Adapt G26 to work for all meshes

This commit is contained in:
Scott Lahteine 2017-11-23 17:59:43 -06:00
parent 5ce7f23afa
commit c6b0c104bb
20 changed files with 661 additions and 727 deletions

View file

@ -72,7 +72,7 @@ script:
# Test a probeless build of AUTO_BED_LEVELING_UBL
#
- restore_configs
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT EEPROM_SETTINGS G3D_PANEL
- opt_enable AUTO_BED_LEVELING_UBL G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT EEPROM_SETTINGS G3D_PANEL
- opt_enable_adv CUSTOM_USER_MENUS I2C_POSITION_ENCODERS BABYSTEPPING
- build_marlin_pio ${TRAVIS_BUILD_DIR} ${TEST_PLATFORM}
#
@ -101,7 +101,7 @@ script:
# Test MESH_BED_LEVELING feature, with LCD
#
- restore_configs
- opt_enable MESH_BED_LEVELING MESH_G28_REST_ORIGIN LCD_BED_LEVELING ULTIMAKERCONTROLLER
- opt_enable MESH_BED_LEVELING G26_MESH_EDITING MESH_G28_REST_ORIGIN LCD_BED_LEVELING ULTIMAKERCONTROLLER
- build_marlin_pio ${TRAVIS_BUILD_DIR} ${TEST_PLATFORM}
#
# Test MINIRAMBO for PWM_MOTOR_CURRENT
@ -115,7 +115,7 @@ script:
#
- restore_configs
- opt_set MOTHERBOARD BOARD_MINIRAMBO
- opt_enable PROBE_MANUALLY AUTO_BED_LEVELING_BILINEAR LCD_BED_LEVELING ULTIMAKERCONTROLLER
- opt_enable PROBE_MANUALLY AUTO_BED_LEVELING_BILINEAR G26_MESH_EDITING LCD_BED_LEVELING ULTIMAKERCONTROLLER
- opt_enable EEPROM_SETTINGS EEPROM_CHITCHAT M100_FREE_MEMORY_WATCHER M100_FREE_MEMORY_DUMPER M100_FREE_MEMORY_CORRUPTOR INCH_MODE_SUPPORT TEMPERATURE_UNITS_SUPPORT
- opt_enable ULTIMAKERCONTROLLER SDSUPPORT
- opt_enable PRINTCOUNTER NOZZLE_PARK_FEATURE NOZZLE_CLEAN_FEATURE PCA9632 USE_XMAX_PLUG

View file

@ -95,6 +95,9 @@
#define STRINGIFY(M) STRINGIFY_(M)
// Macros for bit masks
#ifndef _BV
#define _BV(B) (1UL<<(B))
#endif
#define TEST(n,b) (((n)&_BV(b))!=0)
#define SBI(n,b) (n |= _BV(b))
#define CBI(n,b) (n &= ~_BV(b))

View file

@ -23,7 +23,7 @@
#ifndef __UTILITY_H__
#define __UTILITY_H__
#include "../inc/MarlinConfig.h"
#include "../inc/MarlinConfigPre.h"
constexpr char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
@ -33,6 +33,18 @@ void safe_delay(millis_t ms);
void crc16(uint16_t *crc, const void * const data, uint16_t cnt);
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
/**
* These support functions allow the use of large bit arrays of flags that take very
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
* in the future.
*/
FORCE_INLINE void bit_clear(uint16_t bits[16], const uint8_t x, const uint8_t y) { CBI(bits[y], x); }
FORCE_INLINE void bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { SBI(bits[y], x); }
FORCE_INLINE bool is_bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { return TEST(bits[y], x); }
#endif
#if ENABLED(ULTRA_LCD)
// Convert uint8_t to string with 123 format

View file

@ -41,6 +41,10 @@
#endif
#endif
#if G26_MESH_VALIDATION
bool g26_debug_flag; // = false
#endif
bool leveling_is_valid() {
return
#if ENABLED(MESH_BED_LEVELING)

View file

@ -23,14 +23,17 @@
#ifndef __BEDLEVEL_H__
#define __BEDLEVEL_H__
#include "../../inc/MarlinConfig.h"
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(MESH_BED_LEVELING)
#include "mbl/mesh_bed_leveling.h"
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl/ubl.h"
#elif HAS_ABL
#include "abl/abl.h"
typedef struct {
int8_t x_index, y_index;
float distance; // When populated, the distance from the search location
} mesh_index_pair;
#if ENABLED(G26_MESH_VALIDATION)
extern bool g26_debug_flag;
#else
constexpr bool g26_debug_flag = false;
#endif
#if ENABLED(PROBE_MANUALLY)
@ -68,4 +71,23 @@ void reset_bed_level();
void out_of_range_error(const char* p_edge);
#endif
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
#define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
#elif ENABLED(MESH_BED_LEVELING)
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
#endif
#if ENABLED(MESH_BED_LEVELING)
#include "mbl/mesh_bed_leveling.h"
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl/ubl.h"
#elif HAS_ABL
#include "abl/abl.h"
#endif
#endif // __BEDLEVEL_H__

View file

@ -34,16 +34,6 @@
#include "math.h"
/**
* These support functions allow the use of large bit arrays of flags that take very
* little RAM. Currently they are limited to being 16x16 in size. Changing the declaration
* to unsigned long will allow us to go to 32x32 if higher resolution Mesh's are needed
* in the future.
*/
void bit_clear(uint16_t bits[16], const uint8_t x, const uint8_t y) { CBI(bits[y], x); }
void bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { SBI(bits[y], x); }
bool is_bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y) { return TEST(bits[y], x); }
uint8_t ubl_cnt = 0;
void unified_bed_leveling::echo_name() { SERIAL_PROTOCOLPGM("Unified Bed Leveling"); }
@ -74,9 +64,6 @@
constexpr float unified_bed_leveling::_mesh_index_to_xpos[16],
unified_bed_leveling::_mesh_index_to_ypos[16];
bool unified_bed_leveling::g26_debug_flag = false,
unified_bed_leveling::has_control_of_lcd_panel = false;
#if ENABLED(ULTRA_LCD)
bool unified_bed_leveling::lcd_map_control = false;
#endif

View file

@ -23,9 +23,10 @@
#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H
#include "../../../Marlin.h"
#include "../bedlevel.h"
#include "../../../module/planner.h"
#include "../../../module/motion.h"
#include "../../../Marlin.h"
#define UBL_VERSION "1.01"
#define UBL_OK false
@ -34,17 +35,6 @@
#define USE_NOZZLE_AS_REFERENCE 0
#define USE_PROBE_AS_REFERENCE 1
typedef struct {
int8_t x_index, y_index;
float distance; // When populated, the distance from the search location
} mesh_index_pair;
// ubl.cpp
void bit_clear(uint16_t bits[16], const uint8_t x, const uint8_t y);
void bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y);
bool is_bit_set(uint16_t bits[16], const uint8_t x, const uint8_t y);
// ubl_motion.cpp
void debug_current_and_destination(const char * const title);
@ -56,7 +46,6 @@ enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
// External references
char *ftostr43sign(const float&, char);
bool ubl_lcd_clicked();
extern uint8_t ubl_cnt;
@ -87,22 +76,6 @@ class unified_bed_leveling {
static int g29_grid_size;
#endif
#if ENABLED(UBL_G26_MESH_VALIDATION)
static float g26_extrusion_multiplier,
g26_retraction_multiplier,
g26_nozzle,
g26_filament_diameter,
g26_prime_length,
g26_x_pos, g26_y_pos,
g26_ooze_amount,
g26_layer_height;
static int16_t g26_bed_temp,
g26_hotend_temp,
g26_repeats;
static int8_t g26_prime_flag;
static bool g26_continue_with_closest, g26_keep_heaters_on;
#endif
static float measure_point_with_encoder();
static float measure_business_card_thickness(float);
static bool g29_parameter_parsing();
@ -119,21 +92,6 @@ class unified_bed_leveling {
static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
static void smart_fill_mesh();
#if ENABLED(UBL_G26_MESH_VALIDATION)
static bool exit_from_g26();
static bool parse_G26_parameters();
static void G26_line_to_destination(const float &feed_rate);
static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
static bool look_for_lines_to_connect();
static bool turn_on_heaters();
static bool prime_nozzle();
static void retract_filament(const float where[XYZE]);
static void recover_filament(const float where[XYZE]);
static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
static void move_to(const float&, const float&, const float&, const float&);
inline static void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
#endif
public:
static void echo_name();
@ -151,10 +109,6 @@ class unified_bed_leveling {
static void G29() _O0; // O0 for no optimization
static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
#if ENABLED(UBL_G26_MESH_VALIDATION)
static void G26();
#endif
static int8_t storage_slot;
static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
@ -183,8 +137,6 @@ class unified_bed_leveling {
MESH_MIN_Y + 14 * (MESH_Y_DIST), MESH_MIN_Y + 15 * (MESH_Y_DIST)
};
static bool g26_debug_flag, has_control_of_lcd_panel;
#if ENABLED(ULTRA_LCD)
static bool lcd_map_control;
#endif

View file

@ -677,8 +677,7 @@
lcd_reset_alert_level();
LCD_MESSAGEPGM("");
lcd_quick_feedback();
has_control_of_lcd_panel = false;
lcd_external_control = false;
#endif
return;
@ -738,7 +737,10 @@
void unified_bed_leveling::probe_entire_mesh(const float &rx, const float &ry, const bool do_ubl_mesh_map, const bool stow_probe, bool close_or_far) {
mesh_index_pair location;
has_control_of_lcd_panel = true;
#if ENABLED(NEWPANEL)
lcd_external_control = true;
#endif
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE();
@ -748,12 +750,12 @@
if (do_ubl_mesh_map) display_map(g29_map_type);
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) {
if (is_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n");
lcd_quick_feedback();
STOW_PROBE();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
while (is_lcd_clicked()) idle();
lcd_external_control = false;
restore_ubl_active_state_and_leave();
safe_delay(50); // Debounce the Encoder wheel
return;
@ -894,11 +896,11 @@
float unified_bed_leveling::measure_point_with_encoder() {
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
while (is_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
KEEPALIVE_STATE(PAUSED_FOR_USER);
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
while (!is_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(encoder_diff));
@ -912,7 +914,7 @@
static void echo_and_take_a_measurement() { SERIAL_PROTOCOLLNPGM(" and take a measurement."); }
float unified_bed_leveling::measure_business_card_thickness(const float in_height) {
has_control_of_lcd_panel = true;
lcd_external_control = true;
save_ubl_active_state_and_disable(); // Disable bed level correction for probing
do_blocking_move_to(0.5 * (MESH_MAX_X - (MESH_MIN_X)), 0.5 * (MESH_MAX_Y - (MESH_MIN_Y)), in_height);
@ -944,7 +946,7 @@
SERIAL_PROTOCOLLNPGM("mm thick.");
}
has_control_of_lcd_panel = false;
lcd_external_control = false;
restore_ubl_active_state_and_leave();
@ -953,7 +955,7 @@
void unified_bed_leveling::manually_probe_remaining_mesh(const float &rx, const float &ry, const float &z_clearance, const float &thick, const bool do_ubl_mesh_map) {
has_control_of_lcd_panel = true;
lcd_external_control = true;
save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
@ -978,7 +980,7 @@
do_blocking_move_to_z(z_clearance);
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
lcd_external_control = true;
if (do_ubl_mesh_map) display_map(g29_map_type); // show user where we're probing
@ -987,9 +989,9 @@
const float z_step = 0.01; // existing behavior: 0.01mm per click, occasionally step
//const float z_step = 1.0 / planner.axis_steps_per_mm[Z_AXIS]; // approx one step each click
while (ubl_lcd_clicked()) delay(50); // wait for user to release encoder wheel
while (is_lcd_clicked()) delay(50); // wait for user to release encoder wheel
delay(50); // debounce
while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
while (!is_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (encoder_diff) {
do_blocking_move_to_z(current_position[Z_AXIS] + float(encoder_diff) * z_step);
@ -997,11 +999,11 @@
}
}
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// this sequence to detect an is_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500L;
while (ubl_lcd_clicked()) { // debounce and watch for abort
while (is_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
@ -1009,8 +1011,8 @@
#if ENABLED(NEWPANEL)
lcd_quick_feedback();
while (ubl_lcd_clicked()) idle();
has_control_of_lcd_panel = false;
while (is_lcd_clicked()) idle();
lcd_external_control = false;
#endif
KEEPALIVE_STATE(IN_HANDLER);
@ -1509,7 +1511,7 @@
new_z = FLOOR(new_z * 1000.0) * 0.001; // Chop off digits after the 1000ths place
KEEPALIVE_STATE(PAUSED_FOR_USER);
has_control_of_lcd_panel = true;
lcd_external_control = true;
if (do_ubl_mesh_map) display_map(g29_map_type); // show the user which point is being adjusted
@ -1523,27 +1525,27 @@
do_blocking_move_to_z(h_offset + new_z); // Move the nozzle as the point is edited
#endif
idle();
} while (!ubl_lcd_clicked());
} while (!is_lcd_clicked());
if (!lcd_map_control) lcd_return_to_status();
// The technique used here generates a race condition for the encoder click.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) or here.
// Let's work on specifying a proper API for the LCD ASAP, OK?
has_control_of_lcd_panel = true;
lcd_external_control = true;
// this sequence to detect an ubl_lcd_clicked() debounce it and leave if it is
// this sequence to detect an is_lcd_clicked() debounce it and leave if it is
// a Press and Hold is repeated in a lot of places (including G26_Mesh_Validation.cpp). This
// should be redone and compressed.
const millis_t nxt = millis() + 1500UL;
while (ubl_lcd_clicked()) { // debounce and watch for abort
while (is_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
lcd_return_to_status();
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
LCD_MESSAGEPGM(MSG_EDITING_STOPPED);
while (ubl_lcd_clicked()) idle();
while (is_lcd_clicked()) idle();
goto FINE_TUNE_EXIT;
}
@ -1559,7 +1561,7 @@
FINE_TUNE_EXIT:
has_control_of_lcd_panel = false;
lcd_external_control = false;
KEEPALIVE_STATE(IN_HANDLER);
if (do_ubl_mesh_map) display_map(g29_map_type);

View file

@ -23,9 +23,7 @@
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "ubl.h"
#include "../../../Marlin.h"
#include "../bedlevel.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/motion.h"
@ -34,6 +32,7 @@
#include "../../../module/delta.h"
#endif
#include "../../../Marlin.h"
#include <math.h>
extern float destination[XYZE];
@ -55,7 +54,7 @@
// if the title message starts with a '!' it is so important, we are going to
// ignore the status of the g26_debug_flag
if (*title != '!' && !ubl.g26_debug_flag) return;
if (*title != '!' && !g26_debug_flag) return;
const float de = destination[E_AXIS] - current_position[E_AXIS];

View file

@ -24,20 +24,22 @@
* Marlin Firmware -- G26 - Mesh Validation Tool
*/
#include "../../../inc/MarlinConfig.h"
#include "../../inc/MarlinConfig.h"
#if ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(G26_MESH_VALIDATION)
#include "ubl.h"
#define G26_OK false
#define G26_ERR true
#include "../../../Marlin.h"
#include "../../../module/planner.h"
#include "../../../module/stepper.h"
#include "../../../module/motion.h"
#include "../../../module/temperature.h"
#include "../../../lcd/ultralcd.h"
#include "../../../gcode/parser.h"
#include "../../bedlevel/bedlevel.h"
#include "../../gcode/gcode.h"
#include "../../feature/bedlevel/bedlevel.h"
#include "../../Marlin.h"
#include "../../module/planner.h"
#include "../../module/stepper.h"
#include "../../module/motion.h"
#include "../../module/temperature.h"
#include "../../lcd/ultralcd.h"
#define EXTRUSION_MULTIPLIER 1.0
#define RETRACTION_MULTIPLIER 1.0
@ -130,11 +132,6 @@
extern char lcd_status_message[];
#endif
#if ENABLED(NEWPANEL)
void lcd_setstatusPGM(const char* const message, const int8_t level);
void chirp_at_user();
#endif
// Private functions
static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
@ -144,41 +141,23 @@ float g26_e_axis_feedrate = 0.025,
static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
// retracts/recovers won't result in a bad state.
float valid_trig_angle(float);
float g26_extrusion_multiplier,
g26_retraction_multiplier,
g26_layer_height,
g26_prime_length;
float unified_bed_leveling::g26_extrusion_multiplier,
unified_bed_leveling::g26_retraction_multiplier,
unified_bed_leveling::g26_nozzle,
unified_bed_leveling::g26_filament_diameter,
unified_bed_leveling::g26_layer_height,
unified_bed_leveling::g26_prime_length,
unified_bed_leveling::g26_x_pos,
unified_bed_leveling::g26_y_pos,
unified_bed_leveling::g26_ooze_amount;
int16_t g26_bed_temp,
g26_hotend_temp;
int16_t unified_bed_leveling::g26_bed_temp,
unified_bed_leveling::g26_hotend_temp;
int8_t unified_bed_leveling::g26_prime_flag;
bool unified_bed_leveling::g26_continue_with_closest,
unified_bed_leveling::g26_keep_heaters_on;
int16_t unified_bed_leveling::g26_repeats;
void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
feedrate_mm_s = save_feedrate; // restore global feed rate
}
int8_t g26_prime_flag;
#if ENABLED(NEWPANEL)
/**
* Detect ubl_lcd_clicked, debounce it, and return true for cancel
* Detect is_lcd_clicked, debounce it, and return true for cancel
*/
bool user_canceled() {
if (!ubl_lcd_clicked()) return false;
if (!is_lcd_clicked()) return false;
safe_delay(10); // Wait for click to settle
#if ENABLED(ULTRA_LCD)
@ -186,25 +165,392 @@ void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
lcd_quick_feedback();
#endif
while (!ubl_lcd_clicked()) idle(); // Wait for button release
while (!is_lcd_clicked()) idle(); // Wait for button release
// If the button is suddenly pressed again,
// ask the user to resolve the issue
lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
while (ubl_lcd_clicked()) idle(); // unless this loop happens
while (is_lcd_clicked()) idle(); // unless this loop happens
lcd_reset_status();
return true;
}
bool exit_from_g26() {
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
while (is_lcd_clicked()) idle();
return G26_ERR;
}
#endif
mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) {
const float mx = _GET_MESH_X(i), // We found a circle that needs to be printed
my = _GET_MESH_Y(j);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
f += random(0.0, random_deviation);
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
void G26_line_to_destination(const float &feed_rate) {
const float save_feedrate = feedrate_mm_s;
feedrate_mm_s = feed_rate; // use specified feed rate
prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
feedrate_mm_s = save_feedrate; // restore global feed rate
}
void move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_xy_component = (rx != current_position[X_AXIS] || ry != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (z != last_z) {
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_from_current();
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or recover()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
destination[E_AXIS] += e_delta;
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_from_current();
}
FORCE_INLINE void move_to(const float where[XYZE], const float &de) {
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de);
}
void retract_filament(const float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where, -1.0 * g26_retraction_multiplier);
}
}
void recover_filament(const float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where, 1.2 * g26_retraction_multiplier);
g26_retracted = false;
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
}
// Decide whether to retract & bump
if (dist_start > 2.0) {
retract_filament(destination);
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
recover_filament(destination);
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
inline bool look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
#if ENABLED(NEWPANEL)
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
#endif
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = _GET_MESH_X( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = _GET_MESH_X(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(_GET_MESH_Y(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
}
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
}
}
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = _GET_MESH_Y( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = _GET_MESH_Y(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(_GET_MESH_X(i), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
debug_current_and_destination(PSTR("Connecting vertical line."));
}
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
}
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
}
}
}
}
}
}
return false;
}
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
inline bool turn_on_heaters() {
millis_t next = millis() + 5000UL;
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (g26_bed_temp > 25) {
lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback();
lcd_external_control = true;
#endif
thermalManager.setTargetBed(g26_bed_temp);
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
#if ENABLED(NEWPANEL)
if (is_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
thermalManager.print_heaterstates();
SERIAL_EOL();
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
#if ENABLED(NEWPANEL)
if (is_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
thermalManager.print_heaterstates();
SERIAL_EOL();
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_reset_status();
lcd_quick_feedback();
#endif
return G26_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool prime_nozzle() {
#if ENABLED(NEWPANEL)
float Total_Prime = 0.0;
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
lcd_external_control = true;
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
lcd_chirp();
set_destination_from_current();
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!is_lcd_clicked()) {
lcd_chirp();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return G26_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_from_current();
idle();
}
while (is_lcd_clicked()) idle(); // Debounce Encoder Wheel
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
// So... We cheat to get a message up.
lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback();
lcd_external_control = false;
#endif
}
else
#endif
{
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback();
#endif
set_destination_from_current();
destination[E_AXIS] += g26_prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize();
set_destination_from_current();
retract_filament(destination);
}
return G26_OK;
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
/**
* G26: Mesh Validation Pattern generation.
*
* Used to interactively edit UBL's Mesh by placing the
* Used to interactively edit the mesh by placing the
* nozzle in a problem area and doing a G29 P4 R command.
*/
void unified_bed_leveling::G26() {
void GcodeSuite::G26() {
SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
float tmp, start_angle, end_angle;
int i, xi, yi;
@ -212,7 +558,134 @@ void unified_bed_leveling::G26() {
// Don't allow Mesh Validation without homing first,
// or if the parameter parsing did not go OK, abort
if (axis_unhomed_error() || parse_G26_parameters()) return;
if (axis_unhomed_error()) return;
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
g26_layer_height = MESH_TEST_LAYER_HEIGHT;
g26_prime_length = PRIME_LENGTH;
g26_bed_temp = MESH_TEST_BED_TEMP;
g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
g26_prime_flag = 0;
float g26_nozzle = MESH_TEST_NOZZLE_SIZE,
g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA,
g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
bool g26_continue_with_closest = parser.boolval('C'),
g26_keep_heaters_on = parser.boolval('K');
if (parser.seenval('B')) {
g26_bed_temp = parser.value_celsius();
if (!WITHIN(g26_bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return G26_ERR;
}
}
if (parser.seenval('L')) {
g26_layer_height = parser.value_linear_units();
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return G26_ERR;
}
}
if (parser.seen('Q')) {
if (parser.has_value()) {
g26_retraction_multiplier = parser.value_float();
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return G26_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return G26_ERR;
}
}
if (parser.seenval('S')) {
g26_nozzle = parser.value_float();
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return G26_ERR;
}
}
if (parser.seen('P')) {
if (!parser.has_value()) {
#if ENABLED(NEWPANEL)
g26_prime_flag = -1;
#else
SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
return G26_ERR;
#endif
}
else {
g26_prime_flag++;
g26_prime_length = parser.value_linear_units();
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return G26_ERR;
}
}
}
if (parser.seenval('F')) {
g26_filament_diameter = parser.value_linear_units();
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return G26_ERR;
}
}
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
if (parser.seenval('H')) {
g26_hotend_temp = parser.value_celsius();
if (!WITHIN(g26_hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return G26_ERR;
}
}
if (parser.seen('U')) {
randomSeed(millis());
// This setting will persist for the next G26
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
int16_t g26_repeats;
#if ENABLED(NEWPANEL)
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
#else
if (!parser.seen('R')) {
SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
return G26_ERR;
}
else
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
#endif
if (g26_repeats < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
return G26_ERR;
}
float g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS],
g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return G26_ERR;
}
/**
* Wait until all parameters are verified before altering the state!
*/
set_bed_leveling_enabled(!parser.seen('D'));
if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
@ -220,7 +693,7 @@ void unified_bed_leveling::G26() {
set_current_from_destination();
}
if (turn_on_heaters()) goto LEAVE;
if (turn_on_heaters() != G26_OK) goto LEAVE;
current_position[E_AXIS] = 0.0;
sync_plan_position_e();
@ -247,7 +720,9 @@ void unified_bed_leveling::G26() {
move_to(destination, 0.0);
move_to(destination, g26_ooze_amount);
has_control_of_lcd_panel = true;
#if ENABLED(ULTRA_LCD)
lcd_external_control = true;
#endif
//debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
/**
@ -266,8 +741,8 @@ void unified_bed_leveling::G26() {
: find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
if (location.x_index >= 0 && location.y_index >= 0) {
const float circle_x = mesh_index_to_xpos(location.x_index),
circle_y = mesh_index_to_ypos(location.y_index);
const float circle_x = _GET_MESH_X(location.x_index),
circle_y = _GET_MESH_Y(location.y_index);
// If this mesh location is outside the printable_radius, skip it.
@ -370,7 +845,9 @@ void unified_bed_leveling::G26() {
move_to(destination, 0); // Move back to the starting position
//debug_current_and_destination(PSTR("done doing X/Y move."));
has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
#if ENABLED(ULTRA_LCD)
lcd_external_control = false; // Give back control of the LCD Panel!
#endif
if (!g26_keep_heaters_on) {
#if HAS_TEMP_BED
@ -380,500 +857,4 @@ void unified_bed_leveling::G26() {
}
}
float valid_trig_angle(float d) {
while (d > 360.0) d -= 360.0;
while (d < 0.0) d += 360.0;
return d;
}
mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
float closest = 99999.99;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
if (!is_bit_set(circle_flags, i, j)) {
const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
my = mesh_index_to_ypos(j);
// Get the distance to this intersection
float f = HYPOT(X - mx, Y - my);
// It is possible that we are being called with the values
// to let us find the closest circle to the start position.
// But if this is not the case, add a small weighting to the
// distance calculation to help it choose a better place to continue.
f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
// Add in the specified amount of Random Noise to our search
if (random_deviation > 1.0)
f += random(0.0, random_deviation);
if (f < closest) {
closest = f; // We found a closer location that is still
return_val.x_index = i; // un-printed --- save the data for it
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
return return_val;
}
bool unified_bed_leveling::look_for_lines_to_connect() {
float sx, sy, ex, ey;
for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
#if ENABLED(NEWPANEL)
if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
#endif
if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
//
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
//debug_current_and_destination(PSTR("Connecting horizontal line."));
}
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
}
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
}
}
if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
// This is already a half circle because we are at the edge of the bed.
if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
//
// We found two circles that need a vertical line to connect them
// Print it!
//
sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (position_is_reachable(sx, sy) && position_is_reachable(ex, ey)) {
if (g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
SERIAL_ECHOPAIR(", sy=", sy);
SERIAL_ECHOPAIR(") -> (ex=", ex);
SERIAL_ECHOPAIR(", ey=", ey);
SERIAL_CHAR(')');
SERIAL_EOL();
debug_current_and_destination(PSTR("Connecting vertical line."));
}
print_line_from_here_to_there(sx, sy, g26_layer_height, ex, ey, g26_layer_height);
}
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
}
}
}
}
}
}
return false;
}
void unified_bed_leveling::move_to(const float &rx, const float &ry, const float &z, const float &e_delta) {
float feed_value;
static float last_z = -999.99;
bool has_xy_component = (rx != current_position[X_AXIS] || ry != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
if (z != last_z) {
last_z = z;
feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_from_current();
}
// Check if X or Y is involved in the movement.
// Yes: a 'normal' movement. No: a retract() or recover()
feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
destination[X_AXIS] = rx;
destination[Y_AXIS] = ry;
destination[E_AXIS] += e_delta;
G26_line_to_destination(feed_value);
stepper.synchronize();
set_destination_from_current();
}
void unified_bed_leveling::retract_filament(const float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
move_to(where, -1.0 * g26_retraction_multiplier);
}
}
void unified_bed_leveling::recover_filament(const float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(where, 1.2 * g26_retraction_multiplier);
g26_retracted = false;
}
}
/**
* print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
* to the other. But there are really three sets of coordinates involved. The first coordinate
* is the present location of the nozzle. We don't necessarily want to print from this location.
* We first need to move the nozzle to the start of line segment where we want to print. Once
* there, we can use the two coordinates supplied to draw the line.
*
* Note: Although we assume the first set of coordinates is the start of the line and the second
* set of coordinates is the end of the line, it does not always work out that way. This function
* optimizes the movement to minimize the travel distance before it can start printing. This saves
* a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
* cause a lot of very little short retracement of th nozzle when it draws the very first line
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
// to save computation time
dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
}
// Decide whether to retract & bump
if (dist_start > 2.0) {
retract_filament(destination);
//todo: parameterize the bump height with a define
move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
recover_filament(destination);
move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
}
/**
* This function used to be inline code in G26. But there are so many
* parameters it made sense to turn them into static globals and get
* this code out of sight of the main routine.
*/
bool unified_bed_leveling::parse_G26_parameters() {
g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
g26_retraction_multiplier = RETRACTION_MULTIPLIER;
g26_nozzle = MESH_TEST_NOZZLE_SIZE;
g26_filament_diameter = DEFAULT_NOMINAL_FILAMENT_DIA;
g26_layer_height = MESH_TEST_LAYER_HEIGHT;
g26_prime_length = PRIME_LENGTH;
g26_bed_temp = MESH_TEST_BED_TEMP;
g26_hotend_temp = MESH_TEST_HOTEND_TEMP;
g26_prime_flag = 0;
g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
g26_keep_heaters_on = parser.boolval('K');
g26_continue_with_closest = parser.boolval('C');
if (parser.seenval('B')) {
g26_bed_temp = parser.value_celsius();
if (!WITHIN(g26_bed_temp, 15, 140)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
}
if (parser.seenval('L')) {
g26_layer_height = parser.value_linear_units();
if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
}
if (parser.seen('Q')) {
if (parser.has_value()) {
g26_retraction_multiplier = parser.value_float();
if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
}
else {
SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
return UBL_ERR;
}
}
if (parser.seenval('S')) {
g26_nozzle = parser.value_float();
if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
}
if (parser.seen('P')) {
if (!parser.has_value()) {
#if ENABLED(NEWPANEL)
g26_prime_flag = -1;
#else
SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
return UBL_ERR;
#endif
}
else {
g26_prime_flag++;
g26_prime_length = parser.value_linear_units();
if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
}
}
if (parser.seenval('F')) {
g26_filament_diameter = parser.value_linear_units();
if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
}
g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
// scale up or down the length needed to get the
// same volume of filament
g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
if (parser.seenval('H')) {
g26_hotend_temp = parser.value_celsius();
if (!WITHIN(g26_hotend_temp, 165, 280)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
}
if (parser.seen('U')) {
randomSeed(millis());
// This setting will persist for the next G26
random_deviation = parser.has_value() ? parser.value_float() : 50.0;
}
#if ENABLED(NEWPANEL)
g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
#else
if (!parser.seen('R')) {
SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
return UBL_ERR;
}
else
g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
#endif
if (g26_repeats < 1) {
SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
return UBL_ERR;
}
g26_x_pos = parser.seenval('X') ? RAW_X_POSITION(parser.value_linear_units()) : current_position[X_AXIS];
g26_y_pos = parser.seenval('Y') ? RAW_Y_POSITION(parser.value_linear_units()) : current_position[Y_AXIS];
if (!position_is_reachable(g26_x_pos, g26_y_pos)) {
SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
return UBL_ERR;
}
/**
* Wait until all parameters are verified before altering the state!
*/
set_bed_leveling_enabled(!parser.seen('D'));
return UBL_OK;
}
#if ENABLED(NEWPANEL)
bool unified_bed_leveling::exit_from_g26() {
lcd_setstatusPGM(PSTR("Leaving G26"), -1);
while (ubl_lcd_clicked()) idle();
return UBL_ERR;
}
#endif
/**
* Turn on the bed and nozzle heat and
* wait for them to get up to temperature.
*/
bool unified_bed_leveling::turn_on_heaters() {
millis_t next = millis() + 5000UL;
#if HAS_TEMP_BED
#if ENABLED(ULTRA_LCD)
if (g26_bed_temp > 25) {
lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
lcd_quick_feedback();
#endif
has_control_of_lcd_panel = true;
thermalManager.setTargetBed(g26_bed_temp);
while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
thermalManager.print_heaterstates();
SERIAL_EOL();
}
idle();
}
#if ENABLED(ULTRA_LCD)
}
lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
lcd_quick_feedback();
#endif
#endif
// Start heating the nozzle and wait for it to reach temperature.
thermalManager.setTargetHotend(g26_hotend_temp, 0);
while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
#if ENABLED(NEWPANEL)
if (ubl_lcd_clicked()) return exit_from_g26();
#endif
if (ELAPSED(millis(), next)) {
next = millis() + 5000UL;
thermalManager.print_heaterstates();
SERIAL_EOL();
}
idle();
}
#if ENABLED(ULTRA_LCD)
lcd_reset_status();
lcd_quick_feedback();
#endif
return UBL_OK;
}
/**
* Prime the nozzle if needed. Return true on error.
*/
bool unified_bed_leveling::prime_nozzle() {
#if ENABLED(NEWPANEL)
float Total_Prime = 0.0;
if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
has_control_of_lcd_panel = true;
lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
chirp_at_user();
set_destination_from_current();
recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
#ifdef PREVENT_LENGTHY_EXTRUDE
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
// to stop as quickly. So we put up with the less smooth
// action to give the user a more responsive 'Stop'.
set_destination_from_current();
idle();
}
while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
#if ENABLED(ULTRA_LCD)
strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
// So... We cheat to get a message up.
lcd_setstatusPGM(PSTR("Done Priming"), 99);
lcd_quick_feedback();
#endif
has_control_of_lcd_panel = false;
}
else {
#else
{
#endif
#if ENABLED(ULTRA_LCD)
lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
lcd_quick_feedback();
#endif
set_destination_from_current();
destination[E_AXIS] += g26_prime_length;
G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
stepper.synchronize();
set_destination_from_current();
retract_filament(destination);
}
return UBL_OK;
}
#endif // UBL_G26_MESH_VALIDATION
#endif // G26_MESH_VALIDATION

View file

@ -44,17 +44,6 @@ void GcodeSuite::G42() {
return;
}
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
#define _GET_MESH_X(I) bilinear_start[X_AXIS] + I * bilinear_grid_spacing[X_AXIS]
#define _GET_MESH_Y(J) bilinear_start[Y_AXIS] + J * bilinear_grid_spacing[Y_AXIS]
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#define _GET_MESH_X(I) ubl.mesh_index_to_xpos(I)
#define _GET_MESH_Y(J) ubl.mesh_index_to_ypos(J)
#elif ENABLED(MESH_BED_LEVELING)
#define _GET_MESH_X(I) mbl.index_to_xpos[I]
#define _GET_MESH_Y(J) mbl.index_to_ypos[J]
#endif
set_destination_from_current();
if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);

View file

@ -1,36 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* G26.cpp - Unified Bed Leveling
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(UBL_G26_MESH_VALIDATION)
#include "../../gcode.h"
#include "../../../feature/bedlevel/ubl/ubl.h"
void GcodeSuite::G26() { ubl.G26(); }
#endif // UBL_G26_MESH_VALIDATION

View file

@ -29,7 +29,7 @@
#if ENABLED(AUTO_BED_LEVELING_UBL)
#include "../../gcode.h"
#include "../../../feature/bedlevel/ubl/ubl.h"
#include "../../../feature/bedlevel/bedlevel.h"
/**
* M421: Set a single Mesh Bed Leveling Z coordinate

View file

@ -21,20 +21,20 @@
*/
/**
* M49.cpp - Unified Bed Leveling
* M49.cpp - Toggle the G26 debug flag
*/
#include "../../../inc/MarlinConfig.h"
#if ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(G26_MESH_VALIDATION)
#include "../../gcode.h"
#include "../../../feature/bedlevel/bedlevel.h"
void GcodeSuite::M49() {
ubl.g26_debug_flag ^= true;
SERIAL_PROTOCOLPGM("UBL Debug Flag turned ");
serialprintPGM(ubl.g26_debug_flag ? PSTR("on.") : PSTR("off."));
g26_debug_flag ^= true;
SERIAL_PROTOCOLPGM("G26 Debug ");
serialprintPGM(g26_debug_flag ? PSTR("on.") : PSTR("off."));
}
#endif // UBL_G26_MESH_VALIDATION
#endif // G26_MESH_VALIDATION

View file

@ -207,7 +207,7 @@ void GcodeSuite::process_parsed_command() {
break;
#endif // INCH_MODE_SUPPORT
#if ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(G26_MESH_VALIDATION)
case 26: // G26: Mesh Validation Pattern generation
G26();
break;
@ -342,7 +342,7 @@ void GcodeSuite::process_parsed_command() {
case 48: M48(); break; // M48: Z probe repeatability test
#endif
#if ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(G26_MESH_VALIDATION)
case 49: M49(); break; // M49: Turn on or off G26 debug flag for verbose output
#endif

View file

@ -55,7 +55,7 @@
* G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
* G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
* G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
* G26 - Mesh Validation Pattern (Requires UBL_G26_MESH_VALIDATION)
* G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
* G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
* G28 - Home one or more axes
* G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
@ -357,7 +357,7 @@ private:
static void G21();
#endif
#if ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(G26_MESH_VALIDATION)
static void G26();
#endif
@ -453,7 +453,7 @@ private:
static void M48();
#endif
#if ENABLED(UBL_G26_MESH_VALIDATION)
#if ENABLED(G26_MESH_VALIDATION)
static void M49();
#endif

View file

@ -20,8 +20,8 @@
*
*/
#ifndef MARLIN_CONFIG_H
#define MARLIN_CONFIG_H
#ifndef _MARLIN_CONFIG_H_
#define _MARLIN_CONFIG_H_
#include "MarlinConfigPre.h"
@ -36,8 +36,7 @@
// Include all core headers
#include "../core/enum.h"
#include "../core/language.h"
#include "../core/types.h"
#include "../core/utility.h"
#include "../core/serial.h"
#endif // MARLIN_CONFIG_H
#endif // _MARLIN_CONFIG_H_

View file

@ -20,8 +20,8 @@
*
*/
#ifndef MARLIN_CONFIGPRE_H
#define MARLIN_CONFIGPRE_H
#ifndef _MARLIN_CONFIGPRE_H_
#define _MARLIN_CONFIGPRE_H_
#include "../core/boards.h"
#include "../core/macros.h"
@ -31,4 +31,6 @@
#include "../../Configuration_adv.h"
#include "Conditionals_adv.h"
#endif // MARLIN_CONFIGPRE_H
#include "../core/types.h"
#endif // _MARLIN_CONFIGPRE_H_

View file

@ -60,6 +60,10 @@
#include "../libs/buzzer.h"
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
bool lcd_external_control; // = false
#endif
// Initialized by settings.load()
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
@ -4599,7 +4603,7 @@ void lcd_update() {
#if ENABLED(AUTO_BED_LEVELING_UBL)
// Don't run the debouncer if UBL owns the display
#define UBL_CONDITION !ubl.has_control_of_lcd_panel
#define UBL_CONDITION !lcd_external_control
#else
#define UBL_CONDITION true
#endif
@ -5070,7 +5074,7 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
case encrot3: ENCODER_SPIN(encrot2, encrot0); break;
}
#if ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl.has_control_of_lcd_panel) {
if (lcd_external_control) {
ubl.encoder_diff = encoderDiff; // Make the encoder's rotation available to G29's Mesh Editor
encoderDiff = 0; // We are going to lie to the LCD Panel and claim the encoder
// knob has not turned.
@ -5086,14 +5090,14 @@ void lcd_reset_alert_level() { lcd_status_message_level = 0; }
bool lcd_detected() { return true; }
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
void chirp_at_user() {
#if ENABLED(G26_MESH_VALIDATION)
void lcd_chirp() {
lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
}
#endif
bool ubl_lcd_clicked() { return LCD_CLICKED; }
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
bool is_lcd_clicked() { return LCD_CLICKED; }
#endif
#endif // ULTIPANEL

View file

@ -29,6 +29,12 @@
#include "../Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
extern bool lcd_external_control;
#else
constexpr bool lcd_external_control = false;
#endif
#define BUTTON_EXISTS(BN) (defined(BTN_## BN) && BTN_## BN >= 0)
#define BUTTON_PRESSED(BN) !READ(BTN_## BN)
@ -123,6 +129,10 @@
void lcd_advanced_pause_show_message(const AdvancedPauseMessage message);
#endif
#if ENABLED(G26_MESH_VALIDATION)
void lcd_chirp();
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL)
void lcd_mesh_edit_setup(float initial);
float lcd_mesh_edit();
@ -208,6 +218,10 @@
#define LCD_CLICKED false
#endif
#if ENABLED(AUTO_BED_LEVELING_UBL) || ENABLED(G26_MESH_VALIDATION)
bool is_lcd_clicked();
#endif
#else // no LCD
inline void lcd_update() {}