
|
||||
#if ENABLED(LCD_BED_LEVELING)
|
||||
lcd_wait_for_move = false;
|
||||
#endif
|
||||
}
|
||||
|
||||
// Query G29 status
|
||||
if (verbose_level || seenQ) {
|
||||
SERIAL_PROTOCOLPGM("Manual G29 ");
|
||||
if (g29_in_progress) {
|
||||
SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
|
||||
SERIAL_PROTOCOLLNPAIR(" of ", abl2);
|
||||
}
|
||||
else
|
||||
SERIAL_PROTOCOLLNPGM("idle");
|
||||
}
|
||||
|
||||
if (no_action) return;
|
||||
|
||||
if (abl_probe_index == 0) {
|
||||
// For the initial G29 save software endstop state
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
enable_soft_endstops = soft_endstops_enabled;
|
||||
#endif
|
||||
}
|
||||
else {
|
||||
// For G29 after adjusting Z.
|
||||
// Save the previous Z before going to the next point
|
||||
measured_z = current_position[Z_AXIS];
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
|
||||
mean += measured_z;
|
||||
eqnBVector[abl_probe_index] = measured_z;
|
||||
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
|
||||
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
|
||||
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
|
||||
|
||||
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
z_values[xCount][yCount] = measured_z + zoffset;
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_PROTOCOLPAIR("Save X", xCount);
|
||||
SERIAL_PROTOCOLPAIR(" Y", yCount);
|
||||
SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
|
||||
}
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
||||
|
||||
points[abl_probe_index].z = measured_z;
|
||||
|
||||
#endif
|
||||
}
|
||||
|
||||
//
|
||||
// If there's another point to sample, move there with optional lift.
|
||||
//
|
||||
|
||||
#if ABL_GRID
|
||||
|
||||
// Skip any unreachable points
|
||||
while (abl_probe_index < abl2) {
|
||||
|
||||
// Set xCount, yCount based on abl_probe_index, with zig-zag
|
||||
PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
|
||||
PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
|
||||
|
||||
// Probe in reverse order for every other row/column
|
||||
bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
|
||||
|
||||
if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
|
||||
|
||||
const float xBase = xCount * xGridSpacing + left_probe_bed_position,
|
||||
yBase = yCount * yGridSpacing + front_probe_bed_position;
|
||||
|
||||
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
|
||||
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
indexIntoAB[xCount][yCount] = abl_probe_index;
|
||||
#endif
|
||||
|
||||
// Keep looping till a reachable point is found
|
||||
if (position_is_reachable_xy(xProbe, yProbe)) break;
|
||||
++abl_probe_index;
|
||||
}
|
||||
|
||||
// Is there a next point to move to?
|
||||
if (abl_probe_index < abl2) {
|
||||
_manual_goto_xy(xProbe, yProbe); // Can be used here too!
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
// Disable software endstops to allow manual adjustment
|
||||
// If G29 is not completed, they will not be re-enabled
|
||||
soft_endstops_enabled = false;
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
||||
// Leveling done! Fall through to G29 finishing code below
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("Grid probing done.");
|
||||
|
||||
// Re-enable software endstops, if needed
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
soft_endstops_enabled = enable_soft_endstops;
|
||||
#endif
|
||||
}
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
if (abl_probe_index < 3) {
|
||||
xProbe = LOGICAL_X_POSITION(points[abl_probe_index].x);
|
||||
yProbe = LOGICAL_Y_POSITION(points[abl_probe_index].y);
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
// Disable software endstops to allow manual adjustment
|
||||
// If G29 is not completed, they will not be re-enabled
|
||||
soft_endstops_enabled = false;
|
||||
#endif
|
||||
return;
|
||||
}
|
||||
else {
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("3-point probing done.");
|
||||
|
||||
// Re-enable software endstops, if needed
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
soft_endstops_enabled = enable_soft_endstops;
|
||||
#endif
|
||||
|
||||
if (!dryrun) {
|
||||
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
||||
if (planeNormal.z < 0) {
|
||||
planeNormal.x *= -1;
|
||||
planeNormal.y *= -1;
|
||||
planeNormal.z *= -1;
|
||||
}
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||
|
||||
// Can't re-enable (on error) until the new grid is written
|
||||
abl_should_enable = false;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_3POINT
|
||||
|
||||
#else // !PROBE_MANUALLY
|
||||
{
|
||||
const bool stow_probe_after_each = parser.boolval('E');
|
||||
|
||||
#if ABL_GRID
|
||||
|
||||
bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
|
||||
|
||||
// Outer loop is Y with PROBE_Y_FIRST disabled
|
||||
for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
|
||||
|
||||
int8_t inStart, inStop, inInc;
|
||||
|
||||
if (zig) { // away from origin
|
||||
inStart = 0;
|
||||
inStop = PR_INNER_END;
|
||||
inInc = 1;
|
||||
}
|
||||
else { // towards origin
|
||||
inStart = PR_INNER_END - 1;
|
||||
inStop = -1;
|
||||
inInc = -1;
|
||||
}
|
||||
|
||||
zig ^= true; // zag
|
||||
|
||||
// Inner loop is Y with PROBE_Y_FIRST enabled
|
||||
for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
|
||||
|
||||
float xBase = left_probe_bed_position + xGridSpacing * xCount,
|
||||
yBase = front_probe_bed_position + yGridSpacing * yCount;
|
||||
|
||||
xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
|
||||
yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
|
||||
#endif
|
||||
|
||||
#if IS_KINEMATIC
|
||||
// Avoid probing outside the round or hexagonal area
|
||||
if (!position_is_reachable_by_probe_xy(xProbe, yProbe)) continue;
|
||||
#endif
|
||||
|
||||
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
||||
|
||||
if (isnan(measured_z)) {
|
||||
planner.abl_enabled = abl_should_enable;
|
||||
break;
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
|
||||
mean += measured_z;
|
||||
eqnBVector[abl_probe_index] = measured_z;
|
||||
eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
|
||||
eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
|
||||
eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
|
||||
|
||||
incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
z_values[xCount][yCount] = measured_z + zoffset;
|
||||
|
||||
#endif
|
||||
|
||||
abl_should_enable = false;
|
||||
idle();
|
||||
|
||||
} // inner
|
||||
} // outer
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_3POINT)
|
||||
|
||||
// Probe at 3 arbitrary points
|
||||
|
||||
for (uint8_t i = 0; i < 3; ++i) {
|
||||
// Retain the last probe position
|
||||
xProbe = LOGICAL_X_POSITION(points[i].x);
|
||||
yProbe = LOGICAL_Y_POSITION(points[i].y);
|
||||
measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
|
||||
if (isnan(measured_z)) {
|
||||
planner.abl_enabled = abl_should_enable;
|
||||
break;
|
||||
}
|
||||
points[i].z = measured_z;
|
||||
}
|
||||
|
||||
if (!dryrun && !isnan(measured_z)) {
|
||||
vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
|
||||
if (planeNormal.z < 0) {
|
||||
planeNormal.x *= -1;
|
||||
planeNormal.y *= -1;
|
||||
planeNormal.z *= -1;
|
||||
}
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
||||
|
||||
// Can't re-enable (on error) until the new grid is written
|
||||
abl_should_enable = false;
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_3POINT
|
||||
|
||||
// Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
|
||||
if (STOW_PROBE()) {
|
||||
planner.abl_enabled = abl_should_enable;
|
||||
measured_z = NAN;
|
||||
}
|
||||
}
|
||||
#endif // !PROBE_MANUALLY
|
||||
|
||||
//
|
||||
// G29 Finishing Code
|
||||
//
|
||||
// Unless this is a dry run, auto bed leveling will
|
||||
// definitely be enabled after this point.
|
||||
//
|
||||
// If code above wants to continue leveling, it should
|
||||
// return or loop before this point.
|
||||
//
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
|
||||
#endif
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
g29_in_progress = false;
|
||||
#if ENABLED(LCD_BED_LEVELING)
|
||||
lcd_wait_for_move = false;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
// Calculate leveling, print reports, correct the position
|
||||
if (!isnan(measured_z)) {
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
if (!dryrun) extrapolate_unprobed_bed_level();
|
||||
print_bilinear_leveling_grid();
|
||||
|
||||
refresh_bed_level();
|
||||
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
print_bilinear_leveling_grid_virt();
|
||||
#endif
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_LINEAR)
|
||||
|
||||
// For LINEAR leveling calculate matrix, print reports, correct the position
|
||||
|
||||
/**
|
||||
* solve the plane equation ax + by + d = z
|
||||
* A is the matrix with rows [x y 1] for all the probed points
|
||||
* B is the vector of the Z positions
|
||||
* the normal vector to the plane is formed by the coefficients of the
|
||||
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
||||
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
||||
*/
|
||||
float plane_equation_coefficients[3];
|
||||
|
||||
finish_incremental_LSF(&lsf_results);
|
||||
plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
|
||||
plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
|
||||
plane_equation_coefficients[2] = -lsf_results.D;
|
||||
|
||||
mean /= abl2;
|
||||
|
||||
if (verbose_level) {
|
||||
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
||||
SERIAL_PROTOCOLPGM(" b: ");
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
||||
SERIAL_PROTOCOLPGM(" d: ");
|
||||
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
||||
SERIAL_EOL();
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
||||
SERIAL_PROTOCOL_F(mean, 8);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
}
|
||||
|
||||
// Create the matrix but don't correct the position yet
|
||||
if (!dryrun)
|
||||
planner.bed_level_matrix = matrix_3x3::create_look_at(
|
||||
vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
|
||||
);
|
||||
|
||||
// Show the Topography map if enabled
|
||||
if (do_topography_map) {
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
|
||||
" +--- BACK --+\n"
|
||||
" | |\n"
|
||||
" L | (+) | R\n"
|
||||
" E | | I\n"
|
||||
" F | (-) N (+) | G\n"
|
||||
" T | | H\n"
|
||||
" | (-) | T\n"
|
||||
" | |\n"
|
||||
" O-- FRONT --+\n"
|
||||
" (0,0)");
|
||||
|
||||
float min_diff = 999;
|
||||
|
||||
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
||||
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
||||
int ind = indexIntoAB[xx][yy];
|
||||
float diff = eqnBVector[ind] - mean,
|
||||
x_tmp = eqnAMatrix[ind + 0 * abl2],
|
||||
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
||||
z_tmp = 0;
|
||||
|
||||
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
||||
|
||||
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
|
||||
|
||||
if (diff >= 0.0)
|
||||
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
||||
else
|
||||
SERIAL_PROTOCOLCHAR(' ');
|
||||
SERIAL_PROTOCOL_F(diff, 5);
|
||||
} // xx
|
||||
SERIAL_EOL();
|
||||
} // yy
|
||||
SERIAL_EOL();
|
||||
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
|
||||
|
||||
for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
|
||||
for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
|
||||
int ind = indexIntoAB[xx][yy];
|
||||
float x_tmp = eqnAMatrix[ind + 0 * abl2],
|
||||
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
||||
z_tmp = 0;
|
||||
|
||||
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
||||
|
||||
float diff = eqnBVector[ind] - z_tmp - min_diff;
|
||||
if (diff >= 0.0)
|
||||
SERIAL_PROTOCOLPGM(" +");
|
||||
// Include + for column alignment
|
||||
else
|
||||
SERIAL_PROTOCOLCHAR(' ');
|
||||
SERIAL_PROTOCOL_F(diff, 5);
|
||||
} // xx
|
||||
SERIAL_EOL();
|
||||
} // yy
|
||||
SERIAL_EOL();
|
||||
}
|
||||
} //do_topography_map
|
||||
|
||||
#endif // AUTO_BED_LEVELING_LINEAR
|
||||
|
||||
#if ABL_PLANAR
|
||||
|
||||
// For LINEAR and 3POINT leveling correct the current position
|
||||
|
||||
if (verbose_level > 0)
|
||||
planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
|
||||
|
||||
if (!dryrun) {
|
||||
//
|
||||
// Correct the current XYZ position based on the tilted plane.
|
||||
//
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
|
||||
#endif
|
||||
|
||||
float converted[XYZ];
|
||||
COPY(converted, current_position);
|
||||
|
||||
planner.abl_enabled = true;
|
||||
planner.unapply_leveling(converted); // use conversion machinery
|
||||
planner.abl_enabled = false;
|
||||
|
||||
// Use the last measured distance to the bed, if possible
|
||||
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
|
||||
) {
|
||||
const float simple_z = current_position[Z_AXIS] - measured_z;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
|
||||
SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
|
||||
SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
|
||||
}
|
||||
#endif
|
||||
converted[Z_AXIS] = simple_z;
|
||||
}
|
||||
|
||||
// The rotated XY and corrected Z are now current_position
|
||||
COPY(current_position, converted);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
|
||||
#endif
|
||||
}
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
if (!dryrun) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
|
||||
#endif
|
||||
|
||||
// Unapply the offset because it is going to be immediately applied
|
||||
// and cause compensation movement in Z
|
||||
current_position[Z_AXIS] -= bilinear_z_offset(current_position);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // ABL_PLANAR
|
||||
|
||||
#ifdef Z_PROBE_END_SCRIPT
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
|
||||
#endif
|
||||
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
|
||||
stepper.synchronize();
|
||||
#endif
|
||||
|
||||
// Auto Bed Leveling is complete! Enable if possible.
|
||||
planner.abl_enabled = dryrun ? abl_should_enable : true;
|
||||
} // !isnan(measured_z)
|
||||
|
||||
// Restore state after probing
|
||||
if (!faux) clean_up_after_endstop_or_probe_move();
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
|
||||
#endif
|
||||
|
||||
report_current_position();
|
||||
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
||||
if (planner.abl_enabled)
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
}
|
||||
|
||||
#endif // HAS_ABL && !AUTO_BED_LEVELING_UBL
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
|
||||
/**
|
||||
* G30: Do a single Z probe at the current XY
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* X Probe X position (default current X)
|
||||
* Y Probe Y position (default current Y)
|
||||
* S0 Leave the probe deployed
|
||||
*/
|
||||
inline void gcode_G30() {
|
||||
const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
|
||||
ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
|
||||
if (!position_is_reachable_by_probe_xy(xpos, ypos)) return;
|
||||
|
||||
// Disable leveling so the planner won't mess with us
|
||||
#if HAS_LEVELING
|
||||
set_bed_leveling_enabled(false);
|
||||
#endif
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
|
||||
const float measured_z = probe_pt(xpos, ypos, parser.boolval('S', true), 1);
|
||||
|
||||
if (!isnan(measured_z)) {
|
||||
SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
|
||||
SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
|
||||
SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
|
||||
}
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
|
||||
report_current_position();
|
||||
}
|
||||
|
||||
#include "gcode/probe/G30.h"
|
||||
#if ENABLED(Z_PROBE_SLED)
|
||||
|
||||
/**
|
||||
* G31: Deploy the Z probe
|
||||
*/
|
||||
inline void gcode_G31() { DEPLOY_PROBE(); }
|
||||
|
||||
/**
|
||||
* G32: Stow the Z probe
|
||||
*/
|
||||
inline void gcode_G32() { STOW_PROBE(); }
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if PROBE_SELECTED
|
||||
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
/**
|
||||
* G33 - Delta '1-4-7-point' Auto-Calibration
|
||||
* Calibrate height, endstops, delta radius, and tower angles.
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* Pn Number of probe points:
|
||||
*
|
||||
* P1 Probe center and set height only.
|
||||
* P2 Probe center and towers. Set height, endstops, and delta radius.
|
||||
* P3 Probe all positions: center, towers and opposite towers. Set all.
|
||||
* P4-P7 Probe all positions at different locations and average them.
|
||||
*
|
||||
* T0 Don't calibrate tower angle corrections
|
||||
*
|
||||
* Cn.nn Calibration precision; when omitted calibrates to maximum precision
|
||||
*
|
||||
* Fn Force to run at least n iterations and takes the best result
|
||||
*
|
||||
* Vn Verbose level:
|
||||
*
|
||||
* V0 Dry-run mode. Report settings and probe results. No calibration.
|
||||
* V1 Report settings
|
||||
* V2 Report settings and probe results
|
||||
*
|
||||
* E Engage the probe for each point
|
||||
*/
|
||||
|
||||
void print_signed_float(const char * const prefix, const float &f) {
|
||||
SERIAL_PROTOCOLPGM(" ");
|
||||
serialprintPGM(prefix);
|
||||
SERIAL_PROTOCOLCHAR(':');
|
||||
if (f >= 0) SERIAL_CHAR('+');
|
||||
SERIAL_PROTOCOL_F(f, 2);
|
||||
}
|
||||
|
||||
inline void print_G33_settings(const bool end_stops, const bool tower_angles){ // TODO echo these to LCD ???
|
||||
SERIAL_PROTOCOLPAIR(".Height:", DELTA_HEIGHT + home_offset[Z_AXIS]);
|
||||
if (end_stops) {
|
||||
print_signed_float(PSTR(" Ex"), endstop_adj[A_AXIS]);
|
||||
print_signed_float(PSTR("Ey"), endstop_adj[B_AXIS]);
|
||||
print_signed_float(PSTR("Ez"), endstop_adj[C_AXIS]);
|
||||
SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
|
||||
}
|
||||
SERIAL_EOL();
|
||||
if (tower_angles) {
|
||||
SERIAL_PROTOCOLPGM(".Tower angle : ");
|
||||
print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
|
||||
print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
|
||||
SERIAL_PROTOCOLLNPGM(" Tz:+0.00");
|
||||
}
|
||||
}
|
||||
|
||||
void G33_cleanup(
|
||||
#if HOTENDS > 1
|
||||
const uint8_t old_tool_index
|
||||
#include "gcode/probe/G31_G32.h"
|
||||
#endif
|
||||
) {
|
||||
#if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
|
||||
do_blocking_move_to_z(delta_clip_start_height);
|
||||
#endif
|
||||
STOW_PROBE();
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
#if HOTENDS > 1
|
||||
tool_change(old_tool_index, 0, true);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void gcode_G33() {
|
||||
|
||||
const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
|
||||
if (!WITHIN(probe_points, 1, 7)) {
|
||||
SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (1-7).");
|
||||
return;
|
||||
}
|
||||
|
||||
const int8_t verbose_level = parser.byteval('V', 1);
|
||||
if (!WITHIN(verbose_level, 0, 2)) {
|
||||
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-2).");
|
||||
return;
|
||||
}
|
||||
|
||||
const float calibration_precision = parser.floatval('C');
|
||||
if (calibration_precision < 0) {
|
||||
SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>0).");
|
||||
return;
|
||||
}
|
||||
|
||||
const int8_t force_iterations = parser.intval('F', 0);
|
||||
if (!WITHIN(force_iterations, 0, 30)) {
|
||||
SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
|
||||
return;
|
||||
}
|
||||
|
||||
const bool towers_set = parser.boolval('T', true),
|
||||
stow_after_each = parser.boolval('E'),
|
||||
_1p_calibration = probe_points == 1,
|
||||
_4p_calibration = probe_points == 2,
|
||||
_4p_towers_points = _4p_calibration && towers_set,
|
||||
_4p_opposite_points = _4p_calibration && !towers_set,
|
||||
_7p_calibration = probe_points >= 3,
|
||||
_7p_half_circle = probe_points == 3,
|
||||
_7p_double_circle = probe_points == 5,
|
||||
_7p_triple_circle = probe_points == 6,
|
||||
_7p_quadruple_circle = probe_points == 7,
|
||||
_7p_multi_circle = _7p_double_circle || _7p_triple_circle || _7p_quadruple_circle,
|
||||
_7p_intermed_points = _7p_calibration && !_7p_half_circle;
|
||||
const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
|
||||
const float dx = (X_PROBE_OFFSET_FROM_EXTRUDER),
|
||||
dy = (Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
int8_t iterations = 0;
|
||||
float test_precision,
|
||||
zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
|
||||
zero_std_dev_old = zero_std_dev,
|
||||
zero_std_dev_min = zero_std_dev,
|
||||
e_old[XYZ] = {
|
||||
endstop_adj[A_AXIS],
|
||||
endstop_adj[B_AXIS],
|
||||
endstop_adj[C_AXIS]
|
||||
},
|
||||
dr_old = delta_radius,
|
||||
zh_old = home_offset[Z_AXIS],
|
||||
alpha_old = delta_tower_angle_trim[A_AXIS],
|
||||
beta_old = delta_tower_angle_trim[B_AXIS];
|
||||
|
||||
if (!_1p_calibration) { // test if the outer radius is reachable
|
||||
const float circles = (_7p_quadruple_circle ? 1.5 :
|
||||
_7p_triple_circle ? 1.0 :
|
||||
_7p_double_circle ? 0.5 : 0),
|
||||
r = (1 + circles * 0.1) * delta_calibration_radius;
|
||||
for (uint8_t axis = 1; axis < 13; ++axis) {
|
||||
const float a = RADIANS(180 + 30 * axis);
|
||||
if (!position_is_reachable_xy(cos(a) * r, sin(a) * r)) {
|
||||
SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
|
||||
|
||||
stepper.synchronize();
|
||||
#if HAS_LEVELING
|
||||
reset_bed_level(); // After calibration bed-level data is no longer valid
|
||||
#endif
|
||||
|
||||
#if HOTENDS > 1
|
||||
const uint8_t old_tool_index = active_extruder;
|
||||
tool_change(0, 0, true);
|
||||
#define G33_CLEANUP() G33_cleanup(old_tool_index)
|
||||
#else
|
||||
#define G33_CLEANUP() G33_cleanup()
|
||||
#if PROBE_SELECTED && ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
#include "gcode/calibrate/G33.h"
|
||||
#endif
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
endstops.enable(true);
|
||||
if (!home_delta())
|
||||
return;
|
||||
endstops.not_homing();
|
||||
|
||||
// print settings
|
||||
|
||||
const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
|
||||
serialprintPGM(checkingac);
|
||||
if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
|
||||
SERIAL_EOL();
|
||||
lcd_setstatusPGM(checkingac);
|
||||
|
||||
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
||||
|
||||
#if DISABLED(PROBE_MANUALLY)
|
||||
const float measured_z = probe_pt(dx, dy, stow_after_each, 1, false); // 1st probe to set height
|
||||
if (isnan(measured_z)) return G33_CLEANUP();
|
||||
home_offset[Z_AXIS] -= measured_z;
|
||||
#endif
|
||||
|
||||
do {
|
||||
|
||||
float z_at_pt[13] = { 0.0 };
|
||||
|
||||
test_precision = zero_std_dev_old != 999.0 ? (zero_std_dev + zero_std_dev_old) / 2 : zero_std_dev;
|
||||
|
||||
iterations++;
|
||||
|
||||
// Probe the points
|
||||
|
||||
if (!_7p_half_circle && !_7p_triple_circle) { // probe the center
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
z_at_pt[0] += lcd_probe_pt(0, 0);
|
||||
#else
|
||||
z_at_pt[0] += probe_pt(dx, dy, stow_after_each, 1, false);
|
||||
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
||||
#endif
|
||||
}
|
||||
if (_7p_calibration) { // probe extra center points
|
||||
for (int8_t axis = _7p_multi_circle ? 11 : 9; axis > 0; axis -= _7p_multi_circle ? 2 : 4) {
|
||||
const float a = RADIANS(180 + 30 * axis), r = delta_calibration_radius * 0.1;
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
z_at_pt[0] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
||||
#else
|
||||
z_at_pt[0] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
||||
if (isnan(z_at_pt[0])) return G33_CLEANUP();
|
||||
#endif
|
||||
}
|
||||
z_at_pt[0] /= float(_7p_double_circle ? 7 : probe_points);
|
||||
}
|
||||
if (!_1p_calibration) { // probe the radius
|
||||
bool zig_zag = true;
|
||||
const uint8_t start = _4p_opposite_points ? 3 : 1,
|
||||
step = _4p_calibration ? 4 : _7p_half_circle ? 2 : 1;
|
||||
for (uint8_t axis = start; axis < 13; axis += step) {
|
||||
const float zigadd = (zig_zag ? 0.5 : 0.0),
|
||||
offset_circles = _7p_quadruple_circle ? zigadd + 1.0 :
|
||||
_7p_triple_circle ? zigadd + 0.5 :
|
||||
_7p_double_circle ? zigadd : 0;
|
||||
for (float circles = -offset_circles ; circles <= offset_circles; circles++) {
|
||||
const float a = RADIANS(180 + 30 * axis),
|
||||
r = delta_calibration_radius * (1 + circles * (zig_zag ? 0.1 : -0.1));
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
z_at_pt[axis] += lcd_probe_pt(cos(a) * r, sin(a) * r);
|
||||
#else
|
||||
z_at_pt[axis] += probe_pt(cos(a) * r + dx, sin(a) * r + dy, stow_after_each, 1);
|
||||
if (isnan(z_at_pt[axis])) return G33_CLEANUP();
|
||||
#endif
|
||||
}
|
||||
zig_zag = !zig_zag;
|
||||
z_at_pt[axis] /= (2 * offset_circles + 1);
|
||||
}
|
||||
}
|
||||
if (_7p_intermed_points) // average intermediates to tower and opposites
|
||||
for (uint8_t axis = 1; axis < 13; axis += 2)
|
||||
z_at_pt[axis] = (z_at_pt[axis] + (z_at_pt[axis + 1] + z_at_pt[(axis + 10) % 12 + 1]) / 2.0) / 2.0;
|
||||
|
||||
float S1 = z_at_pt[0],
|
||||
S2 = sq(z_at_pt[0]);
|
||||
int16_t N = 1;
|
||||
if (!_1p_calibration) // std dev from zero plane
|
||||
for (uint8_t axis = (_4p_opposite_points ? 3 : 1); axis < 13; axis += (_4p_calibration ? 4 : 2)) {
|
||||
S1 += z_at_pt[axis];
|
||||
S2 += sq(z_at_pt[axis]);
|
||||
N++;
|
||||
}
|
||||
zero_std_dev_old = zero_std_dev;
|
||||
zero_std_dev = round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
|
||||
|
||||
// Solve matrices
|
||||
|
||||
if ((zero_std_dev < test_precision && zero_std_dev > calibration_precision) || iterations <= force_iterations) {
|
||||
if (zero_std_dev < zero_std_dev_min) {
|
||||
COPY(e_old, endstop_adj);
|
||||
dr_old = delta_radius;
|
||||
zh_old = home_offset[Z_AXIS];
|
||||
alpha_old = delta_tower_angle_trim[A_AXIS];
|
||||
beta_old = delta_tower_angle_trim[B_AXIS];
|
||||
}
|
||||
|
||||
float e_delta[XYZ] = { 0.0 }, r_delta = 0.0, t_alpha = 0.0, t_beta = 0.0;
|
||||
const float r_diff = delta_radius - delta_calibration_radius,
|
||||
h_factor = 1.00 + r_diff * 0.001, //1.02 for r_diff = 20mm
|
||||
r_factor = -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), //2.25 for r_diff = 20mm
|
||||
a_factor = 100.0 / delta_calibration_radius; //1.25 for cal_rd = 80mm
|
||||
|
||||
#define ZP(N,I) ((N) * z_at_pt[I])
|
||||
#define Z1000(I) ZP(1.00, I)
|
||||
#define Z1050(I) ZP(h_factor, I)
|
||||
#define Z0700(I) ZP(h_factor * 2.0 / 3.00, I)
|
||||
#define Z0350(I) ZP(h_factor / 3.00, I)
|
||||
#define Z0175(I) ZP(h_factor / 6.00, I)
|
||||
#define Z2250(I) ZP(r_factor, I)
|
||||
#define Z0750(I) ZP(r_factor / 3.00, I)
|
||||
#define Z0375(I) ZP(r_factor / 6.00, I)
|
||||
#define Z0444(I) ZP(a_factor * 4.0 / 9.0, I)
|
||||
#define Z0888(I) ZP(a_factor * 8.0 / 9.0, I)
|
||||
|
||||
#if ENABLED(PROBE_MANUALLY)
|
||||
test_precision = 0.00; // forced end
|
||||
#endif
|
||||
|
||||
switch (probe_points) {
|
||||
case 1:
|
||||
test_precision = 0.00; // forced end
|
||||
LOOP_XYZ(i) e_delta[i] = Z1000(0);
|
||||
break;
|
||||
|
||||
case 2:
|
||||
if (towers_set) {
|
||||
e_delta[X_AXIS] = Z1050(0) + Z0700(1) - Z0350(5) - Z0350(9);
|
||||
e_delta[Y_AXIS] = Z1050(0) - Z0350(1) + Z0700(5) - Z0350(9);
|
||||
e_delta[Z_AXIS] = Z1050(0) - Z0350(1) - Z0350(5) + Z0700(9);
|
||||
r_delta = Z2250(0) - Z0750(1) - Z0750(5) - Z0750(9);
|
||||
}
|
||||
else {
|
||||
e_delta[X_AXIS] = Z1050(0) - Z0700(7) + Z0350(11) + Z0350(3);
|
||||
e_delta[Y_AXIS] = Z1050(0) + Z0350(7) - Z0700(11) + Z0350(3);
|
||||
e_delta[Z_AXIS] = Z1050(0) + Z0350(7) + Z0350(11) - Z0700(3);
|
||||
r_delta = Z2250(0) - Z0750(7) - Z0750(11) - Z0750(3);
|
||||
}
|
||||
break;
|
||||
|
||||
default:
|
||||
e_delta[X_AXIS] = Z1050(0) + Z0350(1) - Z0175(5) - Z0175(9) - Z0350(7) + Z0175(11) + Z0175(3);
|
||||
e_delta[Y_AXIS] = Z1050(0) - Z0175(1) + Z0350(5) - Z0175(9) + Z0175(7) - Z0350(11) + Z0175(3);
|
||||
e_delta[Z_AXIS] = Z1050(0) - Z0175(1) - Z0175(5) + Z0350(9) + Z0175(7) + Z0175(11) - Z0350(3);
|
||||
r_delta = Z2250(0) - Z0375(1) - Z0375(5) - Z0375(9) - Z0375(7) - Z0375(11) - Z0375(3);
|
||||
|
||||
if (towers_set) {
|
||||
t_alpha = Z0444(1) - Z0888(5) + Z0444(9) + Z0444(7) - Z0888(11) + Z0444(3);
|
||||
t_beta = Z0888(1) - Z0444(5) - Z0444(9) + Z0888(7) - Z0444(11) - Z0444(3);
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
LOOP_XYZ(axis) endstop_adj[axis] += e_delta[axis];
|
||||
delta_radius += r_delta;
|
||||
delta_tower_angle_trim[A_AXIS] += t_alpha;
|
||||
delta_tower_angle_trim[B_AXIS] += t_beta;
|
||||
|
||||
// adjust delta_height and endstops by the max amount
|
||||
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
||||
home_offset[Z_AXIS] -= z_temp;
|
||||
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
|
||||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
else if (zero_std_dev >= test_precision) { // step one back
|
||||
COPY(endstop_adj, e_old);
|
||||
delta_radius = dr_old;
|
||||
home_offset[Z_AXIS] = zh_old;
|
||||
delta_tower_angle_trim[A_AXIS] = alpha_old;
|
||||
delta_tower_angle_trim[B_AXIS] = beta_old;
|
||||
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
NOMORE(zero_std_dev_min, zero_std_dev);
|
||||
|
||||
// print report
|
||||
|
||||
if (verbose_level != 1) {
|
||||
SERIAL_PROTOCOLPGM(". ");
|
||||
print_signed_float(PSTR("c"), z_at_pt[0]);
|
||||
if (_4p_towers_points || _7p_calibration) {
|
||||
print_signed_float(PSTR(" x"), z_at_pt[1]);
|
||||
print_signed_float(PSTR(" y"), z_at_pt[5]);
|
||||
print_signed_float(PSTR(" z"), z_at_pt[9]);
|
||||
}
|
||||
if (!_4p_opposite_points) SERIAL_EOL();
|
||||
if ((_4p_opposite_points) || _7p_calibration) {
|
||||
if (_7p_calibration) {
|
||||
SERIAL_CHAR('.');
|
||||
SERIAL_PROTOCOL_SP(13);
|
||||
}
|
||||
print_signed_float(PSTR(" yz"), z_at_pt[7]);
|
||||
print_signed_float(PSTR("zx"), z_at_pt[11]);
|
||||
print_signed_float(PSTR("xy"), z_at_pt[3]);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
}
|
||||
if (verbose_level != 0) { // !dry run
|
||||
if ((zero_std_dev >= test_precision || zero_std_dev <= calibration_precision) && iterations > force_iterations) { // end iterations
|
||||
SERIAL_PROTOCOLPGM("Calibration OK");
|
||||
SERIAL_PROTOCOL_SP(36);
|
||||
#if DISABLED(PROBE_MANUALLY)
|
||||
if (zero_std_dev >= test_precision && !_1p_calibration)
|
||||
SERIAL_PROTOCOLPGM("rolling back.");
|
||||
else
|
||||
#endif
|
||||
{
|
||||
SERIAL_PROTOCOLPGM("std dev:");
|
||||
SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
|
||||
}
|
||||
SERIAL_EOL();
|
||||
char mess[21];
|
||||
sprintf_P(mess, PSTR("Calibration sd:"));
|
||||
if (zero_std_dev_min < 1)
|
||||
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
|
||||
else
|
||||
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
|
||||
lcd_setstatus(mess);
|
||||
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
||||
serialprintPGM(save_message);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
else { // !end iterations
|
||||
char mess[15];
|
||||
if (iterations < 31)
|
||||
sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
|
||||
else
|
||||
sprintf_P(mess, PSTR("No convergence"));
|
||||
SERIAL_PROTOCOL(mess);
|
||||
SERIAL_PROTOCOL_SP(36);
|
||||
SERIAL_PROTOCOLPGM("std dev:");
|
||||
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
||||
SERIAL_EOL();
|
||||
lcd_setstatus(mess);
|
||||
print_G33_settings(!_1p_calibration, _7p_calibration && towers_set);
|
||||
}
|
||||
}
|
||||
else { // dry run
|
||||
const char *enddryrun = PSTR("End DRY-RUN");
|
||||
serialprintPGM(enddryrun);
|
||||
SERIAL_PROTOCOL_SP(39);
|
||||
SERIAL_PROTOCOLPGM("std dev:");
|
||||
SERIAL_PROTOCOL_F(zero_std_dev, 3);
|
||||
SERIAL_EOL();
|
||||
|
||||
char mess[21];
|
||||
sprintf_P(mess, enddryrun);
|
||||
sprintf_P(&mess[11], PSTR(" sd:"));
|
||||
if (zero_std_dev < 1)
|
||||
sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
|
||||
else
|
||||
sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
|
||||
lcd_setstatus(mess);
|
||||
}
|
||||
|
||||
endstops.enable(true);
|
||||
home_delta();
|
||||
endstops.not_homing();
|
||||
|
||||
}
|
||||
while ((zero_std_dev < test_precision && zero_std_dev > calibration_precision && iterations < 31) || iterations <= force_iterations);
|
||||
|
||||
G33_CLEANUP();
|
||||
}
|
||||
|
||||
#endif // DELTA_AUTO_CALIBRATION
|
||||
|
||||
#endif // PROBE_SELECTED
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
|
||||
static bool G38_run_probe() {
|
||||
|
||||
bool G38_pass_fail = false;
|
||||
|
||||
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
||||
// Get direction of move and retract
|
||||
float retract_mm[XYZ];
|
||||
LOOP_XYZ(i) {
|
||||
float dist = destination[i] - current_position[i];
|
||||
retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
|
||||
}
|
||||
#include "gcode/probe/G38.h"
|
||||
#endif
|
||||
|
||||
stepper.synchronize(); // wait until the machine is idle
|
||||
|
||||
// Move until destination reached or target hit
|
||||
endstops.enable(true);
|
||||
G38_move = true;
|
||||
G38_endstop_hit = false;
|
||||
prepare_move_to_destination();
|
||||
stepper.synchronize();
|
||||
G38_move = false;
|
||||
|
||||
endstops.hit_on_purpose();
|
||||
set_current_from_steppers_for_axis(ALL_AXES);
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
if (G38_endstop_hit) {
|
||||
|
||||
G38_pass_fail = true;
|
||||
|
||||
#if ENABLED(PROBE_DOUBLE_TOUCH)
|
||||
// Move away by the retract distance
|
||||
set_destination_to_current();
|
||||
LOOP_XYZ(i) destination[i] += retract_mm[i];
|
||||
endstops.enable(false);
|
||||
prepare_move_to_destination();
|
||||
stepper.synchronize();
|
||||
|
||||
feedrate_mm_s /= 4;
|
||||
|
||||
// Bump the target more slowly
|
||||
LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
|
||||
|
||||
endstops.enable(true);
|
||||
G38_move = true;
|
||||
prepare_move_to_destination();
|
||||
stepper.synchronize();
|
||||
G38_move = false;
|
||||
|
||||
set_current_from_steppers_for_axis(ALL_AXES);
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
#endif
|
||||
}
|
||||
|
||||
endstops.hit_on_purpose();
|
||||
endstops.not_homing();
|
||||
return G38_pass_fail;
|
||||
}
|
||||
|
||||
/**
|
||||
* G38.2 - probe toward workpiece, stop on contact, signal error if failure
|
||||
* G38.3 - probe toward workpiece, stop on contact
|
||||
*
|
||||
* Like G28 except uses Z min probe for all axes
|
||||
*/
|
||||
inline void gcode_G38(bool is_38_2) {
|
||||
// Get X Y Z E F
|
||||
gcode_get_destination();
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
|
||||
// If any axis has enough movement, do the move
|
||||
LOOP_XYZ(i)
|
||||
if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
|
||||
if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
|
||||
// If G38.2 fails throw an error
|
||||
if (!G38_run_probe() && is_38_2) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("Failed to reach target");
|
||||
}
|
||||
break;
|
||||
}
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
}
|
||||
|
||||
#endif // G38_PROBE_TARGET
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
/**
|
||||
* G42: Move X & Y axes to mesh coordinates (I & J)
|
||||
*/
|
||||
inline void gcode_G42() {
|
||||
if (IsRunning()) {
|
||||
const bool hasI = parser.seenval('I');
|
||||
const int8_t ix = hasI ? parser.value_int() : 0;
|
||||
const bool hasJ = parser.seenval('J');
|
||||
const int8_t iy = hasJ ? parser.value_int() : 0;
|
||||
|
||||
if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
|
||||
SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
|
||||
return;
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
#define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
|
||||
#define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
|
||||
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
|
||||
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
|
||||
#if HAS_MESH
|
||||
#include "gcode/probe/G42.h"
|
||||
#endif
|
||||
|
||||
set_destination_to_current();
|
||||
if (hasI) destination[X_AXIS] = LOGICAL_X_POSITION(_GET_MESH_X(ix));
|
||||
if (hasJ) destination[Y_AXIS] = LOGICAL_Y_POSITION(_GET_MESH_Y(iy));
|
||||
if (parser.boolval('P')) {
|
||||
if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
|
||||
}
|
||||
|
||||
const float fval = parser.linearval('F');
|
||||
if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
|
||||
|
||||
// SCARA kinematic has "safe" XY raw moves
|
||||
#if IS_SCARA
|
||||
prepare_uninterpolated_move_to_destination();
|
||||
#else
|
||||
prepare_move_to_destination();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
/**
|
||||
* G92: Set current position to given X Y Z E
|
||||
*/
|
||||
inline void gcode_G92() {
|
||||
bool didXYZ = false,
|
||||
didE = parser.seenval('E');
|
||||
|
||||
if (!didE) stepper.synchronize();
|
||||
|
||||
LOOP_XYZE(i) {
|
||||
if (parser.seenval(axis_codes[i])) {
|
||||
#if IS_SCARA
|
||||
current_position[i] = parser.value_axis_units((AxisEnum)i);
|
||||
if (i != E_AXIS) didXYZ = true;
|
||||
#else
|
||||
#if HAS_POSITION_SHIFT
|
||||
const float p = current_position[i];
|
||||
#endif
|
||||
const float v = parser.value_axis_units((AxisEnum)i);
|
||||
|
||||
current_position[i] = v;
|
||||
|
||||
if (i != E_AXIS) {
|
||||
didXYZ = true;
|
||||
#if HAS_POSITION_SHIFT
|
||||
position_shift[i] += v - p; // Offset the coordinate space
|
||||
update_software_endstops((AxisEnum)i);
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
I2CPEM.encoders[I2CPEM.idx_from_axis((AxisEnum)i)].set_axis_offset(position_shift[i]);
|
||||
#endif
|
||||
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
}
|
||||
if (didXYZ)
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
else if (didE)
|
||||
sync_plan_position_e();
|
||||
|
||||
report_current_position();
|
||||
}
|
||||
#include "gcode/geometry/G92.h"
|
||||
|
||||
#if HAS_RESUME_CONTINUE
|
||||
|
||||
/**
|
||||
* M0: Unconditional stop - Wait for user button press on LCD
|
||||
* M1: Conditional stop - Wait for user button press on LCD
|
||||
*/
|
||||
inline void gcode_M0_M1() {
|
||||
const char * const args = parser.string_arg;
|
||||
|
||||
millis_t ms = 0;
|
||||
bool hasP = false, hasS = false;
|
||||
if (parser.seenval('P')) {
|
||||
ms = parser.value_millis(); // milliseconds to wait
|
||||
hasP = ms > 0;
|
||||
}
|
||||
if (parser.seenval('S')) {
|
||||
ms = parser.value_millis_from_seconds(); // seconds to wait
|
||||
hasS = ms > 0;
|
||||
}
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
|
||||
if (!hasP && !hasS && args && *args)
|
||||
lcd_setstatus(args, true);
|
||||
else {
|
||||
LCD_MESSAGEPGM(MSG_USERWAIT);
|
||||
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
|
||||
dontExpireStatus();
|
||||
#include "gcode/lcd/M0_M1.h"
|
||||
#endif
|
||||
}
|
||||
|
||||
#else
|
||||
|
||||
if (!hasP && !hasS && args && *args) {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLN(args);
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
wait_for_user = true;
|
||||
|
||||
stepper.synchronize();
|
||||
refresh_cmd_timeout();
|
||||
|
||||
if (ms > 0) {
|
||||
ms += previous_cmd_ms; // wait until this time for a click
|
||||
while (PENDING(millis(), ms) && wait_for_user) idle();
|
||||
}
|
||||
else {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
if (lcd_detected()) {
|
||||
while (wait_for_user) idle();
|
||||
IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
}
|
||||
#else
|
||||
while (wait_for_user) idle();
|
||||
#endif
|
||||
}
|
||||
|
||||
wait_for_user = false;
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
}
|
||||
|
||||
#endif // HAS_RESUME_CONTINUE
|
||||
|
||||
#if ENABLED(SPINDLE_LASER_ENABLE)
|
||||
/**
|
||||
* M3: Spindle Clockwise
|
||||
* M4: Spindle Counter-clockwise
|
||||
*
|
||||
* S0 turns off spindle.
|
||||
*
|
||||
* If no speed PWM output is defined then M3/M4 just turns it on.
|
||||
*
|
||||
* At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
|
||||
* Hardware PWM is required. ISRs are too slow.
|
||||
*
|
||||
* NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
|
||||
* No other settings give a PWM signal that goes from 0 to 5 volts.
|
||||
*
|
||||
* The system automatically sets WGM to Mode 1, so no special
|
||||
* initialization is needed.
|
||||
*
|
||||
* WGM bits for timer 2 are automatically set by the system to
|
||||
* Mode 1. This produces an acceptable 0 to 5 volt signal.
|
||||
* No special initialization is needed.
|
||||
*
|
||||
* NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
|
||||
* factors for timers 2, 3, 4, and 5 are acceptable.
|
||||
*
|
||||
* SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
|
||||
* the spindle/laser during power-up or when connecting to the host
|
||||
* (usually goes through a reset which sets all I/O pins to tri-state)
|
||||
*
|
||||
* PWM duty cycle goes from 0 (off) to 255 (always on).
|
||||
*/
|
||||
|
||||
// Wait for spindle to come up to speed
|
||||
inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
|
||||
|
||||
// Wait for spindle to stop turning
|
||||
inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
|
||||
|
||||
/**
|
||||
* ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
|
||||
*
|
||||
* it accepts inputs of 0-255
|
||||
*/
|
||||
|
||||
inline void ocr_val_mode() {
|
||||
uint8_t spindle_laser_power = parser.value_byte();
|
||||
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
|
||||
if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
|
||||
analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
|
||||
}
|
||||
|
||||
inline void gcode_M3_M4(bool is_M3) {
|
||||
|
||||
stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
|
||||
#if SPINDLE_DIR_CHANGE
|
||||
const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
|
||||
if (SPINDLE_STOP_ON_DIR_CHANGE \
|
||||
&& READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
|
||||
&& READ(SPINDLE_DIR_PIN) != rotation_dir
|
||||
) {
|
||||
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
|
||||
delay_for_power_down();
|
||||
}
|
||||
WRITE(SPINDLE_DIR_PIN, rotation_dir);
|
||||
#include "gcode/control/M3-M5.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
|
||||
* Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
|
||||
* Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
|
||||
*/
|
||||
#if ENABLED(SPINDLE_LASER_PWM)
|
||||
if (parser.seen('O')) ocr_val_mode();
|
||||
else {
|
||||
const float spindle_laser_power = parser.floatval('S');
|
||||
if (spindle_laser_power == 0) {
|
||||
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
|
||||
delay_for_power_down();
|
||||
}
|
||||
else {
|
||||
int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
|
||||
NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
|
||||
if (spindle_laser_power <= SPEED_POWER_MIN)
|
||||
ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
|
||||
if (spindle_laser_power >= SPEED_POWER_MAX)
|
||||
ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
|
||||
if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
|
||||
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
|
||||
analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
|
||||
delay_for_power_up();
|
||||
}
|
||||
}
|
||||
#else
|
||||
WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
|
||||
delay_for_power_up();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M5 turn off spindle
|
||||
*/
|
||||
inline void gcode_M5() {
|
||||
stepper.synchronize();
|
||||
WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
|
||||
delay_for_power_down();
|
||||
}
|
||||
|
||||
#endif // SPINDLE_LASER_ENABLE
|
||||
|
||||
/**
|
||||
* M17: Enable power on all stepper motors
|
||||
*/
|
||||
inline void gcode_M17() {
|
||||
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
||||
enable_all_steppers();
|
||||
}
|
||||
|
||||
#if IS_KINEMATIC
|
||||
#define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
|
||||
#else
|
||||
#define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S)
|
||||
#endif
|
||||
#include "gcode/control/M17.h"
|
||||
|
||||
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
||||
|
||||
static float resume_position[XYZE];
|
||||
static bool move_away_flag = false;
|
||||
#if ENABLED(SDSUPPORT)
|
||||
static bool sd_print_paused = false;
|
||||
#endif
|
||||
|
||||
static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
|
||||
static millis_t next_buzz = 0;
|
||||
static int8_t runout_beep = 0;
|
||||
|
||||
if (init) next_buzz = runout_beep = 0;
|
||||
|
||||
const millis_t ms = millis();
|
||||
if (ELAPSED(ms, next_buzz)) {
|
||||
if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
|
||||
next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
|
||||
BUZZ(300, 2000);
|
||||
runout_beep++;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void ensure_safe_temperature() {
|
||||
bool heaters_heating = true;
|
||||
|
||||
wait_for_heatup = true; // M108 will clear this
|
||||
while (wait_for_heatup && heaters_heating) {
|
||||
idle();
|
||||
heaters_heating = false;
|
||||
HOTEND_LOOP() {
|
||||
if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
|
||||
heaters_heating = true;
|
||||
#if ENABLED(ULTIPANEL)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
|
||||
const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
|
||||
) {
|
||||
if (move_away_flag) return false; // already paused
|
||||
|
||||
if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
||||
if (!thermalManager.allow_cold_extrude &&
|
||||
thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
|
||||
return false;
|
||||
}
|
||||
#endif
|
||||
|
||||
ensure_safe_temperature(); // wait for extruder to heat up before unloading
|
||||
}
|
||||
|
||||
// Indicate that the printer is paused
|
||||
move_away_flag = true;
|
||||
|
||||
// Pause the print job and timer
|
||||
#if ENABLED(SDSUPPORT)
|
||||
if (card.sdprinting) {
|
||||
card.pauseSDPrint();
|
||||
sd_print_paused = true;
|
||||
}
|
||||
#endif
|
||||
print_job_timer.pause();
|
||||
|
||||
// Show initial message and wait for synchronize steppers
|
||||
if (show_lcd) {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
|
||||
#endif
|
||||
}
|
||||
|
||||
// Save current position
|
||||
stepper.synchronize();
|
||||
COPY(resume_position, current_position);
|
||||
|
||||
if (retract) {
|
||||
// Initial retract before move to filament change position
|
||||
set_destination_to_current();
|
||||
destination[E_AXIS] += retract;
|
||||
RUNPLAN(PAUSE_PARK_RETRACT_FEEDRATE);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
// Lift Z axis
|
||||
if (z_lift > 0)
|
||||
do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
|
||||
|
||||
// Move XY axes to filament exchange position
|
||||
do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
|
||||
|
||||
if (unload_length != 0) {
|
||||
if (show_lcd) {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
|
||||
idle();
|
||||
#endif
|
||||
}
|
||||
|
||||
// Unload filament
|
||||
set_destination_to_current();
|
||||
destination[E_AXIS] += unload_length;
|
||||
RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
if (show_lcd) {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if HAS_BUZZER
|
||||
filament_change_beep(max_beep_count, true);
|
||||
#endif
|
||||
|
||||
idle();
|
||||
|
||||
// Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
|
||||
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
|
||||
disable_e_steppers();
|
||||
safe_delay(100);
|
||||
#endif
|
||||
|
||||
// Start the heater idle timers
|
||||
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
|
||||
|
||||
HOTEND_LOOP()
|
||||
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
|
||||
bool nozzle_timed_out = false;
|
||||
|
||||
// Wait for filament insert by user and press button
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
wait_for_user = true; // LCD click or M108 will clear this
|
||||
while (wait_for_user) {
|
||||
#if HAS_BUZZER
|
||||
filament_change_beep(max_beep_count);
|
||||
#endif
|
||||
|
||||
// If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
|
||||
// re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
|
||||
if (!nozzle_timed_out)
|
||||
HOTEND_LOOP()
|
||||
nozzle_timed_out |= thermalManager.is_heater_idle(e);
|
||||
|
||||
if (nozzle_timed_out) {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
|
||||
#endif
|
||||
|
||||
// Wait for LCD click or M108
|
||||
while (wait_for_user) idle(true);
|
||||
|
||||
// Re-enable the heaters if they timed out
|
||||
HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
|
||||
|
||||
// Wait for the heaters to reach the target temperatures
|
||||
ensure_safe_temperature();
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
||||
#endif
|
||||
|
||||
// Start the heater idle timers
|
||||
const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
|
||||
|
||||
HOTEND_LOOP()
|
||||
thermalManager.start_heater_idle_timer(e, nozzle_timeout);
|
||||
|
||||
wait_for_user = true; /* Wait for user to load filament */
|
||||
nozzle_timed_out = false;
|
||||
|
||||
#if HAS_BUZZER
|
||||
filament_change_beep(max_beep_count, true);
|
||||
#endif
|
||||
}
|
||||
|
||||
idle(true);
|
||||
}
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
}
|
||||
|
||||
static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
|
||||
bool nozzle_timed_out = false;
|
||||
|
||||
if (!move_away_flag) return;
|
||||
|
||||
// Re-enable the heaters if they timed out
|
||||
HOTEND_LOOP() {
|
||||
nozzle_timed_out |= thermalManager.is_heater_idle(e);
|
||||
thermalManager.reset_heater_idle_timer(e);
|
||||
}
|
||||
|
||||
if (nozzle_timed_out) ensure_safe_temperature();
|
||||
|
||||
#if HAS_BUZZER
|
||||
filament_change_beep(max_beep_count, true);
|
||||
#endif
|
||||
|
||||
if (load_length != 0) {
|
||||
#if ENABLED(ULTIPANEL)
|
||||
// Show "insert filament"
|
||||
if (nozzle_timed_out)
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
|
||||
#endif
|
||||
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
wait_for_user = true; // LCD click or M108 will clear this
|
||||
while (wait_for_user && nozzle_timed_out) {
|
||||
#if HAS_BUZZER
|
||||
filament_change_beep(max_beep_count);
|
||||
#endif
|
||||
idle(true);
|
||||
}
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
// Show "load" message
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
|
||||
#endif
|
||||
|
||||
// Load filament
|
||||
destination[E_AXIS] += load_length;
|
||||
RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
#if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
|
||||
|
||||
float extrude_length = initial_extrude_length;
|
||||
|
||||
do {
|
||||
if (extrude_length > 0) {
|
||||
// "Wait for filament extrude"
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
|
||||
|
||||
// Extrude filament to get into hotend
|
||||
destination[E_AXIS] += extrude_length;
|
||||
RUNPLAN(ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
// Show "Extrude More" / "Resume" menu and wait for reply
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
wait_for_user = false;
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
|
||||
while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
||||
extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
|
||||
|
||||
// Keep looping if "Extrude More" was selected
|
||||
} while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
// "Wait for print to resume"
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
|
||||
#endif
|
||||
|
||||
// Set extruder to saved position
|
||||
destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
|
||||
planner.set_e_position_mm(current_position[E_AXIS]);
|
||||
|
||||
// Move XY to starting position, then Z
|
||||
do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
|
||||
do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
|
||||
|
||||
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
||||
filament_ran_out = false;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
// Show status screen
|
||||
lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
|
||||
// For M125, M600, M24
|
||||
#include "gcode/feature/pause/common.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
if (sd_print_paused) {
|
||||
card.startFileprint();
|
||||
sd_print_paused = false;
|
||||
}
|
||||
#include "gcode/sdcard/M20.h" // M20 - List SD card. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M21.h" // M21 - Init SD card. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M22.h" // M22 - Release SD card. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M23.h" // M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M24.h" // M24 - Start/resume SD print. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M25.h" // M25 - Pause SD print. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M26.h" // M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M27.h" // M27 - Report SD print status. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M28.h" // M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M29.h" // M29 - Stop SD write. (Requires SDSUPPORT)
|
||||
#include "gcode/sdcard/M30.h" // M30 - Delete file from SD: "M30 /path/file.gco"
|
||||
#endif
|
||||
|
||||
move_away_flag = false;
|
||||
}
|
||||
#endif // ADVANCED_PAUSE_FEATURE
|
||||
#include "gcode/stats/M31.h" // M31: Get the time since the start of SD Print (or last M109)
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
|
||||
/**
|
||||
* M20: List SD card to serial output
|
||||
*/
|
||||
inline void gcode_M20() {
|
||||
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
||||
card.ls();
|
||||
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
||||
}
|
||||
|
||||
/**
|
||||
* M21: Init SD Card
|
||||
*/
|
||||
inline void gcode_M21() { card.initsd(); }
|
||||
|
||||
/**
|
||||
* M22: Release SD Card
|
||||
*/
|
||||
inline void gcode_M22() { card.release(); }
|
||||
|
||||
/**
|
||||
* M23: Open a file
|
||||
*/
|
||||
inline void gcode_M23() {
|
||||
// Simplify3D includes the size, so zero out all spaces (#7227)
|
||||
for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
|
||||
card.openFile(parser.string_arg, true);
|
||||
}
|
||||
|
||||
/**
|
||||
* M24: Start or Resume SD Print
|
||||
*/
|
||||
inline void gcode_M24() {
|
||||
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
||||
resume_print();
|
||||
#endif
|
||||
|
||||
card.startFileprint();
|
||||
print_job_timer.start();
|
||||
}
|
||||
|
||||
/**
|
||||
* M25: Pause SD Print
|
||||
*/
|
||||
inline void gcode_M25() {
|
||||
card.pauseSDPrint();
|
||||
print_job_timer.pause();
|
||||
|
||||
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
||||
enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M26: Set SD Card file index
|
||||
*/
|
||||
inline void gcode_M26() {
|
||||
if (card.cardOK && parser.seenval('S'))
|
||||
card.setIndex(parser.value_long());
|
||||
}
|
||||
|
||||
/**
|
||||
* M27: Get SD Card status
|
||||
*/
|
||||
inline void gcode_M27() { card.getStatus(); }
|
||||
|
||||
/**
|
||||
* M28: Start SD Write
|
||||
*/
|
||||
inline void gcode_M28() { card.openFile(parser.string_arg, false); }
|
||||
|
||||
/**
|
||||
* M29: Stop SD Write
|
||||
* Processed in write to file routine above
|
||||
*/
|
||||
inline void gcode_M29() {
|
||||
// card.saving = false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M30 <filename>: Delete SD Card file
|
||||
*/
|
||||
inline void gcode_M30() {
|
||||
if (card.cardOK) {
|
||||
card.closefile();
|
||||
card.removeFile(parser.string_arg);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // SDSUPPORT
|
||||
|
||||
/**
|
||||
* M31: Get the time since the start of SD Print (or last M109)
|
||||
*/
|
||||
inline void gcode_M31() {
|
||||
char buffer[21];
|
||||
duration_t elapsed = print_job_timer.duration();
|
||||
elapsed.toString(buffer);
|
||||
lcd_setstatus(buffer);
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPAIR("Print time: ", buffer);
|
||||
}
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
|
||||
/**
|
||||
* M32: Select file and start SD Print
|
||||
*/
|
||||
inline void gcode_M32() {
|
||||
if (card.sdprinting)
|
||||
stepper.synchronize();
|
||||
|
||||
char* namestartpos = parser.string_arg;
|
||||
const bool call_procedure = parser.boolval('P');
|
||||
|
||||
if (card.cardOK) {
|
||||
card.openFile(namestartpos, true, call_procedure);
|
||||
|
||||
if (parser.seenval('S'))
|
||||
card.setIndex(parser.value_long());
|
||||
|
||||
card.startFileprint();
|
||||
|
||||
// Procedure calls count as normal print time.
|
||||
if (!call_procedure) print_job_timer.start();
|
||||
}
|
||||
}
|
||||
|
||||
#include "gcode/sdcard/M32.h"
|
||||
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
||||
|
||||
/**
|
||||
* M33: Get the long full path of a file or folder
|
||||
*
|
||||
* Parameters:
|
||||
* <dospath> Case-insensitive DOS-style path to a file or folder
|
||||
*
|
||||
* Example:
|
||||
* M33 miscel~1/armchair/armcha~1.gco
|
||||
*
|
||||
* Output:
|
||||
* /Miscellaneous/Armchair/Armchair.gcode
|
||||
*/
|
||||
inline void gcode_M33() {
|
||||
card.printLongPath(parser.string_arg);
|
||||
}
|
||||
|
||||
#include "gcode/sdcard/M33.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
||||
/**
|
||||
* M34: Set SD Card Sorting Options
|
||||
*/
|
||||
inline void gcode_M34() {
|
||||
if (parser.seen('S')) card.setSortOn(parser.value_bool());
|
||||
if (parser.seenval('F')) {
|
||||
const int v = parser.value_long();
|
||||
card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
|
||||
}
|
||||
//if (parser.seen('R')) card.setSortReverse(parser.value_bool());
|
||||
}
|
||||
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
|
||||
|
||||
/**
|
||||
* M928: Start SD Write
|
||||
*/
|
||||
inline void gcode_M928() {
|
||||
card.openLogFile(parser.string_arg);
|
||||
}
|
||||
|
||||
#endif // SDSUPPORT
|
||||
#include "gcode/sdcard/M34.h"
|
||||
#endif
|
||||
#include "gcode/sdcard/M928.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Sensitive pin test for M42, M226
|
||||
|
@ -6565,673 +3448,29 @@ static bool pin_is_protected(const int8_t pin) {
|
|||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M42: Change pin status via GCode
|
||||
*
|
||||
* P<pin> Pin number (LED if omitted)
|
||||
* S<byte> Pin status from 0 - 255
|
||||
*/
|
||||
inline void gcode_M42() {
|
||||
if (!parser.seenval('S')) return;
|
||||
const byte pin_status = parser.value_byte();
|
||||
|
||||
const int pin_number = parser.intval('P', LED_PIN);
|
||||
if (pin_number < 0) return;
|
||||
|
||||
if (pin_is_protected(pin_number)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
|
||||
return;
|
||||
}
|
||||
|
||||
pinMode(pin_number, OUTPUT);
|
||||
digitalWrite(pin_number, pin_status);
|
||||
analogWrite(pin_number, pin_status);
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
switch (pin_number) {
|
||||
#if HAS_FAN0
|
||||
case FAN_PIN: fanSpeeds[0] = pin_status; break;
|
||||
#endif
|
||||
#if HAS_FAN1
|
||||
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
|
||||
#endif
|
||||
#if HAS_FAN2
|
||||
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
#include "gcode/control/M42.h"
|
||||
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
|
||||
#include "pinsDebug.h"
|
||||
|
||||
inline void toggle_pins() {
|
||||
const bool I_flag = parser.boolval('I');
|
||||
const int repeat = parser.intval('R', 1),
|
||||
start = parser.intval('S'),
|
||||
end = parser.intval('E', NUM_DIGITAL_PINS - 1),
|
||||
wait = parser.intval('W', 500);
|
||||
|
||||
for (uint8_t pin = start; pin <= end; pin++) {
|
||||
//report_pin_state_extended(pin, I_flag, false);
|
||||
if (!VALID_PIN(pin)) continue;
|
||||
if (!I_flag && pin_is_protected(pin)) {
|
||||
report_pin_state_extended(pin, I_flag, true, "Untouched ");
|
||||
SERIAL_EOL();
|
||||
}
|
||||
else {
|
||||
report_pin_state_extended(pin, I_flag, true, "Pulsing ");
|
||||
#if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
|
||||
if (pin == TEENSY_E2) {
|
||||
SET_OUTPUT(TEENSY_E2);
|
||||
for (int16_t j = 0; j < repeat; j++) {
|
||||
WRITE(TEENSY_E2, LOW); safe_delay(wait);
|
||||
WRITE(TEENSY_E2, HIGH); safe_delay(wait);
|
||||
WRITE(TEENSY_E2, LOW); safe_delay(wait);
|
||||
}
|
||||
}
|
||||
else if (pin == TEENSY_E3) {
|
||||
SET_OUTPUT(TEENSY_E3);
|
||||
for (int16_t j = 0; j < repeat; j++) {
|
||||
WRITE(TEENSY_E3, LOW); safe_delay(wait);
|
||||
WRITE(TEENSY_E3, HIGH); safe_delay(wait);
|
||||
WRITE(TEENSY_E3, LOW); safe_delay(wait);
|
||||
}
|
||||
}
|
||||
else
|
||||
#include "gcode/config/M43.h"
|
||||
#endif
|
||||
{
|
||||
pinMode(pin, OUTPUT);
|
||||
for (int16_t j = 0; j < repeat; j++) {
|
||||
digitalWrite(pin, 0); safe_delay(wait);
|
||||
digitalWrite(pin, 1); safe_delay(wait);
|
||||
digitalWrite(pin, 0); safe_delay(wait);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
SERIAL_ECHOLNPGM("Done.");
|
||||
|
||||
} // toggle_pins
|
||||
|
||||
inline void servo_probe_test() {
|
||||
#if !(NUM_SERVOS > 0 && HAS_SERVO_0)
|
||||
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("SERVO not setup");
|
||||
|
||||
#elif !HAS_Z_SERVO_ENDSTOP
|
||||
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
|
||||
|
||||
#else // HAS_Z_SERVO_ENDSTOP
|
||||
|
||||
const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("Servo probe test");
|
||||
SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
|
||||
SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
|
||||
SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
|
||||
|
||||
bool probe_inverting;
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
|
||||
|
||||
#define PROBE_TEST_PIN Z_MIN_PIN
|
||||
|
||||
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
|
||||
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
|
||||
SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
|
||||
|
||||
#if Z_MIN_ENDSTOP_INVERTING
|
||||
SERIAL_PROTOCOLLNPGM("true");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("false");
|
||||
#endif
|
||||
|
||||
probe_inverting = Z_MIN_ENDSTOP_INVERTING;
|
||||
|
||||
#elif ENABLED(Z_MIN_PROBE_ENDSTOP)
|
||||
|
||||
#define PROBE_TEST_PIN Z_MIN_PROBE_PIN
|
||||
SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
|
||||
SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
|
||||
SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
|
||||
|
||||
#if Z_MIN_PROBE_ENDSTOP_INVERTING
|
||||
SERIAL_PROTOCOLLNPGM("true");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("false");
|
||||
#endif
|
||||
|
||||
probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
|
||||
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
|
||||
SET_INPUT_PULLUP(PROBE_TEST_PIN);
|
||||
bool deploy_state, stow_state;
|
||||
for (uint8_t i = 0; i < 4; i++) {
|
||||
MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
|
||||
safe_delay(500);
|
||||
deploy_state = READ(PROBE_TEST_PIN);
|
||||
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
|
||||
safe_delay(500);
|
||||
stow_state = READ(PROBE_TEST_PIN);
|
||||
}
|
||||
if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
|
||||
|
||||
refresh_cmd_timeout();
|
||||
|
||||
if (deploy_state != stow_state) {
|
||||
SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
|
||||
if (deploy_state) {
|
||||
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
|
||||
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
|
||||
}
|
||||
else {
|
||||
SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
|
||||
SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
|
||||
}
|
||||
#if ENABLED(BLTOUCH)
|
||||
SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
|
||||
#endif
|
||||
|
||||
}
|
||||
else { // measure active signal length
|
||||
MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
|
||||
safe_delay(500);
|
||||
SERIAL_PROTOCOLLNPGM("please trigger probe");
|
||||
uint16_t probe_counter = 0;
|
||||
|
||||
// Allow 30 seconds max for operator to trigger probe
|
||||
for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
|
||||
|
||||
safe_delay(2);
|
||||
|
||||
if (0 == j % (500 * 1)) // keep cmd_timeout happy
|
||||
refresh_cmd_timeout();
|
||||
|
||||
if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
|
||||
|
||||
for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
|
||||
safe_delay(2);
|
||||
|
||||
if (probe_counter == 50)
|
||||
SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
|
||||
else if (probe_counter >= 2)
|
||||
SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
|
||||
else
|
||||
SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
|
||||
|
||||
MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
|
||||
|
||||
} // pulse detected
|
||||
|
||||
} // for loop waiting for trigger
|
||||
|
||||
if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
|
||||
|
||||
} // measure active signal length
|
||||
|
||||
#endif
|
||||
|
||||
} // servo_probe_test
|
||||
|
||||
/**
|
||||
* M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
|
||||
*
|
||||
* M43 - report name and state of pin(s)
|
||||
* P<pin> Pin to read or watch. If omitted, reads all pins.
|
||||
* I Flag to ignore Marlin's pin protection.
|
||||
*
|
||||
* M43 W - Watch pins -reporting changes- until reset, click, or M108.
|
||||
* P<pin> Pin to read or watch. If omitted, read/watch all pins.
|
||||
* I Flag to ignore Marlin's pin protection.
|
||||
*
|
||||
* M43 E<bool> - Enable / disable background endstop monitoring
|
||||
* - Machine continues to operate
|
||||
* - Reports changes to endstops
|
||||
* - Toggles LED_PIN when an endstop changes
|
||||
* - Can not reliably catch the 5mS pulse from BLTouch type probes
|
||||
*
|
||||
* M43 T - Toggle pin(s) and report which pin is being toggled
|
||||
* S<pin> - Start Pin number. If not given, will default to 0
|
||||
* L<pin> - End Pin number. If not given, will default to last pin defined for this board
|
||||
* I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
|
||||
* R - Repeat pulses on each pin this number of times before continueing to next pin
|
||||
* W - Wait time (in miliseconds) between pulses. If not given will default to 500
|
||||
*
|
||||
* M43 S - Servo probe test
|
||||
* P<index> - Probe index (optional - defaults to 0
|
||||
*/
|
||||
inline void gcode_M43() {
|
||||
|
||||
if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
|
||||
toggle_pins();
|
||||
return;
|
||||
}
|
||||
|
||||
// Enable or disable endstop monitoring
|
||||
if (parser.seen('E')) {
|
||||
endstop_monitor_flag = parser.value_bool();
|
||||
SERIAL_PROTOCOLPGM("endstop monitor ");
|
||||
serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
|
||||
SERIAL_PROTOCOLLNPGM("abled");
|
||||
return;
|
||||
}
|
||||
|
||||
if (parser.seen('S')) {
|
||||
servo_probe_test();
|
||||
return;
|
||||
}
|
||||
|
||||
// Get the range of pins to test or watch
|
||||
const uint8_t first_pin = parser.byteval('P'),
|
||||
last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
|
||||
|
||||
if (first_pin > last_pin) return;
|
||||
|
||||
const bool ignore_protection = parser.boolval('I');
|
||||
|
||||
// Watch until click, M108, or reset
|
||||
if (parser.boolval('W')) {
|
||||
SERIAL_PROTOCOLLNPGM("Watching pins");
|
||||
uint8_t pin_state[last_pin - first_pin + 1];
|
||||
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
|
||||
if (!VALID_PIN(pin)) continue;
|
||||
if (pin_is_protected(pin) && !ignore_protection) continue;
|
||||
pinMode(pin, INPUT_PULLUP);
|
||||
delay(1);
|
||||
/*
|
||||
if (IS_ANALOG(pin))
|
||||
pin_state[pin - first_pin] = analogRead(DIGITAL_PIN_TO_ANALOG_PIN(pin)); // int16_t pin_state[...]
|
||||
else
|
||||
//*/
|
||||
pin_state[pin - first_pin] = digitalRead(pin);
|
||||
}
|
||||
|
||||
#if HAS_RESUME_CONTINUE
|
||||
wait_for_user = true;
|
||||
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
||||
#endif
|
||||
|
||||
for (;;) {
|
||||
for (int8_t pin = first_pin; pin <= last_pin; pin++) {
|
||||
if (!VALID_PIN(pin)) continue;
|
||||
if (pin_is_protected(pin) && !ignore_protection) continue;
|
||||
const byte val =
|
||||
/*
|
||||
IS_ANALOG(pin)
|
||||
? analogRead(DIGITAL_PIN_TO_ANALOG_PIN(pin)) : // int16_t val
|
||||
:
|
||||
//*/
|
||||
digitalRead(pin);
|
||||
if (val != pin_state[pin - first_pin]) {
|
||||
report_pin_state_extended(pin, ignore_protection, false);
|
||||
pin_state[pin - first_pin] = val;
|
||||
}
|
||||
}
|
||||
|
||||
#if HAS_RESUME_CONTINUE
|
||||
if (!wait_for_user) {
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
|
||||
safe_delay(200);
|
||||
}
|
||||
return;
|
||||
}
|
||||
|
||||
// Report current state of selected pin(s)
|
||||
for (uint8_t pin = first_pin; pin <= last_pin; pin++)
|
||||
if (VALID_PIN(pin)) report_pin_state_extended(pin, ignore_protection, true);
|
||||
}
|
||||
|
||||
#endif // PINS_DEBUGGING
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
||||
|
||||
/**
|
||||
* M48: Z probe repeatability measurement function.
|
||||
*
|
||||
* Usage:
|
||||
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
|
||||
* P = Number of sampled points (4-50, default 10)
|
||||
* X = Sample X position
|
||||
* Y = Sample Y position
|
||||
* V = Verbose level (0-4, default=1)
|
||||
* E = Engage Z probe for each reading
|
||||
* L = Number of legs of movement before probe
|
||||
* S = Schizoid (Or Star if you prefer)
|
||||
*
|
||||
* This function assumes the bed has been homed. Specifically, that a G28 command
|
||||
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
|
||||
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
||||
* regenerated.
|
||||
*/
|
||||
inline void gcode_M48() {
|
||||
|
||||
if (axis_unhomed_error()) return;
|
||||
|
||||
const int8_t verbose_level = parser.byteval('V', 1);
|
||||
if (!WITHIN(verbose_level, 0, 4)) {
|
||||
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
||||
return;
|
||||
}
|
||||
|
||||
if (verbose_level > 0)
|
||||
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
|
||||
|
||||
const int8_t n_samples = parser.byteval('P', 10);
|
||||
if (!WITHIN(n_samples, 4, 50)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
|
||||
return;
|
||||
}
|
||||
|
||||
const bool stow_probe_after_each = parser.boolval('E');
|
||||
|
||||
float X_current = current_position[X_AXIS],
|
||||
Y_current = current_position[Y_AXIS];
|
||||
|
||||
const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
|
||||
Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
|
||||
out_of_range_error(PSTR("X"));
|
||||
return;
|
||||
}
|
||||
if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
|
||||
out_of_range_error(PSTR("Y"));
|
||||
return;
|
||||
}
|
||||
#else
|
||||
if (!position_is_reachable_by_probe_xy(X_probe_location, Y_probe_location)) {
|
||||
SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
|
||||
return;
|
||||
}
|
||||
#include "gcode/calibrate/M48.h"
|
||||
#endif
|
||||
|
||||
bool seen_L = parser.seen('L');
|
||||
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
|
||||
if (n_legs > 15) {
|
||||
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
|
||||
return;
|
||||
}
|
||||
if (n_legs == 1) n_legs = 2;
|
||||
|
||||
const bool schizoid_flag = parser.boolval('S');
|
||||
if (schizoid_flag && !seen_L) n_legs = 7;
|
||||
|
||||
/**
|
||||
* Now get everything to the specified probe point So we can safely do a
|
||||
* probe to get us close to the bed. If the Z-Axis is far from the bed,
|
||||
* we don't want to use that as a starting point for each probe.
|
||||
*/
|
||||
if (verbose_level > 2)
|
||||
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
|
||||
|
||||
// Disable bed level correction in M48 because we want the raw data when we probe
|
||||
|
||||
#if HAS_LEVELING
|
||||
const bool was_enabled = leveling_is_active();
|
||||
set_bed_leveling_enabled(false);
|
||||
#endif
|
||||
|
||||
setup_for_endstop_or_probe_move();
|
||||
|
||||
double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
|
||||
|
||||
// Move to the first point, deploy, and probe
|
||||
const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
|
||||
bool probing_good = !isnan(t);
|
||||
|
||||
if (probing_good) {
|
||||
randomSeed(millis());
|
||||
|
||||
for (uint8_t n = 0; n < n_samples; n++) {
|
||||
if (n_legs) {
|
||||
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
||||
float angle = random(0.0, 360.0);
|
||||
const float radius = random(
|
||||
#if ENABLED(DELTA)
|
||||
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
||||
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
||||
#else
|
||||
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
||||
#endif
|
||||
);
|
||||
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
||||
SERIAL_ECHOPAIR(" angle: ", angle);
|
||||
SERIAL_ECHOPGM(" Direction: ");
|
||||
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
||||
SERIAL_ECHOLNPGM("Clockwise");
|
||||
}
|
||||
|
||||
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
||||
double delta_angle;
|
||||
|
||||
if (schizoid_flag)
|
||||
// The points of a 5 point star are 72 degrees apart. We need to
|
||||
// skip a point and go to the next one on the star.
|
||||
delta_angle = dir * 2.0 * 72.0;
|
||||
|
||||
else
|
||||
// If we do this line, we are just trying to move further
|
||||
// around the circle.
|
||||
delta_angle = dir * (float) random(25, 45);
|
||||
|
||||
angle += delta_angle;
|
||||
|
||||
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
||||
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
||||
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
||||
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
||||
|
||||
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
||||
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
||||
|
||||
#if DISABLED(DELTA)
|
||||
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
||||
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
||||
#else
|
||||
// If we have gone out too far, we can do a simple fix and scale the numbers
|
||||
// back in closer to the origin.
|
||||
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
|
||||
X_current *= 0.8;
|
||||
Y_current *= 0.8;
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
||||
SERIAL_ECHOLNPAIR(", ", Y_current);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
if (verbose_level > 3) {
|
||||
SERIAL_PROTOCOLPGM("Going to:");
|
||||
SERIAL_ECHOPAIR(" X", X_current);
|
||||
SERIAL_ECHOPAIR(" Y", Y_current);
|
||||
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
||||
}
|
||||
do_blocking_move_to_xy(X_current, Y_current);
|
||||
} // n_legs loop
|
||||
} // n_legs
|
||||
|
||||
// Probe a single point
|
||||
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
|
||||
|
||||
// Break the loop if the probe fails
|
||||
probing_good = !isnan(sample_set[n]);
|
||||
if (!probing_good) break;
|
||||
|
||||
/**
|
||||
* Get the current mean for the data points we have so far
|
||||
*/
|
||||
double sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
||||
mean = sum / (n + 1);
|
||||
|
||||
NOMORE(min, sample_set[n]);
|
||||
NOLESS(max, sample_set[n]);
|
||||
|
||||
/**
|
||||
* Now, use that mean to calculate the standard deviation for the
|
||||
* data points we have so far
|
||||
*/
|
||||
sum = 0.0;
|
||||
for (uint8_t j = 0; j <= n; j++)
|
||||
sum += sq(sample_set[j] - mean);
|
||||
|
||||
sigma = SQRT(sum / (n + 1));
|
||||
if (verbose_level > 0) {
|
||||
if (verbose_level > 1) {
|
||||
SERIAL_PROTOCOL(n + 1);
|
||||
SERIAL_PROTOCOLPGM(" of ");
|
||||
SERIAL_PROTOCOL((int)n_samples);
|
||||
SERIAL_PROTOCOLPGM(": z: ");
|
||||
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
||||
if (verbose_level > 2) {
|
||||
SERIAL_PROTOCOLPGM(" mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 4);
|
||||
SERIAL_PROTOCOLPGM(" sigma: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_PROTOCOLPGM(" min: ");
|
||||
SERIAL_PROTOCOL_F(min, 3);
|
||||
SERIAL_PROTOCOLPGM(" max: ");
|
||||
SERIAL_PROTOCOL_F(max, 3);
|
||||
SERIAL_PROTOCOLPGM(" range: ");
|
||||
SERIAL_PROTOCOL_F(max-min, 3);
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
}
|
||||
|
||||
} // n_samples loop
|
||||
}
|
||||
|
||||
STOW_PROBE();
|
||||
|
||||
if (probing_good) {
|
||||
SERIAL_PROTOCOLLNPGM("Finished!");
|
||||
|
||||
if (verbose_level > 0) {
|
||||
SERIAL_PROTOCOLPGM("Mean: ");
|
||||
SERIAL_PROTOCOL_F(mean, 6);
|
||||
SERIAL_PROTOCOLPGM(" Min: ");
|
||||
SERIAL_PROTOCOL_F(min, 3);
|
||||
SERIAL_PROTOCOLPGM(" Max: ");
|
||||
SERIAL_PROTOCOL_F(max, 3);
|
||||
SERIAL_PROTOCOLPGM(" Range: ");
|
||||
SERIAL_PROTOCOL_F(max-min, 3);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
||||
SERIAL_PROTOCOL_F(sigma, 6);
|
||||
SERIAL_EOL();
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
clean_up_after_endstop_or_probe_move();
|
||||
|
||||
// Re-enable bed level correction if it had been on
|
||||
#if HAS_LEVELING
|
||||
set_bed_leveling_enabled(was_enabled);
|
||||
#endif
|
||||
|
||||
report_current_position();
|
||||
}
|
||||
|
||||
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
#include "gcode/calibrate/M49.h"
|
||||
#endif
|
||||
|
||||
inline void gcode_M49() {
|
||||
ubl.g26_debug_flag ^= true;
|
||||
SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
|
||||
serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
|
||||
|
||||
/**
|
||||
* M75: Start print timer
|
||||
*/
|
||||
inline void gcode_M75() { print_job_timer.start(); }
|
||||
|
||||
/**
|
||||
* M76: Pause print timer
|
||||
*/
|
||||
inline void gcode_M76() { print_job_timer.pause(); }
|
||||
|
||||
/**
|
||||
* M77: Stop print timer
|
||||
*/
|
||||
inline void gcode_M77() { print_job_timer.stop(); }
|
||||
#include "gcode/stats/M75.h"
|
||||
#include "gcode/stats/M76.h"
|
||||
#include "gcode/stats/M77.h"
|
||||
|
||||
#if ENABLED(PRINTCOUNTER)
|
||||
/**
|
||||
* M78: Show print statistics
|
||||
*/
|
||||
inline void gcode_M78() {
|
||||
// "M78 S78" will reset the statistics
|
||||
if (parser.intval('S') == 78)
|
||||
print_job_timer.initStats();
|
||||
else
|
||||
print_job_timer.showStats();
|
||||
}
|
||||
#include "gcode/stats/M78.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M104: Set hot end temperature
|
||||
*/
|
||||
inline void gcode_M104() {
|
||||
if (get_target_extruder_from_command(104)) return;
|
||||
if (DEBUGGING(DRYRUN)) return;
|
||||
|
||||
#if ENABLED(SINGLENOZZLE)
|
||||
if (target_extruder != active_extruder) return;
|
||||
#endif
|
||||
|
||||
if (parser.seenval('S')) {
|
||||
const int16_t temp = parser.value_celsius();
|
||||
thermalManager.setTargetHotend(temp, target_extruder);
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
||||
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
|
||||
#endif
|
||||
|
||||
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
||||
/**
|
||||
* Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
|
||||
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
||||
* standby mode, for instance in a dual extruder setup, without affecting
|
||||
* the running print timer.
|
||||
*/
|
||||
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
|
||||
print_job_timer.stop();
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
}
|
||||
#endif
|
||||
|
||||
if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
|
||||
lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
|
||||
}
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
planner.autotemp_M104_M109();
|
||||
#endif
|
||||
}
|
||||
#include "gcode/temperature/M104.h"
|
||||
|
||||
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
||||
|
||||
|
@ -7305,41 +3544,16 @@ inline void gcode_M104() {
|
|||
}
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M105: Read hot end and bed temperature
|
||||
*/
|
||||
inline void gcode_M105() {
|
||||
if (get_target_extruder_from_command(105)) return;
|
||||
#endif // HAS_TEMP_HOTEND || HAS_TEMP_BED
|
||||
|
||||
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
||||
SERIAL_PROTOCOLPGM(MSG_OK);
|
||||
print_heaterstates();
|
||||
#else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
||||
#endif
|
||||
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#include "gcode/temperature/M105.h"
|
||||
|
||||
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
||||
|
||||
static uint8_t auto_report_temp_interval;
|
||||
static millis_t next_temp_report_ms;
|
||||
|
||||
/**
|
||||
* M155: Set temperature auto-report interval. M155 S<seconds>
|
||||
*/
|
||||
inline void gcode_M155() {
|
||||
if (parser.seenval('S')) {
|
||||
auto_report_temp_interval = parser.value_byte();
|
||||
NOMORE(auto_report_temp_interval, 60);
|
||||
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
||||
}
|
||||
}
|
||||
|
||||
inline void auto_report_temperatures() {
|
||||
if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
|
||||
next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
|
||||
|
@ -7348,617 +3562,67 @@ inline void gcode_M105() {
|
|||
}
|
||||
}
|
||||
|
||||
#endif // AUTO_REPORT_TEMPERATURES
|
||||
#include "gcode/temperature/M155.h"
|
||||
|
||||
#endif // AUTO_REPORT_TEMPERATURES && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
|
||||
/**
|
||||
* M106: Set Fan Speed
|
||||
*
|
||||
* S<int> Speed between 0-255
|
||||
* P<index> Fan index, if more than one fan
|
||||
*/
|
||||
inline void gcode_M106() {
|
||||
uint16_t s = parser.ushortval('S', 255);
|
||||
NOMORE(s, 255);
|
||||
const uint8_t p = parser.byteval('P', 0);
|
||||
if (p < FAN_COUNT) fanSpeeds[p] = s;
|
||||
}
|
||||
|
||||
/**
|
||||
* M107: Fan Off
|
||||
*/
|
||||
inline void gcode_M107() {
|
||||
const uint16_t p = parser.ushortval('P');
|
||||
if (p < FAN_COUNT) fanSpeeds[p] = 0;
|
||||
}
|
||||
|
||||
#endif // FAN_COUNT > 0
|
||||
#include "gcode/temperature/M106.h"
|
||||
#include "gcode/temperature/M107.h"
|
||||
#endif
|
||||
|
||||
#if DISABLED(EMERGENCY_PARSER)
|
||||
|
||||
/**
|
||||
* M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
|
||||
*/
|
||||
inline void gcode_M108() { wait_for_heatup = false; }
|
||||
|
||||
|
||||
/**
|
||||
* M112: Emergency Stop
|
||||
*/
|
||||
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
|
||||
|
||||
|
||||
/**
|
||||
* M410: Quickstop - Abort all planned moves
|
||||
*
|
||||
* This will stop the carriages mid-move, so most likely they
|
||||
* will be out of sync with the stepper position after this.
|
||||
*/
|
||||
inline void gcode_M410() { quickstop_stepper(); }
|
||||
|
||||
#include "gcode/control/M108.h"
|
||||
#include "gcode/control/M112.h"
|
||||
#include "gcode/control/M410.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
|
||||
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
|
||||
*/
|
||||
|
||||
#ifndef MIN_COOLING_SLOPE_DEG
|
||||
#define MIN_COOLING_SLOPE_DEG 1.50
|
||||
#endif
|
||||
#ifndef MIN_COOLING_SLOPE_TIME
|
||||
#define MIN_COOLING_SLOPE_TIME 60
|
||||
#endif
|
||||
|
||||
inline void gcode_M109() {
|
||||
|
||||
if (get_target_extruder_from_command(109)) return;
|
||||
if (DEBUGGING(DRYRUN)) return;
|
||||
|
||||
#if ENABLED(SINGLENOZZLE)
|
||||
if (target_extruder != active_extruder) return;
|
||||
#endif
|
||||
|
||||
const bool no_wait_for_cooling = parser.seenval('S');
|
||||
if (no_wait_for_cooling || parser.seenval('R')) {
|
||||
const int16_t temp = parser.value_celsius();
|
||||
thermalManager.setTargetHotend(temp, target_extruder);
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
||||
thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
|
||||
#endif
|
||||
|
||||
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
||||
/**
|
||||
* Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
|
||||
* standby mode, (e.g., in a dual extruder setup) without affecting
|
||||
* the running print timer.
|
||||
*/
|
||||
if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
|
||||
print_job_timer.stop();
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
}
|
||||
else
|
||||
print_job_timer.start();
|
||||
#endif
|
||||
|
||||
if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
|
||||
}
|
||||
else return;
|
||||
|
||||
#if ENABLED(AUTOTEMP)
|
||||
planner.autotemp_M104_M109();
|
||||
#endif
|
||||
|
||||
#if TEMP_RESIDENCY_TIME > 0
|
||||
millis_t residency_start_ms = 0;
|
||||
// Loop until the temperature has stabilized
|
||||
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
|
||||
#else
|
||||
// Loop until the temperature is very close target
|
||||
#define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
|
||||
#endif
|
||||
|
||||
float target_temp = -1.0, old_temp = 9999.0;
|
||||
bool wants_to_cool = false;
|
||||
wait_for_heatup = true;
|
||||
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
||||
|
||||
#if DISABLED(BUSY_WHILE_HEATING)
|
||||
KEEPALIVE_STATE(NOT_BUSY);
|
||||
#endif
|
||||
|
||||
#if ENABLED(PRINTER_EVENT_LEDS)
|
||||
const float start_temp = thermalManager.degHotend(target_extruder);
|
||||
uint8_t old_blue = 0;
|
||||
#endif
|
||||
|
||||
do {
|
||||
// Target temperature might be changed during the loop
|
||||
if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
|
||||
wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
|
||||
target_temp = thermalManager.degTargetHotend(target_extruder);
|
||||
|
||||
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
||||
if (no_wait_for_cooling && wants_to_cool) break;
|
||||
}
|
||||
|
||||
now = millis();
|
||||
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
|
||||
next_temp_ms = now + 1000UL;
|
||||
print_heaterstates();
|
||||
#if TEMP_RESIDENCY_TIME > 0
|
||||
SERIAL_PROTOCOLPGM(" W:");
|
||||
if (residency_start_ms)
|
||||
SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
||||
else
|
||||
SERIAL_PROTOCOLCHAR('?');
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
idle();
|
||||
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
||||
|
||||
const float temp = thermalManager.degHotend(target_extruder);
|
||||
|
||||
#if ENABLED(PRINTER_EVENT_LEDS)
|
||||
// Gradually change LED strip from violet to red as nozzle heats up
|
||||
if (!wants_to_cool) {
|
||||
const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
|
||||
if (blue != old_blue) {
|
||||
old_blue = blue;
|
||||
set_led_color(255, 0, blue
|
||||
#if ENABLED(NEOPIXEL_RGBW_LED)
|
||||
, 0, true
|
||||
#endif
|
||||
);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if TEMP_RESIDENCY_TIME > 0
|
||||
|
||||
const float temp_diff = FABS(target_temp - temp);
|
||||
|
||||
if (!residency_start_ms) {
|
||||
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
||||
if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
|
||||
}
|
||||
else if (temp_diff > TEMP_HYSTERESIS) {
|
||||
// Restart the timer whenever the temperature falls outside the hysteresis.
|
||||
residency_start_ms = now;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
||||
if (wants_to_cool) {
|
||||
// break after MIN_COOLING_SLOPE_TIME seconds
|
||||
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
|
||||
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
||||
if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
|
||||
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
|
||||
old_temp = temp;
|
||||
}
|
||||
}
|
||||
|
||||
} while (wait_for_heatup && TEMP_CONDITIONS);
|
||||
|
||||
if (wait_for_heatup) {
|
||||
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
||||
#if ENABLED(PRINTER_EVENT_LEDS)
|
||||
#if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
|
||||
set_led_color(0, 0, 0, 255); // Turn on the WHITE LED
|
||||
#else
|
||||
set_led_color(255, 255, 255); // Set LEDs All On
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
#if DISABLED(BUSY_WHILE_HEATING)
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
#endif
|
||||
}
|
||||
#include "gcode/temperature/M109.h"
|
||||
|
||||
#if HAS_TEMP_BED
|
||||
|
||||
#ifndef MIN_COOLING_SLOPE_DEG_BED
|
||||
#define MIN_COOLING_SLOPE_DEG_BED 1.50
|
||||
#endif
|
||||
#ifndef MIN_COOLING_SLOPE_TIME_BED
|
||||
#define MIN_COOLING_SLOPE_TIME_BED 60
|
||||
#include "gcode/temperature/M190.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
||||
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
||||
*/
|
||||
inline void gcode_M190() {
|
||||
if (DEBUGGING(DRYRUN)) return;
|
||||
#include "gcode/host/M110.h"
|
||||
|
||||
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
||||
const bool no_wait_for_cooling = parser.seenval('S');
|
||||
if (no_wait_for_cooling || parser.seenval('R')) {
|
||||
thermalManager.setTargetBed(parser.value_celsius());
|
||||
#if ENABLED(PRINTJOB_TIMER_AUTOSTART)
|
||||
if (parser.value_celsius() > BED_MINTEMP)
|
||||
print_job_timer.start();
|
||||
#endif
|
||||
}
|
||||
else return;
|
||||
|
||||
#if TEMP_BED_RESIDENCY_TIME > 0
|
||||
millis_t residency_start_ms = 0;
|
||||
// Loop until the temperature has stabilized
|
||||
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
|
||||
#else
|
||||
// Loop until the temperature is very close target
|
||||
#define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
|
||||
#endif
|
||||
|
||||
float target_temp = -1.0, old_temp = 9999.0;
|
||||
bool wants_to_cool = false;
|
||||
wait_for_heatup = true;
|
||||
millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
|
||||
|
||||
#if DISABLED(BUSY_WHILE_HEATING)
|
||||
KEEPALIVE_STATE(NOT_BUSY);
|
||||
#endif
|
||||
|
||||
target_extruder = active_extruder; // for print_heaterstates
|
||||
|
||||
#if ENABLED(PRINTER_EVENT_LEDS)
|
||||
const float start_temp = thermalManager.degBed();
|
||||
uint8_t old_red = 255;
|
||||
#endif
|
||||
|
||||
do {
|
||||
// Target temperature might be changed during the loop
|
||||
if (target_temp != thermalManager.degTargetBed()) {
|
||||
wants_to_cool = thermalManager.isCoolingBed();
|
||||
target_temp = thermalManager.degTargetBed();
|
||||
|
||||
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
||||
if (no_wait_for_cooling && wants_to_cool) break;
|
||||
}
|
||||
|
||||
now = millis();
|
||||
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
||||
next_temp_ms = now + 1000UL;
|
||||
print_heaterstates();
|
||||
#if TEMP_BED_RESIDENCY_TIME > 0
|
||||
SERIAL_PROTOCOLPGM(" W:");
|
||||
if (residency_start_ms)
|
||||
SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
|
||||
else
|
||||
SERIAL_PROTOCOLCHAR('?');
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
idle();
|
||||
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
||||
|
||||
const float temp = thermalManager.degBed();
|
||||
|
||||
#if ENABLED(PRINTER_EVENT_LEDS)
|
||||
// Gradually change LED strip from blue to violet as bed heats up
|
||||
if (!wants_to_cool) {
|
||||
const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
|
||||
if (red != old_red) {
|
||||
old_red = red;
|
||||
set_led_color(red, 0, 255
|
||||
#if ENABLED(NEOPIXEL_RGBW_LED)
|
||||
, 0, true
|
||||
#endif
|
||||
);
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
#if TEMP_BED_RESIDENCY_TIME > 0
|
||||
|
||||
const float temp_diff = FABS(target_temp - temp);
|
||||
|
||||
if (!residency_start_ms) {
|
||||
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
||||
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
|
||||
}
|
||||
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
||||
// Restart the timer whenever the temperature falls outside the hysteresis.
|
||||
residency_start_ms = now;
|
||||
}
|
||||
|
||||
#endif // TEMP_BED_RESIDENCY_TIME > 0
|
||||
|
||||
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
||||
if (wants_to_cool) {
|
||||
// Break after MIN_COOLING_SLOPE_TIME_BED seconds
|
||||
// if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
|
||||
if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
|
||||
if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
|
||||
next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
|
||||
old_temp = temp;
|
||||
}
|
||||
}
|
||||
|
||||
} while (wait_for_heatup && TEMP_BED_CONDITIONS);
|
||||
|
||||
if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
|
||||
#if DISABLED(BUSY_WHILE_HEATING)
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // HAS_TEMP_BED
|
||||
|
||||
/**
|
||||
* M110: Set Current Line Number
|
||||
*/
|
||||
inline void gcode_M110() {
|
||||
if (parser.seenval('N')) gcode_LastN = parser.value_long();
|
||||
}
|
||||
|
||||
/**
|
||||
* M111: Set the debug level
|
||||
*/
|
||||
inline void gcode_M111() {
|
||||
if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
|
||||
|
||||
const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
|
||||
str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
|
||||
str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
|
||||
str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
|
||||
str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
, str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
|
||||
#endif
|
||||
;
|
||||
|
||||
const static char* const debug_strings[] PROGMEM = {
|
||||
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
, str_debug_32
|
||||
#endif
|
||||
};
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
|
||||
if (marlin_debug_flags) {
|
||||
uint8_t comma = 0;
|
||||
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
|
||||
if (TEST(marlin_debug_flags, i)) {
|
||||
if (comma++) SERIAL_CHAR(',');
|
||||
serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
|
||||
}
|
||||
}
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#include "gcode/control/M111.h"
|
||||
|
||||
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
||||
|
||||
/**
|
||||
* M113: Get or set Host Keepalive interval (0 to disable)
|
||||
*
|
||||
* S<seconds> Optional. Set the keepalive interval.
|
||||
*/
|
||||
inline void gcode_M113() {
|
||||
if (parser.seenval('S')) {
|
||||
host_keepalive_interval = parser.value_byte();
|
||||
NOMORE(host_keepalive_interval, 60);
|
||||
}
|
||||
else {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
|
||||
}
|
||||
}
|
||||
|
||||
#include "gcode/host/M113.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(BARICUDA)
|
||||
|
||||
#if HAS_HEATER_1
|
||||
/**
|
||||
* M126: Heater 1 valve open
|
||||
*/
|
||||
inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
|
||||
/**
|
||||
* M127: Heater 1 valve close
|
||||
*/
|
||||
inline void gcode_M127() { baricuda_valve_pressure = 0; }
|
||||
#include "gcode/feature/baricuda/M126.h"
|
||||
#include "gcode/feature/baricuda/M127.h"
|
||||
#endif
|
||||
|
||||
#if HAS_HEATER_2
|
||||
/**
|
||||
* M128: Heater 2 valve open
|
||||
*/
|
||||
inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
|
||||
/**
|
||||
* M129: Heater 2 valve close
|
||||
*/
|
||||
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
|
||||
#include "gcode/feature/baricuda/M128.h"
|
||||
#include "gcode/feature/baricuda/M129.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#endif // BARICUDA
|
||||
|
||||
/**
|
||||
* M140: Set bed temperature
|
||||
*/
|
||||
inline void gcode_M140() {
|
||||
if (DEBUGGING(DRYRUN)) return;
|
||||
if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
|
||||
}
|
||||
#include "gcode/temperature/M140.h"
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
|
||||
/**
|
||||
* M145: Set the heatup state for a material in the LCD menu
|
||||
*
|
||||
* S<material> (0=PLA, 1=ABS)
|
||||
* H<hotend temp>
|
||||
* B<bed temp>
|
||||
* F<fan speed>
|
||||
*/
|
||||
inline void gcode_M145() {
|
||||
const uint8_t material = (uint8_t)parser.intval('S');
|
||||
if (material >= COUNT(lcd_preheat_hotend_temp)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
|
||||
}
|
||||
else {
|
||||
int v;
|
||||
if (parser.seenval('H')) {
|
||||
v = parser.value_int();
|
||||
lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
||||
}
|
||||
if (parser.seenval('F')) {
|
||||
v = parser.value_int();
|
||||
lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
|
||||
}
|
||||
#if TEMP_SENSOR_BED != 0
|
||||
if (parser.seenval('B')) {
|
||||
v = parser.value_int();
|
||||
lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
||||
}
|
||||
#include "gcode/lcd/M145.h"
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // ULTIPANEL
|
||||
|
||||
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
||||
/**
|
||||
* M149: Set temperature units
|
||||
*/
|
||||
inline void gcode_M149() {
|
||||
if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
|
||||
else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
|
||||
else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
|
||||
}
|
||||
#include "gcode/units/M149.h"
|
||||
#endif
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
|
||||
/**
|
||||
* M80 : Turn on the Power Supply
|
||||
* M80 S : Report the current state and exit
|
||||
*/
|
||||
inline void gcode_M80() {
|
||||
|
||||
// S: Report the current power supply state and exit
|
||||
if (parser.seen('S')) {
|
||||
serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
|
||||
return;
|
||||
}
|
||||
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
|
||||
|
||||
/**
|
||||
* If you have a switch on suicide pin, this is useful
|
||||
* if you want to start another print with suicide feature after
|
||||
* a print without suicide...
|
||||
*/
|
||||
#if HAS_SUICIDE
|
||||
OUT_WRITE(SUICIDE_PIN, HIGH);
|
||||
#include "gcode/control/M80.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
delay(100);
|
||||
tmc2130_init(); // Settings only stick when the driver has power
|
||||
#endif
|
||||
#include "gcode/control/M81.h"
|
||||
|
||||
powersupply_on = true;
|
||||
#include "gcode/units/M82_M83.h"
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
LCD_MESSAGEPGM(WELCOME_MSG);
|
||||
#endif
|
||||
}
|
||||
#include "gcode/control/M18_M84.h"
|
||||
|
||||
#endif // HAS_POWER_SWITCH
|
||||
|
||||
/**
|
||||
* M81: Turn off Power, including Power Supply, if there is one.
|
||||
*
|
||||
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
|
||||
*/
|
||||
inline void gcode_M81() {
|
||||
thermalManager.disable_all_heaters();
|
||||
stepper.finish_and_disable();
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
||||
#if ENABLED(PROBING_FANS_OFF)
|
||||
fans_paused = false;
|
||||
ZERO(paused_fanSpeeds);
|
||||
#endif
|
||||
#endif
|
||||
|
||||
safe_delay(1000); // Wait 1 second before switching off
|
||||
|
||||
#if HAS_SUICIDE
|
||||
stepper.synchronize();
|
||||
suicide();
|
||||
#elif HAS_POWER_SWITCH
|
||||
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
||||
powersupply_on = false;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M82: Set E codes absolute (default)
|
||||
*/
|
||||
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
||||
|
||||
/**
|
||||
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
|
||||
*/
|
||||
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
||||
|
||||
/**
|
||||
* M18, M84: Disable stepper motors
|
||||
*/
|
||||
inline void gcode_M18_M84() {
|
||||
if (parser.seenval('S')) {
|
||||
stepper_inactive_time = parser.value_millis_from_seconds();
|
||||
}
|
||||
else {
|
||||
bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
|
||||
if (all_axis) {
|
||||
stepper.finish_and_disable();
|
||||
}
|
||||
else {
|
||||
stepper.synchronize();
|
||||
if (parser.seen('X')) disable_X();
|
||||
if (parser.seen('Y')) disable_Y();
|
||||
if (parser.seen('Z')) disable_Z();
|
||||
#if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
|
||||
if (parser.seen('E')) disable_e_steppers();
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
|
||||
ubl_lcd_map_control = defer_return_to_status = false;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
||||
*/
|
||||
inline void gcode_M85() {
|
||||
if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
|
||||
}
|
||||
#include "gcode/control/M85.h"
|
||||
|
||||
/**
|
||||
* Multi-stepper support for M92, M201, M203
|
||||
|
@ -7971,35 +3635,11 @@ inline void gcode_M85() {
|
|||
#define TARGET_EXTRUDER 0
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
|
||||
* (Follows the same syntax as G92)
|
||||
*
|
||||
* With multiple extruders use T to specify which one.
|
||||
*/
|
||||
inline void gcode_M92() {
|
||||
#include "gcode/config/M92.h"
|
||||
|
||||
GET_TARGET_EXTRUDER(92);
|
||||
|
||||
LOOP_XYZE(i) {
|
||||
if (parser.seen(axis_codes[i])) {
|
||||
if (i == E_AXIS) {
|
||||
const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
|
||||
if (value < 20.0) {
|
||||
float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
|
||||
planner.max_jerk[E_AXIS] *= factor;
|
||||
planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
|
||||
planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
|
||||
}
|
||||
planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
|
||||
}
|
||||
else {
|
||||
planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
|
||||
}
|
||||
}
|
||||
}
|
||||
planner.refresh_positioning();
|
||||
}
|
||||
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
||||
#include "gcode/calibrate/M100.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Output the current position to serial
|
||||
|
@ -8023,1204 +3663,118 @@ void report_current_position() {
|
|||
#endif
|
||||
}
|
||||
|
||||
#ifdef M114_DETAIL
|
||||
#include "gcode/host/M114.h"
|
||||
#include "gcode/host/M115.h"
|
||||
|
||||
void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
|
||||
char str[12];
|
||||
for (uint8_t i = 0; i < n; i++) {
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_CHAR(axis_codes[i]);
|
||||
SERIAL_CHAR(':');
|
||||
SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#include "gcode/lcd/M117.h"
|
||||
|
||||
inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
|
||||
#include "gcode/host/M118.h"
|
||||
#include "gcode/host/M119.h"
|
||||
|
||||
void report_current_position_detail() {
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
SERIAL_PROTOCOLPGM("\nLogical:");
|
||||
report_xyze(current_position);
|
||||
|
||||
SERIAL_PROTOCOLPGM("Raw: ");
|
||||
const float raw[XYZ] = { RAW_X_POSITION(current_position[X_AXIS]), RAW_Y_POSITION(current_position[Y_AXIS]), RAW_Z_POSITION(current_position[Z_AXIS]) };
|
||||
report_xyz(raw);
|
||||
|
||||
SERIAL_PROTOCOLPGM("Leveled:");
|
||||
float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
||||
planner.apply_leveling(leveled);
|
||||
report_xyz(leveled);
|
||||
|
||||
SERIAL_PROTOCOLPGM("UnLevel:");
|
||||
float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
|
||||
planner.unapply_leveling(unleveled);
|
||||
report_xyz(unleveled);
|
||||
|
||||
#if IS_KINEMATIC
|
||||
#if IS_SCARA
|
||||
SERIAL_PROTOCOLPGM("ScaraK: ");
|
||||
#else
|
||||
SERIAL_PROTOCOLPGM("DeltaK: ");
|
||||
#endif
|
||||
inverse_kinematics(leveled); // writes delta[]
|
||||
report_xyz(delta);
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM("Stepper:");
|
||||
const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
|
||||
report_xyze(step_count, 4, 0);
|
||||
|
||||
#if IS_SCARA
|
||||
const float deg[XYZ] = {
|
||||
stepper.get_axis_position_degrees(A_AXIS),
|
||||
stepper.get_axis_position_degrees(B_AXIS)
|
||||
};
|
||||
SERIAL_PROTOCOLPGM("Degrees:");
|
||||
report_xyze(deg, 2);
|
||||
#endif
|
||||
|
||||
SERIAL_PROTOCOLPGM("FromStp:");
|
||||
get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
|
||||
const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
|
||||
report_xyze(from_steppers);
|
||||
|
||||
const float diff[XYZE] = {
|
||||
from_steppers[X_AXIS] - leveled[X_AXIS],
|
||||
from_steppers[Y_AXIS] - leveled[Y_AXIS],
|
||||
from_steppers[Z_AXIS] - leveled[Z_AXIS],
|
||||
from_steppers[E_AXIS] - current_position[E_AXIS]
|
||||
};
|
||||
SERIAL_PROTOCOLPGM("Differ: ");
|
||||
report_xyze(diff);
|
||||
}
|
||||
#endif // M114_DETAIL
|
||||
|
||||
/**
|
||||
* M114: Report current position to host
|
||||
*/
|
||||
inline void gcode_M114() {
|
||||
|
||||
#ifdef M114_DETAIL
|
||||
if (parser.seen('D')) {
|
||||
report_current_position_detail();
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
stepper.synchronize();
|
||||
report_current_position();
|
||||
}
|
||||
|
||||
/**
|
||||
* M115: Capabilities string
|
||||
*/
|
||||
inline void gcode_M115() {
|
||||
SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
|
||||
|
||||
#if ENABLED(EXTENDED_CAPABILITIES_REPORT)
|
||||
|
||||
// EEPROM (M500, M501)
|
||||
#if ENABLED(EEPROM_SETTINGS)
|
||||
SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
|
||||
#endif
|
||||
|
||||
// AUTOREPORT_TEMP (M155)
|
||||
#if ENABLED(AUTO_REPORT_TEMPERATURES)
|
||||
SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
|
||||
#endif
|
||||
|
||||
// PROGRESS (M530 S L, M531 <file>, M532 X L)
|
||||
SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
|
||||
|
||||
// Print Job timer M75, M76, M77
|
||||
SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
|
||||
|
||||
// AUTOLEVEL (G29)
|
||||
#if HAS_ABL
|
||||
SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
|
||||
#endif
|
||||
|
||||
// Z_PROBE (G30)
|
||||
#if HAS_BED_PROBE
|
||||
SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
|
||||
#endif
|
||||
|
||||
// MESH_REPORT (M420 V)
|
||||
#if HAS_LEVELING
|
||||
SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
|
||||
#endif
|
||||
|
||||
// SOFTWARE_POWER (M80, M81)
|
||||
#if HAS_POWER_SWITCH
|
||||
SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
|
||||
#endif
|
||||
|
||||
// CASE LIGHTS (M355)
|
||||
#if HAS_CASE_LIGHT
|
||||
SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
|
||||
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
|
||||
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
|
||||
}
|
||||
else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
|
||||
SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
|
||||
#endif
|
||||
|
||||
// EMERGENCY_PARSER (M108, M112, M410)
|
||||
#if ENABLED(EMERGENCY_PARSER)
|
||||
SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
|
||||
#else
|
||||
SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
|
||||
#endif
|
||||
|
||||
#endif // EXTENDED_CAPABILITIES_REPORT
|
||||
}
|
||||
|
||||
/**
|
||||
* M117: Set LCD Status Message
|
||||
*/
|
||||
inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
|
||||
|
||||
/**
|
||||
* M118: Display a message in the host console.
|
||||
*
|
||||
* A Append '// ' for an action command, as in OctoPrint
|
||||
* E Have the host 'echo:' the text
|
||||
*/
|
||||
inline void gcode_M118() {
|
||||
if (parser.boolval('E')) SERIAL_ECHO_START();
|
||||
if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
|
||||
SERIAL_ECHOLN(parser.string_arg);
|
||||
}
|
||||
|
||||
/**
|
||||
* M119: Output endstop states to serial output
|
||||
*/
|
||||
inline void gcode_M119() { endstops.M119(); }
|
||||
|
||||
/**
|
||||
* M120: Enable endstops and set non-homing endstop state to "enabled"
|
||||
*/
|
||||
inline void gcode_M120() { endstops.enable_globally(true); }
|
||||
|
||||
/**
|
||||
* M121: Disable endstops and set non-homing endstop state to "disabled"
|
||||
*/
|
||||
inline void gcode_M121() { endstops.enable_globally(false); }
|
||||
#include "gcode/control/M120_M121.h"
|
||||
|
||||
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
||||
|
||||
/**
|
||||
* M125: Store current position and move to filament change position.
|
||||
* Called on pause (by M25) to prevent material leaking onto the
|
||||
* object. On resume (M24) the head will be moved back and the
|
||||
* print will resume.
|
||||
*
|
||||
* If Marlin is compiled without SD Card support, M125 can be
|
||||
* used directly to pause the print and move to park position,
|
||||
* resuming with a button click or M108.
|
||||
*
|
||||
* L = override retract length
|
||||
* X = override X
|
||||
* Y = override Y
|
||||
* Z = override Z raise
|
||||
*/
|
||||
inline void gcode_M125() {
|
||||
|
||||
// Initial retract before move to filament change position
|
||||
const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
|
||||
#ifdef PAUSE_PARK_RETRACT_LENGTH
|
||||
- (PAUSE_PARK_RETRACT_LENGTH)
|
||||
#include "gcode/feature/pause/M125.h"
|
||||
#endif
|
||||
;
|
||||
|
||||
// Lift Z axis
|
||||
const float z_lift = parser.linearval('Z')
|
||||
#ifdef PAUSE_PARK_Z_ADD
|
||||
+ PAUSE_PARK_Z_ADD
|
||||
#endif
|
||||
;
|
||||
|
||||
// Move XY axes to filament change position or given position
|
||||
const float x_pos = parser.linearval('X')
|
||||
#ifdef PAUSE_PARK_X_POS
|
||||
+ PAUSE_PARK_X_POS
|
||||
#endif
|
||||
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
|
||||
+ (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
|
||||
#endif
|
||||
;
|
||||
const float y_pos = parser.linearval('Y')
|
||||
#ifdef PAUSE_PARK_Y_POS
|
||||
+ PAUSE_PARK_Y_POS
|
||||
#endif
|
||||
#if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
|
||||
+ (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
|
||||
#endif
|
||||
;
|
||||
|
||||
#if DISABLED(SDSUPPORT)
|
||||
const bool job_running = print_job_timer.isRunning();
|
||||
#endif
|
||||
|
||||
if (pause_print(retract, z_lift, x_pos, y_pos)) {
|
||||
#if DISABLED(SDSUPPORT)
|
||||
// Wait for lcd click or M108
|
||||
wait_for_filament_reload();
|
||||
|
||||
// Return to print position and continue
|
||||
resume_print();
|
||||
|
||||
if (job_running) print_job_timer.start();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // PARK_HEAD_ON_PAUSE
|
||||
|
||||
#if HAS_COLOR_LEDS
|
||||
|
||||
/**
|
||||
* M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
|
||||
*
|
||||
* Always sets all 3 or 4 components. If a component is left out, set to 0.
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* M150 R255 ; Turn LED red
|
||||
* M150 R255 U127 ; Turn LED orange (PWM only)
|
||||
* M150 ; Turn LED off
|
||||
* M150 R U B ; Turn LED white
|
||||
* M150 W ; Turn LED white using a white LED
|
||||
*
|
||||
*/
|
||||
inline void gcode_M150() {
|
||||
set_led_color(
|
||||
parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
||||
parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
|
||||
parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
|
||||
#if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_RGBW_LED)
|
||||
, parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
|
||||
#include "gcode/feature/leds/M150.h"
|
||||
#endif
|
||||
);
|
||||
}
|
||||
|
||||
#endif // HAS_COLOR_LEDS
|
||||
|
||||
/**
|
||||
* M200: Set filament diameter and set E axis units to cubic units
|
||||
*
|
||||
* T<extruder> - Optional extruder number. Current extruder if omitted.
|
||||
* D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
|
||||
*/
|
||||
inline void gcode_M200() {
|
||||
|
||||
if (get_target_extruder_from_command(200)) return;
|
||||
|
||||
if (parser.seen('D')) {
|
||||
// setting any extruder filament size disables volumetric on the assumption that
|
||||
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
||||
// for all extruders
|
||||
volumetric_enabled = (parser.value_linear_units() != 0.0);
|
||||
if (volumetric_enabled) {
|
||||
filament_size[target_extruder] = parser.value_linear_units();
|
||||
// make sure all extruders have some sane value for the filament size
|
||||
for (uint8_t i = 0; i < COUNT(filament_size); i++)
|
||||
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
||||
}
|
||||
}
|
||||
calculate_volumetric_multipliers();
|
||||
}
|
||||
|
||||
/**
|
||||
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
||||
*
|
||||
* With multiple extruders use T to specify which one.
|
||||
*/
|
||||
inline void gcode_M201() {
|
||||
|
||||
GET_TARGET_EXTRUDER(201);
|
||||
|
||||
LOOP_XYZE(i) {
|
||||
if (parser.seen(axis_codes[i])) {
|
||||
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
|
||||
planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
|
||||
}
|
||||
}
|
||||
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
||||
planner.reset_acceleration_rates();
|
||||
}
|
||||
#include "gcode/config/M200.h"
|
||||
#include "gcode/config/M201.h"
|
||||
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
inline void gcode_M202() {
|
||||
LOOP_XYZE(i) {
|
||||
if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
|
||||
}
|
||||
}
|
||||
#include "gcode/config/M202.h"
|
||||
#endif
|
||||
|
||||
|
||||
/**
|
||||
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
|
||||
*
|
||||
* With multiple extruders use T to specify which one.
|
||||
*/
|
||||
inline void gcode_M203() {
|
||||
|
||||
GET_TARGET_EXTRUDER(203);
|
||||
|
||||
LOOP_XYZE(i)
|
||||
if (parser.seen(axis_codes[i])) {
|
||||
const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
|
||||
planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
|
||||
*
|
||||
* P = Printing moves
|
||||
* R = Retract only (no X, Y, Z) moves
|
||||
* T = Travel (non printing) moves
|
||||
*
|
||||
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
||||
*/
|
||||
inline void gcode_M204() {
|
||||
if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
||||
planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
|
||||
SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
|
||||
}
|
||||
if (parser.seen('P')) {
|
||||
planner.acceleration = parser.value_linear_units();
|
||||
SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
|
||||
}
|
||||
if (parser.seen('R')) {
|
||||
planner.retract_acceleration = parser.value_linear_units();
|
||||
SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
|
||||
}
|
||||
if (parser.seen('T')) {
|
||||
planner.travel_acceleration = parser.value_linear_units();
|
||||
SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M205: Set Advanced Settings
|
||||
*
|
||||
* S = Min Feed Rate (units/s)
|
||||
* T = Min Travel Feed Rate (units/s)
|
||||
* B = Min Segment Time (µs)
|
||||
* X = Max X Jerk (units/sec^2)
|
||||
* Y = Max Y Jerk (units/sec^2)
|
||||
* Z = Max Z Jerk (units/sec^2)
|
||||
* E = Max E Jerk (units/sec^2)
|
||||
*/
|
||||
inline void gcode_M205() {
|
||||
if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
|
||||
if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
|
||||
if (parser.seen('B')) planner.min_segment_time = parser.value_millis();
|
||||
if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
|
||||
if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
|
||||
if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
|
||||
if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
|
||||
}
|
||||
#include "gcode/config/M203.h"
|
||||
#include "gcode/config/M204.h"
|
||||
#include "gcode/config/M205.h"
|
||||
|
||||
#if HAS_M206_COMMAND
|
||||
|
||||
/**
|
||||
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
||||
*
|
||||
* *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
|
||||
* *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
|
||||
* *** In the 2.0 release, it will simply be disabled by default.
|
||||
*/
|
||||
inline void gcode_M206() {
|
||||
LOOP_XYZ(i)
|
||||
if (parser.seen(axis_codes[i]))
|
||||
set_home_offset((AxisEnum)i, parser.value_linear_units());
|
||||
|
||||
#if ENABLED(MORGAN_SCARA)
|
||||
if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_linear_units()); // Theta
|
||||
if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_linear_units()); // Psi
|
||||
#include "gcode/geometry/M206.h"
|
||||
#endif
|
||||
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
report_current_position();
|
||||
}
|
||||
|
||||
#endif // HAS_M206_COMMAND
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
/**
|
||||
* M665: Set delta configurations
|
||||
*
|
||||
* H = delta height
|
||||
* L = diagonal rod
|
||||
* R = delta radius
|
||||
* S = segments per second
|
||||
* B = delta calibration radius
|
||||
* X = Alpha (Tower 1) angle trim
|
||||
* Y = Beta (Tower 2) angle trim
|
||||
* Z = Rotate A and B by this angle
|
||||
*/
|
||||
inline void gcode_M665() {
|
||||
if (parser.seen('H')) {
|
||||
home_offset[Z_AXIS] = parser.value_linear_units() - DELTA_HEIGHT;
|
||||
update_software_endstops(Z_AXIS);
|
||||
}
|
||||
if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
|
||||
if (parser.seen('R')) delta_radius = parser.value_linear_units();
|
||||
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
||||
if (parser.seen('B')) delta_calibration_radius = parser.value_float();
|
||||
if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
|
||||
if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
|
||||
if (parser.seen('Z')) { // rotate all 3 axis for Z = 0
|
||||
delta_tower_angle_trim[A_AXIS] -= parser.value_float();
|
||||
delta_tower_angle_trim[B_AXIS] -= parser.value_float();
|
||||
}
|
||||
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
||||
}
|
||||
/**
|
||||
* M666: Set delta endstop adjustment
|
||||
*/
|
||||
inline void gcode_M666() {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
||||
}
|
||||
#if IS_KINEMATIC
|
||||
#include "gcode/calibrate/M665.h"
|
||||
#endif
|
||||
LOOP_XYZ(i) {
|
||||
if (parser.seen(axis_codes[i])) {
|
||||
endstop_adj[i] = parser.value_linear_units();
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
|
||||
SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
|
||||
}
|
||||
|
||||
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
|
||||
#include "gcode/calibrate/M666.h"
|
||||
#endif
|
||||
}
|
||||
}
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
||||
}
|
||||
#endif
|
||||
// normalize endstops so all are <=0; set the residue to delta height
|
||||
const float z_temp = MAX3(endstop_adj[A_AXIS], endstop_adj[B_AXIS], endstop_adj[C_AXIS]);
|
||||
home_offset[Z_AXIS] -= z_temp;
|
||||
LOOP_XYZ(i) endstop_adj[i] -= z_temp;
|
||||
}
|
||||
|
||||
#elif IS_SCARA
|
||||
|
||||
/**
|
||||
* M665: Set SCARA settings
|
||||
*
|
||||
* Parameters:
|
||||
*
|
||||
* S[segments-per-second] - Segments-per-second
|
||||
* P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
|
||||
* T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
|
||||
*
|
||||
* A, P, and X are all aliases for the shoulder angle
|
||||
* B, T, and Y are all aliases for the elbow angle
|
||||
*/
|
||||
inline void gcode_M665() {
|
||||
if (parser.seen('S')) delta_segments_per_second = parser.value_float();
|
||||
|
||||
const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
|
||||
const uint8_t sumAPX = hasA + hasP + hasX;
|
||||
if (sumAPX == 1)
|
||||
home_offset[A_AXIS] = parser.value_float();
|
||||
else if (sumAPX > 1) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
|
||||
return;
|
||||
}
|
||||
|
||||
const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
|
||||
const uint8_t sumBTY = hasB + hasT + hasY;
|
||||
if (sumBTY == 1)
|
||||
home_offset[B_AXIS] = parser.value_float();
|
||||
else if (sumBTY > 1) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
|
||||
return;
|
||||
}
|
||||
}
|
||||
|
||||
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
|
||||
|
||||
/**
|
||||
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
|
||||
*/
|
||||
inline void gcode_M666() {
|
||||
if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
|
||||
SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
|
||||
}
|
||||
|
||||
#endif // !DELTA && Z_DUAL_ENDSTOPS
|
||||
|
||||
#if ENABLED(FWRETRACT)
|
||||
|
||||
/**
|
||||
* M207: Set firmware retraction values
|
||||
*
|
||||
* S[+units] retract_length
|
||||
* W[+units] swap_retract_length (multi-extruder)
|
||||
* F[units/min] retract_feedrate_mm_s
|
||||
* Z[units] retract_zlift
|
||||
*/
|
||||
inline void gcode_M207() {
|
||||
if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
|
||||
if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
||||
if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
|
||||
if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
|
||||
}
|
||||
|
||||
/**
|
||||
* M208: Set firmware un-retraction values
|
||||
*
|
||||
* S[+units] retract_recover_length (in addition to M207 S*)
|
||||
* W[+units] swap_retract_recover_length (multi-extruder)
|
||||
* F[units/min] retract_recover_feedrate_mm_s
|
||||
* R[units/min] swap_retract_recover_feedrate_mm_s
|
||||
*/
|
||||
inline void gcode_M208() {
|
||||
if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
|
||||
if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
||||
if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
|
||||
if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
|
||||
}
|
||||
|
||||
/**
|
||||
* M209: Enable automatic retract (M209 S1)
|
||||
* For slicers that don't support G10/11, reversed extrude-only
|
||||
* moves will be classified as retraction.
|
||||
*/
|
||||
inline void gcode_M209() {
|
||||
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
|
||||
if (parser.seen('S')) {
|
||||
autoretract_enabled = parser.value_bool();
|
||||
for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
#endif // FWRETRACT
|
||||
|
||||
/**
|
||||
* M211: Enable, Disable, and/or Report software endstops
|
||||
*
|
||||
* Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
|
||||
*/
|
||||
inline void gcode_M211() {
|
||||
SERIAL_ECHO_START();
|
||||
#if HAS_SOFTWARE_ENDSTOPS
|
||||
if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
|
||||
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
||||
serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
|
||||
#else
|
||||
SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
|
||||
SERIAL_ECHOPGM(MSG_OFF);
|
||||
#include "gcode/feature/fwretract/M207.h"
|
||||
#include "gcode/feature/fwretract/M208.h"
|
||||
#include "gcode/feature/fwretract/M209.h"
|
||||
#endif
|
||||
SERIAL_ECHOPGM(MSG_SOFT_MIN);
|
||||
SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
|
||||
SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
|
||||
SERIAL_ECHOPGM(MSG_SOFT_MAX);
|
||||
SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
|
||||
SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
|
||||
}
|
||||
|
||||
#include "gcode/control/M211.h"
|
||||
|
||||
#if HOTENDS > 1
|
||||
|
||||
/**
|
||||
* M218 - set hotend offset (in linear units)
|
||||
*
|
||||
* T<tool>
|
||||
* X<xoffset>
|
||||
* Y<yoffset>
|
||||
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
|
||||
*/
|
||||
inline void gcode_M218() {
|
||||
if (get_target_extruder_from_command(218) || target_extruder == 0) return;
|
||||
|
||||
if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
|
||||
if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
|
||||
if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
|
||||
#include "gcode/config/M218.h"
|
||||
#endif
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
HOTEND_LOOP() {
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
|
||||
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
|
||||
#endif
|
||||
}
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#include "gcode/config/M220.h"
|
||||
#include "gcode/config/M221.h"
|
||||
|
||||
#endif // HOTENDS > 1
|
||||
|
||||
/**
|
||||
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
||||
*/
|
||||
inline void gcode_M220() {
|
||||
if (parser.seenval('S')) feedrate_percentage = parser.value_int();
|
||||
}
|
||||
|
||||
/**
|
||||
* M221: Set extrusion percentage (M221 T0 S95)
|
||||
*/
|
||||
inline void gcode_M221() {
|
||||
if (get_target_extruder_from_command(221)) return;
|
||||
if (parser.seenval('S'))
|
||||
flow_percentage[target_extruder] = parser.value_int();
|
||||
}
|
||||
|
||||
/**
|
||||
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
||||
*/
|
||||
inline void gcode_M226() {
|
||||
if (parser.seen('P')) {
|
||||
const int pin_number = parser.value_int(),
|
||||
pin_state = parser.intval('S', -1); // required pin state - default is inverted
|
||||
|
||||
if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
|
||||
|
||||
int target = LOW;
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
pinMode(pin_number, INPUT);
|
||||
switch (pin_state) {
|
||||
case 1:
|
||||
target = HIGH;
|
||||
break;
|
||||
case 0:
|
||||
target = LOW;
|
||||
break;
|
||||
case -1:
|
||||
target = !digitalRead(pin_number);
|
||||
break;
|
||||
}
|
||||
|
||||
while (digitalRead(pin_number) != target) idle();
|
||||
|
||||
} // pin_state -1 0 1 && pin_number > -1
|
||||
} // parser.seen('P')
|
||||
}
|
||||
#include "gcode/control/M226.h"
|
||||
|
||||
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
||||
|
||||
/**
|
||||
* M260: Send data to a I2C slave device
|
||||
*
|
||||
* This is a PoC, the formating and arguments for the GCODE will
|
||||
* change to be more compatible, the current proposal is:
|
||||
*
|
||||
* M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
|
||||
*
|
||||
* M260 B<byte-1 value in base 10>
|
||||
* M260 B<byte-2 value in base 10>
|
||||
* M260 B<byte-3 value in base 10>
|
||||
*
|
||||
* M260 S1 ; Send the buffered data and reset the buffer
|
||||
* M260 R1 ; Reset the buffer without sending data
|
||||
*
|
||||
*/
|
||||
inline void gcode_M260() {
|
||||
// Set the target address
|
||||
if (parser.seen('A')) i2c.address(parser.value_byte());
|
||||
|
||||
// Add a new byte to the buffer
|
||||
if (parser.seen('B')) i2c.addbyte(parser.value_byte());
|
||||
|
||||
// Flush the buffer to the bus
|
||||
if (parser.seen('S')) i2c.send();
|
||||
|
||||
// Reset and rewind the buffer
|
||||
else if (parser.seen('R')) i2c.reset();
|
||||
}
|
||||
|
||||
/**
|
||||
* M261: Request X bytes from I2C slave device
|
||||
*
|
||||
* Usage: M261 A<slave device address base 10> B<number of bytes>
|
||||
*/
|
||||
inline void gcode_M261() {
|
||||
if (parser.seen('A')) i2c.address(parser.value_byte());
|
||||
|
||||
uint8_t bytes = parser.byteval('B', 1);
|
||||
|
||||
if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
|
||||
i2c.relay(bytes);
|
||||
}
|
||||
else {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLN("Bad i2c request");
|
||||
}
|
||||
}
|
||||
|
||||
#endif // EXPERIMENTAL_I2CBUS
|
||||
#include "gcode/feature/i2c/M260_M261.h"
|
||||
#endif
|
||||
|
||||
#if HAS_SERVOS
|
||||
|
||||
/**
|
||||
* M280: Get or set servo position. P<index> [S<angle>]
|
||||
*/
|
||||
inline void gcode_M280() {
|
||||
if (!parser.seen('P')) return;
|
||||
const int servo_index = parser.value_int();
|
||||
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
|
||||
if (parser.seen('S'))
|
||||
MOVE_SERVO(servo_index, parser.value_int());
|
||||
else {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPAIR(" Servo ", servo_index);
|
||||
SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
|
||||
}
|
||||
}
|
||||
else {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ECHOPAIR("Servo ", servo_index);
|
||||
SERIAL_ECHOLNPGM(" out of range");
|
||||
}
|
||||
}
|
||||
|
||||
#endif // HAS_SERVOS
|
||||
#include "gcode/control/M280.h"
|
||||
#endif
|
||||
|
||||
#if HAS_BUZZER
|
||||
|
||||
/**
|
||||
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
||||
*/
|
||||
inline void gcode_M300() {
|
||||
uint16_t const frequency = parser.ushortval('S', 260);
|
||||
uint16_t duration = parser.ushortval('P', 1000);
|
||||
|
||||
// Limits the tone duration to 0-5 seconds.
|
||||
NOMORE(duration, 5000);
|
||||
|
||||
BUZZ(duration, frequency);
|
||||
}
|
||||
|
||||
#endif // HAS_BUZZER
|
||||
#include "gcode/lcd/M300.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(PIDTEMP)
|
||||
|
||||
/**
|
||||
* M301: Set PID parameters P I D (and optionally C, L)
|
||||
*
|
||||
* P[float] Kp term
|
||||
* I[float] Ki term (unscaled)
|
||||
* D[float] Kd term (unscaled)
|
||||
*
|
||||
* With PID_EXTRUSION_SCALING:
|
||||
*
|
||||
* C[float] Kc term
|
||||
* L[float] LPQ length
|
||||
*/
|
||||
inline void gcode_M301() {
|
||||
|
||||
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
||||
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
||||
const uint8_t e = parser.byteval('E'); // extruder being updated
|
||||
|
||||
if (e < HOTENDS) { // catch bad input value
|
||||
if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
|
||||
if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
|
||||
if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
|
||||
#if ENABLED(PID_EXTRUSION_SCALING)
|
||||
if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
|
||||
if (parser.seen('L')) lpq_len = parser.value_float();
|
||||
NOMORE(lpq_len, LPQ_MAX_LEN);
|
||||
#include "gcode/config/M301.h"
|
||||
#endif
|
||||
|
||||
thermalManager.updatePID();
|
||||
SERIAL_ECHO_START();
|
||||
#if ENABLED(PID_PARAMS_PER_HOTEND)
|
||||
SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
|
||||
#endif // PID_PARAMS_PER_HOTEND
|
||||
SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
|
||||
SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
|
||||
SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
|
||||
#if ENABLED(PID_EXTRUSION_SCALING)
|
||||
//Kc does not have scaling applied above, or in resetting defaults
|
||||
SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
|
||||
#endif
|
||||
SERIAL_EOL();
|
||||
}
|
||||
else {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // PIDTEMP
|
||||
|
||||
#if ENABLED(PIDTEMPBED)
|
||||
|
||||
inline void gcode_M304() {
|
||||
if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
|
||||
if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
|
||||
if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
|
||||
|
||||
thermalManager.updatePID();
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
|
||||
SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
|
||||
SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
|
||||
}
|
||||
|
||||
#endif // PIDTEMPBED
|
||||
#include "gcode/config/M304.h"
|
||||
#endif
|
||||
|
||||
#if defined(CHDK) || HAS_PHOTOGRAPH
|
||||
|
||||
/**
|
||||
* M240: Trigger a camera by emulating a Canon RC-1
|
||||
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
*/
|
||||
inline void gcode_M240() {
|
||||
#ifdef CHDK
|
||||
|
||||
OUT_WRITE(CHDK, HIGH);
|
||||
chdkHigh = millis();
|
||||
chdkActive = true;
|
||||
|
||||
#elif HAS_PHOTOGRAPH
|
||||
|
||||
const uint8_t NUM_PULSES = 16;
|
||||
const float PULSE_LENGTH = 0.01524;
|
||||
for (int i = 0; i < NUM_PULSES; i++) {
|
||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
delay(7.33);
|
||||
for (int i = 0; i < NUM_PULSES; i++) {
|
||||
WRITE(PHOTOGRAPH_PIN, HIGH);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
WRITE(PHOTOGRAPH_PIN, LOW);
|
||||
_delay_ms(PULSE_LENGTH);
|
||||
}
|
||||
|
||||
#endif // !CHDK && HAS_PHOTOGRAPH
|
||||
}
|
||||
|
||||
#endif // CHDK || PHOTOGRAPH_PIN
|
||||
#include "gcode/control/M240.h"
|
||||
#endif
|
||||
|
||||
#if HAS_LCD_CONTRAST
|
||||
|
||||
/**
|
||||
* M250: Read and optionally set the LCD contrast
|
||||
*/
|
||||
inline void gcode_M250() {
|
||||
if (parser.seen('C')) set_lcd_contrast(parser.value_int());
|
||||
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
||||
SERIAL_PROTOCOL(lcd_contrast);
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
#endif // HAS_LCD_CONTRAST
|
||||
#include "gcode/control/M250.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
||||
|
||||
/**
|
||||
* M302: Allow cold extrudes, or set the minimum extrude temperature
|
||||
*
|
||||
* S<temperature> sets the minimum extrude temperature
|
||||
* P<bool> enables (1) or disables (0) cold extrusion
|
||||
*
|
||||
* Examples:
|
||||
*
|
||||
* M302 ; report current cold extrusion state
|
||||
* M302 P0 ; enable cold extrusion checking
|
||||
* M302 P1 ; disables cold extrusion checking
|
||||
* M302 S0 ; always allow extrusion (disables checking)
|
||||
* M302 S170 ; only allow extrusion above 170
|
||||
* M302 S170 P1 ; set min extrude temp to 170 but leave disabled
|
||||
*/
|
||||
inline void gcode_M302() {
|
||||
const bool seen_S = parser.seen('S');
|
||||
if (seen_S) {
|
||||
thermalManager.extrude_min_temp = parser.value_celsius();
|
||||
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
|
||||
}
|
||||
|
||||
if (parser.seen('P'))
|
||||
thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
|
||||
else if (!seen_S) {
|
||||
// Report current state
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
|
||||
SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
|
||||
SERIAL_ECHOLNPGM("C)");
|
||||
}
|
||||
}
|
||||
|
||||
#endif // PREVENT_COLD_EXTRUSION
|
||||
|
||||
/**
|
||||
* M303: PID relay autotune
|
||||
*
|
||||
* S<temperature> sets the target temperature. (default 150C)
|
||||
* E<extruder> (-1 for the bed) (default 0)
|
||||
* C<cycles>
|
||||
* U<bool> with a non-zero value will apply the result to current settings
|
||||
*/
|
||||
inline void gcode_M303() {
|
||||
#if HAS_PID_HEATING
|
||||
const int e = parser.intval('E'), c = parser.intval('C', 5);
|
||||
const bool u = parser.boolval('U');
|
||||
|
||||
int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
|
||||
|
||||
if (WITHIN(e, 0, HOTENDS - 1))
|
||||
target_extruder = e;
|
||||
|
||||
#if DISABLED(BUSY_WHILE_HEATING)
|
||||
KEEPALIVE_STATE(NOT_BUSY);
|
||||
#include "gcode/config/M302.h"
|
||||
#endif
|
||||
|
||||
thermalManager.PID_autotune(temp, e, c, u);
|
||||
|
||||
#if DISABLED(BUSY_WHILE_HEATING)
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
#endif
|
||||
#else
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
|
||||
#endif
|
||||
}
|
||||
#include "gcode/temperature/M303.h"
|
||||
|
||||
#if ENABLED(MORGAN_SCARA)
|
||||
|
||||
bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
|
||||
if (IsRunning()) {
|
||||
forward_kinematics_SCARA(delta_a, delta_b);
|
||||
destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
|
||||
destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
|
||||
destination[Z_AXIS] = current_position[Z_AXIS];
|
||||
prepare_move_to_destination();
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
||||
*/
|
||||
inline bool gcode_M360() {
|
||||
SERIAL_ECHOLNPGM(" Cal: Theta 0");
|
||||
return SCARA_move_to_cal(0, 120);
|
||||
}
|
||||
|
||||
/**
|
||||
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
||||
*/
|
||||
inline bool gcode_M361() {
|
||||
SERIAL_ECHOLNPGM(" Cal: Theta 90");
|
||||
return SCARA_move_to_cal(90, 130);
|
||||
}
|
||||
|
||||
/**
|
||||
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
||||
*/
|
||||
inline bool gcode_M362() {
|
||||
SERIAL_ECHOLNPGM(" Cal: Psi 0");
|
||||
return SCARA_move_to_cal(60, 180);
|
||||
}
|
||||
|
||||
/**
|
||||
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
||||
*/
|
||||
inline bool gcode_M363() {
|
||||
SERIAL_ECHOLNPGM(" Cal: Psi 90");
|
||||
return SCARA_move_to_cal(50, 90);
|
||||
}
|
||||
|
||||
/**
|
||||
* M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
|
||||
*/
|
||||
inline bool gcode_M364() {
|
||||
SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
|
||||
return SCARA_move_to_cal(45, 135);
|
||||
}
|
||||
|
||||
#endif // SCARA
|
||||
#include "gcode/scara/M360-M364.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(EXT_SOLENOID)
|
||||
#include "gcode/control/M380_M381.h"
|
||||
#endif
|
||||
|
||||
void enable_solenoid(const uint8_t num) {
|
||||
switch (num) {
|
||||
case 0:
|
||||
OUT_WRITE(SOL0_PIN, HIGH);
|
||||
break;
|
||||
#if HAS_SOLENOID_1 && EXTRUDERS > 1
|
||||
case 1:
|
||||
OUT_WRITE(SOL1_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if HAS_SOLENOID_2 && EXTRUDERS > 2
|
||||
case 2:
|
||||
OUT_WRITE(SOL2_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if HAS_SOLENOID_3 && EXTRUDERS > 3
|
||||
case 3:
|
||||
OUT_WRITE(SOL3_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
#if HAS_SOLENOID_4 && EXTRUDERS > 4
|
||||
case 4:
|
||||
OUT_WRITE(SOL4_PIN, HIGH);
|
||||
break;
|
||||
#endif
|
||||
default:
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
||||
|
||||
void disable_all_solenoids() {
|
||||
OUT_WRITE(SOL0_PIN, LOW);
|
||||
#if HAS_SOLENOID_1 && EXTRUDERS > 1
|
||||
OUT_WRITE(SOL1_PIN, LOW);
|
||||
#endif
|
||||
#if HAS_SOLENOID_2 && EXTRUDERS > 2
|
||||
OUT_WRITE(SOL2_PIN, LOW);
|
||||
#endif
|
||||
#if HAS_SOLENOID_3 && EXTRUDERS > 3
|
||||
OUT_WRITE(SOL3_PIN, LOW);
|
||||
#endif
|
||||
#if HAS_SOLENOID_4 && EXTRUDERS > 4
|
||||
OUT_WRITE(SOL4_PIN, LOW);
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M380: Enable solenoid on the active extruder
|
||||
*/
|
||||
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
||||
|
||||
/**
|
||||
* M381: Disable all solenoids
|
||||
*/
|
||||
inline void gcode_M381() { disable_all_solenoids(); }
|
||||
|
||||
#endif // EXT_SOLENOID
|
||||
|
||||
/**
|
||||
* M400: Finish all moves
|
||||
*/
|
||||
inline void gcode_M400() { stepper.synchronize(); }
|
||||
#include "gcode/control/M400.h"
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
|
||||
/**
|
||||
* M401: Engage Z Servo endstop if available
|
||||
*/
|
||||
inline void gcode_M401() { DEPLOY_PROBE(); }
|
||||
|
||||
/**
|
||||
* M402: Retract Z Servo endstop if enabled
|
||||
*/
|
||||
inline void gcode_M402() { STOW_PROBE(); }
|
||||
|
||||
#endif // HAS_BED_PROBE
|
||||
#include "gcode/probe/M401_M402.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||
|
||||
/**
|
||||
* M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
|
||||
*/
|
||||
inline void gcode_M404() {
|
||||
if (parser.seen('W')) {
|
||||
filament_width_nominal = parser.value_linear_units();
|
||||
}
|
||||
else {
|
||||
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_nominal);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* M405: Turn on filament sensor for control
|
||||
*/
|
||||
inline void gcode_M405() {
|
||||
// This is technically a linear measurement, but since it's quantized to centimeters and is a different
|
||||
// unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
|
||||
if (parser.seen('D')) {
|
||||
meas_delay_cm = parser.value_byte();
|
||||
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
|
||||
}
|
||||
|
||||
if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
|
||||
const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
|
||||
|
||||
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
||||
measurement_delay[i] = temp_ratio;
|
||||
|
||||
filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
|
||||
}
|
||||
|
||||
filament_sensor = true;
|
||||
|
||||
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
//SERIAL_PROTOCOL(filament_width_meas);
|
||||
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
||||
//SERIAL_PROTOCOL(flow_percentage[active_extruder]);
|
||||
}
|
||||
|
||||
/**
|
||||
* M406: Turn off filament sensor for control
|
||||
*/
|
||||
inline void gcode_M406() {
|
||||
filament_sensor = false;
|
||||
calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
|
||||
}
|
||||
|
||||
/**
|
||||
* M407: Get measured filament diameter on serial output
|
||||
*/
|
||||
inline void gcode_M407() {
|
||||
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
||||
SERIAL_PROTOCOLLN(filament_width_meas);
|
||||
}
|
||||
|
||||
#endif // FILAMENT_WIDTH_SENSOR
|
||||
#include "gcode/sensor/M404.h"
|
||||
#include "gcode/sensor/M405.h"
|
||||
#include "gcode/sensor/M406.h"
|
||||
#include "gcode/sensor/M407.h"
|
||||
#endif
|
||||
|
||||
void quickstop_stepper() {
|
||||
stepper.quick_stop();
|
||||
|
@ -9230,2365 +3784,90 @@ void quickstop_stepper() {
|
|||
}
|
||||
|
||||
#if HAS_LEVELING
|
||||
/**
|
||||
* M420: Enable/Disable Bed Leveling and/or set the Z fade height.
|
||||
*
|
||||
* S[bool] Turns leveling on or off
|
||||
* Z[height] Sets the Z fade height (0 or none to disable)
|
||||
* V[bool] Verbose - Print the leveling grid
|
||||
*
|
||||
* With AUTO_BED_LEVELING_UBL only:
|
||||
*
|
||||
* L[index] Load UBL mesh from index (0 is default)
|
||||
*/
|
||||
inline void gcode_M420() {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
// L to load a mesh from the EEPROM
|
||||
if (parser.seen('L')) {
|
||||
|
||||
#if ENABLED(EEPROM_SETTINGS)
|
||||
const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.state.storage_slot;
|
||||
const int16_t a = settings.calc_num_meshes();
|
||||
|
||||
if (!a) {
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
||||
return;
|
||||
}
|
||||
|
||||
if (!WITHIN(storage_slot, 0, a - 1)) {
|
||||
SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
|
||||
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
|
||||
return;
|
||||
}
|
||||
|
||||
settings.load_mesh(storage_slot);
|
||||
ubl.state.storage_slot = storage_slot;
|
||||
|
||||
#else
|
||||
|
||||
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
|
||||
return;
|
||||
|
||||
#include "gcode/calibrate/M420.h"
|
||||
#include "gcode/calibrate/M421.h"
|
||||
#endif
|
||||
}
|
||||
|
||||
// L to load a mesh from the EEPROM
|
||||
if (parser.seen('L') || parser.seen('V')) {
|
||||
ubl.display_map(0); // Currently only supports one map type
|
||||
SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
|
||||
SERIAL_ECHOLNPAIR("ubl.state.storage_slot = ", ubl.state.storage_slot);
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
// V to print the matrix or mesh
|
||||
if (parser.seen('V')) {
|
||||
#if ABL_PLANAR
|
||||
planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
|
||||
#else
|
||||
if (leveling_is_valid()) {
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
print_bilinear_leveling_grid();
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
print_bilinear_leveling_grid_virt();
|
||||
#endif
|
||||
#elif ENABLED(MESH_BED_LEVELING)
|
||||
SERIAL_ECHOLNPGM("Mesh Bed Level data:");
|
||||
mbl_mesh_report();
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
const bool to_enable = parser.boolval('S');
|
||||
if (parser.seen('S'))
|
||||
set_bed_leveling_enabled(to_enable);
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
|
||||
#endif
|
||||
|
||||
const bool new_status = leveling_is_active();
|
||||
|
||||
if (to_enable && !new_status) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
|
||||
}
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
|
||||
|
||||
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPGM("Fade Height ");
|
||||
if (planner.z_fade_height > 0.0)
|
||||
SERIAL_ECHOLN(planner.z_fade_height);
|
||||
else
|
||||
SERIAL_ECHOLNPGM(MSG_OFF);
|
||||
#endif
|
||||
}
|
||||
#endif
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
/**
|
||||
* M421: Set a single Mesh Bed Leveling Z coordinate
|
||||
*
|
||||
* Usage:
|
||||
* M421 X<linear> Y<linear> Z<linear>
|
||||
* M421 X<linear> Y<linear> Q<offset>
|
||||
* M421 I<xindex> J<yindex> Z<linear>
|
||||
* M421 I<xindex> J<yindex> Q<offset>
|
||||
*/
|
||||
inline void gcode_M421() {
|
||||
const bool hasX = parser.seen('X'), hasI = parser.seen('I');
|
||||
const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(RAW_X_POSITION(parser.value_linear_units())) : -1;
|
||||
const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
|
||||
const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(RAW_Y_POSITION(parser.value_linear_units())) : -1;
|
||||
const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
|
||||
|
||||
if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
||||
}
|
||||
else if (ix < 0 || iy < 0) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
||||
}
|
||||
else
|
||||
mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
|
||||
}
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
|
||||
/**
|
||||
* M421: Set a single Mesh Bed Leveling Z coordinate
|
||||
*
|
||||
* Usage:
|
||||
* M421 I<xindex> J<yindex> Z<linear>
|
||||
* M421 I<xindex> J<yindex> Q<offset>
|
||||
*/
|
||||
inline void gcode_M421() {
|
||||
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
|
||||
const bool hasI = ix >= 0,
|
||||
hasJ = iy >= 0,
|
||||
hasZ = parser.seen('Z'),
|
||||
hasQ = !hasZ && parser.seen('Q');
|
||||
|
||||
if (!hasI || !hasJ || !(hasZ || hasQ)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
||||
}
|
||||
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
||||
}
|
||||
else {
|
||||
z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
bed_level_virt_interpolate();
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
||||
|
||||
/**
|
||||
* M421: Set a single Mesh Bed Leveling Z coordinate
|
||||
*
|
||||
* Usage:
|
||||
* M421 I<xindex> J<yindex> Z<linear>
|
||||
* M421 I<xindex> J<yindex> Q<offset>
|
||||
* M421 C Z<linear>
|
||||
* M421 C Q<offset>
|
||||
*/
|
||||
inline void gcode_M421() {
|
||||
int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
|
||||
const bool hasI = ix >= 0,
|
||||
hasJ = iy >= 0,
|
||||
hasC = parser.seen('C'),
|
||||
hasZ = parser.seen('Z'),
|
||||
hasQ = !hasZ && parser.seen('Q');
|
||||
|
||||
if (hasC) {
|
||||
const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL, false);
|
||||
ix = location.x_index;
|
||||
iy = location.y_index;
|
||||
}
|
||||
|
||||
if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
|
||||
}
|
||||
else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
|
||||
}
|
||||
else
|
||||
ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
|
||||
}
|
||||
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
#if HAS_M206_COMMAND
|
||||
#include "gcode/geometry/M428.h"
|
||||
#endif
|
||||
|
||||
/**
|
||||
* M428: Set home_offset based on the distance between the
|
||||
* current_position and the nearest "reference point."
|
||||
* If an axis is past center its endstop position
|
||||
* is the reference-point. Otherwise it uses 0. This allows
|
||||
* the Z offset to be set near the bed when using a max endstop.
|
||||
*
|
||||
* M428 can't be used more than 2cm away from 0 or an endstop.
|
||||
*
|
||||
* Use M206 to set these values directly.
|
||||
*/
|
||||
inline void gcode_M428() {
|
||||
bool err = false;
|
||||
LOOP_XYZ(i) {
|
||||
if (axis_homed[i]) {
|
||||
const float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
|
||||
diff = base - RAW_POSITION(current_position[i], i);
|
||||
if (WITHIN(diff, -20, 20)) {
|
||||
set_home_offset((AxisEnum)i, diff);
|
||||
}
|
||||
else {
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
|
||||
LCD_ALERTMESSAGEPGM("Err: Too far!");
|
||||
BUZZ(200, 40);
|
||||
err = true;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if (!err) {
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
report_current_position();
|
||||
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
|
||||
BUZZ(100, 659);
|
||||
BUZZ(100, 698);
|
||||
}
|
||||
}
|
||||
|
||||
#endif // HAS_M206_COMMAND
|
||||
|
||||
/**
|
||||
* M500: Store settings in EEPROM
|
||||
*/
|
||||
inline void gcode_M500() {
|
||||
(void)settings.save();
|
||||
}
|
||||
|
||||
/**
|
||||
* M501: Read settings from EEPROM
|
||||
*/
|
||||
inline void gcode_M501() {
|
||||
(void)settings.load();
|
||||
}
|
||||
|
||||
/**
|
||||
* M502: Revert to default settings
|
||||
*/
|
||||
inline void gcode_M502() {
|
||||
(void)settings.reset();
|
||||
}
|
||||
|
||||
#include "gcode/eeprom/M500.h"
|
||||
#include "gcode/eeprom/M501.h"
|
||||
#include "gcode/eeprom/M502.h"
|
||||
#if DISABLED(DISABLE_M503)
|
||||
/**
|
||||
* M503: print settings currently in memory
|
||||
*/
|
||||
inline void gcode_M503() {
|
||||
(void)settings.report(!parser.boolval('S', true));
|
||||
}
|
||||
#include "gcode/eeprom/M503.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
|
||||
/**
|
||||
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
||||
*/
|
||||
inline void gcode_M540() {
|
||||
if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
|
||||
}
|
||||
|
||||
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
||||
#include "gcode/config/M540.h"
|
||||
#endif
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
|
||||
void refresh_zprobe_zoffset(const bool no_babystep/*=false*/) {
|
||||
static float last_zoffset = NAN;
|
||||
|
||||
if (!isnan(last_zoffset)) {
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(BABYSTEP_ZPROBE_OFFSET) || ENABLED(DELTA)
|
||||
const float diff = zprobe_zoffset - last_zoffset;
|
||||
#include "gcode/probe/M851.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
// Correct bilinear grid for new probe offset
|
||||
if (diff) {
|
||||
for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
|
||||
for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
|
||||
z_values[x][y] -= diff;
|
||||
}
|
||||
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
|
||||
bed_level_virt_interpolate();
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if ENABLED(BABYSTEP_ZPROBE_OFFSET)
|
||||
if (!no_babystep && leveling_is_active())
|
||||
thermalManager.babystep_axis(Z_AXIS, -LROUND(diff * planner.axis_steps_per_mm[Z_AXIS]));
|
||||
#else
|
||||
UNUSED(no_babystep);
|
||||
#endif
|
||||
|
||||
#if ENABLED(DELTA) // correct the delta_height
|
||||
home_offset[Z_AXIS] -= diff;
|
||||
#endif
|
||||
}
|
||||
|
||||
last_zoffset = zprobe_zoffset;
|
||||
}
|
||||
|
||||
inline void gcode_M851() {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " ");
|
||||
if (parser.seen('Z')) {
|
||||
const float value = parser.value_linear_units();
|
||||
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
|
||||
zprobe_zoffset = value;
|
||||
refresh_zprobe_zoffset();
|
||||
SERIAL_ECHO(zprobe_zoffset);
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOPGM(MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
|
||||
}
|
||||
else
|
||||
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
|
||||
|
||||
SERIAL_EOL();
|
||||
}
|
||||
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
||||
|
||||
/**
|
||||
* M600: Pause for filament change
|
||||
*
|
||||
* E[distance] - Retract the filament this far (negative value)
|
||||
* Z[distance] - Move the Z axis by this distance
|
||||
* X[position] - Move to this X position, with Y
|
||||
* Y[position] - Move to this Y position, with X
|
||||
* U[distance] - Retract distance for removal (negative value) (manual reload)
|
||||
* L[distance] - Extrude distance for insertion (positive value) (manual reload)
|
||||
* B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
|
||||
*
|
||||
* Default values are used for omitted arguments.
|
||||
*
|
||||
*/
|
||||
inline void gcode_M600() {
|
||||
|
||||
#if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
|
||||
// Don't allow filament change without homing first
|
||||
if (axis_unhomed_error()) home_all_axes();
|
||||
#include "gcode/feature/pause/M600.h"
|
||||
#endif
|
||||
|
||||
// Initial retract before move to filament change position
|
||||
const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
|
||||
#ifdef PAUSE_PARK_RETRACT_LENGTH
|
||||
- (PAUSE_PARK_RETRACT_LENGTH)
|
||||
#endif
|
||||
;
|
||||
|
||||
// Lift Z axis
|
||||
const float z_lift = parser.linearval('Z', 0
|
||||
#ifdef PAUSE_PARK_Z_ADD
|
||||
+ PAUSE_PARK_Z_ADD
|
||||
#endif
|
||||
);
|
||||
|
||||
// Move XY axes to filament exchange position
|
||||
const float x_pos = parser.linearval('X', 0
|
||||
#ifdef PAUSE_PARK_X_POS
|
||||
+ PAUSE_PARK_X_POS
|
||||
#endif
|
||||
);
|
||||
const float y_pos = parser.linearval('Y', 0
|
||||
#ifdef PAUSE_PARK_Y_POS
|
||||
+ PAUSE_PARK_Y_POS
|
||||
#endif
|
||||
);
|
||||
|
||||
// Unload filament
|
||||
const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
|
||||
#if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
|
||||
- (FILAMENT_CHANGE_UNLOAD_LENGTH)
|
||||
#endif
|
||||
;
|
||||
|
||||
// Load filament
|
||||
const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
|
||||
#ifdef FILAMENT_CHANGE_LOAD_LENGTH
|
||||
+ FILAMENT_CHANGE_LOAD_LENGTH
|
||||
#endif
|
||||
;
|
||||
|
||||
const int beep_count = parser.intval('B',
|
||||
#ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
|
||||
FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
|
||||
#else
|
||||
-1
|
||||
#endif
|
||||
);
|
||||
|
||||
const bool job_running = print_job_timer.isRunning();
|
||||
|
||||
if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
|
||||
wait_for_filament_reload(beep_count);
|
||||
resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
|
||||
}
|
||||
|
||||
// Resume the print job timer if it was running
|
||||
if (job_running) print_job_timer.start();
|
||||
}
|
||||
|
||||
#endif // ADVANCED_PAUSE_FEATURE
|
||||
|
||||
#if ENABLED(MK2_MULTIPLEXER)
|
||||
|
||||
inline void select_multiplexed_stepper(const uint8_t e) {
|
||||
stepper.synchronize();
|
||||
disable_e_steppers();
|
||||
WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
|
||||
WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
|
||||
WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
|
||||
safe_delay(100);
|
||||
}
|
||||
|
||||
/**
|
||||
* M702: Unload all extruders
|
||||
*/
|
||||
inline void gcode_M702() {
|
||||
for (uint8_t s = 0; s < E_STEPPERS; s++) {
|
||||
select_multiplexed_stepper(e);
|
||||
// TODO: standard unload filament function
|
||||
// MK2 firmware behavior:
|
||||
// - Make sure temperature is high enough
|
||||
// - Raise Z to at least 15 to make room
|
||||
// - Extrude 1cm of filament in 1 second
|
||||
// - Under 230C quickly purge ~12mm, over 230C purge ~10mm
|
||||
// - Change E max feedrate to 80, eject the filament from the tube. Sync.
|
||||
// - Restore E max feedrate to 50
|
||||
}
|
||||
// Go back to the last active extruder
|
||||
select_multiplexed_stepper(active_extruder);
|
||||
disable_e_steppers();
|
||||
}
|
||||
|
||||
#endif // MK2_MULTIPLEXER
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
|
||||
/**
|
||||
* M605: Set dual x-carriage movement mode
|
||||
*
|
||||
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
||||
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
||||
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
||||
* units x-offset and an optional differential hotend temperature of
|
||||
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
||||
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
||||
*
|
||||
* Note: the X axis should be homed after changing dual x-carriage mode.
|
||||
*/
|
||||
inline void gcode_M605() {
|
||||
stepper.synchronize();
|
||||
if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
|
||||
switch (dual_x_carriage_mode) {
|
||||
case DXC_FULL_CONTROL_MODE:
|
||||
case DXC_AUTO_PARK_MODE:
|
||||
break;
|
||||
case DXC_DUPLICATION_MODE:
|
||||
if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
|
||||
if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHO(hotend_offset[X_AXIS][0]);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHO(duplicate_extruder_x_offset);
|
||||
SERIAL_CHAR(',');
|
||||
SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
|
||||
break;
|
||||
default:
|
||||
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
||||
break;
|
||||
}
|
||||
active_extruder_parked = false;
|
||||
extruder_duplication_enabled = false;
|
||||
delayed_move_time = 0;
|
||||
}
|
||||
|
||||
#elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
||||
|
||||
inline void gcode_M605() {
|
||||
stepper.synchronize();
|
||||
extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
|
||||
}
|
||||
|
||||
#endif // DUAL_NOZZLE_DUPLICATION_MODE
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
/**
|
||||
* M900: Set and/or Get advance K factor and WH/D ratio
|
||||
*
|
||||
* K<factor> Set advance K factor
|
||||
* R<ratio> Set ratio directly (overrides WH/D)
|
||||
* W<width> H<height> D<diam> Set ratio from WH/D
|
||||
*/
|
||||
inline void gcode_M900() {
|
||||
stepper.synchronize();
|
||||
|
||||
const float newK = parser.floatval('K', -1);
|
||||
if (newK >= 0) planner.extruder_advance_k = newK;
|
||||
|
||||
float newR = parser.floatval('R', -1);
|
||||
if (newR < 0) {
|
||||
const float newD = parser.floatval('D', -1),
|
||||
newW = parser.floatval('W', -1),
|
||||
newH = parser.floatval('H', -1);
|
||||
if (newD >= 0 && newW >= 0 && newH >= 0)
|
||||
newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
|
||||
}
|
||||
if (newR >= 0) planner.advance_ed_ratio = newR;
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
|
||||
SERIAL_ECHOPGM(" E/D=");
|
||||
const float ratio = planner.advance_ed_ratio;
|
||||
if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
|
||||
SERIAL_EOL();
|
||||
}
|
||||
#endif // LIN_ADVANCE
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
|
||||
static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
|
||||
SERIAL_CHAR(name);
|
||||
SERIAL_ECHOPGM(" axis driver current: ");
|
||||
SERIAL_ECHOLN(st.getCurrent());
|
||||
}
|
||||
static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
|
||||
st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
|
||||
tmc2130_get_current(st, name);
|
||||
}
|
||||
|
||||
static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
|
||||
SERIAL_CHAR(name);
|
||||
SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
|
||||
serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
|
||||
SERIAL_EOL();
|
||||
}
|
||||
static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
|
||||
st.clear_otpw();
|
||||
SERIAL_CHAR(name);
|
||||
SERIAL_ECHOLNPGM(" prewarn flag cleared");
|
||||
}
|
||||
|
||||
static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
|
||||
SERIAL_CHAR(name);
|
||||
SERIAL_ECHOPGM(" stealthChop max speed set to ");
|
||||
SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
|
||||
}
|
||||
static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
|
||||
st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
|
||||
tmc2130_get_pwmthrs(st, name, spmm);
|
||||
}
|
||||
|
||||
static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
|
||||
SERIAL_CHAR(name);
|
||||
SERIAL_ECHOPGM(" driver homing sensitivity set to ");
|
||||
SERIAL_ECHOLN(st.sgt());
|
||||
}
|
||||
static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
|
||||
st.sgt(sgt_val);
|
||||
tmc2130_get_sgt(st, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* M906: Set motor current in milliamps using axis codes X, Y, Z, E
|
||||
* Report driver currents when no axis specified
|
||||
*
|
||||
* S1: Enable automatic current control
|
||||
* S0: Disable
|
||||
*/
|
||||
inline void gcode_M906() {
|
||||
uint16_t values[XYZE];
|
||||
LOOP_XYZE(i)
|
||||
values[i] = parser.intval(axis_codes[i]);
|
||||
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
|
||||
else tmc2130_get_current(stepperX, 'X');
|
||||
#include "gcode/feature/snmm/M702.h"
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
|
||||
else tmc2130_get_current(stepperY, 'Y');
|
||||
#endif
|
||||
#if ENABLED(Z_IS_TMC2130)
|
||||
if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
|
||||
else tmc2130_get_current(stepperZ, 'Z');
|
||||
#endif
|
||||
#if ENABLED(E0_IS_TMC2130)
|
||||
if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
|
||||
else tmc2130_get_current(stepperE0, 'E');
|
||||
#endif
|
||||
|
||||
#if ENABLED(AUTOMATIC_CURRENT_CONTROL)
|
||||
if (parser.seen('S')) auto_current_control = parser.value_bool();
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M911: Report TMC2130 stepper driver overtemperature pre-warn flag
|
||||
* The flag is held by the library and persist until manually cleared by M912
|
||||
*/
|
||||
inline void gcode_M911() {
|
||||
const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
|
||||
reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
|
||||
#endif
|
||||
#if ENABLED(Z_IS_TMC2130)
|
||||
if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
|
||||
#endif
|
||||
#if ENABLED(E0_IS_TMC2130)
|
||||
if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
|
||||
*/
|
||||
inline void gcode_M912() {
|
||||
const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
|
||||
clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
|
||||
#endif
|
||||
#if ENABLED(Z_IS_TMC2130)
|
||||
if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
|
||||
#endif
|
||||
#if ENABLED(E0_IS_TMC2130)
|
||||
if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* M913: Set HYBRID_THRESHOLD speed.
|
||||
*/
|
||||
#if ENABLED(HYBRID_THRESHOLD)
|
||||
inline void gcode_M913() {
|
||||
uint16_t values[XYZE];
|
||||
LOOP_XYZE(i)
|
||||
values[i] = parser.intval(axis_codes[i]);
|
||||
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
|
||||
else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
|
||||
else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
|
||||
#endif
|
||||
#if ENABLED(Z_IS_TMC2130)
|
||||
if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
|
||||
else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
|
||||
#endif
|
||||
#if ENABLED(E0_IS_TMC2130)
|
||||
if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
|
||||
else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
|
||||
#endif
|
||||
}
|
||||
#endif // HYBRID_THRESHOLD
|
||||
|
||||
/**
|
||||
* M914: Set SENSORLESS_HOMING sensitivity.
|
||||
*/
|
||||
#if ENABLED(SENSORLESS_HOMING)
|
||||
inline void gcode_M914() {
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
|
||||
else tmc2130_get_sgt(stepperX, 'X');
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
|
||||
else tmc2130_get_sgt(stepperY, 'Y');
|
||||
#endif
|
||||
}
|
||||
#endif // SENSORLESS_HOMING
|
||||
|
||||
#endif // HAVE_TMC2130
|
||||
|
||||
/**
|
||||
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
||||
*/
|
||||
inline void gcode_M907() {
|
||||
#if HAS_DIGIPOTSS
|
||||
|
||||
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
|
||||
if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
|
||||
if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
|
||||
|
||||
#elif HAS_MOTOR_CURRENT_PWM
|
||||
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
||||
if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
||||
if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
|
||||
#endif
|
||||
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
||||
if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
|
||||
#endif
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(DIGIPOT_I2C)
|
||||
// this one uses actual amps in floating point
|
||||
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
|
||||
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
||||
for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
|
||||
#endif
|
||||
|
||||
#if ENABLED(DAC_STEPPER_CURRENT)
|
||||
if (parser.seen('S')) {
|
||||
const float dac_percent = parser.value_float();
|
||||
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
||||
}
|
||||
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
|
||||
#endif
|
||||
}
|
||||
|
||||
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
||||
|
||||
/**
|
||||
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
||||
*/
|
||||
inline void gcode_M908() {
|
||||
#if HAS_DIGIPOTSS
|
||||
stepper.digitalPotWrite(
|
||||
parser.intval('P'),
|
||||
parser.intval('S')
|
||||
);
|
||||
#endif
|
||||
#ifdef DAC_STEPPER_CURRENT
|
||||
dac_current_raw(
|
||||
parser.byteval('P', -1),
|
||||
parser.ushortval('S', 0)
|
||||
);
|
||||
#endif
|
||||
}
|
||||
|
||||
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
||||
|
||||
inline void gcode_M909() { dac_print_values(); }
|
||||
|
||||
inline void gcode_M910() { dac_commit_eeprom(); }
|
||||
|
||||
#endif
|
||||
|
||||
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
||||
|
||||
#if HAS_MICROSTEPS
|
||||
|
||||
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
inline void gcode_M350() {
|
||||
if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
|
||||
LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
|
||||
if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
|
||||
stepper.microstep_readings();
|
||||
}
|
||||
|
||||
/**
|
||||
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
||||
* S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
*/
|
||||
inline void gcode_M351() {
|
||||
if (parser.seenval('S')) switch (parser.value_byte()) {
|
||||
case 1:
|
||||
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
|
||||
if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
|
||||
break;
|
||||
case 2:
|
||||
LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
|
||||
if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
|
||||
break;
|
||||
}
|
||||
stepper.microstep_readings();
|
||||
}
|
||||
|
||||
#endif // HAS_MICROSTEPS
|
||||
|
||||
#if HAS_CASE_LIGHT
|
||||
#ifndef INVERT_CASE_LIGHT
|
||||
#define INVERT_CASE_LIGHT false
|
||||
#endif
|
||||
int case_light_brightness; // LCD routine wants INT
|
||||
bool case_light_on;
|
||||
|
||||
void update_case_light() {
|
||||
pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
|
||||
uint8_t case_light_bright = (uint8_t)case_light_brightness;
|
||||
if (case_light_on) {
|
||||
if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
|
||||
analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness );
|
||||
}
|
||||
else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
|
||||
}
|
||||
else WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
|
||||
}
|
||||
#endif // HAS_CASE_LIGHT
|
||||
|
||||
/**
|
||||
* M355: Turn case light on/off and set brightness
|
||||
*
|
||||
* P<byte> Set case light brightness (PWM pin required - ignored otherwise)
|
||||
*
|
||||
* S<bool> Set case light on/off
|
||||
*
|
||||
* When S turns on the light on a PWM pin then the current brightness level is used/restored
|
||||
*
|
||||
* M355 P200 S0 turns off the light & sets the brightness level
|
||||
* M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
|
||||
*/
|
||||
inline void gcode_M355() {
|
||||
#if HAS_CASE_LIGHT
|
||||
uint8_t args = 0;
|
||||
if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
|
||||
if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
|
||||
if (args) update_case_light();
|
||||
|
||||
// always report case light status
|
||||
SERIAL_ECHO_START();
|
||||
if (!case_light_on) {
|
||||
SERIAL_ECHOLN("Case light: off");
|
||||
}
|
||||
else {
|
||||
if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
|
||||
else SERIAL_ECHOLNPAIR("Case light: ", case_light_brightness);
|
||||
}
|
||||
|
||||
#else
|
||||
SERIAL_ERROR_START();
|
||||
SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
|
||||
#endif // HAS_CASE_LIGHT
|
||||
}
|
||||
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
|
||||
/**
|
||||
* M163: Set a single mix factor for a mixing extruder
|
||||
* This is called "weight" by some systems.
|
||||
*
|
||||
* S[index] The channel index to set
|
||||
* P[float] The mix value
|
||||
*
|
||||
*/
|
||||
inline void gcode_M163() {
|
||||
const int mix_index = parser.intval('S');
|
||||
if (mix_index < MIXING_STEPPERS) {
|
||||
float mix_value = parser.floatval('P');
|
||||
NOLESS(mix_value, 0.0);
|
||||
mixing_factor[mix_index] = RECIPROCAL(mix_value);
|
||||
}
|
||||
}
|
||||
|
||||
#if MIXING_VIRTUAL_TOOLS > 1
|
||||
|
||||
/**
|
||||
* M164: Store the current mix factors as a virtual tool.
|
||||
*
|
||||
* S[index] The virtual tool to store
|
||||
*
|
||||
*/
|
||||
inline void gcode_M164() {
|
||||
const int tool_index = parser.intval('S');
|
||||
if (tool_index < MIXING_VIRTUAL_TOOLS) {
|
||||
normalize_mix();
|
||||
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
|
||||
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
|
||||
}
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(DIRECT_MIXING_IN_G1)
|
||||
/**
|
||||
* M165: Set multiple mix factors for a mixing extruder.
|
||||
* Factors that are left out will be set to 0.
|
||||
* All factors together must add up to 1.0.
|
||||
*
|
||||
* A[factor] Mix factor for extruder stepper 1
|
||||
* B[factor] Mix factor for extruder stepper 2
|
||||
* C[factor] Mix factor for extruder stepper 3
|
||||
* D[factor] Mix factor for extruder stepper 4
|
||||
* H[factor] Mix factor for extruder stepper 5
|
||||
* I[factor] Mix factor for extruder stepper 6
|
||||
*
|
||||
*/
|
||||
inline void gcode_M165() { gcode_get_mix(); }
|
||||
#endif
|
||||
|
||||
#endif // MIXING_EXTRUDER
|
||||
|
||||
/**
|
||||
* M999: Restart after being stopped
|
||||
*
|
||||
* Default behaviour is to flush the serial buffer and request
|
||||
* a resend to the host starting on the last N line received.
|
||||
*
|
||||
* Sending "M999 S1" will resume printing without flushing the
|
||||
* existing command buffer.
|
||||
*
|
||||
*/
|
||||
inline void gcode_M999() {
|
||||
Running = true;
|
||||
lcd_reset_alert_level();
|
||||
|
||||
if (parser.boolval('S')) return;
|
||||
|
||||
// gcode_LastN = Stopped_gcode_LastN;
|
||||
FlushSerialRequestResend();
|
||||
}
|
||||
|
||||
#if ENABLED(SWITCHING_EXTRUDER)
|
||||
#if EXTRUDERS > 3
|
||||
#define REQ_ANGLES 4
|
||||
#define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
|
||||
#else
|
||||
#define REQ_ANGLES 2
|
||||
#define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
|
||||
#endif
|
||||
inline void move_extruder_servo(const uint8_t e) {
|
||||
constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
|
||||
static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
|
||||
stepper.synchronize();
|
||||
#if EXTRUDERS & 1
|
||||
if (e < EXTRUDERS - 1)
|
||||
#endif
|
||||
{
|
||||
MOVE_SERVO(_SERVO_NR, angles[e]);
|
||||
safe_delay(500);
|
||||
}
|
||||
}
|
||||
#endif // SWITCHING_EXTRUDER
|
||||
|
||||
#if ENABLED(SWITCHING_NOZZLE)
|
||||
inline void move_nozzle_servo(const uint8_t e) {
|
||||
const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
|
||||
stepper.synchronize();
|
||||
MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
|
||||
safe_delay(500);
|
||||
}
|
||||
#endif
|
||||
|
||||
inline void invalid_extruder_error(const uint8_t e) {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_CHAR('T');
|
||||
SERIAL_ECHO_F(e, DEC);
|
||||
SERIAL_CHAR(' ');
|
||||
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
||||
}
|
||||
|
||||
#if ENABLED(PARKING_EXTRUDER)
|
||||
|
||||
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
||||
#define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
|
||||
#else
|
||||
#define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
|
||||
#endif
|
||||
|
||||
void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
|
||||
switch (extruder_num) {
|
||||
case 1: OUT_WRITE(SOL1_PIN, state); break;
|
||||
default: OUT_WRITE(SOL0_PIN, state); break;
|
||||
}
|
||||
#if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
|
||||
dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
|
||||
#endif
|
||||
}
|
||||
|
||||
inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
|
||||
inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
|
||||
|
||||
#endif // PARKING_EXTRUDER
|
||||
|
||||
#if HAS_FANMUX
|
||||
|
||||
void fanmux_switch(const uint8_t e) {
|
||||
WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
|
||||
#if PIN_EXISTS(FANMUX1)
|
||||
WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
|
||||
#if PIN_EXISTS(FANMUX2)
|
||||
WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
||||
FORCE_INLINE void fanmux_init(void){
|
||||
SET_OUTPUT(FANMUX0_PIN);
|
||||
#if PIN_EXISTS(FANMUX1)
|
||||
SET_OUTPUT(FANMUX1_PIN);
|
||||
#if PIN_EXISTS(FANMUX2)
|
||||
SET_OUTPUT(FANMUX2_PIN);
|
||||
#endif
|
||||
#endif
|
||||
fanmux_switch(0);
|
||||
}
|
||||
|
||||
#endif // HAS_FANMUX
|
||||
|
||||
/**
|
||||
* Perform a tool-change, which may result in moving the
|
||||
* previous tool out of the way and the new tool into place.
|
||||
*/
|
||||
void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
|
||||
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
|
||||
|
||||
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
|
||||
return invalid_extruder_error(tmp_extruder);
|
||||
|
||||
// T0-Tnnn: Switch virtual tool by changing the mix
|
||||
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
|
||||
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
|
||||
|
||||
#else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
||||
|
||||
if (tmp_extruder >= EXTRUDERS)
|
||||
return invalid_extruder_error(tmp_extruder);
|
||||
|
||||
#if HOTENDS > 1
|
||||
|
||||
const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
|
||||
|
||||
feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
|
||||
|
||||
if (tmp_extruder != active_extruder) {
|
||||
if (!no_move && axis_unhomed_error()) {
|
||||
no_move = true;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
|
||||
#endif
|
||||
}
|
||||
|
||||
// Save current position to destination, for use later
|
||||
set_destination_to_current();
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE)
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPGM("Dual X Carriage Mode ");
|
||||
switch (dual_x_carriage_mode) {
|
||||
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
|
||||
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
|
||||
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
const float xhome = x_home_pos(active_extruder);
|
||||
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
|
||||
&& IsRunning()
|
||||
&& (delayed_move_time || current_position[X_AXIS] != xhome)
|
||||
) {
|
||||
float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
|
||||
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
||||
NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
|
||||
#endif
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPAIR("Raise to ", raised_z);
|
||||
SERIAL_ECHOLNPAIR("MoveX to ", xhome);
|
||||
SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
|
||||
}
|
||||
#endif
|
||||
// Park old head: 1) raise 2) move to park position 3) lower
|
||||
for (uint8_t i = 0; i < 3; i++)
|
||||
planner.buffer_line(
|
||||
i == 0 ? current_position[X_AXIS] : xhome,
|
||||
current_position[Y_AXIS],
|
||||
i == 2 ? current_position[Z_AXIS] : raised_z,
|
||||
current_position[E_AXIS],
|
||||
planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
|
||||
active_extruder
|
||||
);
|
||||
stepper.synchronize();
|
||||
}
|
||||
|
||||
// Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
|
||||
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
|
||||
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
||||
|
||||
// Activate the new extruder ahead of calling set_axis_is_at_home!
|
||||
active_extruder = tmp_extruder;
|
||||
|
||||
// This function resets the max/min values - the current position may be overwritten below.
|
||||
set_axis_is_at_home(X_AXIS);
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
|
||||
#endif
|
||||
|
||||
// Only when auto-parking are carriages safe to move
|
||||
if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
|
||||
|
||||
switch (dual_x_carriage_mode) {
|
||||
case DXC_FULL_CONTROL_MODE:
|
||||
// New current position is the position of the activated extruder
|
||||
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
||||
// Save the inactive extruder's position (from the old current_position)
|
||||
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
||||
break;
|
||||
case DXC_AUTO_PARK_MODE:
|
||||
// record raised toolhead position for use by unpark
|
||||
COPY(raised_parked_position, current_position);
|
||||
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
||||
#if ENABLED(MAX_SOFTWARE_ENDSTOPS)
|
||||
NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
|
||||
#endif
|
||||
active_extruder_parked = true;
|
||||
delayed_move_time = 0;
|
||||
break;
|
||||
case DXC_DUPLICATION_MODE:
|
||||
// If the new extruder is the left one, set it "parked"
|
||||
// This triggers the second extruder to move into the duplication position
|
||||
active_extruder_parked = (active_extruder == 0);
|
||||
|
||||
if (active_extruder_parked)
|
||||
current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
|
||||
else
|
||||
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
||||
inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
|
||||
extruder_duplication_enabled = false;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
|
||||
SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
|
||||
}
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
|
||||
DEBUG_POS("New extruder (parked)", current_position);
|
||||
}
|
||||
#endif
|
||||
|
||||
// No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
|
||||
|
||||
#else // !DUAL_X_CARRIAGE
|
||||
|
||||
#if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
|
||||
const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
|
||||
float z_raise = 0;
|
||||
if (!no_move) {
|
||||
|
||||
const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
|
||||
midpos = ((parkingposx[1] - parkingposx[0])/2) + parkingposx[0] + hotend_offset[X_AXIS][active_extruder],
|
||||
grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
|
||||
+ (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
|
||||
/**
|
||||
* Steps:
|
||||
* 1. raise Z-Axis to have enough clearance
|
||||
* 2. move to park poition of old extruder
|
||||
* 3. disengage magnetc field, wait for delay
|
||||
* 4. move near new extruder
|
||||
* 5. engage magnetic field for new extruder
|
||||
* 6. move to parking incl. offset of new extruder
|
||||
* 7. lower Z-Axis
|
||||
*/
|
||||
|
||||
// STEP 1
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("Starting Autopark");
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
|
||||
#endif
|
||||
z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
|
||||
current_position[Z_AXIS] += z_raise;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
||||
stepper.synchronize();
|
||||
|
||||
// STEP 2
|
||||
current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
||||
stepper.synchronize();
|
||||
|
||||
// STEP 3
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("(3) Disengage magnet ");
|
||||
#endif
|
||||
pe_deactivate_magnet(active_extruder);
|
||||
|
||||
// STEP 4
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
|
||||
#endif
|
||||
current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
||||
stepper.synchronize();
|
||||
|
||||
// STEP 5
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("(5) Engage magnetic field");
|
||||
#endif
|
||||
|
||||
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
||||
pe_activate_magnet(active_extruder); //just save power for inverted magnets
|
||||
#endif
|
||||
pe_activate_magnet(tmp_extruder);
|
||||
|
||||
// STEP 6
|
||||
current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
||||
current_position[X_AXIS] = grabpos;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
|
||||
stepper.synchronize();
|
||||
|
||||
// Step 7
|
||||
current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("(7) Move midway between hotends");
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
|
||||
#endif
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
|
||||
stepper.synchronize();
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
SERIAL_ECHOLNPGM("Autopark done.");
|
||||
#endif
|
||||
}
|
||||
else { // nomove == true
|
||||
// Only engage magnetic field for new extruder
|
||||
pe_activate_magnet(tmp_extruder);
|
||||
#if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
|
||||
pe_activate_magnet(active_extruder); // Just save power for inverted magnets
|
||||
#endif
|
||||
}
|
||||
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
|
||||
#endif
|
||||
|
||||
#endif // dualParking extruder
|
||||
|
||||
#if ENABLED(SWITCHING_NOZZLE)
|
||||
#define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
|
||||
// <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
|
||||
const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
|
||||
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
|
||||
|
||||
// Always raise by some amount (destination copied from current_position earlier)
|
||||
current_position[Z_AXIS] += z_raise;
|
||||
planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
|
||||
move_nozzle_servo(tmp_extruder);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Set current_position to the position of the new nozzle.
|
||||
* Offsets are based on linear distance, so we need to get
|
||||
* the resulting position in coordinate space.
|
||||
*
|
||||
* - With grid or 3-point leveling, offset XYZ by a tilted vector
|
||||
* - With mesh leveling, update Z for the new position
|
||||
* - Otherwise, just use the raw linear distance
|
||||
*
|
||||
* Software endstops are altered here too. Consider a case where:
|
||||
* E0 at X=0 ... E1 at X=10
|
||||
* When we switch to E1 now X=10, but E1 can't move left.
|
||||
* To express this we apply the change in XY to the software endstops.
|
||||
* E1 can move farther right than E0, so the right limit is extended.
|
||||
*
|
||||
* Note that we don't adjust the Z software endstops. Why not?
|
||||
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
|
||||
* because the bed is 1mm lower at the new position. As long as
|
||||
* the first nozzle is out of the way, the carriage should be
|
||||
* allowed to move 1mm lower. This technically "breaks" the
|
||||
* Z software endstop. But this is technically correct (and
|
||||
* there is no viable alternative).
|
||||
*/
|
||||
#if ABL_PLANAR
|
||||
// Offset extruder, make sure to apply the bed level rotation matrix
|
||||
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
|
||||
hotend_offset[Y_AXIS][tmp_extruder],
|
||||
0),
|
||||
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
|
||||
hotend_offset[Y_AXIS][active_extruder],
|
||||
0),
|
||||
offset_vec = tmp_offset_vec - act_offset_vec;
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
|
||||
act_offset_vec.debug(PSTR("act_offset_vec"));
|
||||
offset_vec.debug(PSTR("offset_vec (BEFORE)"));
|
||||
}
|
||||
#endif
|
||||
|
||||
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
|
||||
#endif
|
||||
|
||||
// Adjustments to the current position
|
||||
const float xydiff[2] = { offset_vec.x, offset_vec.y };
|
||||
current_position[Z_AXIS] += offset_vec.z;
|
||||
|
||||
#else // !ABL_PLANAR
|
||||
|
||||
const float xydiff[2] = {
|
||||
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
|
||||
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
|
||||
};
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING)
|
||||
|
||||
if (leveling_is_active()) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
|
||||
#endif
|
||||
float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
|
||||
y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
|
||||
z1 = current_position[Z_AXIS], z2 = z1;
|
||||
planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
|
||||
planner.apply_leveling(x2, y2, z2);
|
||||
current_position[Z_AXIS] += z2 - z1;
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING))
|
||||
SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
|
||||
#endif
|
||||
}
|
||||
|
||||
#endif // MESH_BED_LEVELING
|
||||
|
||||
#endif // !HAS_ABL
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
|
||||
SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
|
||||
SERIAL_ECHOLNPGM(" }");
|
||||
}
|
||||
#endif
|
||||
|
||||
// The newly-selected extruder XY is actually at...
|
||||
current_position[X_AXIS] += xydiff[X_AXIS];
|
||||
current_position[Y_AXIS] += xydiff[Y_AXIS];
|
||||
#if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE) || ENABLED(PARKING_EXTRUDER)
|
||||
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
|
||||
#if HAS_POSITION_SHIFT
|
||||
position_shift[i] += xydiff[i];
|
||||
#endif
|
||||
update_software_endstops((AxisEnum)i);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Set the new active extruder
|
||||
active_extruder = tmp_extruder;
|
||||
|
||||
#endif // !DUAL_X_CARRIAGE
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
|
||||
#endif
|
||||
|
||||
// Tell the planner the new "current position"
|
||||
SYNC_PLAN_POSITION_KINEMATIC();
|
||||
|
||||
// Move to the "old position" (move the extruder into place)
|
||||
if (!no_move && IsRunning()) {
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
|
||||
#endif
|
||||
prepare_move_to_destination();
|
||||
}
|
||||
|
||||
#if ENABLED(SWITCHING_NOZZLE)
|
||||
// Move back down, if needed. (Including when the new tool is higher.)
|
||||
if (z_raise != z_diff) {
|
||||
destination[Z_AXIS] += z_diff;
|
||||
feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS];
|
||||
prepare_move_to_destination();
|
||||
}
|
||||
#endif
|
||||
|
||||
} // (tmp_extruder != active_extruder)
|
||||
|
||||
stepper.synchronize();
|
||||
|
||||
#if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
|
||||
disable_all_solenoids();
|
||||
enable_solenoid_on_active_extruder();
|
||||
#endif // EXT_SOLENOID
|
||||
|
||||
feedrate_mm_s = old_feedrate_mm_s;
|
||||
|
||||
#else // HOTENDS <= 1
|
||||
|
||||
UNUSED(fr_mm_s);
|
||||
UNUSED(no_move);
|
||||
|
||||
#if ENABLED(MK2_MULTIPLEXER)
|
||||
if (tmp_extruder >= E_STEPPERS)
|
||||
return invalid_extruder_error(tmp_extruder);
|
||||
|
||||
select_multiplexed_stepper(tmp_extruder);
|
||||
#endif
|
||||
|
||||
// Set the new active extruder
|
||||
active_extruder = tmp_extruder;
|
||||
|
||||
#endif // HOTENDS <= 1
|
||||
|
||||
#if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
|
||||
stepper.synchronize();
|
||||
move_extruder_servo(active_extruder);
|
||||
#endif
|
||||
|
||||
#if HAS_FANMUX
|
||||
fanmux_switch(active_extruder);
|
||||
#endif
|
||||
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
|
||||
|
||||
#endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
|
||||
}
|
||||
|
||||
/**
|
||||
* T0-T3: Switch tool, usually switching extruders
|
||||
*
|
||||
* F[units/min] Set the movement feedrate
|
||||
* S1 Don't move the tool in XY after change
|
||||
*/
|
||||
inline void gcode_T(uint8_t tmp_extruder) {
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
|
||||
SERIAL_CHAR(')');
|
||||
SERIAL_EOL();
|
||||
DEBUG_POS("BEFORE", current_position);
|
||||
}
|
||||
#endif
|
||||
|
||||
#if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
|
||||
|
||||
tool_change(tmp_extruder);
|
||||
|
||||
#elif HOTENDS > 1
|
||||
|
||||
tool_change(
|
||||
tmp_extruder,
|
||||
MMM_TO_MMS(parser.linearval('F')),
|
||||
(tmp_extruder == active_extruder) || parser.boolval('S')
|
||||
);
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
||||
if (DEBUGGING(LEVELING)) {
|
||||
DEBUG_POS("AFTER", current_position);
|
||||
SERIAL_ECHOLNPGM("<<< gcode_T");
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
/**
|
||||
* Process a single command and dispatch it to its handler
|
||||
* This is called from the main loop()
|
||||
*/
|
||||
void process_next_command() {
|
||||
char * const current_command = command_queue[cmd_queue_index_r];
|
||||
|
||||
if (DEBUGGING(ECHO)) {
|
||||
SERIAL_ECHO_START();
|
||||
SERIAL_ECHOLN(current_command);
|
||||
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
||||
SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
|
||||
M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
|
||||
#endif
|
||||
}
|
||||
|
||||
KEEPALIVE_STATE(IN_HANDLER);
|
||||
|
||||
// Parse the next command in the queue
|
||||
parser.parse(current_command);
|
||||
|
||||
// Handle a known G, M, or T
|
||||
switch (parser.command_letter) {
|
||||
case 'G': switch (parser.codenum) {
|
||||
|
||||
// G0, G1
|
||||
case 0:
|
||||
case 1:
|
||||
#if IS_SCARA
|
||||
gcode_G0_G1(parser.codenum == 0);
|
||||
#else
|
||||
gcode_G0_G1();
|
||||
#endif
|
||||
break;
|
||||
|
||||
// G2, G3
|
||||
#if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
|
||||
case 2: // G2: CW ARC
|
||||
case 3: // G3: CCW ARC
|
||||
gcode_G2_G3(parser.codenum == 2);
|
||||
break;
|
||||
#endif
|
||||
|
||||
// G4 Dwell
|
||||
case 4:
|
||||
gcode_G4();
|
||||
break;
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
case 5: // G5: Cubic B_spline
|
||||
gcode_G5();
|
||||
break;
|
||||
#endif // BEZIER_CURVE_SUPPORT
|
||||
|
||||
#if ENABLED(FWRETRACT)
|
||||
case 10: // G10: retract
|
||||
gcode_G10();
|
||||
break;
|
||||
case 11: // G11: retract_recover
|
||||
gcode_G11();
|
||||
break;
|
||||
#endif // FWRETRACT
|
||||
|
||||
#if ENABLED(NOZZLE_CLEAN_FEATURE)
|
||||
case 12:
|
||||
gcode_G12(); // G12: Nozzle Clean
|
||||
break;
|
||||
#endif // NOZZLE_CLEAN_FEATURE
|
||||
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
case 17: // G17: Select Plane XY
|
||||
gcode_G17();
|
||||
break;
|
||||
case 18: // G18: Select Plane ZX
|
||||
gcode_G18();
|
||||
break;
|
||||
case 19: // G19: Select Plane YZ
|
||||
gcode_G19();
|
||||
break;
|
||||
#endif // CNC_WORKSPACE_PLANES
|
||||
|
||||
#if ENABLED(INCH_MODE_SUPPORT)
|
||||
case 20: // G20: Inch Mode
|
||||
gcode_G20();
|
||||
break;
|
||||
|
||||
case 21: // G21: MM Mode
|
||||
gcode_G21();
|
||||
break;
|
||||
#endif // INCH_MODE_SUPPORT
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
case 26: // G26: Mesh Validation Pattern generation
|
||||
gcode_G26();
|
||||
break;
|
||||
#endif // AUTO_BED_LEVELING_UBL
|
||||
|
||||
#if ENABLED(NOZZLE_PARK_FEATURE)
|
||||
case 27: // G27: Nozzle Park
|
||||
gcode_G27();
|
||||
break;
|
||||
#endif // NOZZLE_PARK_FEATURE
|
||||
|
||||
case 28: // G28: Home all axes, one at a time
|
||||
gcode_G28(false);
|
||||
break;
|
||||
|
||||
#if HAS_LEVELING
|
||||
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
|
||||
// or provides access to the UBL System if enabled.
|
||||
gcode_G29();
|
||||
break;
|
||||
#endif // HAS_LEVELING
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
|
||||
case 30: // G30 Single Z probe
|
||||
gcode_G30();
|
||||
break;
|
||||
|
||||
#if ENABLED(Z_PROBE_SLED)
|
||||
|
||||
case 31: // G31: dock the sled
|
||||
gcode_G31();
|
||||
break;
|
||||
|
||||
case 32: // G32: undock the sled
|
||||
gcode_G32();
|
||||
break;
|
||||
|
||||
#endif // Z_PROBE_SLED
|
||||
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if PROBE_SELECTED
|
||||
|
||||
#if ENABLED(DELTA_AUTO_CALIBRATION)
|
||||
|
||||
case 33: // G33: Delta Auto-Calibration
|
||||
gcode_G33();
|
||||
break;
|
||||
|
||||
#endif // DELTA_AUTO_CALIBRATION
|
||||
|
||||
#endif // PROBE_SELECTED
|
||||
|
||||
#if ENABLED(G38_PROBE_TARGET)
|
||||
case 38: // G38.2 & G38.3
|
||||
if (parser.subcode == 2 || parser.subcode == 3)
|
||||
gcode_G38(parser.subcode == 2);
|
||||
break;
|
||||
#endif
|
||||
|
||||
case 90: // G90
|
||||
relative_mode = false;
|
||||
break;
|
||||
case 91: // G91
|
||||
relative_mode = true;
|
||||
break;
|
||||
|
||||
case 92: // G92
|
||||
gcode_G92();
|
||||
break;
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(MESH_BED_LEVELING)
|
||||
case 42:
|
||||
gcode_G42();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(DEBUG_GCODE_PARSER)
|
||||
case 800:
|
||||
parser.debug(); // GCode Parser Test for G
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
break;
|
||||
|
||||
case 'M': switch (parser.codenum) {
|
||||
#if HAS_RESUME_CONTINUE
|
||||
case 0: // M0: Unconditional stop - Wait for user button press on LCD
|
||||
case 1: // M1: Conditional stop - Wait for user button press on LCD
|
||||
gcode_M0_M1();
|
||||
break;
|
||||
#endif // ULTIPANEL
|
||||
|
||||
#if ENABLED(SPINDLE_LASER_ENABLE)
|
||||
case 3:
|
||||
gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
|
||||
break; // synchronizes with movement commands
|
||||
case 4:
|
||||
gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
|
||||
break; // synchronizes with movement commands
|
||||
case 5:
|
||||
gcode_M5(); // M5 - turn spindle/laser off
|
||||
break; // synchronizes with movement commands
|
||||
#endif
|
||||
case 17: // M17: Enable all stepper motors
|
||||
gcode_M17();
|
||||
break;
|
||||
|
||||
#if ENABLED(SDSUPPORT)
|
||||
case 20: // M20: list SD card
|
||||
gcode_M20(); break;
|
||||
case 21: // M21: init SD card
|
||||
gcode_M21(); break;
|
||||
case 22: // M22: release SD card
|
||||
gcode_M22(); break;
|
||||
case 23: // M23: Select file
|
||||
gcode_M23(); break;
|
||||
case 24: // M24: Start SD print
|
||||
gcode_M24(); break;
|
||||
case 25: // M25: Pause SD print
|
||||
gcode_M25(); break;
|
||||
case 26: // M26: Set SD index
|
||||
gcode_M26(); break;
|
||||
case 27: // M27: Get SD status
|
||||
gcode_M27(); break;
|
||||
case 28: // M28: Start SD write
|
||||
gcode_M28(); break;
|
||||
case 29: // M29: Stop SD write
|
||||
gcode_M29(); break;
|
||||
case 30: // M30 <filename> Delete File
|
||||
gcode_M30(); break;
|
||||
case 32: // M32: Select file and start SD print
|
||||
gcode_M32(); break;
|
||||
|
||||
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
||||
case 33: // M33: Get the long full path to a file or folder
|
||||
gcode_M33(); break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
|
||||
case 34: // M34: Set SD card sorting options
|
||||
gcode_M34(); break;
|
||||
#endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
|
||||
|
||||
case 928: // M928: Start SD write
|
||||
gcode_M928(); break;
|
||||
#endif // SDSUPPORT
|
||||
|
||||
case 31: // M31: Report time since the start of SD print or last M109
|
||||
gcode_M31(); break;
|
||||
|
||||
case 42: // M42: Change pin state
|
||||
gcode_M42(); break;
|
||||
|
||||
#if ENABLED(PINS_DEBUGGING)
|
||||
case 43: // M43: Read pin state
|
||||
gcode_M43(); break;
|
||||
#endif
|
||||
|
||||
|
||||
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
||||
case 48: // M48: Z probe repeatability test
|
||||
gcode_M48();
|
||||
break;
|
||||
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|
||||
|
||||
#if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
|
||||
case 49: // M49: Turn on or off G26 debug flag for verbose output
|
||||
gcode_M49();
|
||||
break;
|
||||
#endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION
|
||||
|
||||
case 75: // M75: Start print timer
|
||||
gcode_M75(); break;
|
||||
case 76: // M76: Pause print timer
|
||||
gcode_M76(); break;
|
||||
case 77: // M77: Stop print timer
|
||||
gcode_M77(); break;
|
||||
|
||||
#if ENABLED(PRINTCOUNTER)
|
||||
case 78: // M78: Show print statistics
|
||||
gcode_M78(); break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
||||
case 100: // M100: Free Memory Report
|
||||
gcode_M100();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case 104: // M104: Set hot end temperature
|
||||
gcode_M104();
|
||||
break;
|
||||
|
||||
case 110: // M110: Set Current Line Number
|
||||
gcode_M110();
|
||||
break;
|
||||
|
||||
case 111: // M111: Set debug level
|
||||
gcode_M111();
|
||||
break;
|
||||
|
||||
#if DISABLED(EMERGENCY_PARSER)
|
||||
|
||||
case 108: // M108: Cancel Waiting
|
||||
gcode_M108();
|
||||
break;
|
||||
|
||||
case 112: // M112: Emergency Stop
|
||||
gcode_M112();
|
||||
break;
|
||||
|
||||
case 410: // M410 quickstop - Abort all the planned moves.
|
||||
gcode_M410();
|
||||
break;
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
||||
case 113: // M113: Set Host Keepalive interval
|
||||
gcode_M113();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case 140: // M140: Set bed temperature
|
||||
gcode_M140();
|
||||
break;
|
||||
|
||||
|
||||
case 105: // M105: Report current temperature
|
||||
gcode_M105();
|
||||
KEEPALIVE_STATE(NOT_BUSY);
|
||||
return; // "ok" already printed
|
||||
|
||||
#if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
|
||||
case 155: // M155: Set temperature auto-report interval
|
||||
gcode_M155();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case 109: // M109: Wait for hotend temperature to reach target
|
||||
gcode_M109();
|
||||
break;
|
||||
|
||||
#if HAS_TEMP_BED
|
||||
case 190: // M190: Wait for bed temperature to reach target
|
||||
gcode_M190();
|
||||
break;
|
||||
#endif // HAS_TEMP_BED
|
||||
|
||||
#if FAN_COUNT > 0
|
||||
case 106: // M106: Fan On
|
||||
gcode_M106();
|
||||
break;
|
||||
case 107: // M107: Fan Off
|
||||
gcode_M107();
|
||||
break;
|
||||
#endif // FAN_COUNT > 0
|
||||
|
||||
#if ENABLED(PARK_HEAD_ON_PAUSE)
|
||||
case 125: // M125: Store current position and move to filament change position
|
||||
gcode_M125(); break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(BARICUDA)
|
||||
// PWM for HEATER_1_PIN
|
||||
#if HAS_HEATER_1
|
||||
case 126: // M126: valve open
|
||||
gcode_M126();
|
||||
break;
|
||||
case 127: // M127: valve closed
|
||||
gcode_M127();
|
||||
break;
|
||||
#endif // HAS_HEATER_1
|
||||
|
||||
// PWM for HEATER_2_PIN
|
||||
#if HAS_HEATER_2
|
||||
case 128: // M128: valve open
|
||||
gcode_M128();
|
||||
break;
|
||||
case 129: // M129: valve closed
|
||||
gcode_M129();
|
||||
break;
|
||||
#endif // HAS_HEATER_2
|
||||
#endif // BARICUDA
|
||||
|
||||
#if HAS_POWER_SWITCH
|
||||
|
||||
case 80: // M80: Turn on Power Supply
|
||||
gcode_M80();
|
||||
break;
|
||||
|
||||
#endif // HAS_POWER_SWITCH
|
||||
|
||||
case 81: // M81: Turn off Power, including Power Supply, if possible
|
||||
gcode_M81();
|
||||
break;
|
||||
|
||||
case 82: // M82: Set E axis normal mode (same as other axes)
|
||||
gcode_M82();
|
||||
break;
|
||||
case 83: // M83: Set E axis relative mode
|
||||
gcode_M83();
|
||||
break;
|
||||
case 18: // M18 => M84
|
||||
case 84: // M84: Disable all steppers or set timeout
|
||||
gcode_M18_M84();
|
||||
break;
|
||||
case 85: // M85: Set inactivity stepper shutdown timeout
|
||||
gcode_M85();
|
||||
break;
|
||||
case 92: // M92: Set the steps-per-unit for one or more axes
|
||||
gcode_M92();
|
||||
break;
|
||||
case 114: // M114: Report current position
|
||||
gcode_M114();
|
||||
break;
|
||||
case 115: // M115: Report capabilities
|
||||
gcode_M115();
|
||||
break;
|
||||
case 117: // M117: Set LCD message text, if possible
|
||||
gcode_M117();
|
||||
break;
|
||||
case 118: // M118: Display a message in the host console
|
||||
gcode_M118();
|
||||
break;
|
||||
case 119: // M119: Report endstop states
|
||||
gcode_M119();
|
||||
break;
|
||||
case 120: // M120: Enable endstops
|
||||
gcode_M120();
|
||||
break;
|
||||
case 121: // M121: Disable endstops
|
||||
gcode_M121();
|
||||
break;
|
||||
|
||||
#if ENABLED(ULTIPANEL)
|
||||
|
||||
case 145: // M145: Set material heatup parameters
|
||||
gcode_M145();
|
||||
break;
|
||||
|
||||
#endif
|
||||
|
||||
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
||||
case 149: // M149: Set temperature units
|
||||
gcode_M149();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_COLOR_LEDS
|
||||
|
||||
case 150: // M150: Set Status LED Color
|
||||
gcode_M150();
|
||||
break;
|
||||
|
||||
#endif // HAS_COLOR_LEDS
|
||||
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
case 163: // M163: Set a component weight for mixing extruder
|
||||
gcode_M163();
|
||||
break;
|
||||
#if MIXING_VIRTUAL_TOOLS > 1
|
||||
case 164: // M164: Save current mix as a virtual extruder
|
||||
gcode_M164();
|
||||
break;
|
||||
#endif
|
||||
#if ENABLED(DIRECT_MIXING_IN_G1)
|
||||
case 165: // M165: Set multiple mix weights
|
||||
gcode_M165();
|
||||
break;
|
||||
#endif
|
||||
#endif
|
||||
|
||||
case 200: // M200: Set filament diameter, E to cubic units
|
||||
gcode_M200();
|
||||
break;
|
||||
case 201: // M201: Set max acceleration for print moves (units/s^2)
|
||||
gcode_M201();
|
||||
break;
|
||||
#if 0 // Not used for Sprinter/grbl gen6
|
||||
case 202: // M202
|
||||
gcode_M202();
|
||||
break;
|
||||
#endif
|
||||
case 203: // M203: Set max feedrate (units/sec)
|
||||
gcode_M203();
|
||||
break;
|
||||
case 204: // M204: Set acceleration
|
||||
gcode_M204();
|
||||
break;
|
||||
case 205: // M205: Set advanced settings
|
||||
gcode_M205();
|
||||
break;
|
||||
|
||||
#if HAS_M206_COMMAND
|
||||
case 206: // M206: Set home offsets
|
||||
gcode_M206();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(DELTA)
|
||||
case 665: // M665: Set delta configurations
|
||||
gcode_M665();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
|
||||
case 666: // M666: Set delta or dual endstop adjustment
|
||||
gcode_M666();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(FWRETRACT)
|
||||
case 207: // M207: Set Retract Length, Feedrate, and Z lift
|
||||
gcode_M207();
|
||||
break;
|
||||
case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
|
||||
gcode_M208();
|
||||
break;
|
||||
case 209: // M209: Turn Automatic Retract Detection on/off
|
||||
if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
|
||||
break;
|
||||
#endif // FWRETRACT
|
||||
|
||||
case 211: // M211: Enable, Disable, and/or Report software endstops
|
||||
gcode_M211();
|
||||
break;
|
||||
|
||||
#if HOTENDS > 1
|
||||
case 218: // M218: Set a tool offset
|
||||
gcode_M218();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
|
||||
gcode_M220();
|
||||
break;
|
||||
|
||||
case 221: // M221: Set Flow Percentage
|
||||
gcode_M221();
|
||||
break;
|
||||
|
||||
case 226: // M226: Wait until a pin reaches a state
|
||||
gcode_M226();
|
||||
break;
|
||||
|
||||
#if HAS_SERVOS
|
||||
case 280: // M280: Set servo position absolute
|
||||
gcode_M280();
|
||||
break;
|
||||
#endif // HAS_SERVOS
|
||||
|
||||
#if HAS_BUZZER
|
||||
case 300: // M300: Play beep tone
|
||||
gcode_M300();
|
||||
break;
|
||||
#endif // HAS_BUZZER
|
||||
|
||||
#if ENABLED(PIDTEMP)
|
||||
case 301: // M301: Set hotend PID parameters
|
||||
gcode_M301();
|
||||
break;
|
||||
#endif // PIDTEMP
|
||||
|
||||
#if ENABLED(PIDTEMPBED)
|
||||
case 304: // M304: Set bed PID parameters
|
||||
gcode_M304();
|
||||
break;
|
||||
#endif // PIDTEMPBED
|
||||
|
||||
#if defined(CHDK) || HAS_PHOTOGRAPH
|
||||
case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
||||
gcode_M240();
|
||||
break;
|
||||
#endif // CHDK || PHOTOGRAPH_PIN
|
||||
|
||||
#if HAS_LCD_CONTRAST
|
||||
case 250: // M250: Set LCD contrast
|
||||
gcode_M250();
|
||||
break;
|
||||
#endif // HAS_LCD_CONTRAST
|
||||
|
||||
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
||||
|
||||
case 260: // M260: Send data to an i2c slave
|
||||
gcode_M260();
|
||||
break;
|
||||
|
||||
case 261: // M261: Request data from an i2c slave
|
||||
gcode_M261();
|
||||
break;
|
||||
|
||||
#endif // EXPERIMENTAL_I2CBUS
|
||||
|
||||
#if ENABLED(PREVENT_COLD_EXTRUSION)
|
||||
case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
|
||||
gcode_M302();
|
||||
break;
|
||||
#endif // PREVENT_COLD_EXTRUSION
|
||||
|
||||
case 303: // M303: PID autotune
|
||||
gcode_M303();
|
||||
break;
|
||||
|
||||
#if ENABLED(MORGAN_SCARA)
|
||||
case 360: // M360: SCARA Theta pos1
|
||||
if (gcode_M360()) return;
|
||||
break;
|
||||
case 361: // M361: SCARA Theta pos2
|
||||
if (gcode_M361()) return;
|
||||
break;
|
||||
case 362: // M362: SCARA Psi pos1
|
||||
if (gcode_M362()) return;
|
||||
break;
|
||||
case 363: // M363: SCARA Psi pos2
|
||||
if (gcode_M363()) return;
|
||||
break;
|
||||
case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
|
||||
if (gcode_M364()) return;
|
||||
break;
|
||||
#endif // SCARA
|
||||
|
||||
case 400: // M400: Finish all moves
|
||||
gcode_M400();
|
||||
break;
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
case 401: // M401: Deploy probe
|
||||
gcode_M401();
|
||||
break;
|
||||
case 402: // M402: Stow probe
|
||||
gcode_M402();
|
||||
break;
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
||||
case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
||||
gcode_M404();
|
||||
break;
|
||||
case 405: // M405: Turn on filament sensor for control
|
||||
gcode_M405();
|
||||
break;
|
||||
case 406: // M406: Turn off filament sensor for control
|
||||
gcode_M406();
|
||||
break;
|
||||
case 407: // M407: Display measured filament diameter
|
||||
gcode_M407();
|
||||
break;
|
||||
#endif // FILAMENT_WIDTH_SENSOR
|
||||
|
||||
#if HAS_LEVELING
|
||||
case 420: // M420: Enable/Disable Bed Leveling
|
||||
gcode_M420();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(MESH_BED_LEVELING) || ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
||||
case 421: // M421: Set a Mesh Bed Leveling Z coordinate
|
||||
gcode_M421();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_M206_COMMAND
|
||||
case 428: // M428: Apply current_position to home_offset
|
||||
gcode_M428();
|
||||
break;
|
||||
#endif
|
||||
|
||||
case 500: // M500: Store settings in EEPROM
|
||||
gcode_M500();
|
||||
break;
|
||||
case 501: // M501: Read settings from EEPROM
|
||||
gcode_M501();
|
||||
break;
|
||||
case 502: // M502: Revert to default settings
|
||||
gcode_M502();
|
||||
break;
|
||||
|
||||
#if DISABLED(DISABLE_M503)
|
||||
case 503: // M503: print settings currently in memory
|
||||
gcode_M503();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
||||
case 540: // M540: Set abort on endstop hit for SD printing
|
||||
gcode_M540();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if HAS_BED_PROBE
|
||||
case 851: // M851: Set Z Probe Z Offset
|
||||
gcode_M851();
|
||||
break;
|
||||
#endif // HAS_BED_PROBE
|
||||
|
||||
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
||||
case 600: // M600: Pause for filament change
|
||||
gcode_M600();
|
||||
break;
|
||||
#endif // ADVANCED_PAUSE_FEATURE
|
||||
|
||||
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
|
||||
case 605: // M605: Set Dual X Carriage movement mode
|
||||
gcode_M605();
|
||||
break;
|
||||
#endif // DUAL_X_CARRIAGE
|
||||
|
||||
#if ENABLED(MK2_MULTIPLEXER)
|
||||
case 702: // M702: Unload all extruders
|
||||
gcode_M702();
|
||||
break;
|
||||
#include "gcode/control/M605.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(LIN_ADVANCE)
|
||||
case 900: // M900: Set advance K factor.
|
||||
gcode_M900();
|
||||
break;
|
||||
#include "gcode/feature/advance/M900.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
|
||||
gcode_M906();
|
||||
break;
|
||||
#include "feature/tmc2130.h"
|
||||
#include "gcode/feature/trinamic/M906.h"
|
||||
#include "gcode/feature/trinamic/M911.h"
|
||||
#include "gcode/feature/trinamic/M912.h"
|
||||
#if ENABLED(HYBRID_THRESHOLD)
|
||||
#include "gcode/feature/trinamic/M913.h"
|
||||
#endif
|
||||
#if ENABLED(SENSORLESS_HOMING)
|
||||
#include "gcode/feature/trinamic/M914.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
case 907: // M907: Set digital trimpot motor current using axis codes.
|
||||
gcode_M907();
|
||||
break;
|
||||
#include "gcode/feature/digipot/M907.h"
|
||||
|
||||
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
||||
|
||||
case 908: // M908: Control digital trimpot directly.
|
||||
gcode_M908();
|
||||
break;
|
||||
|
||||
#include "gcode/feature/digipot/M908.h"
|
||||
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
||||
|
||||
case 909: // M909: Print digipot/DAC current value
|
||||
gcode_M909();
|
||||
break;
|
||||
|
||||
case 910: // M910: Commit digipot/DAC value to external EEPROM
|
||||
gcode_M910();
|
||||
break;
|
||||
|
||||
#endif
|
||||
|
||||
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
case 911: // M911: Report TMC2130 prewarn triggered flags
|
||||
gcode_M911();
|
||||
break;
|
||||
|
||||
case 912: // M911: Clear TMC2130 prewarn triggered flags
|
||||
gcode_M912();
|
||||
break;
|
||||
|
||||
#if ENABLED(HYBRID_THRESHOLD)
|
||||
case 913: // M913: Set HYBRID_THRESHOLD speed.
|
||||
gcode_M913();
|
||||
break;
|
||||
#endif
|
||||
|
||||
#if ENABLED(SENSORLESS_HOMING)
|
||||
case 914: // M914: Set SENSORLESS_HOMING sensitivity.
|
||||
gcode_M914();
|
||||
break;
|
||||
#include "gcode/feature/digipot/M909.h"
|
||||
#include "gcode/feature/digipot/M910.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
#if HAS_MICROSTEPS
|
||||
|
||||
case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
||||
gcode_M350();
|
||||
break;
|
||||
|
||||
case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
||||
gcode_M351();
|
||||
break;
|
||||
|
||||
#endif // HAS_MICROSTEPS
|
||||
|
||||
case 355: // M355 set case light brightness
|
||||
gcode_M355();
|
||||
break;
|
||||
|
||||
#if ENABLED(DEBUG_GCODE_PARSER)
|
||||
case 800:
|
||||
parser.debug(); // GCode Parser Test for M
|
||||
break;
|
||||
#include "gcode/control/M350.h"
|
||||
#include "gcode/control/M351.h"
|
||||
#endif
|
||||
|
||||
#if ENABLED(I2C_POSITION_ENCODERS)
|
||||
#include "gcode/feature/caselight/M355.h"
|
||||
|
||||
case 860: // M860 Report encoder module position
|
||||
gcode_M860();
|
||||
break;
|
||||
#if ENABLED(MIXING_EXTRUDER)
|
||||
#include "gcode/feature/mixing/M163.h"
|
||||
#if MIXING_VIRTUAL_TOOLS > 1
|
||||
#include "gcode/feature/mixing/M164.h"
|
||||
#endif
|
||||
#if ENABLED(DIRECT_MIXING_IN_G1)
|
||||
#include "gcode/feature/mixing/M165.h"
|
||||
#endif
|
||||
#endif
|
||||
|
||||
case 861: // M861 Report encoder module status
|
||||
gcode_M861();
|
||||
break;
|
||||
#include "gcode/control/M999.h"
|
||||
|
||||
case 862: // M862 Perform axis test
|
||||
gcode_M862();
|
||||
break;
|
||||
#include "gcode/control/T.h"
|
||||
|
||||
case 863: // M863 Calibrate steps/mm
|
||||
gcode_M863();
|
||||
break;
|
||||
|
||||
case 864: // M864 Change module address
|
||||
gcode_M864();
|
||||
break;
|
||||
|
||||
case 865: // M865 Check module firmware version
|
||||
gcode_M865();
|
||||
break;
|
||||
|
||||
case 866: // M866 Report axis error count
|
||||
gcode_M866();
|
||||
break;
|
||||
|
||||
case 867: // M867 Toggle error correction
|
||||
gcode_M867();
|
||||
break;
|
||||
|
||||
case 868: // M868 Set error correction threshold
|
||||
gcode_M868();
|
||||
break;
|
||||
|
||||
case 869: // M869 Report axis error
|
||||
gcode_M869();
|
||||
break;
|
||||
|
||||
#endif // I2C_POSITION_ENCODERS
|
||||
|
||||
case 999: // M999: Restart after being Stopped
|
||||
gcode_M999();
|
||||
break;
|
||||
}
|
||||
break;
|
||||
|
||||
case 'T':
|
||||
gcode_T(parser.codenum);
|
||||
break;
|
||||
|
||||
default: parser.unknown_command_error();
|
||||
}
|
||||
|
||||
KEEPALIVE_STATE(NOT_BUSY);
|
||||
|
||||
ok_to_send();
|
||||
}
|
||||
#include "gcode/process_next_command.h"
|
||||
|
||||
/**
|
||||
* Send a "Resend: nnn" message to the host to
|
||||
|
@ -12451,178 +4730,6 @@ void prepare_move_to_destination() {
|
|||
set_current_to_destination();
|
||||
}
|
||||
|
||||
#if ENABLED(ARC_SUPPORT)
|
||||
|
||||
#if N_ARC_CORRECTION < 1
|
||||
#undef N_ARC_CORRECTION
|
||||
#define N_ARC_CORRECTION 1
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Plan an arc in 2 dimensions
|
||||
*
|
||||
* The arc is approximated by generating many small linear segments.
|
||||
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
||||
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
||||
* larger segments will tend to be more efficient. Your slicer should have
|
||||
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
||||
*/
|
||||
void plan_arc(
|
||||
float logical[XYZE], // Destination position
|
||||
float *offset, // Center of rotation relative to current_position
|
||||
uint8_t clockwise // Clockwise?
|
||||
) {
|
||||
#if ENABLED(CNC_WORKSPACE_PLANES)
|
||||
AxisEnum p_axis, q_axis, l_axis;
|
||||
switch (workspace_plane) {
|
||||
case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
|
||||
case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
|
||||
case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
|
||||
}
|
||||
#else
|
||||
constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
|
||||
#endif
|
||||
|
||||
// Radius vector from center to current location
|
||||
float r_P = -offset[0], r_Q = -offset[1];
|
||||
|
||||
const float radius = HYPOT(r_P, r_Q),
|
||||
center_P = current_position[p_axis] - r_P,
|
||||
center_Q = current_position[q_axis] - r_Q,
|
||||
rt_X = logical[p_axis] - center_P,
|
||||
rt_Y = logical[q_axis] - center_Q,
|
||||
linear_travel = logical[l_axis] - current_position[l_axis],
|
||||
extruder_travel = logical[E_AXIS] - current_position[E_AXIS];
|
||||
|
||||
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
||||
float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
|
||||
if (angular_travel < 0) angular_travel += RADIANS(360);
|
||||
if (clockwise) angular_travel -= RADIANS(360);
|
||||
|
||||
// Make a circle if the angular rotation is 0 and the target is current position
|
||||
if (angular_travel == 0 && current_position[p_axis] == logical[p_axis] && current_position[q_axis] == logical[q_axis])
|
||||
angular_travel = RADIANS(360);
|
||||
|
||||
const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
|
||||
if (mm_of_travel < 0.001) return;
|
||||
|
||||
uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
||||
if (segments == 0) segments = 1;
|
||||
|
||||
/**
|
||||
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
||||
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
||||
* r_T = [cos(phi) -sin(phi);
|
||||
* sin(phi) cos(phi)] * r ;
|
||||
*
|
||||
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
||||
* defined from the circle center to the initial position. Each line segment is formed by successive
|
||||
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
||||
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
||||
* all double numbers are single precision on the Arduino. (True double precision will not have
|
||||
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
||||
* tool precision in some cases. Therefore, arc path correction is implemented.
|
||||
*
|
||||
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
||||
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
||||
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
||||
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
||||
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
||||
* issue for CNC machines with the single precision Arduino calculations.
|
||||
*
|
||||
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
||||
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
||||
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
||||
* This is important when there are successive arc motions.
|
||||
*/
|
||||
// Vector rotation matrix values
|
||||
float arc_target[XYZE];
|
||||
const float theta_per_segment = angular_travel / segments,
|
||||
linear_per_segment = linear_travel / segments,
|
||||
extruder_per_segment = extruder_travel / segments,
|
||||
sin_T = theta_per_segment,
|
||||
cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
|
||||
|
||||
// Initialize the linear axis
|
||||
arc_target[l_axis] = current_position[l_axis];
|
||||
|
||||
// Initialize the extruder axis
|
||||
arc_target[E_AXIS] = current_position[E_AXIS];
|
||||
|
||||
const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
|
||||
|
||||
millis_t next_idle_ms = millis() + 200UL;
|
||||
|
||||
#if N_ARC_CORRECTION > 1
|
||||
int8_t arc_recalc_count = N_ARC_CORRECTION;
|
||||
#endif
|
||||
|
||||
for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
|
||||
|
||||
thermalManager.manage_heater();
|
||||
if (ELAPSED(millis(), next_idle_ms)) {
|
||||
next_idle_ms = millis() + 200UL;
|
||||
idle();
|
||||
}
|
||||
|
||||
#if N_ARC_CORRECTION > 1
|
||||
if (--arc_recalc_count) {
|
||||
// Apply vector rotation matrix to previous r_P / 1
|
||||
const float r_new_Y = r_P * sin_T + r_Q * cos_T;
|
||||
r_P = r_P * cos_T - r_Q * sin_T;
|
||||
r_Q = r_new_Y;
|
||||
}
|
||||
else
|
||||
#endif
|
||||
{
|
||||
#if N_ARC_CORRECTION > 1
|
||||
arc_recalc_count = N_ARC_CORRECTION;
|
||||
#endif
|
||||
|
||||
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
||||
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
||||
// To reduce stuttering, the sin and cos could be computed at different times.
|
||||
// For now, compute both at the same time.
|
||||
const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
|
||||
r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
|
||||
r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
|
||||
}
|
||||
|
||||
// Update arc_target location
|
||||
arc_target[p_axis] = center_P + r_P;
|
||||
arc_target[q_axis] = center_Q + r_Q;
|
||||
arc_target[l_axis] += linear_per_segment;
|
||||
arc_target[E_AXIS] += extruder_per_segment;
|
||||
|
||||
clamp_to_software_endstops(arc_target);
|
||||
|
||||
planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
|
||||
}
|
||||
|
||||
// Ensure last segment arrives at target location.
|
||||
planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
|
||||
|
||||
// As far as the parser is concerned, the position is now == target. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
set_current_to_destination();
|
||||
} // plan_arc
|
||||
|
||||
#endif // ARC_SUPPORT
|
||||
|
||||
#if ENABLED(BEZIER_CURVE_SUPPORT)
|
||||
|
||||
void plan_cubic_move(const float offset[4]) {
|
||||
cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
|
||||
|
||||
// As far as the parser is concerned, the position is now == destination. In reality the
|
||||
// motion control system might still be processing the action and the real tool position
|
||||
// in any intermediate location.
|
||||
set_current_to_destination();
|
||||
}
|
||||
|
||||
#endif // BEZIER_CURVE_SUPPORT
|
||||
|
||||
#if ENABLED(USE_CONTROLLER_FAN)
|
||||
|
||||
void controllerFan() {
|
||||
|
@ -12787,63 +4894,6 @@ void prepare_move_to_destination() {
|
|||
|
||||
#endif // FILAMENT_RUNOUT_SENSOR
|
||||
|
||||
#if ENABLED(FAST_PWM_FAN)
|
||||
|
||||
void setPwmFrequency(uint8_t pin, int val) {
|
||||
val &= 0x07;
|
||||
switch (digitalPinToTimer(pin)) {
|
||||
#ifdef TCCR0A
|
||||
#if !AVR_AT90USB1286_FAMILY
|
||||
case TIMER0A:
|
||||
#endif
|
||||
case TIMER0B:
|
||||
//_SET_CS(0, val);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TCCR1A
|
||||
case TIMER1A:
|
||||
case TIMER1B:
|
||||
//_SET_CS(1, val);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TCCR2
|
||||
case TIMER2:
|
||||
case TIMER2:
|
||||
_SET_CS(2, val);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TCCR2A
|
||||
case TIMER2A:
|
||||
case TIMER2B:
|
||||
_SET_CS(2, val);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TCCR3A
|
||||
case TIMER3A:
|
||||
case TIMER3B:
|
||||
case TIMER3C:
|
||||
_SET_CS(3, val);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TCCR4A
|
||||
case TIMER4A:
|
||||
case TIMER4B:
|
||||
case TIMER4C:
|
||||
_SET_CS(4, val);
|
||||
break;
|
||||
#endif
|
||||
#ifdef TCCR5A
|
||||
case TIMER5A:
|
||||
case TIMER5B:
|
||||
case TIMER5C:
|
||||
_SET_CS(5, val);
|
||||
break;
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // FAST_PWM_FAN
|
||||
|
||||
float calculate_volumetric_multiplier(const float diameter) {
|
||||
if (!volumetric_enabled || diameter == 0) return 1.0;
|
||||
return 1.0 / (M_PI * sq(diameter * 0.5));
|
||||
|
@ -12880,106 +4930,6 @@ void disable_all_steppers() {
|
|||
disable_e_steppers();
|
||||
}
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
|
||||
void automatic_current_control(TMC2130Stepper &st, String axisID) {
|
||||
// Check otpw even if we don't use automatic control. Allows for flag inspection.
|
||||
const bool is_otpw = st.checkOT();
|
||||
|
||||
// Report if a warning was triggered
|
||||
static bool previous_otpw = false;
|
||||
if (is_otpw && !previous_otpw) {
|
||||
char timestamp[10];
|
||||
duration_t elapsed = print_job_timer.duration();
|
||||
const bool has_days = (elapsed.value > 60*60*24L);
|
||||
(void)elapsed.toDigital(timestamp, has_days);
|
||||
SERIAL_ECHO(timestamp);
|
||||
SERIAL_ECHOPGM(": ");
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOLNPGM(" driver overtemperature warning!");
|
||||
}
|
||||
previous_otpw = is_otpw;
|
||||
|
||||
#if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
|
||||
// Return if user has not enabled current control start with M906 S1.
|
||||
if (!auto_current_control) return;
|
||||
|
||||
/**
|
||||
* Decrease current if is_otpw is true.
|
||||
* Bail out if driver is disabled.
|
||||
* Increase current if OTPW has not been triggered yet.
|
||||
*/
|
||||
uint16_t current = st.getCurrent();
|
||||
if (is_otpw) {
|
||||
st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
|
||||
#if ENABLED(REPORT_CURRENT_CHANGE)
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
|
||||
#endif
|
||||
}
|
||||
|
||||
else if (!st.isEnabled())
|
||||
return;
|
||||
|
||||
else if (!is_otpw && !st.getOTPW()) {
|
||||
current += CURRENT_STEP;
|
||||
if (current <= AUTO_ADJUST_MAX) {
|
||||
st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
|
||||
#if ENABLED(REPORT_CURRENT_CHANGE)
|
||||
SERIAL_ECHO(axisID);
|
||||
SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
|
||||
#endif
|
||||
}
|
||||
}
|
||||
SERIAL_EOL();
|
||||
#endif
|
||||
}
|
||||
|
||||
void checkOverTemp() {
|
||||
static millis_t next_cOT = 0;
|
||||
if (ELAPSED(millis(), next_cOT)) {
|
||||
next_cOT = millis() + 5000;
|
||||
#if ENABLED(X_IS_TMC2130)
|
||||
automatic_current_control(stepperX, "X");
|
||||
#endif
|
||||
#if ENABLED(Y_IS_TMC2130)
|
||||
automatic_current_control(stepperY, "Y");
|
||||
#endif
|
||||
#if ENABLED(Z_IS_TMC2130)
|
||||
automatic_current_control(stepperZ, "Z");
|
||||
#endif
|
||||
#if ENABLED(X2_IS_TMC2130)
|
||||
automatic_current_control(stepperX2, "X2");
|
||||
#endif
|
||||
#if ENABLED(Y2_IS_TMC2130)
|
||||
automatic_current_control(stepperY2, "Y2");
|
||||
#endif
|
||||
#if ENABLED(Z2_IS_TMC2130)
|
||||
automatic_current_control(stepperZ2, "Z2");
|
||||
#endif
|
||||
#if ENABLED(E0_IS_TMC2130)
|
||||
automatic_current_control(stepperE0, "E0");
|
||||
#endif
|
||||
#if ENABLED(E1_IS_TMC2130)
|
||||
automatic_current_control(stepperE1, "E1");
|
||||
#endif
|
||||
#if ENABLED(E2_IS_TMC2130)
|
||||
automatic_current_control(stepperE2, "E2");
|
||||
#endif
|
||||
#if ENABLED(E3_IS_TMC2130)
|
||||
automatic_current_control(stepperE3, "E3");
|
||||
#endif
|
||||
#if ENABLED(E4_IS_TMC2130)
|
||||
automatic_current_control(stepperE4, "E4");
|
||||
#endif
|
||||
#if ENABLED(E4_IS_TMC2130)
|
||||
automatic_current_control(stepperE4);
|
||||
#endif
|
||||
}
|
||||
}
|
||||
|
||||
#endif // HAVE_TMC2130
|
||||
|
||||
/**
|
||||
* Manage several activities:
|
||||
* - Check for Filament Runout
|
||||
|
@ -13155,7 +5105,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
|||
#endif
|
||||
|
||||
#if ENABLED(HAVE_TMC2130)
|
||||
checkOverTemp();
|
||||
tmc2130_checkOverTemp();
|
||||
#endif
|
||||
|
||||
planner.check_axes_activity();
|
||||
|
@ -13383,7 +5333,7 @@ void setup() {
|
|||
#if SPINDLE_DIR_CHANGE
|
||||
OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
|
||||
#endif
|
||||
#if ENABLED(SPINDLE_LASER_PWM)
|
||||
#if ENABLED(SPINDLE_LASER_PWM) && defined(SPINDLE_LASER_PWM_PIN) && SPINDLE_LASER_PWM_PIN >= 0
|
||||
SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
|
||||
analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
|
||||
#endif
|
||||
|
|
|
@ -19,33 +19,27 @@
|
|||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*
|
||||
*/
|
||||
#ifndef MARLIN_H
|
||||
#define MARLIN_H
|
||||
#ifndef __MARLIN_H__
|
||||
#define __MARLIN_H__
|
||||
|
||||
#include <math.h>
|
||||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
#include <string.h>
|
||||
#include <inttypes.h>
|
||||
|
||||
#include "MarlinConfig.h"
|
||||
#include "inc/MarlinConfig.h"
|
||||
|
||||
#ifdef DEBUG_GCODE_PARSER
|
||||
#include "gcode.h"
|
||||
#include "gcode/parser.h"
|
||||
#endif
|
||||
#include "src/HAL/HAL.h"
|
||||
|
||||
#include "enum.h"
|
||||
#include "types.h"
|
||||
#include "utility.h"
|
||||
#include "serial.h"
|
||||
|
||||
#if ENABLED(PRINTCOUNTER)
|
||||
#include "printcounter.h"
|
||||
#include "module/printcounter.h"
|
||||
#else
|
||||
#include "stopwatch.h"
|
||||
#include "libs/stopwatch.h"
|
||||
#endif
|
||||
|
||||
void stop();
|
||||
|
||||
void idle(
|
||||
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
||||
bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout
|
||||
|
@ -195,10 +189,6 @@ void clear_command_queue();
|
|||
extern millis_t previous_cmd_ms;
|
||||
inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); }
|
||||
|
||||
#if ENABLED(FAST_PWM_FAN)
|
||||
void setPwmFrequency(uint8_t pin, int val);
|
||||
#endif
|
||||
|
||||
/**
|
||||
* Feedrate scaling and conversion
|
||||
*/
|
||||
|
@ -476,4 +466,4 @@ FORCE_INLINE bool position_is_reachable_xy(const float &lx, const float &ly) {
|
|||
return position_is_reachable_raw_xy(RAW_X_POSITION(lx), RAW_Y_POSITION(ly));
|
||||
}
|
||||
|
||||
#endif // MARLIN_H
|
||||
#endif // __MARLIN_H__
|
||||
|
|
Reference in a new issue