Fix indentation, stepper.h dependency, etc.

This commit is contained in:
Scott Lahteine 2017-11-22 14:51:42 -06:00 committed by Scott Lahteine
parent f011a32771
commit c613a1ed38
3 changed files with 148 additions and 149 deletions

View file

@ -105,8 +105,6 @@ ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
#if ENABLED(EMERGENCY_PARSER) #if ENABLED(EMERGENCY_PARSER)
#include "../../module/stepper.h"
// Currently looking for: M108, M112, M410 // Currently looking for: M108, M112, M410
// If you alter the parser please don't forget to update the capabilities in Conditionals_post.h // If you alter the parser please don't forget to update the capabilities in Conditionals_post.h
@ -115,80 +113,80 @@ ring_buffer_r rx_buffer = { { 0 }, 0, 0 };
static e_parser_state state = state_RESET; static e_parser_state state = state_RESET;
switch (state) { switch (state) {
case state_RESET: case state_RESET:
switch (c) { switch (c) {
case ' ': break; case ' ': break;
case 'N': state = state_N; break; case 'N': state = state_N; break;
case 'M': state = state_M; break; case 'M': state = state_M; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_N: case state_N:
switch (c) { switch (c) {
case '0': case '1': case '2': case '0': case '1': case '2':
case '3': case '4': case '5': case '3': case '4': case '5':
case '6': case '7': case '8': case '6': case '7': case '8':
case '9': case '-': case ' ': break; case '9': case '-': case ' ': break;
case 'M': state = state_M; break; case 'M': state = state_M; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_M: case state_M:
switch (c) { switch (c) {
case ' ': break; case ' ': break;
case '1': state = state_M1; break; case '1': state = state_M1; break;
case '4': state = state_M4; break; case '4': state = state_M4; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_M1: case state_M1:
switch (c) { switch (c) {
case '0': state = state_M10; break; case '0': state = state_M10; break;
case '1': state = state_M11; break; case '1': state = state_M11; break;
default: state = state_IGNORE; default: state = state_IGNORE;
} }
break; break;
case state_M10: case state_M10:
state = (c == '8') ? state_M108 : state_IGNORE; state = (c == '8') ? state_M108 : state_IGNORE;
break; break;
case state_M11: case state_M11:
state = (c == '2') ? state_M112 : state_IGNORE; state = (c == '2') ? state_M112 : state_IGNORE;
break; break;
case state_M4: case state_M4:
state = (c == '1') ? state_M41 : state_IGNORE; state = (c == '1') ? state_M41 : state_IGNORE;
break; break;
case state_M41: case state_M41:
state = (c == '0') ? state_M410 : state_IGNORE; state = (c == '0') ? state_M410 : state_IGNORE;
break; break;
case state_IGNORE: case state_IGNORE:
if (c == '\n') state = state_RESET; if (c == '\n') state = state_RESET;
break; break;
default: default:
if (c == '\n') { if (c == '\n') {
switch (state) { switch (state) {
case state_M108: case state_M108:
wait_for_user = wait_for_heatup = false; wait_for_user = wait_for_heatup = false;
break; break;
case state_M112: case state_M112:
kill(PSTR(MSG_KILLED)); kill(PSTR(MSG_KILLED));
break; break;
case state_M410: case state_M410:
quickstop_stepper(); quickstop_stepper();
break; break;
default: default:
break; break;
}
state = state_RESET;
} }
state = state_RESET;
}
} }
} }
@ -213,61 +211,61 @@ FORCE_INLINE void store_rxd_char() {
else if (!++rx_dropped_bytes) ++rx_dropped_bytes; else if (!++rx_dropped_bytes) ++rx_dropped_bytes;
#endif #endif
#if ENABLED(SERIAL_STATS_MAX_RX_QUEUED) #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
// calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
#endif
#if ENABLED(SERIAL_XON_XOFF)
// for high speed transfers, we can use XON/XOFF protocol to do
// software handshake and avoid overruns.
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
// calculate count of bytes stored into the RX buffer // calculate count of bytes stored into the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// Keep track of the maximum count of enqueued bytes
NOLESS(rx_max_enqueued, rx_count);
#endif
// if we are above 12.5% of RX buffer capacity, send XOFF before #if ENABLED(SERIAL_XON_XOFF)
// we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
// let the host react and stop sending bytes. This translates to 13mS
// propagation time.
if (rx_count >= (RX_BUFFER_SIZE) / 8) {
// If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
// Send an XOFF character
HWUART->UART_THR = XOFF_CHAR;
// And remember it was sent // for high speed transfers, we can use XON/XOFF protocol to do
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; // software handshake and avoid overruns.
} if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XON_CHAR) {
else {
// TX interrupts disabled, but buffer still not empty ... or // calculate count of bytes stored into the RX buffer
// TX interrupts enabled. Reenable TX ints and schedule XOFF ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// character to be sent
#if TX_BUFFER_SIZE > 0 // if we are above 12.5% of RX buffer capacity, send XOFF before
HWUART->UART_IER = UART_IER_TXRDY; // we run out of RX buffer space .. We need 325 bytes @ 250kbits/s to
xon_xoff_state = XOFF_CHAR; // let the host react and stop sending bytes. This translates to 13mS
#else // propagation time.
// We are not using TX interrupts, we will have to send this manually if (rx_count >= (RX_BUFFER_SIZE) / 8) {
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); }; // If TX interrupts are disabled and data register is empty,
// just write the byte to the data register and be done. This
// shortcut helps significantly improve the effective datarate
// at high (>500kbit/s) bitrates, where interrupt overhead
// becomes a slowdown.
if (!(HWUART->UART_IMR & UART_IMR_TXRDY) && (HWUART->UART_SR & UART_SR_TXRDY)) {
// Send an XOFF character
HWUART->UART_THR = XOFF_CHAR; HWUART->UART_THR = XOFF_CHAR;
// And remember we already sent it
// And remember it was sent
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif }
else {
// TX interrupts disabled, but buffer still not empty ... or
// TX interrupts enabled. Reenable TX ints and schedule XOFF
// character to be sent
#if TX_BUFFER_SIZE > 0
HWUART->UART_IER = UART_IER_TXRDY;
xon_xoff_state = XOFF_CHAR;
#else
// We are not using TX interrupts, we will have to send this manually
while (!(HWUART->UART_SR & UART_SR_TXRDY)) { sw_barrier(); };
HWUART->UART_THR = XOFF_CHAR;
// And remember we already sent it
xon_xoff_state = XOFF_CHAR | XON_XOFF_CHAR_SENT;
#endif
}
} }
} }
} #endif // SERIAL_XON_XOFF
#endif // SERIAL_XON_XOFF
#if ENABLED(EMERGENCY_PARSER) #if ENABLED(EMERGENCY_PARSER)
emergency_parser(c); emergency_parser(c);
#endif #endif
} }
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
@ -296,7 +294,7 @@ FORCE_INLINE void store_rxd_char() {
HWUART->UART_IDR = UART_IDR_TXRDY; HWUART->UART_IDR = UART_IDR_TXRDY;
} }
#endif // TX_BUFFER_SIZE #endif // TX_BUFFER_SIZE > 0
static void UART_ISR(void) { static void UART_ISR(void) {
uint32_t status = HWUART->UART_SR; uint32_t status = HWUART->UART_SR;
@ -393,20 +391,20 @@ int MarlinSerial::read(void) {
v = rx_buffer.buffer[t]; v = rx_buffer.buffer[t];
rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1); rx_buffer.tail = (ring_buffer_pos_t)(t + 1) & (RX_BUFFER_SIZE - 1);
#if ENABLED(SERIAL_XON_XOFF) #if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
// Get count of bytes in the RX buffer // Get count of bytes in the RX buffer
ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1); ring_buffer_pos_t rx_count = (ring_buffer_pos_t)(rx_buffer.head - rx_buffer.tail) & (ring_buffer_pos_t)(RX_BUFFER_SIZE - 1);
// When below 10% of RX buffer capacity, send XON before // When below 10% of RX buffer capacity, send XON before
// running out of RX buffer bytes // running out of RX buffer bytes
if (rx_count < (RX_BUFFER_SIZE) / 10) { if (rx_count < (RX_BUFFER_SIZE) / 10) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
CRITICAL_SECTION_END; // End critical section before returning! CRITICAL_SECTION_END; // End critical section before returning!
writeNoHandshake(XON_CHAR); writeNoHandshake(XON_CHAR);
return v; return v;
}
} }
} #endif
#endif
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
return v; return v;
@ -427,15 +425,16 @@ void MarlinSerial::flush(void) {
rx_buffer.head = rx_buffer.tail; rx_buffer.head = rx_buffer.tail;
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
#if ENABLED(SERIAL_XON_XOFF) #if ENABLED(SERIAL_XON_XOFF)
if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) { if ((xon_xoff_state & XON_XOFF_CHAR_MASK) == XOFF_CHAR) {
xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT; xon_xoff_state = XON_CHAR | XON_XOFF_CHAR_SENT;
writeNoHandshake(XON_CHAR); writeNoHandshake(XON_CHAR);
} }
#endif #endif
} }
#if TX_BUFFER_SIZE > 0 #if TX_BUFFER_SIZE > 0
uint8_t MarlinSerial::availableForWrite(void) { uint8_t MarlinSerial::availableForWrite(void) {
CRITICAL_SECTION_START; CRITICAL_SECTION_START;
const uint8_t h = tx_buffer.head, t = tx_buffer.tail; const uint8_t h = tx_buffer.head, t = tx_buffer.tail;

View file

@ -64,7 +64,7 @@
* G32 - Undock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only)
* G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION) * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
* G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET) * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
* G42 - Coordinated move to a mesh point (Requires HAS_MESH) * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
* G90 - Use Absolute Coordinates * G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates * G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given * G92 - Set current position to coordinates given

View file

@ -54,13 +54,6 @@
#define SERVO2_PIN 24 // Motor header MX3 #define SERVO2_PIN 24 // Motor header MX3
#define SERVO3_PIN 5 // PWM header pin 5 #define SERVO3_PIN 5 // PWM header pin 5
//
// Z Probe (when not Z_MIN_PIN)
//
#ifndef Z_MIN_PROBE_PIN
#define Z_MIN_PROBE_PIN 30
#endif
// //
// Limit Switches // Limit Switches
// //
@ -71,6 +64,13 @@
#define Z_MIN_PIN 10 #define Z_MIN_PIN 10
#define Z_MAX_PIN 30 #define Z_MAX_PIN 30
//
// Z Probe (when not Z_MIN_PIN)
//
#ifndef Z_MIN_PROBE_PIN
#define Z_MIN_PROBE_PIN 30
#endif
// //
// Steppers // Steppers
// //