Add endstop monitor & make pins report pretty

This commit is contained in:
Bob-the-Kuhn 2016-10-29 13:42:43 -05:00 committed by Scott Lahteine
parent 3c3fe1a1ba
commit c7f1f0dae6
3 changed files with 1012 additions and 249 deletions

View file

@ -148,6 +148,7 @@
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
* M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
* M43 - Monitor pins & report changes - report active pins
* M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
* M75 - Start the print job timer.
* M76 - Pause the print job timer.
@ -4675,8 +4676,14 @@ inline void gcode_M42() {
/**
* M43: Pin report and debug
*
* pin report if just M43 with no codes
* P<pin> Will read/watch a single pin
* W Watch pins for changes until reboot
* E toggles endstop monitor
* reports changes to endstops
* toggles LED when endstop changes
* background function (machine continues to operate as normal)
*
*/
inline void gcode_M43() {
int first_pin = 0, last_pin = DIO_COUNT - 1;
@ -4721,9 +4728,16 @@ inline void gcode_M42() {
safe_delay(500);
}
}
else // single pins report
for (int8_t pin = first_pin; pin <= last_pin; pin++)
report_pin_state(pin);
if ( !(code_seen('P') || code_seen('W') || code_seen('E'))) // single pins report
for (uint8_t pin = first_pin; pin <= last_pin; pin++)
report_pin_state_extended(pin, code_seen('I') ); // "hidden" option to ignore protected list
if (code_seen('E')) {
endstop_monitor_flag ^= true;
SERIAL_PROTOCOLPGM("endstop monitor ");
SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
SERIAL_PROTOCOLLNPGM("abled");
}
}
#endif // PINS_DEBUGGING

View file

@ -22,7 +22,8 @@
// How many DIO pins are defined?
#if defined(DIO85_PIN)
#define DIO_COUNT 86
// #define DIO_COUNT 86
#define DIO_COUNT 70 // digitalRead and other Arduino IDE routines only know about pins 0 through 69
#elif defined(DIO53_PIN)
#define DIO_COUNT 54
#elif defined(DIO47_PIN)
@ -33,139 +34,162 @@
#define DIO_COUNT 22
#endif
#define _PIN_SAY(NAME) { SERIAL_ECHOPGM(STRINGIFY(NAME)); return true; }
#define PIN_SAY(NAME) if (pin == NAME) _PIN_SAY(_##NAME##_);
#define ANALOG_PIN_SAY(NAME) if (pin == analogInputToDigitalPin(NAME)) _PIN_SAY(_##NAME##_);
bool endstop_monitor_flag = false;
#define NAME_FORMAT "%-28s" // one place to specify the format of all the sources of names
// "-" left justify, "28" minimum width of name, pad with blanks
#define _PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); return true; }
#define PIN_SAY(NAME) if (pin == NAME) _PIN_SAY(#NAME);
#define _ANALOG_PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); pin_is_analog = true; return true; }
#define ANALOG_PIN_SAY(NAME) if (pin == analogInputToDigitalPin(NAME)) _ANALOG_PIN_SAY(#NAME);
#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(5)))
int digitalRead_mod(int8_t pin) // same as digitalRead except the PWM stop section has been removed
{
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
if (port == NOT_A_PIN) return LOW;
if (*portInputRegister(port) & bit) return HIGH;
return LOW;
}
bool get_pinMode(int8_t pin)
{
uint8_t bit = digitalPinToBitMask(pin);
uint8_t port = digitalPinToPort(pin);
volatile uint8_t *reg;
reg = portModeRegister(port);
return *reg & bit;
}
// Report pin name for a given fastio digital pin index
static bool report_pin_name(int8_t pin) {
SERIAL_ECHO((int)pin);
SERIAL_CHAR(' ');
static bool report_pin_name(int8_t pin,bool &pin_is_analog) {
char buffer[30]; // for the sprintf statements
pin_is_analog = false; // default to digital pin
if (IS_ANALOG(pin)) {
SERIAL_CHAR('('); SERIAL_CHAR('A');
SERIAL_ECHO(int(pin - analogInputToDigitalPin(0)));
SERIAL_CHAR(')'); SERIAL_CHAR(' ');
sprintf(buffer, "(A%2d) ", int(pin - analogInputToDigitalPin(0)));
SERIAL_ECHO(buffer);
}
else SERIAL_ECHOPGM(" ");
#if defined(RXD) && RXD > -1
if (pin == 0) { SERIAL_ECHOPGM("RXD"); return true; }
if (pin == 0) { sprintf(buffer, NAME_FORMAT, "RXD"); SERIAL_ECHO(buffer); return true; }
#endif
#if defined(TXD) && TXD > -1
if (pin == 1) { SERIAL_ECHOPGM("TXD"); return true; }
if (pin == 1) { sprintf(buffer, NAME_FORMAT, "TXD"); SERIAL_ECHO(buffer); return true; }
#endif
#if PIN_EXISTS(SERVO0)
PIN_SAY(SERVO0_PIN);
// Pin list updated from 7 OCT RCBugfix branch
#if defined(__FD) && __FD > -1
PIN_SAY(__FD)
#endif
#if PIN_EXISTS(SERVO1)
PIN_SAY(SERVO1_PIN);
#if defined(__FS) && __FS > -1
PIN_SAY(__FS)
#endif
#if PIN_EXISTS(SERVO2)
PIN_SAY(SERVO2_PIN);
#if defined(__GD) && __GD > -1
PIN_SAY(__GD)
#endif
#if PIN_EXISTS(SERVO3)
PIN_SAY(SERVO3_PIN);
#if defined(__GS) && __GS > -1
PIN_SAY(__GS)
#endif
#if PIN_EXISTS(X_MIN)
PIN_SAY(X_MIN_PIN);
#if PIN_EXISTS(AVR_MISO)
PIN_SAY(AVR_MISO_PIN);
#endif
#if PIN_EXISTS(X_MAX)
PIN_SAY(X_MAX_PIN);
#if PIN_EXISTS(AVR_MOSI)
PIN_SAY(AVR_MOSI_PIN);
#endif
#if PIN_EXISTS(Y_MIN)
PIN_SAY(Y_MIN_PIN);
#if PIN_EXISTS(AVR_SCK)
PIN_SAY(AVR_SCK_PIN);
#endif
#if PIN_EXISTS(Y_MAX)
PIN_SAY(Y_MAX_PIN);
#if PIN_EXISTS(AVR_SS)
PIN_SAY(AVR_SS_PIN);
#endif
#if PIN_EXISTS(Z_MIN)
PIN_SAY(Z_MIN_PIN);
#if PIN_EXISTS(BEEPER)
PIN_SAY(BEEPER_PIN);
#endif
#if PIN_EXISTS(Z_MAX)
PIN_SAY(Z_MAX_PIN);
#if defined(BTN_CENTER) && BTN_CENTER > -1
PIN_SAY(BTN_CENTER);
#endif
#if PIN_EXISTS(Z_MIN_PROBE)
PIN_SAY(Z_MIN_PROBE_PIN);
#if defined(BTN_DOWN) && BTN_DOWN > -1
PIN_SAY(BTN_DOWN);
#endif
#if PIN_EXISTS(X_STEP)
PIN_SAY(X_STEP_PIN);
#if defined(BTN_DWN) && BTN_DWN > -1
PIN_SAY(BTN_DWN);
#endif
#if PIN_EXISTS(X_DIR)
PIN_SAY(X_DIR_PIN);
#if defined(BTN_EN1) && BTN_EN1 > -1
PIN_SAY(BTN_EN1);
#endif
#if PIN_EXISTS(X_ENABLE)
PIN_SAY(X_ENABLE_PIN);
#if defined(BTN_EN2) && BTN_EN2 > -1
PIN_SAY(BTN_EN2);
#endif
#if PIN_EXISTS(X_MS1)
PIN_SAY(X_MS1_PIN);
#if defined(BTN_ENC) && BTN_ENC > -1
PIN_SAY(BTN_ENC);
#endif
#if PIN_EXISTS(X_MS2)
PIN_SAY(X_MS2_PIN);
#if defined(BTN_HOME) && BTN_HOME > -1
PIN_SAY(BTN_HOME);
#endif
#if PIN_EXISTS(X2_STEP)
PIN_SAY(X2_STEP_PIN);
#if defined(BTN_LEFT) && BTN_LEFT > -1
PIN_SAY(BTN_LEFT);
#endif
#if PIN_EXISTS(X2_DIR)
PIN_SAY(X2_DIR_PIN);
#if defined(BTN_LFT) && BTN_LFT > -1
PIN_SAY(BTN_LFT);
#endif
#if PIN_EXISTS(X2_ENABLE)
PIN_SAY(X2_ENABLE_PIN);
#if defined(BTN_RIGHT) && BTN_RIGHT > -1
PIN_SAY(BTN_RIGHT);
#endif
#if PIN_EXISTS(Y_STEP)
PIN_SAY(Y_STEP_PIN);
#if defined(BTN_RT) && BTN_RT > -1
PIN_SAY(BTN_RT);
#endif
#if PIN_EXISTS(Y_DIR)
PIN_SAY(Y_DIR_PIN);
#if defined(BTN_UP) && BTN_UP > -1
PIN_SAY(BTN_UP);
#endif
#if PIN_EXISTS(Y_ENABLE)
PIN_SAY(Y_ENABLE_PIN);
#if PIN_EXISTS(CONTROLLERFAN)
PIN_SAY(CONTROLLERFAN_PIN);
#endif
#if PIN_EXISTS(Y_MS1)
PIN_SAY(Y_MS1_PIN);
#if PIN_EXISTS(DAC_DISABLE)
PIN_SAY(DAC_DISABLE_PIN);
#endif
#if PIN_EXISTS(Y_MS2)
PIN_SAY(Y_MS2_PIN);
#if defined(DAC_STEPPER_GAIN) && DAC_STEPPER_GAIN > -1
PIN_SAY(DAC_STEPPER_GAIN);
#endif
#if PIN_EXISTS(Y2_STEP)
PIN_SAY(Y2_STEP_PIN);
#if defined(DAC_STEPPER_VREF) && DAC_STEPPER_VREF > -1
PIN_SAY(DAC_STEPPER_VREF);
#endif
#if PIN_EXISTS(Y2_DIR)
PIN_SAY(Y2_DIR_PIN);
#if PIN_EXISTS(DEBUG)
PIN_SAY(DEBUG_PIN);
#endif
#if PIN_EXISTS(Y2_ENABLE)
PIN_SAY(Y2_ENABLE_PIN);
#if PIN_EXISTS(DIGIPOTSS)
PIN_SAY(DIGIPOTSS_PIN);
#endif
#if PIN_EXISTS(Z_STEP)
PIN_SAY(Z_STEP_PIN);
#if defined(DIO_COUNT) && DIO_COUNT > -1
PIN_SAY(DIO_COUNT);
#endif
#if PIN_EXISTS(Z_DIR)
PIN_SAY(Z_DIR_PIN);
#if defined(DOGLCD_A0) && DOGLCD_A0 > -1
PIN_SAY(DOGLCD_A0);
#endif
#if PIN_EXISTS(Z_ENABLE)
PIN_SAY(Z_ENABLE_PIN);
#if defined(DOGLCD_CS) && DOGLCD_CS > -1
PIN_SAY(DOGLCD_CS);
#endif
#if PIN_EXISTS(Z_MS1)
PIN_SAY(Z_MS1_PIN);
#if defined(DOGLCD_MOSI) && DOGLCD_MOSI > -1
PIN_SAY(DOGLCD_MOSI);
#endif
#if PIN_EXISTS(Z_MS2)
PIN_SAY(Z_MS2_PIN);
#if defined(DOGLCD_SCK) && DOGLCD_SCK > -1
PIN_SAY(DOGLCD_SCK);
#endif
#if PIN_EXISTS(Z2_STEP)
PIN_SAY(Z2_STEP_PIN);
#endif
#if PIN_EXISTS(Z2_DIR)
PIN_SAY(Z2_DIR_PIN);
#endif
#if PIN_EXISTS(Z2_ENABLE)
PIN_SAY(Z2_ENABLE_PIN);
#endif
#if PIN_EXISTS(E0_STEP)
PIN_SAY(E0_STEP_PIN);
#if PIN_EXISTS(E0_ATT)
PIN_SAY(E0_ATT_PIN);
#endif
#if PIN_EXISTS(E0_DIR)
PIN_SAY(E0_DIR_PIN);
@ -179,8 +203,8 @@ static bool report_pin_name(int8_t pin) {
#if PIN_EXISTS(E0_MS2)
PIN_SAY(E0_MS2_PIN);
#endif
#if PIN_EXISTS(E1_STEP)
PIN_SAY(E1_STEP_PIN);
#if PIN_EXISTS(E0_STEP)
PIN_SAY(E0_STEP_PIN);
#endif
#if PIN_EXISTS(E1_DIR)
PIN_SAY(E1_DIR_PIN);
@ -194,8 +218,8 @@ static bool report_pin_name(int8_t pin) {
#if PIN_EXISTS(E1_MS2)
PIN_SAY(E1_MS2_PIN);
#endif
#if PIN_EXISTS(E2_STEP)
PIN_SAY(E2_STEP_PIN);
#if PIN_EXISTS(E1_STEP)
PIN_SAY(E1_STEP_PIN);
#endif
#if PIN_EXISTS(E2_DIR)
PIN_SAY(E2_DIR_PIN);
@ -203,8 +227,8 @@ static bool report_pin_name(int8_t pin) {
#if PIN_EXISTS(E2_ENABLE)
PIN_SAY(E2_ENABLE_PIN);
#endif
#if PIN_EXISTS(E3_STEP)
PIN_SAY(E3_STEP_PIN);
#if PIN_EXISTS(E2_STEP)
PIN_SAY(E2_STEP_PIN);
#endif
#if PIN_EXISTS(E3_DIR)
PIN_SAY(E3_DIR_PIN);
@ -212,8 +236,8 @@ static bool report_pin_name(int8_t pin) {
#if PIN_EXISTS(E3_ENABLE)
PIN_SAY(E3_ENABLE_PIN);
#endif
#if PIN_EXISTS(E4_STEP)
PIN_SAY(E4_STEP_PIN);
#if PIN_EXISTS(E3_STEP)
PIN_SAY(E3_STEP_PIN);
#endif
#if PIN_EXISTS(E4_DIR)
PIN_SAY(E4_DIR_PIN);
@ -221,30 +245,89 @@ static bool report_pin_name(int8_t pin) {
#if PIN_EXISTS(E4_ENABLE)
PIN_SAY(E4_ENABLE_PIN);
#endif
#if PIN_EXISTS(E4_STEP)
PIN_SAY(E4_STEP_PIN);
#endif
#if defined(encrot1) && encrot1 > -1
PIN_SAY(encrot1);
#endif
#if defined(encrot2) && encrot2 > -1
PIN_SAY(encrot2);
#endif
#if defined(encrot3) && encrot3 > -1
PIN_SAY(encrot3);
#endif
#if defined(EXT_AUX_A0_IO) && EXT_AUX_A0_IO > -1
PIN_SAY(EXT_AUX_A0_IO);
#endif
#if defined(EXT_AUX_A1) && EXT_AUX_A1 > -1
PIN_SAY(EXT_AUX_A1);
#endif
#if defined(EXT_AUX_A1_IO) && EXT_AUX_A1_IO > -1
PIN_SAY(EXT_AUX_A1_IO);
#endif
#if defined(EXT_AUX_A2) && EXT_AUX_A2 > -1
PIN_SAY(EXT_AUX_A2);
#endif
#if defined(EXT_AUX_A2_IO) && EXT_AUX_A2_IO > -1
PIN_SAY(EXT_AUX_A2_IO);
#endif
#if defined(EXT_AUX_A3) && EXT_AUX_A3 > -1
PIN_SAY(EXT_AUX_A3);
#endif
#if defined(EXT_AUX_A3_IO) && EXT_AUX_A3_IO > -1
PIN_SAY(EXT_AUX_A3_IO);
#endif
#if defined(EXT_AUX_A4) && EXT_AUX_A4 > -1
PIN_SAY(EXT_AUX_A4);
#endif
#if defined(EXT_AUX_A4_IO) && EXT_AUX_A4_IO > -1
PIN_SAY(EXT_AUX_A4_IO);
#endif
#if defined(EXT_AUX_PWM_D24) && EXT_AUX_PWM_D24 > -1
PIN_SAY(EXT_AUX_PWM_D24);
#endif
#if defined(EXT_AUX_RX1_D2) && EXT_AUX_RX1_D2 > -1
PIN_SAY(EXT_AUX_RX1_D2);
#endif
#if defined(EXT_AUX_SDA_D1) && EXT_AUX_SDA_D1 > -1
PIN_SAY(EXT_AUX_SDA_D1);
#endif
#if defined(EXT_AUX_TX1_D3) && EXT_AUX_TX1_D3 > -1
PIN_SAY(EXT_AUX_TX1_D3);
#endif
#if PIN_EXISTS(EXTRUDER_0_AUTO_FAN)
PIN_SAY(EXTRUDER_0_AUTO_FAN_PIN);
#endif
#if PIN_EXISTS(EXTRUDER_1_AUTO_FAN)
PIN_SAY(EXTRUDER_1_AUTO_FAN_PIN);
#endif
#if PIN_EXISTS(EXTRUDER_2_AUTO_FAN)
PIN_SAY(EXTRUDER_2_AUTO_FAN_PIN);
#endif
#if PIN_EXISTS(EXTRUDER_3_AUTO_FAN)
PIN_SAY(EXTRUDER_3_AUTO_FAN_PIN);
#endif
#if PIN_EXISTS(FAN)
PIN_SAY(FAN_PIN);
#endif
#if PIN_EXISTS(FAN0)
PIN_SAY(FAN0_PIN);
#endif
#if PIN_EXISTS(FAN1)
PIN_SAY(FAN1_PIN);
#endif
#if PIN_EXISTS(FAN2)
PIN_SAY(FAN2_PIN);
#endif
#if PIN_EXISTS(CONTROLLERFAN)
PIN_SAY(CONTROLLERFAN_PIN);
#if PIN_EXISTS(FIL_RUNOUT)
PIN_SAY(FIL_RUNOUT_PIN);
#endif
#if PIN_EXISTS(E0_AUTO_FAN)
PIN_SAY(E0_AUTO_FAN_PIN);
#if PIN_EXISTS(FILWIDTH)
ANALOG_PIN_SAY(FILWIDTH_PIN);
#endif
#if PIN_EXISTS(E1_AUTO_FAN)
PIN_SAY(E1_AUTO_FAN_PIN);
#endif
#if PIN_EXISTS(E2_AUTO_FAN)
PIN_SAY(E2_AUTO_FAN_PIN);
#endif
#if PIN_EXISTS(E3_AUTO_FAN)
PIN_SAY(E3_AUTO_FAN_PIN);
#if defined(GEN7_VERSION) && GEN7_VERSION > -1
PIN_SAY(GEN7_VERSION);
#endif
#if PIN_EXISTS(HEATER_0)
PIN_SAY(HEATER_0_PIN);
@ -258,138 +341,35 @@ static bool report_pin_name(int8_t pin) {
#if PIN_EXISTS(HEATER_3)
PIN_SAY(HEATER_3_PIN);
#endif
#if PIN_EXISTS(HEATER_4)
PIN_SAY(HEATER_4_PIN);
#endif
#if PIN_EXISTS(HEATER_5)
PIN_SAY(HEATER_5_PIN);
#endif
#if PIN_EXISTS(HEATER_6)
PIN_SAY(HEATER_6_PIN);
#endif
#if PIN_EXISTS(HEATER_7)
PIN_SAY(HEATER_7_PIN);
#endif
#if PIN_EXISTS(HEATER_BED)
PIN_SAY(HEATER_BED_PIN);
#endif
#if PIN_EXISTS(X_ATT)
PIN_SAY(X_ATT_PIN);
#endif
#if PIN_EXISTS(Y_ATT)
PIN_SAY(Y_ATT_PIN);
#endif
#if PIN_EXISTS(Z_ATT)
PIN_SAY(Z_ATT_PIN);
#endif
#if PIN_EXISTS(E0_ATT)
PIN_SAY(E0_ATT_PIN);
#endif
#if PIN_EXISTS(TEMP_0)
ANALOG_PIN_SAY(TEMP_0_PIN);
#endif
#if PIN_EXISTS(TEMP_1)
ANALOG_PIN_SAY(TEMP_1_PIN);
#endif
#if PIN_EXISTS(TEMP_2)
ANALOG_PIN_SAY(TEMP_2_PIN);
#endif
#if PIN_EXISTS(TEMP_3)
ANALOG_PIN_SAY(TEMP_3_PIN);
#endif
#if PIN_EXISTS(TEMP_BED)
ANALOG_PIN_SAY(TEMP_BED_PIN);
#endif
#if PIN_EXISTS(FILWIDTH)
ANALOG_PIN_SAY(FILWIDTH_PIN);
#endif
#if PIN_EXISTS(BEEPER)
PIN_SAY(BEEPER_PIN);
#endif
#if PIN_EXISTS(SLED)
PIN_SAY(SLED_PIN);
#endif
#if PIN_EXISTS(FIL_RUNOUT)
PIN_SAY(FIL_RUNOUT_PIN);
#endif
#if PIN_EXISTS(LED)
PIN_SAY(LED_PIN);
#endif
// #if defined(DEBUG_LED) && DEBUG_LED > -1
// PIN_SAY(DEBUG_LED);
// #endif
#if PIN_EXISTS(STAT_LED_RED)
PIN_SAY(STAT_LED_RED_PIN);
#endif
#if PIN_EXISTS(STAT_LED_BLUE)
PIN_SAY(STAT_LED_BLUE_PIN);
#endif
#if PIN_EXISTS(DIGIPOTSS)
PIN_SAY(DIGIPOTSS_PIN);
#endif
#if PIN_EXISTS(SCK)
PIN_SAY(SCK_PIN);
#endif
#if PIN_EXISTS(MISO)
PIN_SAY(MISO_PIN);
#endif
#if PIN_EXISTS(MOSI)
PIN_SAY(MOSI_PIN);
#endif
#if PIN_EXISTS(SS)
PIN_SAY(SS_PIN);
#endif
#if PIN_EXISTS(SD_DETECT)
PIN_SAY(SD_DETECT_PIN);
#endif
#if defined(SDPOWER) && SDPOWER > -1
PIN_SAY(SDPOWER);
#endif
#if defined(SDSS) && SDSS > -1
PIN_SAY(SDSS);
#endif
#if defined(I2C_SCL) && I2C_SCL > -1
PIN_SAY(I2C_SCL);
#endif
#if defined(I2C_SDA) && I2C_SDA > -1
PIN_SAY(I2C_SDA);
#endif
#if defined(SCL) && SCL > -1
PIN_SAY(SCL);
#endif
#if defined(SDA) && SDA > -1
PIN_SAY(SDA);
#endif
#if PIN_EXISTS(PS_ON)
PIN_SAY(PS_ON_PIN);
#endif
#if PIN_EXISTS(KILL)
PIN_SAY(KILL_PIN);
#endif
#if PIN_EXISTS(SUICIDE)
PIN_SAY(SUICIDE_PIN);
#if PIN_EXISTS(LCD_BACKLIGHT)
PIN_SAY(LCD_BACKLIGHT_PIN);
#endif
#if PIN_EXISTS(DEBUG)
PIN_SAY(DEBUG_PIN);
#endif
#if PIN_EXISTS(PHOTOGRAPH)
PIN_SAY(PHOTOGRAPH_PIN);
#endif
#if PIN_EXISTS(BEEPER)
PIN_SAY(BEEPER_PIN);
#endif
#if defined(BTN_EN1) && BTN_EN1 > -1
PIN_SAY(BTN_EN1);
#endif
#if defined(BTN_EN2) && BTN_EN2 > -1
PIN_SAY(BTN_EN2);
#endif
#if defined(BTN_ENC) && BTN_ENC > -1
PIN_SAY(BTN_ENC);
#endif
#if defined(LCD_PINS_RS) && LCD_PINS_RS > -1
PIN_SAY(LCD_PINS_RS);
#endif
#if defined(LCD_PINS_ENABLE) && LCD_PINS_ENABLE > -1
PIN_SAY(LCD_PINS_ENABLE);
#if defined(LCD_CONTRAST) && LCD_CONTRAST > -1
PIN_SAY(LCD_CONTRAST);
#endif
#if defined(LCD_PINS_D4) && LCD_PINS_D4 > -1
PIN_SAY(LCD_PINS_D4);
@ -403,33 +383,676 @@ static bool report_pin_name(int8_t pin) {
#if defined(LCD_PINS_D7) && LCD_PINS_D7 > -1
PIN_SAY(LCD_PINS_D7);
#endif
#if defined(LCD_PINS_ENABLE) && LCD_PINS_ENABLE > -1
PIN_SAY(LCD_PINS_ENABLE);
#endif
#if defined(LCD_PINS_RS) && LCD_PINS_RS > -1
PIN_SAY(LCD_PINS_RS);
#endif
#if defined(LCD_SDSS) && LCD_SDSS > -1
PIN_SAY(LCD_SDSS);
#endif
#if PIN_EXISTS(LED)
PIN_SAY(LED_PIN);
#endif
#if PIN_EXISTS(MAIN_VOLTAGE_MEASURE)
PIN_SAY(MAIN_VOLTAGE_MEASURE_PIN);
#endif
#if defined(MAX6675_SS) && MAX6675_SS > -1
PIN_SAY(MAX6675_SS);
#endif
#if PIN_EXISTS(MISO)
PIN_SAY(MISO_PIN);
#endif
#if PIN_EXISTS(MOSFET_D)
PIN_SAY(MOSFET_D_PIN);
#endif
#if PIN_EXISTS(MOSI)
PIN_SAY(MOSI_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
PIN_SAY(MOTOR_CURRENT_PWM_E_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
PIN_SAY(MOTOR_CURRENT_PWM_XY_PIN);
#endif
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
PIN_SAY(MOTOR_CURRENT_PWM_Z_PIN);
#endif
#if defined(NUM_TLCS) && NUM_TLCS > -1
PIN_SAY(NUM_TLCS);
#endif
#if PIN_EXISTS(PHOTOGRAPH)
PIN_SAY(PHOTOGRAPH_PIN);
#endif
#if PIN_EXISTS(PS_ON)
PIN_SAY(PS_ON_PIN);
#endif
#if PIN_EXISTS(RAMPS_D10)
PIN_SAY(RAMPS_D10_PIN);
#endif
#if PIN_EXISTS(RAMPS_D8)
PIN_SAY(RAMPS_D8_PIN);
#endif
#if PIN_EXISTS(RAMPS_D9)
PIN_SAY(RAMPS_D9_PIN);
#endif
#if PIN_EXISTS(RAMPS_D10)
PIN_SAY(RAMPS_D10_PIN);
#endif
#if PIN_EXISTS(MOSFET_D)
PIN_SAY(MOSFET_D_PIN);
#endif
#if PIN_EXISTS(TX_ENABLE)
PIN_SAY(TX_ENABLE_PIN);
#endif
#if PIN_EXISTS(RX_ENABLE)
PIN_SAY(RX_ENABLE_PIN);
#endif
#if PIN_EXISTS(SAFETY_TRIGGERED)
PIN_SAY(SAFETY_TRIGGERED_PIN);
#endif
#if PIN_EXISTS(SCK)
PIN_SAY(SCK_PIN);
#endif
#if defined(SCL) && SCL > -1
PIN_SAY(SCL);
#endif
#if PIN_EXISTS(SD_DETECT)
PIN_SAY(SD_DETECT_PIN);
#endif
#if defined(SDA) && SDA > -1
PIN_SAY(SDA);
#endif
#if defined(SDPOWER) && SDPOWER > -1
PIN_SAY(SDPOWER);
#endif
#if defined(SDSS) && SDSS > -1
PIN_SAY(SDSS);
#endif
#if PIN_EXISTS(SERVO0)
PIN_SAY(SERVO0_PIN);
#endif
#if PIN_EXISTS(SERVO1)
PIN_SAY(SERVO1_PIN);
#endif
#if PIN_EXISTS(SERVO2)
PIN_SAY(SERVO2_PIN);
#endif
#if PIN_EXISTS(SERVO3)
PIN_SAY(SERVO3_PIN);
#endif
#if defined(SHIFT_CLK) && SHIFT_CLK > -1
PIN_SAY(SHIFT_CLK);
#endif
#if defined(SHIFT_EN) && SHIFT_EN > -1
PIN_SAY(SHIFT_EN);
#endif
#if defined(SHIFT_LD) && SHIFT_LD > -1
PIN_SAY(SHIFT_LD);
#endif
#if defined(SHIFT_OUT) && SHIFT_OUT > -1
PIN_SAY(SHIFT_OUT);
#endif
#if PIN_EXISTS(SLED)
PIN_SAY(SLED_PIN);
#endif
#if PIN_EXISTS(SLEEP_WAKE)
PIN_SAY(SLEEP_WAKE_PIN);
#endif
#if PIN_EXISTS(SOL1)
PIN_SAY(SOL1_PIN);
#endif
#if PIN_EXISTS(SOL2)
PIN_SAY(SOL2_PIN);
#endif
#if PIN_EXISTS(SPINDLE_ENABLE)
PIN_SAY(SPINDLE_ENABLE_PIN);
#endif
#if PIN_EXISTS(SPINDLE_SPEED)
PIN_SAY(SPINDLE_SPEED_PIN);
#endif
#if PIN_EXISTS(SS)
PIN_SAY(SS_PIN);
#endif
#if PIN_EXISTS(STAT_LED_BLUE)
PIN_SAY(STAT_LED_BLUE_PIN);
#endif
#if PIN_EXISTS(STAT_LED_RED)
PIN_SAY(STAT_LED_RED_PIN);
#endif
#if PIN_EXISTS(STEPPER_RESET)
PIN_SAY(STEPPER_RESET_PIN);
#endif
#if PIN_EXISTS(SUICIDE)
PIN_SAY(SUICIDE_PIN);
#endif
#if defined(TC1) && TC1 > -1
ANALOG_PIN_SAY(TC1);
#endif
#if defined(TC2) && TC2 > -1
ANALOG_PIN_SAY(TC2);
#endif
#if PIN_EXISTS(TEMP_0)
ANALOG_PIN_SAY(TEMP_0_PIN);
#endif
#if PIN_EXISTS(TEMP_1)
ANALOG_PIN_SAY(TEMP_1_PIN);
#endif
#if PIN_EXISTS(TEMP_2)
ANALOG_PIN_SAY(TEMP_2_PIN);
#endif
#if PIN_EXISTS(TEMP_3)
ANALOG_PIN_SAY(TEMP_3_PIN);
#endif
#if PIN_EXISTS(TEMP_4)
ANALOG_PIN_SAY(TEMP_4_PIN);
#endif
#if PIN_EXISTS(TEMP_BED)
ANALOG_PIN_SAY(TEMP_BED_PIN);
#endif
#if PIN_EXISTS(TEMP_X)
ANALOG_PIN_SAY(TEMP_X_PIN);
#endif
#if defined(TLC_BLANK_BIT) && TLC_BLANK_BIT > -1
PIN_SAY(TLC_BLANK_BIT);
#endif
#if PIN_EXISTS(TLC_BLANK)
PIN_SAY(TLC_BLANK_PIN);
#endif
#if defined(TLC_CLOCK_BIT) && TLC_CLOCK_BIT > -1
PIN_SAY(TLC_CLOCK_BIT);
#endif
#if PIN_EXISTS(TLC_CLOCK)
PIN_SAY(TLC_CLOCK_PIN);
#endif
#if defined(TLC_DATA_BIT) && TLC_DATA_BIT > -1
PIN_SAY(TLC_DATA_BIT);
#endif
#if PIN_EXISTS(TLC_DATA)
PIN_SAY(TLC_DATA_PIN);
#endif
#if PIN_EXISTS(TLC_XLAT)
PIN_SAY(TLC_XLAT_PIN);
#endif
#if PIN_EXISTS(TX_ENABLE)
PIN_SAY(TX_ENABLE_PIN);
#endif
#if defined(UNUSED_PWM) && UNUSED_PWM > -1
PIN_SAY(UNUSED_PWM);
#endif
#if PIN_EXISTS(X_ATT)
PIN_SAY(X_ATT_PIN);
#endif
#if PIN_EXISTS(X_DIR)
PIN_SAY(X_DIR_PIN);
#endif
#if PIN_EXISTS(X_ENABLE)
PIN_SAY(X_ENABLE_PIN);
#endif
#if PIN_EXISTS(X_MAX)
PIN_SAY(X_MAX_PIN);
#endif
#if PIN_EXISTS(X_MIN)
PIN_SAY(X_MIN_PIN);
#endif
#if PIN_EXISTS(X_MS1)
PIN_SAY(X_MS1_PIN);
#endif
#if PIN_EXISTS(X_MS2)
PIN_SAY(X_MS2_PIN);
#endif
#if PIN_EXISTS(X_STEP)
PIN_SAY(X_STEP_PIN);
#endif
#if PIN_EXISTS(X_STOP)
PIN_SAY(X_STOP_PIN);
#endif
#if PIN_EXISTS(X2_DIR)
PIN_SAY(X2_DIR_PIN);
#endif
#if PIN_EXISTS(X2_ENABLE)
PIN_SAY(X2_ENABLE_PIN);
#endif
#if PIN_EXISTS(X2_STEP)
PIN_SAY(X2_STEP_PIN);
#endif
#if PIN_EXISTS(Y_ATT)
PIN_SAY(Y_ATT_PIN);
#endif
#if PIN_EXISTS(Y_DIR)
PIN_SAY(Y_DIR_PIN);
#endif
#if PIN_EXISTS(Y_ENABLE)
PIN_SAY(Y_ENABLE_PIN);
#endif
#if PIN_EXISTS(Y_MAX)
PIN_SAY(Y_MAX_PIN);
#endif
#if PIN_EXISTS(Y_MIN)
PIN_SAY(Y_MIN_PIN);
#endif
#if PIN_EXISTS(Y_MS1)
PIN_SAY(Y_MS1_PIN);
#endif
#if PIN_EXISTS(Y_MS2)
PIN_SAY(Y_MS2_PIN);
#endif
#if PIN_EXISTS(Y_STEP)
PIN_SAY(Y_STEP_PIN);
#endif
#if PIN_EXISTS(Y_STOP)
PIN_SAY(Y_STOP_PIN);
#endif
#if PIN_EXISTS(Y2_DIR)
PIN_SAY(Y2_DIR_PIN);
#endif
#if PIN_EXISTS(Y2_ENABLE)
PIN_SAY(Y2_ENABLE_PIN);
#endif
#if PIN_EXISTS(Y2_STEP)
PIN_SAY(Y2_STEP_PIN);
#endif
#if PIN_EXISTS(Z_ATT)
PIN_SAY(Z_ATT_PIN);
#endif
#if PIN_EXISTS(Z_DIR)
PIN_SAY(Z_DIR_PIN);
#endif
#if PIN_EXISTS(Z_ENABLE)
PIN_SAY(Z_ENABLE_PIN);
#endif
#if PIN_EXISTS(Z_MAX)
PIN_SAY(Z_MAX_PIN);
#endif
#if PIN_EXISTS(Z_MIN)
PIN_SAY(Z_MIN_PIN);
#endif
#if PIN_EXISTS(Z_MIN_PROBE)
PIN_SAY(Z_MIN_PROBE_PIN);
#endif
#if PIN_EXISTS(Z_MS1)
PIN_SAY(Z_MS1_PIN);
#endif
#if PIN_EXISTS(Z_MS2)
PIN_SAY(Z_MS2_PIN);
#endif
#if PIN_EXISTS(Z_STEP)
PIN_SAY(Z_STEP_PIN);
#endif
#if PIN_EXISTS(Z_STOP)
PIN_SAY(Z_STOP_PIN);
#endif
#if PIN_EXISTS(Z2_DIR)
PIN_SAY(Z2_DIR_PIN);
#endif
#if PIN_EXISTS(Z2_ENABLE)
PIN_SAY(Z2_ENABLE_PIN);
#endif
#if PIN_EXISTS(Z2_STEP)
PIN_SAY(Z2_STEP_PIN);
#endif
SERIAL_ECHOPGM("<unused>");
sprintf(buffer, NAME_FORMAT, "<unused> ");
SERIAL_ECHO(buffer);
return false;
}
} // report_pin_name
// True - currently a PWM pin
static bool PWM_status(uint8_t pin) {
char buffer[20]; // for the sprintf statements
switch(digitalPinToTimer(pin)) {
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A:
if (TCCR0A & (_BV(COM0A1) | _BV(COM0A0))){
sprintf(buffer, "PWM: %4d", OCR0A);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER0B:
if (TCCR0A & (_BV(COM0B1) | _BV(COM0B0))){
sprintf(buffer, "PWM: %4d",OCR0B);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A:
if (TCCR1A & (_BV(COM1A1) | _BV(COM1A0))){
sprintf(buffer, "PWM: %4d",OCR1A);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER1B:
if (TCCR1A & (_BV(COM1B1) | _BV(COM1B0))){
sprintf(buffer, "PWM: %4d",OCR1B);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER1C:
if (TCCR1A & (_BV(COM1C1) | _BV(COM1C0))){
sprintf(buffer, "PWM: %4d",OCR1C);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A:
if (TCCR2A & (_BV(COM2A1) | _BV(COM2A0))){
sprintf(buffer, "PWM: %4d",OCR2A);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER2B:
if (TCCR2A & (_BV(COM2B1) | _BV(COM2B0))){
sprintf(buffer, "PWM: %4d",OCR2B);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A:
if (TCCR3A & (_BV(COM3A1) | _BV(COM3A0))){
sprintf(buffer, "PWM: %4d",OCR3A);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER3B:
if (TCCR3A & (_BV(COM3B1) | _BV(COM3B0))){
sprintf(buffer, "PWM: %4d",OCR3B);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER3C:
if (TCCR3A & (_BV(COM3C1) | _BV(COM3C0))){
sprintf(buffer, "PWM: %4d",OCR3C);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
if (TCCR4A & (_BV(COM4A1) | _BV(COM4A0))){
sprintf(buffer, "PWM: %4d",OCR4A);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER4B:
if (TCCR4A & (_BV(COM4B1) | _BV(COM4B0))){
sprintf(buffer, "PWM: %4d",OCR4B);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER4C:
if (TCCR4A & (_BV(COM4C1) | _BV(COM4C0))){
sprintf(buffer, "PWM: %4d",OCR4C);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
if (TCCR5A & (_BV(COM5A1) | _BV(COM5A0))){
sprintf(buffer, "PWM: %4d",OCR5A);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER5B:
if (TCCR5A & (_BV(COM5B1) | _BV(COM5B0))){
sprintf(buffer, "PWM: %4d",OCR5B);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
case TIMER5C:
if (TCCR5A & (_BV(COM5C1) | _BV(COM5C0))){
sprintf(buffer, "PWM: %4d",OCR5C);
SERIAL_ECHO(buffer);
return true;
}
else return false;
break;
#endif
case NOT_ON_TIMER:
return false;
break;
default:
return false;
}
SERIAL_PROTOCOLPGM(" ");
} //PWM_status
static void PWM_details(uint8_t pin)
{
uint8_t WGM;
switch(digitalPinToTimer(pin)) {
#if defined(TCCR0A) && defined(COM0A1)
case TIMER0A:
SERIAL_PROTOCOLPGM(" TIMER0A");
WGM = ((TCCR0B & _BV(WGM02)) >> 1 ) | (TCCR0A & (_BV(WGM00) | _BV(WGM01) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK0: ", TIMSK0);
if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK0 & _BV(OCIE0A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK0 & _BV(TOIE0) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER0B:
SERIAL_PROTOCOLPGM(" TIMER0B");
WGM = ((TCCR0B & _BV(WGM02)) >> 1 ) | (TCCR0A & (_BV(WGM00) | _BV(WGM01) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK0: ", TIMSK0);
if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK0 & _BV(OCIE0B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK0 & _BV(TOIE0) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
#endif
#if defined(TCCR1A) && defined(COM1A1)
case TIMER1A:
SERIAL_PROTOCOLPGM(" TIMER1A");
WGM = ((TCCR1B & (_BV(WGM12) | _BV(WGM13) )) >> 1 ) | (TCCR1A & (_BV(WGM10) | _BV(WGM11) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK1: ", TIMSK1);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK1 & _BV(OCIE1A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK1 & (_BV(TOIE1) | _BV(ICIE1)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER1B:
SERIAL_PROTOCOLPGM(" TIMER1B");
WGM = ((TCCR1B & (_BV(WGM12) | _BV(WGM13) )) >> 1 ) | (TCCR1A & (_BV(WGM10) | _BV(WGM11) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK1: ", TIMSK1);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK1 & _BV(OCIE1B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK1 & (_BV(TOIE1) | _BV(ICIE1)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER1C:
SERIAL_PROTOCOLPGM(" TIMER1C");
WGM = ((TCCR1B & (_BV(WGM12) | _BV(WGM13) )) >> 1 ) | (TCCR1A & (_BV(WGM10) | _BV(WGM11) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK1: ", TIMSK1);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK1 & _BV(OCIE1C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK1 & (_BV(TOIE1) | _BV(ICIE1)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
#endif
#if defined(TCCR2A) && defined(COM2A1)
case TIMER2A:
SERIAL_PROTOCOLPGM(" TIMER2A");
WGM = ((TCCR2B & _BV(WGM22) ) >> 1 ) | (TCCR2A & (_BV(WGM20) | _BV(WGM21) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK2: ", TIMSK2);
if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK2 & (_BV(TOIE2) | _BV(OCIE2A))) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK2 & _BV(TOIE2) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER2B:
SERIAL_PROTOCOLPGM(" TIMER2B");
WGM = ((TCCR2B & _BV(WGM22) ) >> 1 ) | (TCCR2A & (_BV(WGM20) | _BV(WGM21) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK2: ", TIMSK2);
if (WGM == 0 || WGM == 2 || WGM == 4 || WGM == 6) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK2 & _BV(OCIE2B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK2 & _BV(TOIE2) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
#endif
#if defined(TCCR3A) && defined(COM3A1)
case TIMER3A:
SERIAL_PROTOCOLPGM(" TIMER3A");
WGM = ((TCCR3B & _BV(WGM32) ) >> 1 ) | (TCCR3A & (_BV(WGM30) | _BV(WGM31) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK3: ", TIMSK3);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK3 & _BV(OCIE3A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER3B:
SERIAL_PROTOCOLPGM(" TIMER3B");
WGM = ((TCCR3B & _BV(WGM32) ) >> 1 ) | (TCCR3A & (_BV(WGM30) | _BV(WGM31) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK3: ", TIMSK3);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK3 & _BV(OCIE3B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER3C:
SERIAL_PROTOCOLPGM(" TIMER3C");
WGM = ((TCCR3B & _BV(WGM32) ) >> 1 ) | (TCCR3A & (_BV(WGM30) | _BV(WGM31) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK3: ", TIMSK3);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK3 & _BV(OCIE3C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK3 & (_BV(TOIE3) | _BV(ICIE3)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
SERIAL_PROTOCOLPGM(" TIMER4A");
WGM = ((TCCR4B & (_BV(WGM42) | _BV(WGM43) )) >> 1 ) | (TCCR4A & (_BV(WGM40) | _BV(WGM41) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK4: ", TIMSK4);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK4 & _BV(OCIE4A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK4 & (_BV(TOIE4) | _BV(ICIE4)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER4B:
SERIAL_PROTOCOLPGM(" TIMER4B");
WGM = ((TCCR4B & (_BV(WGM42) | _BV(WGM43) )) >> 1 ) | (TCCR4A & (_BV(WGM40) | _BV(WGM41) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK4: ", TIMSK4);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK4 & _BV(OCIE4B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK4 & (_BV(TOIE4) | _BV(ICIE4)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER4C:
SERIAL_PROTOCOLPGM(" TIMER4C");
WGM = ((TCCR4B & (_BV(WGM42) | _BV(WGM43) )) >> 1 ) | (TCCR4A & (_BV(WGM40) | _BV(WGM41) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK4: ", TIMSK4);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK4 & _BV(OCIE4C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK4 & (_BV(TOIE4) | _BV(ICIE4)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
#endif
#if defined(TCCR5A) && defined(COM5A1)
case TIMER5A:
SERIAL_PROTOCOLPGM(" TIMER5A");
WGM = ((TCCR5B & (_BV(WGM52) | _BV(WGM53) )) >> 1 ) | (TCCR5A & (_BV(WGM50) | _BV(WGM51) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK5: ", TIMSK5);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK5 & _BV(OCIE5A)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK5 & (_BV(TOIE5) | _BV(ICIE5)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER5B:
SERIAL_PROTOCOLPGM(" TIMER5B");
WGM = ((TCCR5B & (_BV(WGM52) | _BV(WGM53) )) >> 1 ) | (TCCR5A & (_BV(WGM50) | _BV(WGM51) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK5: ", TIMSK5);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK5 & _BV(OCIE5B)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK5 & (_BV(TOIE5) | _BV(ICIE5)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
case TIMER5C:
SERIAL_PROTOCOLPGM(" TIMER5C");
WGM = ((TCCR5B & (_BV(WGM52) | _BV(WGM53) )) >> 1 ) | (TCCR5A & (_BV(WGM50) | _BV(WGM51) ));
SERIAL_PROTOCOLPAIR(" WGM: ", WGM);
SERIAL_PROTOCOLPAIR(" TIMSK5: ", TIMSK5);
if (WGM == 0 || WGM == 4 || WGM == 12 || WGM == 13) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because of counter mode");
else if (TIMSK5 & _BV(OCIE5C)) SERIAL_PROTOCOLPGM(" Can't be used as a PWM because being used to generate an interrupt");
else if (TIMSK5 & (_BV(TOIE5) | _BV(ICIE5)) ) SERIAL_PROTOCOLPGM(" Probably can't be used as a PWM because counter/timer being used to generate an interrupt");
else SERIAL_PROTOCOLPGM(" can be used as PWM ");
break;
#endif
case NOT_ON_TIMER:
break;
}
SERIAL_PROTOCOLPGM(" ");
} // PWM_details
inline void report_pin_state(int8_t pin) {
if (report_pin_name(pin)) {
SERIAL_ECHO((int)pin);
SERIAL_CHAR(' ');
bool dummy;
if (report_pin_name(pin, dummy)) {
if (pin_is_protected(pin))
SERIAL_ECHOPGM(" (protected)");
else {
@ -445,3 +1068,40 @@ inline void report_pin_state(int8_t pin) {
}
SERIAL_EOL;
}
// pretty report with PWM info
inline void report_pin_state_extended(int8_t pin, bool ignore) {
char buffer[30]; // for the sprintf statements
// report pin number
sprintf(buffer, "PIN:% 3d ", pin);
SERIAL_ECHO(buffer);
// report pin name
bool analog_pin;
report_pin_name(pin, analog_pin);
// report pin state
if (pin_is_protected(pin) && ignore == false)
SERIAL_ECHOPGM("protected ");
else {
if (analog_pin) {
sprintf(buffer, "Analog in =% 5d", analogRead(pin - analogInputToDigitalPin(0)));
SERIAL_ECHO(buffer);
}
else {
if (!get_pinMode(pin)) {
pinMode(pin, INPUT_PULLUP); // make sure input isn't floating
SERIAL_PROTOCOLPAIR("Input = ", digitalRead_mod(pin));
}
else if (PWM_status(pin)) ;
else SERIAL_PROTOCOLPAIR("Output = ", digitalRead_mod(pin));
}
}
// report PWM capabilities
PWM_details(pin);
SERIAL_EOL;
}

View file

@ -462,12 +462,12 @@ int Temperature::getHeaterPower(int heater) {
AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3
};
uint8_t fanState = 0;
HOTEND_LOOP() {
if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
SBI(fanState, fanBit[e]);
}
uint8_t fanDone = 0;
for (uint8_t f = 0; f < COUNT(fanPin); f++) {
int8_t pin = fanPin[f];
@ -1393,6 +1393,87 @@ void Temperature::set_current_temp_raw() {
temp_meas_ready = true;
}
#if ENABLED(PINS_DEBUGGING)
/**
* monitors endstops & Z probe for changes
*
* If a change is detected then the LED is toggled and
* a message is sent out the serial port
*
* Yes, we could miss a rapid back & forth change but
* that won't matter because this is all manual.
*
*/
void endstop_monitor() {
static uint16_t old_endstop_bits_local = 0;
static uint8_t local_LED_status = 0;
if (endstop_monitor_flag) {
uint16_t current_endstop_bits_local = 0;
#if HAS_X_MIN
if (READ(X_MIN_PIN)) current_endstop_bits_local |= _BV(X_MIN);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(X_MIN)) {
SERIAL_PROTOCOLPAIR("X_MIN: ", (current_endstop_bits_local & _BV(X_MIN)) ? 1 : 0);
}
#endif
#if HAS_X_MAX
if (READ(X_MAX_PIN)) current_endstop_bits_local |= _BV(X_MAX);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(X_MAX)) {
SERIAL_PROTOCOLPAIR(" X_MAX: ", (current_endstop_bits_local & _BV(X_MAX)) ? 1 : 0);
}
#endif
#if HAS_Y_MIN
if (READ(Y_MIN_PIN)) current_endstop_bits_local |= _BV(Y_MIN);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Y_MIN)) {
SERIAL_PROTOCOLPAIR(" Y_MIN: ", (current_endstop_bits_local & _BV(Y_MIN)) ? 1 : 0);
}
#endif
#if HAS_Y_MAX
if (READ(Y_MAX_PIN)) current_endstop_bits_local |= _BV(Y_MAX);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Y_MAX)) {
SERIAL_PROTOCOLPAIR(" Y_MAX: ", (current_endstop_bits_local & _BV(Y_MAX)) ? 1 : 0);
}
#endif
#if HAS_Z_MIN
if (READ(Z_MIN_PIN)) current_endstop_bits_local |= _BV(Z_MIN);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Z_MIN)) {
SERIAL_PROTOCOLPAIR(" Z_MIN: ", (current_endstop_bits_local & _BV(Z_MIN)) ? 1 : 0);
}
#endif
#if HAS_Z_MAX
if (READ(Z_MAX_PIN)) current_endstop_bits_local |= _BV(Z_MAX);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Z_MAX)) {
SERIAL_PROTOCOLPAIR(" Z_MAX: ", (current_endstop_bits_local & _BV(Z_MAX)) ? 1 : 0);
}
#endif
#if HAS_Z_MIN_PROBE_PIN
if (READ(Z_MIN_PROBE_PIN)) current_endstop_bits_local |= _BV(Z_MIN_PROBE);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Z_MIN_PROBE)) {
SERIAL_PROTOCOLPAIR(" PROBE: ", (current_endstop_bits_local & _BV(Z_MIN_PROBE)) ? 1 : 0);
}
#endif
#if HAS_Z2_MIN
if (READ(Z2_MIN_PIN)) current_endstop_bits_local |= _BV(Z2_MIN);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Z2_MIN)) {
SERIAL_PROTOCOLPAIR(" Z2_MIN: ", (current_endstop_bits_local & _BV(Z2_MIN)) ? 1 : 0);
}
#endif
#if HAS_Z2_MAX
if (READ(Z2_MAX_PIN)) current_endstop_bits_local |= _BV(Z2_MAX);
if ((current_endstop_bits_local ^ old_endstop_bits_local) & _BV(Z2_MAX)) {
SERIAL_PROTOCOLPAIR(" Z2_MAX: ", (current_endstop_bits_local & _BV(Z2_MAX)) ? 1 : 0);
}
#endif
if (current_endstop_bits_local != old_endstop_bits_local) {
analogWrite(LED_PIN, local_LED_status ); // toggle LED
SERIAL_PROTOCOLPGM("\n\n"); // make it easy to see the message
old_endstop_bits_local = current_endstop_bits_local ; // get ready for next change
local_LED_status = local_LED_status ? 0 : 255;
}
}
}
#endif // PINS_DEBUGGING
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
@ -1848,4 +1929,12 @@ void Temperature::isr() {
}
}
#endif //BABYSTEPPING
#if ENABLED(PINS_DEBUGGING)
extern bool endstop_monitor_flag;
// run the endstop monitor at 15Hz
static uint8_t endstop_monitor_count = 16; // offset this check from the others
endstop_monitor_count += _BV(1); // 15 Hz
endstop_monitor_count &= 0x7F;
if (endstop_monitor_count == 0) endstop_monitor(); // report changes in endstop status
#endif
}